
On the confluence of lambda-calculus
with conditional rewriting

Frédéric Blanqui (INRIA) ∗ Claude Kirchner (INRIA) †

Colin Riba (LIP - ENS Lyon) ‡

February 19, 2009

The confluence of untyped λ-calculus with unconditional rewriting is now well un-
derstood. In this paper, we investigate the confluence of λ-calculus with conditional
rewriting and provide general results in two directions.
First, when conditional rules are algebraic. This extends results of Müller and

Dougherty for unconditional rewriting. Two cases are considered, whether beta-
reduction is allowed or not in the evaluation of conditions. Moreover, Dougherty’s
result is improved from the assumption of strongly normalizing β-reduction to weakly
normalizing β-reduction. We also provide examples showing that outside these con-
ditions, modularity of confluence is difficult to achieve.
Second, we go beyond the algebraic framework and get new confluence results

using a restricted notion of orthogonality that takes advantage of the conditional
part of rewrite rules.

∗FIT 3-604, Tsinghua University, Haidian District, Beijing 100084, China
†INRIA Bordeaux - Sud-Ouest, Bât. A29, 351 cours de la Libération, 33405 Talence, France
‡UMR 5668 CNRS ENS-Lyon UCBL INRIA, 46 allée d’Italie, 69364 Lyon Cedex 7, France

1

Contents

1 Introduction 3

2 Lambda-calculus and conditional rewriting 5
2.1 Terms and rewrite relations . 5
2.2 Lambda-calculus . 8
2.3 Conditional rewriting . 9
2.4 Examples . 11

2.4.1 Coherence of lambda-calculus with surjective pairing 12
2.4.2 A term manipulation system . 12

2.5 Confluence . 13

3 Confluence: from unconditional to conditional rewriting 14
3.1 Confluence of beta-reduction with unconditional rewriting 15

3.1.1 Left-linear rewriting . 15
3.1.2 Strongly beta-normalizing terms . 16

3.2 Orthogonal conditional rewriting . 17
3.3 Overview of the results . 18

4 Confluence of beta-reduction with conditional rewriting 18
4.1 Confluence for left-linear semi-closed systems . 19
4.2 Confluence on weakly beta-normalizing terms . 22

5 Using beta-reduction in the evaluation of conditions 26
5.1 Confluence for left-linear semi-closed systems . 28

5.1.1 Preliminaries . 28
5.1.2 Confluence of beta-reduction with beta-conditional rewriting 34

5.2 Confluence on weakly beta-normalizing terms . 35

6 Orthonormal systems 36

7 Conclusion 40

2

1 Introduction

Rewriting [DJ90] and λ-calculus [Bar84] are two universal computation models which are both
used, with their own advantages, in programming language design and implementation, as well
as for the foundation of logical frameworks and proof assistants. Among other things, λ-calculus
allows to manipulate abstractions and higher-order variables, while rewriting is traditionally well
suited for defining functions over data-types and for dealing with equality.
Starting from Klop’s work on higher-order rewriting and because of their complementarity,

many frameworks have been designed with a view to integrate these two formalisms. This inte-
gration has been handled either by enriching first-order rewriting with higher-order capabilities,
by adding to λ-calculus algebraic features or, more recently, by a uniform integration of both
paradigms. In the first case, we find the works on combinatory reduction systems [KOR93] and
other higher-order rewriting systems [Wol93, Nip91] each of them subsumed by van Oostrom
and van Raamsdonk’s axiomatization of HORSs [OR94], and by the every expressive framework
of CCERSs [GKK05]. The second case concerns the more atomic combination of λ-calculus with
term rewriting [JO91, Bla05] and the last category the rewriting calculus [CK01, BCKL03].
Despite this strong interest in the combination of both concepts, few works have considered

conditional higher-order rewriting in λ-calculus. This is of particular interest for both computa-
tion and deduction. Indeed, conditional rewriting appears to be very convenient when program-
ming with rewrite rules and its combination with higher-order features provides a quite agile
background for the combination of algebraic and functional programming. This is also of main
use in proof assistants based on the Curry-Howard-de Bruijn isomorphism where, as emphasized
in deduction modulo [DHK03, Bla05], rewriting capabilities for defining functions and proving
equalities automatically is clearly of great interest when making large proof developments. Fur-
thermore, while many confluence proofs often rely on termination and local confluence, in some
cases, confluence may be necessary for proving termination (e.g. with type-level rewriting or
strong elimination [Bla05]). It is therefore of crucial interest to have also criteria for the preser-
vation of confluence when combining conditional rewriting and β-reduction without assuming
the termination of the combined relation. In particular, assuming the termination of just one of
the two relations is already of interest.
The earliest work on preservation of confluence when combining typed λ-calculus and first-

order rewriting concerns the simple type discipline [BT88] and the result has been extended
to polymorphic λ-calculus in [BTG94]. Concerning untyped λ-calculus, the result was shown
in [Mül92] for left-linear rewriting. It is extended as a modularity result for higher-order rewrit-
ing in [OR94]. In [Dou92], it is shown that left-linearity is not necessary, provided that terms
considered are strongly β-normalizable and are well-formed with respect to the declared arity
of symbols, a property that we call here arity compliance. Higher-order conditional rewriting
is studied in [ALS94] and the confluence result relies on joinability of critical pairs, hence on
termination of the combined rewrite relation. An approach closer to ours is taken with a form
of conditional λ-calculus in [Tak93], and with CCERSs in [GKK05]. In both cases, confluence
relies on a form of conditional orthogonality. However, in these works, conditions are abstract
predicates on terms, and confluence is achieved by assuming that the satisfaction of these pred-
icates is preserved by reduction. These results do not directly apply in our case, since proving
that the satisfaction of conditions is preserved by reduction is actually the most difficult task for
confluence, and this requires a precise knowledge of the shape of the conditions. These systems
are related to those presented in Section 6. Our results can rather be seen as a form of modular-
ity properties. Concerning confluence of unconditional term rewriting, the early work of [Toy87]
has been extended to the higher-order case in [OR94]. In the case of conditional rewriting, if

3

modularity properties have been investigated in the pure first-order setting (e.g. [Mid91, Gra96]),
to the best of our knowledge, there was up to now no result on the preservation of confluence
for the combination with β-reduction.
In this paper, we study the confluence property of the combination of β-reduction with a

confluent conditional rewrite system. This of course should rely on a clear understanding of
the conditional rewrite relation under use and, as usual, the way matching is performed and
conditions are checked is crucial. We always consider left-hand sides without abstractions. So,
rewriting is not in need of higher-order pattern-matching but just relies on syntactic matching.
We begin in Section 2 by presenting our notations and some basic facts on λ-calculus and

conditional rewriting. We start from λ-calculus and discuss, via Böhm’s theorem, the need
of enriching its syntax with symbols defined by rewrite rules. We then present the different
kinds of conditional rewriting considered in this paper. We are interested in join conditional
rewriting: the conditions of rewrite rules are evaluated by testing the joinability of terms. Given
a conditional rewrite system, we consider two conditional rewrite relations, whether β-reduction
is allowed or not in the evaluation of conditions. The case where β-reduction is allowed in
the conditions is termed β-conditional rewriting. We also discuss the particular case of normal
rewriting, i.e. when one side of the conditions is made of terms in normal form. We then give
two examples of conditional rewrite system. The first one recalls the use of conditional rewriting
in the study of λ-calculus with surjective pairing [Vri89]. The second one is a term manipulation
system inspired from a program of [Hue86]. We conclude this section by some basic material on
confluence.
In Section 3 we state precisely the known results from which this paper starts and give a short

overview of our results. The general goal of this paper is to give sufficient conditions for the con-
fluence of β-reduction with β-conditional rewriting (i.e. with β-steps allowed in the evaluation
of conditions). Our main objective is the preservation of confluence, that is, given a conditional
rewrite system, to get the confluence β-conditional rewriting combined with β-reduction assum-
ing the confluence of conditional rewriting. Our approach is to generalize known results on the
combination of β-reduction with unconditional rewriting. We present in Section 3.1 the two
different cases we start with: Müller’s result [Mül92] for left-linear rewriting, and Dougherty’s
result [Dou92] for algebraic rewriting on strongly β-normalizing terms respecting some arity
conditions (called arity compliance). In each case, we will first consider the case of β-reduction
with conditional rewriting (when β-reduction is not allowed in the evaluation of conditions) and
then extend these results to β-conditional rewriting. However, Example 5.2 shows that for β-
conditional rewriting, we can not go beyond algebraic rewriting with arity conditions. In order
to handle rewrite rules which can contain active variables and abstractions in right-hand sides or
in conditions, we build on orthogonal conditional rewriting. Known results on the confluence of
orthogonal for normal algebraic conditional rewriting are discussed in Section 3.2. We conclude
this section by an informal overview of our results. They are summarized in Figure 1, page 6.
The last three sections contain the technical contributions of the paper. We begin in Sec-

tion 4 by extending Müller’s and Dougherty’s result to conditional rewriting combined with
β-reduction. Müller’s result [Mül92] assumes the left-linearity of rewrite rules. Of course, with
conditional rewriting, non-linearity can be simulated by linear systems. Extending the result of
Müller [Mül92], we prove in Section 4.1 that the confluence of conditional rewriting combined
to β-reduction follows from the confluence of conditional rewriting when conditional rules are
applicative, left-linear and semi-closed, which means that the conditions of rules cannot test
for equality of open terms. In Section 4.2 we adapt Dougherty’s method [Dou92] to condi-
tional rewriting and extend it to show that for a large set of weakly β-normalizing terms, the
left-linearity and semi-closure hypotheses can be dropped provided that rules are algebraic and

4

terms are arity compliant.
We then turn in Section 5 to the confluence of β-conditional rewriting combined with β-

reduction. We show in Example 5.2 that confluence is in general not preserved with non-algebraic
rules. When rules are algebraic, we show that arity compliance is a sufficient condition to deduce
the confluence of β-conditional rewriting combined with β-reduction from the confluence of
conditional rewriting alone. This is done first for left-linear semi-closed systems in Section 5.1,
a restriction that we also show to be superfluous when considering only weakly β-normalizing
terms (Section 5.2).
The case of non-algebraic rules is handled in Section 6. Such rules can contain active variables

and abstractions in right-hand sides or in conditions (but still not in left-hand sides). In this case,
the confluence of β-conditional rewriting combined with β-reduction does not follow anymore
from the confluence of conditional rewriting. We show that confluence holds under a syntactic
condition, called orthonormality, ensuring that if two rules overlap at a non-variable position,
then their conditions cannot be both satisfied. An orthonormal system is therefore an orthogonal
system whose orthogonality follows from the confluence of the rewrite relation.
This paper is an extended version of [BKR06]. We assume familiarity with λ-calculus [Bar84]

and conditional rewriting [DO90, Ohl02]. We recall the main notions in the next section.

2 Lambda-calculus and conditional rewriting

In this section we present the tools used in this paper and recall some well-known facts.

2.1 Terms and rewrite relations

We consider λ-terms with curried function symbols. Among them we distinguish applicative
terms that do not contain abstractions, and algebraic terms that are applicative terms with no
variable in active position.

Definition 2.1 (Terms) Let Σ be a set of function symbols and X be a set of variables.

(i) The set Λ(Σ) of λ-terms is defined by the grammar

t, u ∈ Λ(Σ) ::= x | λx.t | t u | f ,

where x ∈ X and f ∈ Σ. We denote by Λ the set Λ(∅) of pure λ-terms.

(ii) The set of applicative terms is defined by the grammar

t, u ::= x | t u | f .

(iii) The set of algebraic terms is defined by the grammar

t ::= x | f t1 . . . tn .

As usual, λ-terms are considered equal modulo α-conversion. We denote by FV(t) the set of
variables occurring free in the term t. A term is closed if it has no free variables and open
otherwise, it is linear if each of its free variables occurs at most once. Given h ∈ X ∪Σ, we write
h~t for h t1 . . . tn and let |~t| =def n. Similarly, we write λ~x.t for λx1. . . . λxn.t.

5

§ Left-Hand
Sides

Right-Hand
Sides

Conditions Terms Result

4.1 Algebraic &
Linear

Applicative No equality
tests between
open terms
(Semi-closed,
Def. 4.2)

All (Λ(Σ)) →R Confluent
=⇒ →β∪R
Confluent
(Thm. 4.6)

4.2 Algebraic &
Respect an
arity a

(Def. 4.8)

Algebraic &
Respect the

arity a

Algebraic &
Respect the

arity a

Weakly
β-normalizing
& βnf respect
the arity a
(ANa,
Def. 4.9)

→R Confluent
=⇒ →β∪R
Confluent

(Thm. 4.15)

5.1 Algebraic &
Linear &
Respect an
arity a

(Def. 4.8)

Algebraic &
Respect the

arity a

Algebraic &
Respect the

arity a
& No equality
tests between
open terms
(Semi-closed,
Def. 4.2)

Respect the
arity a

(Conditionally
(R, a)-stable,

Def. 5.5)

→R Confluent
=⇒ →β∪R(β)

Confluent
(Thm. 5.10)

5.2 Algebraic &
Respect an
arity a

(Def. 4.8)

Algebraic &
Respect the

arity a

Algebraic &
Respect the

arity a

Weakly
β-normalizing
& βnf respect
the arity a
(ANa,
Def. 4.9)

→R Confluent
=⇒ →β∪R(β)

Confluent
(Thm. 5.12)

6 Algebraic &
Linear

Orthonormal
(Def. 6.2)

All (Λ(Σ)) →β∪R(β)

Shallow
Confluent
(Thm. 6.7)

Figure 1: Overview of the results. Algebraic and applicative terms are defined in Def. 2.1

6

Example 2.2 Intuitively, an algebraic term is a curried first-order term with no arity constraint
on symbols. For instance the terms filter and filter px l are algebraic, as well as filter px l y z.
An applicative term is an algebraic term which may contain variables in head position, such as
x filter. The λ-term λx.x is not applicative (and thus not algebraic).

A lot of proofs of this paper are made by induction on the structure of λ-terms. However, it
is often not convenient to reason directly on their syntax as given by the productions of Λ(Σ).
For instance, knowing that a term t is an application, say t = u v, gives little information on its
behavior: we do not know whether u is an abstraction, in which case t is a β-redex, or whether
it is an algebraic term, in which case t may be the instantiated left-hand side of a rewrite rule.
It it is therefore useful to have an induction principle on λ-terms which makes apparent more
informations on their structure. This is provided by the following well-known lemma, due to
Wadsworth [Wad71].

Lemma 2.3 ([Wad71]) Any λ-term t ∈ Λ(Σ) can be uniquely written in one of the following
forms:

λx1. . . . λxm.v a1 . . . an (a)
or λx1. . . . λxm.(λy.b)a0 a1 . . . an (b)

where n,m ≥ 0 and v ∈ X ∪ Σ.

A substitution is a map σ : X → Λ(Σ) of finite domain. We denote by tσ the capture-avoiding
application of the substitution σ to the term t. If σ is the substitution which maps xi to ui for
all i ∈ {1, . . . , n}, then we may write t[u1/x1, . . . , un/xn] instead of tσ.

Definition 2.4 (Rewrite Relations) A rewrite relation is a binary relation→ on Λ(Σ) closed
under the following rules, where σ is a substitution:

(Abs)
t → u

λx.t → λx.u
(AppL)

t → u

t v → uv
(AppR)

t → u

v t → vu
(Subst)

t → u

tσ → uσ

We denote by →+ the transitive closure of →, by →= its reflexive closure, by →∗ its reflexive
and transitive closure, by ← its inverse and by ↔ its reflexive symmetric and transitive closure.
We write t ↓ u if there exists v such that t→∗ v←∗ u and t→k u if t→∗ u in at most k steps.
Given two rewrite relations →A and →B, we let →A∪B =def →A ∪ →B. We say that a

term t is an A-normal form if there is no u such that t→A u. We let SNA, the set of strongly
A-normalizing terms, be the set of terms on which the relation →A is well-founded and we let
WNA, the set of weakly A-normalizing terms, be the set of terms which rewrite to an A-normal
form.
Rewrite relations → satisfy the following property: for all t, u, v ∈ Λ(Σ),

if t→ u then v[t/x] →∗ v[u/x] .
In the following, we will often use a stronger property: for all t, u, v ∈ Λ(Σ),

if t→ u then v[t/x] → v[u/x] .

This is in general false with rewrite relations, but this holds with parallel rewrite relations.

Definition 2.5 (Parallel Rewrite Relations) A parallel rewrite relation is a rewrite relation
� closed under the rules

(�Var)
x � x

(�Symb)
f � f

(�App)
t1 � u1 t2 � u2

t1 t2 � u1 u2

7

Note that given a parallel rewrite relation �, we have λx.t � λx.u if t � u, since by definition
parallel rewrite relations are rewrite relations.
Given a rewrite relation → and two substitutions σ and σ ′, we write σ→ σ ′ if σ and σ ′ have

the same domain and σ(x)→ σ ′(x) for all x ∈ Dom(σ).

Proposition 2.6 If � is a parallel rewrite relation on Λ(Σ) then σ� σ ′ implies vσ� vσ ′.

Proof. By induction on v.

v ∈ X ∪ Σ. If v = x ∈ Dom(σ) then vσ = σ(x) � σ ′(x) = vσ ′. Otherwise, vσ = v � v = vσ ′

thanks to the rules (�Var) and (�Symb).

v = v1 v2. By induction hypothesis we have viσ� viσ
′ for all i ∈ {1, 2}, and we conclude by the

rule (�App).

v = λx.v1. By induction hypothesis.

In particular, if Dom(σ) ∩ FV(v) = ∅ then v� v: parallel rewrite relations are reflexive.

2.2 Lambda-calculus

λ-calculus is characterized by β-reduction. This is the smallest rewrite relation →β on Λ(Σ)

such that
(λx.t)u →β t[u/x] .

In order to understand our motivations for studying the combination of λ-calculus with (condi-
tional) rewriting, let us recall some facts about pure λ-calculus. It is well-known that integers
can be coded within pure λ-calculus. An example of such coding is that of Church’s numerals.
The Zero and Succ functions are represented by the following terms:

Zero =def λx.λf.x and Succ =def λn.λx.λf.f (n x f) .

We can code iteration with the term Iter x y z =def z x y, and for all n,u, v ∈ Λ we have

Iter u v Zero = (λxf.x) u v →2
β u

Iter u v (Succ n) = (λxf.f (n x f)) u v →2
β v (n u v) = v (Iter u v n) .

However, recursion cannot be implemented in constant time (see for instance [Par89]): there is
no term Rec xy z such that there is k ∈ N such that for all u, v, n ∈ Λ,

Rec u v Zero →k
β u and Rec u v (Succ n) →k

β v (Rec u v n) n .

In particular, there is no coding of the predecessor function for Church’s numerals in constant
time. This suggests that practical utilizations of the λ-calculus may require extensions of β-
reduction. At this point it is interesting to recall Böhm’s theorem. It states that any proper
extension of βη-conversion on the set of weakly β-normalizing pure λ-terms is inconsistent.

Theorem 2.7 (Böhm [Böh68]) Let →η be the smallest rewrite relation on Λ such that
λx.t x →η t if x /∈ FV(t). If ' is an equivalence relation on Λ which is stable by contexts,
contains ↔βη and such that ' \ ↔βη contains a pair of weakly β-normalizing terms, then for
all t, u ∈ Λ we have t ' u.

This theorem suggests to find extensions of β-reduction operating on extensions of the set of
pure λ-terms Λ. A possibility, that we consider in this paper, is to work with function symbols
f ∈ Σ defined by rewrite rules.

8

2.3 Conditional rewriting

In this paper, we are interested in conditional rewriting. The following example introduces the
main ideas. Consider lists build from the empty list nil and the constructor cons. We use the
symbols true and false to represent the boolean values "true" and "false". We would like to
define, via rewriting, a function filter such that

— filter p nil rewrites to nil,

— filter p (cons t ts) rewrites to cons t (filter p ts) if p t rewrites to true, and

— filter p (cons t ts) rewrites to filter p ts if p t rewrites to false.

This specification can be written using conditional rewrite rules (⊃ reads implies):

filter p nil 7→ nil
p x = true ⊃ filter p (cons x xs) 7→ cons x (filter p xs)
p x = false ⊃ filter p (cons x xs) 7→ filter p xs

(1)

If we try to define a rewrite relation → that corresponds to our specification, we get that

filter p (cons t ts) → cons t (filter p ts) if p t →∗ true . (2)

In other words, to define → in the step

filter p (cons t ts) → cons t (filter p ts) ,

we need to test if p t →∗ true, hence to use the relation →. This circularity can be broken off
by using an inductive definition of conditional rewriting: the relation → is stratified in relations
(→i)i∈N. The correctness of the definition is ensured by Tarski’s fixpoint theorem, which can be
applied because, when replacing the symbol = by →∗ in (1), the obtained formula is positive in→ (it is in fact a Horn clause).
We now turn to formal definitions.

Definition 2.8 (Conditional Rewrite Rules) A conditional rewrite rule is an expression of
the form

d1 = c1 ∧ . . . ∧ dn = cn ⊃ l 7→ r

where d1, . . . , dn, c1 . . . , cn, l, r ∈ Λ(Σ) and

(i) every variable of ~d,~c, r occurs also in l,

(ii) l is an algebraic term which is not a variable.

In conditional rewrite rules, we distinguish

— the left-hand side l, the right-hand side r ;

— the conditions d1 = c1 ∧ · · ·∧ dn = cn.

A rule d1 = c1 ∧ · · ·∧ dn = cn ⊃ l 7→ r is unconditional if n = 0. It is left-linear if l is linear.

9

Since left-hand sides are algebraic terms, rewriting is performed using syntactical first-order
matching. Note that the conditions of rewrite rules are not symmetric: the condition d = c is
not the same as c = d.
Given a setR of conditional rewrite rules, different conditional rewrite relations can be defined,

depending on the evaluation of the conditions: by conversion, by joinability or by reduction.
This leads respectively to semi-equational, join and oriented conditional rewriting. In this paper,
we focus on join conditional rewriting. We consider two cases, whether β-reduction is allowed
or not the evaluation of conditions.

Definition 2.9 (Conditional Rewriting) Let R be a set of conditional rewrite rules.

— The conditional rewrite relation →R is defined as

→R =def
⋃
i∈N
→Ri ,

where →R0 =def ∅ and for all i ∈ N, →Ri+1 is the smallest rewrite relation such that for
every rule ~d = ~c ⊃ l 7→R r and every substitution σ,

if ~dσ ↓Ri ~cσ then lσ →Ri+1 rσ .

— The β-conditional rewrite relation →R(β) is defined as

→R(β) =def
⋃
i∈N
→R(β)i ,

where →R(β)0 =def ∅ and for all i ∈ N, →R(β)i+1 is the smallest rewrite relation such that
for every rule ~d = ~c ⊃ l 7→R r and every substitution σ,

if ~dσ ↓β∪R(β)i ~cσ then lσ →R(β)i+1 rσ .

Hence, with conditional rewriting→R, β-reduction is not allowed in the evaluation of conditions,
while it is allowed with β-conditional rewriting →R(β). Note that →R⊆→R(β). The converse is
false, as shown by the following example.

Example 2.10 Consider the rule

p x = true ⊃ filter p (cons x l) 7→ cons x (filter p l)

issued from the conditional rewrite system (1) and assume that id x 7→ x. With conditional
rewriting we have

filter id (cons true ts) →R cons true (filter ts) since id true →R true .

With β-conditional rewriting we also have

filter (λx.x) (cons true ts) →R(β) cons true (filter ts) since (λx.x) true →β true ,

but the term filter (λx.x) (cons true ts) is a →R-normal form.

An interesting particular case of join conditional rewriting is normal rewriting.

10

Definition 2.11 (Normal Conditional Rewriting) Let R be a conditional rewrite system.
If for every rule ~d = ~c ⊃ l 7→R r, the conditions ~c are closed terms in →R-normal form, then
we say that →R is a normal conditional rewrite relation.

In general, for a given conditional system the normal forms w.r.t. join and semi-equational rewrit-
ing are not the same (this is a by-product of the fact that semi-equational orthogonal rewriting
is confluent, while join orthogonal rewriting is not [BK86, Ohl02], see also Theorem 3.12). The
notion of normal conditional rewriting presented in Definition 2.11 is thus specific to join con-
ditional rewriting (it is easy to see that it coincides with normality for oriented rewriting).
An important point with conditional rewriting is the possible undecidability of a rewriting

step. This impacts of effectiveness of the notion of normal conditional rewriting.

Remark 2.12 (Decidability) One-step conditional rewrite relations are in general not decid-
able. Consider a rule ~d = ~c ⊃ l 7→ r. Because of the recursive definition of →R, to know if
lσ →R rσ, we need to reduce the terms ~dσ and ~cσ. This is in general undecidable, even for
terminating systems [Kap84] (see also [Ohl02]).
These facts have consequences on normal rewriting. Given a set of conditional rules, to deter-

mine whether it can generate a normal relation, we have to check that a part of the conditions
is in normal form. This is in general undecidable, even when the rewrite relation terminates.
We therefore focus on join rewriting because it seems to be a more easily and generally appli-

cable theory than normal rewriting, even if the implementation of conditional rewriting is easier
when we already know that the conditional rewrite relation is normal.

Our results on the preservation of confluence impose restrictions on rewrite rules. Some of
them concern the terms which can appear in different parts of the rules. This motivates the
following definition. Recall from Definition 2.8 that left-hand sides are always assumed to be
algebraic.

Definition 2.13 (Applicative and Algebraic Conditional Rewrite Rules) A conditional
rewrite rule ~d = ~c ⊃ l 7→ r is

— right-applicative if r is an applicative term,

— applicative if it is right-applicative and if moreover the terms ~d,~c are applicative,

— right-algebraic if r is an algebraic term,

— algebraic if it is right-algebraic and if moreover the terms ~d,~c are algebraic.

A rewrite system R is right-applicative (resp. applicative, right-algebraic, algebraic) if all its
rules are right-applicative (resp. applicative, right-algebraic, algebraic).

In the conditional rewrite system (1), the first rule filter p nil 7→ nil is algebraic. The two
other rules are right-algebraic. They both use the term p x in their conditions, where p is a
variable. This term is applicative but not algebraic.

2.4 Examples

We now give some examples of conditional rewrite systems.

11

2.4.1 Coherence of lambda-calculus with surjective pairing

We begin by recalling one use of conditional rewriting in the study of λ-calculus with surjective
pairing. We use pair t1 t2 to denote the pairing of t1 and t2. The rewrite rules for binary
products are the following:

fst (pair x1 x2) 7→π x1 snd (pair x1 x2) 7→π x2 .

It is well-known that the combination of these rules with β-reduction is confluent (see Theo-
rem 3.3, proved in [Mül92]). This follows from the left-linearity of the rewrite rules. However,
when we add the rule for surjective pairing

pair (fst x) (snd x) 7→SP x

then the combination of the resulting rewrite relation with β-reduction is not confluent [Klo80].
Note that the rule 7→SP is not left-linear: the variable x appears twice in the left-hand side.
However, the corresponding conversion is coherent: there are two terms that are not convertible.
This has been first shown using semantic methods [Sco75].
In [Vri89], de Vrijer uses semi-equational β-conditional rewriting to give a syntactic proof of

the coherence of β-reduction combined with surjective pairing. His rules are those of 7→π plus

snd x = y ⊃ pair (fst x) y 7→lr x fst x = y ⊃ pair y (snd x) 7→lr x .

The resulting relation is confluent modulo an equivalence relation, and this allows de Vrijer to
show that λ-calculus plus pairs and surjective pairing is a conservative extension of the pure
λ-calculus: for any two pure λ-terms t, u ∈ Λ,

t↔β u if and only if t↔β∪π∪SP u .

2.4.2 A term manipulation system

Our main example is an adaptation of a CAML program of [Hue86]. It defines functions that
perform in a term the replacement of the subterm at a given occurrence by another term. Terms
are represented by trees whose nodes contain a label and the list of their successor nodes.
This system must be read having in mind the combination of λ-calculus with (join) β-

conditional rewriting.
We begin by some basic functions on lists.

car (cons x l) 7→ x

car nil 7→ err
cdr (cons x l) 7→ l

cdr nil 7→ err

get l zero 7→ car l
get l (succ n) 7→ get (cdr l) n

length nil 7→ zero
length (cons x l) 7→ succ (length l)

filter p nil 7→ nil
p x = true ⊃ filter p (cons x l) 7→ cons x (filter p l)
p x = false ⊃ filter p (cons x l) 7→ filter p l

Let us define apply such that apply f n l applies f to the nth element of l. It uses app as an

12

auxiliary function:

> (length l) n = true ⊃ apply f n l 7→ app f n l
> (length l) n = false ⊃ apply f n l 7→ err

app f zero l 7→ cons (f (car l)) (cdr l)
app f (succ n) l 7→ cons (car l) (app f n (cdr l))

We represent first-order terms by trees with nodes nodey l where y is intended to be a label and
l the list of sons. Positions are lists of integers and occu t tests if u is an occurrence of t. We
define it as follows:

occ nil t 7→ true
> (length l) x = false ⊃ occ (cons x o) (node y l) 7→ false
> (length l) x = true ⊃ occ (cons x o) (node y l) 7→ occ o (get l x)

To finish, replace t o s replaces by s the subterm of t at occurrence o.

occ u t = true ⊃ replace t o s 7→ rep t o s
occ u t = false ⊃ replace t o s 7→ err

rep t nil s 7→ s

rep (node y l) (cons x o) s 7→ node y (apply (λz.rep z o s) x l)

The system Tree that consists of the rules defining car, cdr, get, length and occ is algebraic.
The rules of apply and app are right-applicative and those for filter contain in their conditions
the variable p in active position. This definition of rep involves a λ-abstraction in a right hand
side. In Section 6, we prove confluence of the relation →β∪R(β) induced by the whole system.

2.5 Confluence

The main property on rewrite relations studied in this paper is confluence. The confluence of a
relation → which has at least two distinct normal forms entails the coherence of the conversion↔. Moreover, it allows to evaluate terms in a modular way: the choice of the subterm to be
evaluated first has no impact on the result of the evaluation.
In this section we recall some well-known facts about confluence which will be useful in the

following.
A sufficient condition for confluence is the diamond property.

Definition 2.14 (Confluence) A rewrite relation → is confluent if ←∗→∗ ⊆ →∗←∗ and has
the diamond property if ←→ ⊆→←.
In diagrammatic form:

·

∗ ��======

∗��������

·
∗
��

·
∗
��·

·

��======

��������

·

��

·

��·
Confluence Diamond property

The stratification of conditional rewrite relations leads to fine-grained notions of confluence.

13

Definition 2.15 (Stratified Confluences) Assume that (→i)i∈N are rewrite relations and let→ =def
⋃
i∈N →i. We say that → is level confluent if for all i ≥ 0 we have ←∗i→∗i ⊆ →∗i←∗i ;

and shallow confluent if for all i, j ≥ 0 we have ←∗i→∗j ⊆→∗j←∗i .
In diagrammatic form:

·
i

∗ ��======
i
∗��������

·

i

∗
��

·

i

∗
��·

·
i

∗ ��======
j

∗��������

·

i

∗
��

·

j

∗
��·

Level Confluence Shallow Confluence

Note that shallow confluence implies level confluence which in turns implies confluence. For
instance, in Section 6 we show that →β∪R(β) is shallow confluent for some conditional rewrite
systems R called orthonormal. This entails their confluence.

Combinations of rewrite relations. Since we are interested in the confluence of the combination
of two rewrite relations (conditional rewriting and λ-calculus), we will use the following notions.

Definition 2.16 (Commutation) A rewrite relation →A commutes with a rewrite relation→B if ←∗A→∗B ⊆→∗B←∗A.
The Hindley-Rosen Lemma is a simple but important tool to prove the confluence of the com-
bination of two rewrite relations.

Lemma 2.17 (Hindley-Rosen) If →A and →B are two confluent rewrite relations that com-
mute then →A∪B is confluent.

The next simple lemma is useful to prove the commutation of two relations.

Lemma 2.18 Let →A and →B be two rewrite relations such that for all t, u, v ∈ Λ(Σ), if
u←A t→B v then there is a term w such that u→∗B w←A v. Then →A commutes with →B.

Proof. We show (i) by induction on →∗B and deduce (ii) by induction on →∗A.
· B

∗
//

A

��

·

A

��
·

B

∗ // ·

· B
∗

//

A ∗
��

·

A∗
��

·
B

∗ // ·
(i) (ii)

3 Confluence: from unconditional to conditional rewriting

In this section we state precisely the known results from which this paper starts and give a
short overview of our results. In Section 3.1 we review the results on the combination of λ-
calculus with unconditional rewriting that we extend to conditional and β-conditional rewriting
in Section 4 and Section 5 respectively. In Section 3.2 we recall a result on the confluence of
orthogonal normal rewrite relations, that we generalize to orthonormal β-conditional rewriting
in Section 6. We then give a short overview of our results in Section 3.3.

14

3.1 Confluence of beta-reduction with unconditional rewriting

Our results of Section 4 and 5 on the preservation of confluence for the combination of λ-calculus
with conditional rewriting are extensions of similar results on the combination of λ-calculus with
unconditional rewriting. We concentrate of two cases, both untyped, that we review in this
section:

— In Section 3.1.1 we discuss Müller’s result [Mül92] (stated in Theorem 3.3) on left-linear
rewriting.

— In Section 3.1.2 we discuss Dougherty’s result [Dou92] (stated in Theorem 3.7) on strongly
β-normalizing terms with arity conditions.

3.1.1 Left-linear rewriting

Using the example of surjective pairing [Klo80], we have recalled in Section 2.4.1 that the
combination of a confluent non left-linear rewrite system with β-reduction may not be confluent.
An example has also been presented in [BTM87], which can be seen as an adaptation of an
example due to Huet [Hue80] concerning first-order rewriting.

Example 3.1 ([BTM87]) Consider the confluent rewrite system

minus x x 7→minus zero minus (succ x) x 7→minus (succ zero) ,

and let
Ysucc =def (λx.succ (x x)) (λx.succ (x x)) .

Since Ysucc →β succ Ysucc, we have the following unjoinable peak:

minus Ysucc Ysucc

ttiiiiiiiiiiiiii

''OOOOOOOOOOO

minus (succ Ysucc) Ysucc

��

zero

succ zero

Remark 3.2 (Interpretation with Böhm trees) A simple interpretation of this system is to
see Ysucc as representing the "infinite integer" ∞, the term minus Ysucc Ysucc representing the un-
defined operation∞−∞. This interpretation can be made concrete by using Böhm trees [Bar84].
The Böhm tree of the term Ysucc is the infinite term

succ

succ

...

Intuitively, Ex 3.1 can be seen as an instance of the fact that confluence of non left-linear systems
is not preserved when we extend the term algebra (in this case by infinite terms).

As shown in [Mül92], confluence is preserved when rewriting is left-linear. The original result
concerns only algebraic systems, but can easily be extended to unconditional rewrite systems
with arbitrary right-hand sides.

15

Theorem 3.3 ([Mül92]) If R is a left-linear unconditional rewrite system such that →R is
confluent then →β∪R is confluent.

This result has been generalized to the case of Higher-Order Rewrite Systems [OR94].

3.1.2 Strongly beta-normalizing terms

To handle non left-linear systems, as seen in Example 3.1 we have to forbid infinite terms. This is
possible for example by focusing on algebraic rewriting on typed terms. Confluence is preserved
for the combination of algebraic rewriting with simply typed λ-calculus [BT88]. This result has
been then extended to the polymorphic λ-calculus [BTG89, BTG94, Oka89].
A question arises from these results: besides strong normalization of β-reduction, what is the

role of typing in the preservation of confluence ? This is studied in [Dou92], which shows that
for algebraic rewriting terms must satisfy some arity conditions.

Example 3.4 Consider the rewrite system

id x 7→id x ,

and let Ωsucc =def λx.succ (x x). The term

t =def minus (id Ωsucc Ωsucc) (id Ωsucc Ωsucc)

is in β-normal form, hence strongly β-normalizing. Moreover, we can check that the rewrite
system 7→minus∪id is confluent. However, 7→β∪minus∪id is not confluent since t rewrites to the
unjoinable peak of Example 3.1:

minus (id Ωsucc Ωsucc) (id Ωsucc Ωsucc) →2
id minus Ysucc Ysucc .

The problem is that reducing id in the β-normal form idΩsuccΩsucc leads to a term which is
no longer in β-normal form: rewriting does not preserve β-normal forms. The approach taken
in [Dou92] is to find arity conditions on terms for rewriting to preserve β-normal forms. Consider
a symbol f ∈ Σ such that for all f~l 7→R r, we have |~l| ≤ n. Then we discard terms of the form f~t
with |~t| > n. For example, the term id Ωsucc Ωsucc is not allowed since id takes two arguments
whereas its rewrite rule takes only one.

Definition 3.5 (Applicative Arity) An arity is a function a : Σ→ N.

(i) A term t respects a if it contains no subterm f~t with |~t| > a(f).

(ii) A rewrite system R respects a if for all f~l 7→R r, f~l and r respect a and moreover |~l| = a(f).

However, the respect of an arity is not stable by β-reduction. For instance, with a(id) = 1 the
term (λx.xΩsuccΩsucc) id respects a but it β-reduces to idΩsuccΩsucc which does not respect
a. In order to work with terms which respect an arity a and whose βR-reducts respect a too,
it is convenient to consider sets of terms respecting a and which are stable by reduction. This
motivates the following definition.

Definition 3.6 ((R, a)-Stable Terms) Given an arity a and a rewrite system R, a set of
terms S is (R, a)-stable if

(i) for all t ∈ S, t respects a,

16

(ii) for all t ∈ S, if t→β∪R u then u ∈ S,

(iii) for all t ∈ S, if u is a subterm of t then u ∈ S.

Dougherty [Dou92] obtain the preservation of confluence on (R, a)-stable sets of strongly
β-normalizing terms.

Theorem 3.7 ([Dou92]) If R is an algebraic confluent unconditional rewrite system that re-
spects an arity a, then →β∪R is confluent on every (R, a)-stable set S ⊆ SNβ.

Remark 3.8 To get the preservation β-normal forms by rewriting it is necessary to restrict to
algebraic right-hand sides, since in contrast with algebraic terms, substituting a variable in an
applicative term may produce a β-redex. For instance (x z)[λy.y/x] = (λy.y) z.

3.2 Orthogonal conditional rewriting

Orthogonality is a sufficient condition for the confluence of some kinds of conditional rewriting.
In this section we recall some known results about the confluence of algebraic orthogonal condi-
tional rewrite systems. They were initially formulated in the framework of first-order conditional
rewriting, of which algebraic rewriting is an instance. The main result is the shallow conflu-
ence of orthogonal normal conditional rewriting. We generalize it in Section 6 to orthonormal
β-conditional rewriting.
For unconditional rewriting, orthogonality is a simple syntactic criterion: it entails the con-

fluence of left-linear systems with no critical pairs [Hue80]. With conditional rewriting, things
get more complicated since the notion of critical pairs has to take into account the conditions
of rewrite rules.

Definition 3.9 (Conditional Critical Pairs) Let R be a set of conditional rules and suppose
that ρ1 : ~d = ~c ⊃ l 7→ r and ρ2 : ~d ′ = ~c ′ ⊃ l ′ 7→ r ′ are two renaming of rules in R such that
they have no variable in common. If p is a non-variable occurrence of l and σ is a most general
unifier of l|p and l ′, then

~dσ = ~cσ ∧ ~d ′σ = ~c ′σ ⊃
(
l[p← r ′]σ , rσ

)
is a conditional critical pair of R. If ρ1 and ρ2 are renaming of the same rule, we assume that
p is not the root position of l. A critical pair of the form ~d = ~c ⊃ (s, s) is called trivial.

The important point is that in a conditional critical pair ~d = ~c ⊃ (s, t), it is possible that
there is no substitution σ such that ~dσ = ~cσ. Thus, critical pairs can be feasible or unfeasible.
According to the kind of conditional rewriting considered (with and without β-reduction in
the evaluation of conditions), the satisfaction of conditions is done differently. Therefore, we
consider two notions of feasibility.

Definition 3.10 (Feasibility of Conditional Critical Pairs) A critical pair ~d = ~c ⊃ (s, t)

of a conditional system R is

— feasible if there is a substitution σ such that ~dσ ↓R ~cσ;

— β-feasible if there is a substitution σ such that ~dσ ↓β∪R(β) ~cσ;

A critical pair which is not feasible (resp. β-feasible) is said unfeasible (resp. β-unfeasible).

The easiest way to prove unfeasibility of critical pairs is often to use confluence. We come
back on this question in Section 6. Both notions of feasibility induce a notion of orthogonality.

17

Definition 3.11 (Orthogonality) A set R of left-linear conditional rewrite rules is

— orthogonal (resp. β-orthogonal) if all its critical pairs are unfeasible (resp. β-unfeasible);

— weakly orthogonal (resp. weakly β-orthogonal) if all its critical pairs are either trivial or
unfeasible (resp. β-unfeasible).

Hence, to test the orthogonality of a conditional system, we have to evaluate the conditions
of its critical pairs. According to Remark 2.12, this is in general undecidable.
It is well-known that for normal (and semi-equational) rewriting, weak orthogonality implies

confluence. This in general not the case for join conditional rewriting, as shown in [BK86].

Theorem 3.12 ([BK86, Ohl02]) Let R be a conditional rewrite system. If R is weakly or-
thogonal, and moreover is a normal system, then →R is shallow confluent.

3.3 Overview of the results

The goal of this paper is to give sufficient conditions for the confluence of β-reduction with
β-conditional rewriting (i.e. with β-steps allowed in the evaluation of conditions).
More precisely, we seek to obtain results on the preservation of confluence, that is to get the

confluence of→β∪R(β) assuming the confluence of→R. Our approach is to generalize the results
summarized in Section 3.1 on the combination of β-reduction with unconditional rewriting. We
thus consider two different cases:

— First, the extension of Müller’s result [Mül92], when β-reduction is not restricted (we thus
need to assume left-linearity, and to extend this notion to conditional rewriting).

— Second, the extension of Dougherty’s result [Dou92], when we restrict to β-normalizing
terms (we thus need some arity conditions on terms). In fact, we improve [Dou92] from
strongly β-normalizing terms to weakly β-normalizing terms.

In each case, we proceed in two steps. We first consider in Section 4 the case of β-reduction
with conditional rewriting→R (when β-reduction is not allowed in the evaluation of conditions).
We then extend these results to β-conditional rewriting →R(β) in Section 5.
As discussed at the beginning of Section 5 (see Example 5.2), for the extension of both [Mül92]

and [Dou92] to β-conditional rewriting, rewrite rules must be algebraic and respect arity con-
ditions. In contrast, the extension of [Mül92] to the simpler case of conditional rewriting holds
without these restrictions. This motivates the definition of criteria for the confluence of β-
reduction with β-conditional rewriting when rules need not be algebraic nor to respect an arity
(recall from Definition 2.8 that left-hand sides are always algebraic in this paper). We propose
such a criterion in Section 6, which defines orthonormal conditional rewriting, an extension of or-
thogonal rewriting. We show the shallow confluence of β-reduction with β-conditional rewriting
for these systems, hence extending Theorem 3.12.
Our results are summarized in Figure 1 page 6.

4 Confluence of beta-reduction with conditional rewriting

We now turn to conditional rewriting. In this section we focus on the combination of join
conditional rewriting →R with β-reduction: we do not allow the use of β-reduction in the
evaluation of conditions.

18

The important point of left-linearity is to prevent unconditional rewriting from comparing
arbitrary terms. It forbids in particular comparisons of infinite terms such as Ysucc. But with
conditional rewriting, rewrite rules can make this comparison in their conditions while being
left-linear. Hence, starting from Example 3.1, we can define a left-linear conditional rewrite
system which makes the commutation of rewriting with β-reduction fail.

Example 4.1 Consider the conditional system

x = y ⊃ minus x y 7→ zero x = (succ y) ⊃ minus x y 7→ (succ zero) .

This system is left-linear, but the conditions can test the equality of open terms. The join
conditional rewrite relation issued from this system forms with →β the following unjoinable
peak:

minus Ysucc Ysucc

ttjjjjjjjjjjjjj

((RRRRRRRRRRRRR (Ysucc ↓ Ysucc)

((succ Ysucc) ↓ (succ Ysucc)) minus (succ Ysucc) Ysucc

��

zero

(succ zero)

As for unconditional rewriting in Section 3.1, we consider two ways to overcome the problem:
to restrict rewriting (Section 4.1) or to restrict β-reduction (Section 4.2).

4.1 Confluence for left-linear semi-closed systems

In this section we are interested in the extension of Theorem 3.3 ([Mül92]) to conditional rewrit-
ing: we want sufficient conditions on rewrite rules for the preservation of confluence on all
untyped terms of Λ(Σ). As seen in Example 4.1, for conditional rewriting we have to extend the
notion of left-linearity in order to forbid comparison of open terms in the conditions of rewrite
rules. To this end we restrict to semi-closed conditional rewrite rules.

Definition 4.2 (Semi-Closed Conditional Rewrite Rules) A conditional rewrite system
R is semi-closed if for all rules

d1 = c1 ∧ . . . ∧ dn = cn ⊃ l 7→R r ,

the terms c1, . . . , cn are applicative and closed.

For example, the system Tree of Section 2.4 is left-linear and semi-closed. In a semi-closed
rule ~d = ~c ⊃ l 7→ r, since ~c are closed terms, it is tempting to normalize them and obtain a
normal rewrite relation, but as noted in Remark 2.12, results on join rewriting seem more easily
applicable.
We show that the confluence of →R implies the confluence of →β∪R for semi-closed left-

linear right-applicative systems (Theorem 4.6). Using Hindley-Rosen lemma (Lemma 2.17), this
follows from the commutation of conditional rewriting with β-reduction. As in [Mül92], we
obtain this commutation as a consequence of the commutation of conditional rewriting with a
relation �β of parallel β-reduction (see Definition 2.5). This is shown in Lemma 4.5, which relies
on Property 2.6 (σ �β σ

′ implies tσ �β tσ
′). This property holds for parallel rewrite relations

but fails with →β.
The parallel β-reduction �β we use is Tait and Martin-Löf’s relation [Bar84, Tak95]. It is

defined as follows.

19

Definition 4.3 (Parallel β-Reduction) We let �β be the smallest parallel rewrite relation
closed under the rule

(�β)
t1 �β u1 t2 �β u2

(λx.t1)t2 �β u1[u2/x]

We will use some well-known properties of �β. If σ�β σ
′ then sσ�β sσ

′; this is the one-step
reduction of parallel redexes. We can also simulate β-reduction: →β⊆ �β ⊆→∗β. And third,
�β enjoys the diamond property: �β�β ⊆ �β�β.
The relation �β is stronger than the one used in [Mül92]: it can reduce in one step nested

β-redexes, while the relation of [Mül92] is simply the smallest parallel rewrite relation containing
β-reduction (i.e. the parallel closure of →β). The diamond property (which holds for �β) fails
for the parallel closure of β-reduction precisely because it cannot reduce nested β-redexes in one
step. The parallel closure of →β would have been sufficient to obtain Lemma 4.5, but we use
the nested relation �β because we rely on the diamond property in Section 5.1.
Nested parallelizations (corresponding to complete developments) are already used in [OR94]

for their confluence proof of HORSs. However, our method inherits more from [Mül92] than
from [OR94], as we use complete developments of →β only, whereas complete developments of→β and of →R are used for the modularity result of [OR94].
The left-linearity assumption is used in the proof of Lemma 4.5 via the following property of

linear algebraic terms.

Proposition 4.4 Let t be an algebraic linear term and σ be a substitution such that tσ�β u.
There is a substitution σ ′ such that u = tσ ′ with σ�β σ

′ and σ ′(x) = σ(x) for all x /∈ FV(t).

Proof. By induction on t.

t = x ∈ X . In this case tσ = σ(x). Take σ ′ such that σ ′(x) = u and σ ′(y) = σ(y) for all y 6= x.

t = f ∈ Σ. In this case tσ = t = u, hence σ ′ = σ fits (recall that �β is reflexive).

t = t1t2. Since t is algebraic, t1σ t2σ is not a β-redex. It follows that u is of the form u1 u2
with (t1σ, t2σ) �β (u1, u2). By induction hypothesis, there are two substitutions σ ′1 and
σ ′2 such that for each i ∈ {1, 2} we have σ �β σ

′
i, ui = tiσ

′
i, and σ

′
i(x) = σ(x) for all

x /∈ FV(ti). Since t is linear, FV(t1) ∩ FV(t2) = ∅, hence with σ ′ =def σ
′
1] σ ′2, we have

u = u1u2 = t1σ
′ t2σ

′ = tσ ′, σ�β σ
′ and σ(y) = σ ′(y) for all y /∈ FV(t).

We are now ready to prove the commutation of →R and �β. In fact we prove a slightly
stronger statement, which can be termed as the "level commutation" of →R and �β.

Lemma 4.5 (Commutation of →Ri with �β) If R is a conditional rewrite system which is
semi-closed, left-linear and right-applicative, then �β commutes with →Ri for all i ∈ N:

· Ri
∗

//

�β ∗
��

·
�β∗
��

·
Ri
∗ // ·

Proof. We reason by induction on i ∈ N. The base case i = 0 is trivial. Let i ≥ 0 and assume
that →Ri commutes with �β. We show that →Ri+1 commutes with �β.

20

We begin by showing that for all t, u, v ∈ Λ(Σ), if u �β t →Ri+1 v then there is a term w

such that u→∗Ri+1 w�β v. In diagrammatic form:

t
Ri+1 //

�β
��

v

�β
��

u
Ri+1
∗ // w

(3)

We deduce from (3) that →Ri+1 commutes with �β by applying Lemma 2.18.
We now show (3) by induction on t. If both reductions t �β u and t →Ri+1 v occur in a

proper subterm of t then we conclude by induction hypothesis. Otherwise there are two cases.

(i) t = (λx.t1)t2 with u = u1[u2/x] and v = (λx.v1)v2 where (u1, u2) �β (t1, t2) →Ri+1
(v1, v2). By induction hypothesis, there are terms w1 and w2 such that ui →∗Ri+1 wi�βvi.
We deduce that u1[u2/x]→∗Ri+1 w1[w2/x] and that (λx.v1)v2 �β w1[w2/x].

(ii) t is the R-redex contracted in the step t →Ri+1 v. In this case, there is a conditional
rule ~d = ~c ⊃ l 7→R r and a substitution σ s.t. t = lσ and v = rσ. Moreover, there are
terms ~v such that ~dσ →∗Ri ~v ←∗Ri ~cσ. Since R is semi-closed, the terms ~c are closed and
applicative, hence ~cσ = ~c and the terms ~v are applicative sinceR is right-applicative. Since
l is left-linear and algebraic, we deduce from Proposition 4.4 that there is a substitution
σ ′ such that σ�βσ

′ and u = lσ ′. It follows Proposition 2.6 that rσ�β rσ
′ and ~dσ�β~dσ ′.

To conclude that w=def rσ
′ fits, it remains to show that lσ ′ →Ri+1 rσ ′, that is ~dσ ′ ↓Ri ~c.

We have ~dσ ′�β~dσ→∗Ri ~v, hence by induction hypothesis there are ~w s.t. ~dσ ′ →∗Ri ~w�∗β~v.
It follows that ~dσ ′ →∗Ri ~v, the terms ~v being applicative hence in β-normal form. We thus
have ~dσ ′ ↓Ri ~c, and conclude that lσ ′ →Ri+1 rσ ′.

A direct application of Hindley-Rosen’s Lemma (Lem. 2.17) then offers the preservation of
confluence.

Theorem 4.6 (Confluence of →β∪R) Let R be a semi-closed left-linear right-applicative sys-
tem. If →R is confluent then so is →β∪R.

Comparison with Müller’s work. Our main result on the confluence of β-reduction with con-
ditional rewriting for left-linear semi-closed system (Theorem 4.6) is not a true extension of
Theorem 3.3. Indeed, Theorem 3.3 apply to unconditional systems with arbitrary right-hand
sides, while Theorem 4.6 requires right-hand sides to be applicative.
The problem is that Lemma 4.5 may fail with non-applicative right-hand sides. Consider the

system:
h 7→ λx.x x = h a ⊃ g x 7→ a

We have g a ←β g ((λx.x)a) →R a. But since the term (λx.x)a is a R-normal form, the
condition x ↓R h a is not satisfied, and g a is a R-normal form.
We can extend Theorem 3.3 to normal conditional rewriting, i.e. to systems R such that in all

rules ~d = ~c ⊃ l 7→R r, the cosed algebraic terms ~c are required to be in normal form w.r.t. →R
(recall from Remark 2.12 that this is undecidable). The proof follows exactly the same scheme
as for Theorem 4.6. The only difference lies in the commutation of →Ri with →β, for which
Lemma 4.5 does not apply.

21

Theorem 4.7 (Extension of [Mül92]) Let R be a left-linear semi-closed system such that→R is a normal conditional rewrite relation. If →R is confluent then so is →β∪R.

Proof. As in Theorem 4.6, the proof relies on the commutation of →Ri with →β. Since right-
hand sides are not applicative, we can not use Lemma 4.5. However, the commutation of →Ri
with �β is proved using the same general reasoning, excepted for the following point. Assume
that →Ri commutes with �β and that for a rule ~d = ~c ⊃ l 7→R r and a substitution σ we have
lσ ′ �β lσ →Ri+1 rσ. As →R is normal, we have ~dσ →∗Ri ~c, and by induction hypothesis there
are ~c ′ such that ~dσ ′ →∗Ri ~c ′ ←∗β ~c. Since R is semi-closed, the terms ~c are algebraic hence
β-normals. It follows that ~dσ ′ →∗Ri ~c, hence lσ ′ →Ri+1 rσ ′.
4.2 Confluence on weakly beta-normalizing terms

We now turn to the problem of dropping the left-linearity and semi-closure conditions. We
generalize Theorem 3.7 [Dou92] in two ways. First, we adapt it to conditional rewriting. Second,
we use weakly β-normalizing terms whose β-normal forms respect an arity, whereas Dougherty
uses sets of strongly normalizing arity compliant terms closed under reduction.
As seen in Example 4.1, fixpoint combinators make the commutation of→∗β and→∗R fail when

rewriting involves equality tests between open terms. When using weakly β-normalizing terms,
we can project rewriting on β-normal forms (βnf), thus eliminating fixpoints as soon as they
are not significant for the reduction.
Hence, we seek to obtain

s
β∪R
∗

//

β ∗
��

t

β∗
��

βnf(s)
R
∗ // βnf(t)

(4)

We rely on the following:

(i) First, β-normal forms should be stable by rewriting. By Remark 3.8 we must assume that
right-hand sides are algebraic, and as seen in Example 3.4, we must use the notion of
applicative arity (Definition 3.5).

(ii) We need normalizing β-derivations to commute with rewriting. This follows from using
the leftmost-outermost strategy of λ-calculus.

(iii) Finally, we assume that conditions are algebraic. Since left-hand sides and right-hand sides
are algebraic (by Definition 2.8 and item (i) respectively), this entails that for all rules
~d = ~c ⊃ l 7→R r and all substitutions σ, we have βnf(~dσ) = ~d βnf(σ), βnf(~cσ) = ~c βnf(σ),
βnf(lσ) = l βnf(σ), βnf(rσ) = r βnf(σ).

We now have to extend to conditional rewriting the condition of arity on rewrite rules stated
in Definition 3.5.(ii).

Definition 4.8 (Applicative Arity for Conditional Rules) A rule ~d = ~c ⊃ l 7→R r respects
an arity a : Σ→ N if the terms ~d,~c respect a and the unconditional rule l 7→ r respects a.

As seen in Example 3.4, terms and rewrite systems respecting an arity prevent collapsing rules
from creating β-redexes.
However, we do not assume that every term at hand respects an arity. If a term has a β-normal

form, the leftmost-outermost strategy for β-reduction never evaluates non-normalizing subterms.

22

It follows that such subterms may not respect any arity without disturbing the projection on β-
normal forms. Therefore it is sufficient to require that terms have a β-normal form that respects
an arity.

Definition 4.9 Given an arity a : Σ→ N, we let ANa be the set of terms having a β-normal
form, and whose β-normal form respects a.

The proof goes through essentially thanks to two points: the well-foundedness of the leftmost-
outermost strategy for→β on weakly β-normalizing terms [Bar84]; and the fact that this strategy
can be described by means of head β-reductions, that are easily shown to commute with (parallel)
conditional rewriting.
We use a well-founded relation containing head β-reductions. Recall that by Lemma 2.3, any

λ-term can be written either

λ~x.v a0 a1 . . . an (a)
or λ~x.(λy.b)a0 a1 . . . an (b)

where v ∈ X ∪ Σ. We denote head β-reductions by →h. They consist of head β-steps:

λ~x.(λy.b)a0 a1 . . . an →h λ~x.b[a0/y]a1 . . . an .

We use the relation � defined as:

λ~x.v a0 a1 . . . an � ai (a)
λ~x.(λy.b)a0 a1 . . . an � λ~x.b[a0/y]a1 . . . an (b)

where v ∈ X ∪ Σ and 0 ≤ i ≤ n and n > 0. Note that in the case (a), ai can have free variables
among ~x, hence it can also be a subterm of a term α-equivalent to λ~x.v~a; for instance λx.fx � y
for all y ∈ X . Recall that WNβ is the set of weakly β-normalizing terms.

Lemma 4.10 If s ∈ WNβ and s � t then t ∈ WNβ. Moreover, � is well-founded on WNβ.

Proof. For the first part, let s ∈ WNβ and s � t. If s is of the form (b), the first step of
the leftmost-outermost derivation normalizing s is t. Hence t ∈ WNβ. Otherwise, if t has no
β-normal form, then s has no β-normal form.
For the second part, we write #(s) for the number of →h-steps in the leftmost-outermost

derivation starting from s and |s| for the size of s. We show that if s � t, then (#(s), |s|) >lex
(#(t), |t|). If s is of the form (b), by the first point t ∈ WNβ. Since s →h t, we have
#(s) > #(t). Otherwise, the leftmost-outermost strategy starting from s reduces each ai by
leftmost-outermost reductions. Hence #(s) ≥ #(t). But in this case, t is a proper subterm of
s, hence |s| > |t|.

It follows that we can reason by well-founded induction on �. For all i ≥ 0, we use a
nested parallelization of →Ri . It corresponds to the one used in [OR94], that can be seen as a
generalization of Tait and Martin-Löf parallel relation. As for �β and →β, in the orthogonal
case, a complete development of→Ri can be simulated by one step �Ri-reduction. This relation
is also an adaptation to conditional rewriting of the parallelization used in [Dou92].

Definition 4.11 (Conditional Nested Parallel Relations) For all i ≥ 0, let �Ri be the
smallest parallel rewrite relation closed under the rule

(�R)
~d = ~c ⊃ l 7→R r lσ→Ri rσ σ�Ri θ

lσ�Ri rθ

23

Recall that lσ→Ri rσ is ensured by ~dσ ↓Ri−1 ~cσ. These relations enjoy some nice properties:

Proposition 4.12 For all i ≥ 0,

(i) →Ri ⊆ �Ri ⊆ →∗Ri ;
(ii) s�Ri t =⇒ u[s/x] �Ri u[t/x];

(iii) [s�Ri t & u�Ri v] =⇒ u[s/x] �Ri v[t/x].

Proof. The first point is shown by induction on the definition of �Ri ; the second follows from
Proposition 2.6 and the fact that �Ri is a parallel rewrite relation. For the last one, we use an
induction on �Ri in u�Ri v. If u is v, the result is trivial. If u�Ri v was obtained by (�App)

or (Abs), the result follows from induction hypothesis. Otherwise, u�Ri v is obtained by �R.
That is, there is a rule ~d = ~c ⊃ l 7→R r such that u = lσ, v = rθ, σ �Ri θ and lσ →Ri rσ.
Since →Ri is a rewrite relation, we have lσ[s/x] �Ri rσ[s/x]. By induction hypothesis, we have
σ[s/x] �Ri θ[t/x]. Therefore lσ[s/x] �Ri rθ[t/x].

We now turn to the one step commutation of �Ri and →h. This is a direct consequence of
the third point of Proposition 4.12. Commutation of →h with (unconditional) rewriting has
already be coined in [BFG97].

Lemma 4.13 Let i ≥ 0. If u←h s�Ri t then there exists v such that u�Ri v←h t :

s
�Ri //

h
��

t

h
��

u
�Ri

// v

Proof. Assume that s←h λ~x.(λy.a0)a1 . . . ap�Ri t. Because rules have non-variable algebraic
left-hand sides, t = λ~x.(λy.b0)b1 . . . bp with for all k ∈ {0, . . . , p}, ak�Ri bk. On the other hand,
s = λ~x.a0[a1/y]a2 . . . ap. It follows from Proposition 4.12.(iii) that a0[a1/x] �Ri b0[b1/x] (in
one step). Hence we have s�Ri λ~x.b0[b1/y]b2 . . . bp ←h t.

The main lemma is the projection of rewriting on β-normal forms, that is, the commutation
of diagram (4).

Lemma 4.14 Let a : Σ→ N be an arity and R be an algebraic conditional rewrite system which
respects a. For all i ∈ N, if t ∈ ANa and t→∗β∪Ri u, then u ∈ ANa and βnf(t)→∗Ri βnf(u).

Proof. We reason by induction on i ∈ N. The base case i = 0 is trivial. We assume that the
property holds for i ≥ 0 and show it for i+ 1. The proof is in two steps.

(i) We begin by showing that for all t ∈ ANa we have

t
�Ri+1 //

β ∗
��

u

β∗
��

βnf(t)
�Ri+1

// βnf(u)

(5)

We reason by induction on � using Lemma 2.3.

24

t = λ~x.xt1 . . . tn. In this case, βnf(t) = λ~x.xβnf(t1) . . . βnf(tn) and u = λ~x.xu1 . . . un
with tk �Ri+1 uk for all k ∈ {1, . . . , n}. As t � tk, for all k ∈ {1, . . . , n}, by induction
hypothesis on � we have uk ∈ ANa and βnf(tk) �Ri+1 βnf(uk). Since βnf(u) =

λ~x.xβnf(u1) . . . βnf(un), we have βnf(u) ∈ ANa and βnf(t) �Ri+1 βnf(u).
t = λ~x.ft1 . . . tn. If no rule is reduced at the head of t, the result follows from induction

hypothesis on �. Otherwise, there is a rule ~d = ~c ⊃ l 7→ r such that t = λ~x.lσ~a and
u = λ~x.rθ~b with lσ�Ri+1 rθ and ~dσ ↓Ri ~cσ. Since l is algebraic, βnf(t) is of the form
λ~x.lσ ′~a ′ where σ ′ = βnf(σ) and ~a ′ = βnf(~a). Since βnf(t) respects a, ~a ′ = ∅, hence
~a = ∅ and t = λ~x.lσ. Therefore, because lσ�Ri+1 rθ, we have ~b = ∅ and u = λ~x.rθ.
It remains to show that u ∈ ANa and that βnf(t) = λ~x.lσ ′ �Ri+1 βnf(u). Because
l is algebraic, its variables are ≺+ l. We can then apply induction hypothesis on
σ�Ri+1 θ. It follows that θ has a β-normal form θ ′, which respects a and moreover
such that σ ′ �Ri+1 θ

′. Since r is algebraic, λ~x.rθ ′ is the β-normal form of u (which
respects a). Hence it remains to show that lσ ′ �Ri+1 rθ

′. Because σ ′ �Ri+1 θ
′, it

suffices to prove that lσ ′ →Ri+1 rσ ′. Thus, we are done if we show that ~dσ ′ ↓Ri ~cσ ′.
Since ~d and ~c are algebraic, βnf(~dσ) = ~dσ ′ and βnf(~cσ) = ~cσ ′. Now, since ~d is
algebraic and respects a, and since σ ′ respects a, it follows that ~dσ ′ respects a. The
same holds for ~cσ ′. Hence we conclude by applying on ~dσ ↓Ri ~cσ the induction
hypothesis on i.

t = λ~x.(λx.v)wt1 . . . tn. In this case, we head β-normalize t and obtain a term t ′ ∈ ANa.
Using the commutation of �Ri+1 and→h, we obtain a term u ′ such that t ′�Ri+1 u

′.
Since t �+ t ′, we can reason as in the preceding cases.

(ii) We now show that t →∗β∪Ri u implies βnf(t) →∗Ri βnf(u). We reason by induction on
t →∗β∪Ri u, using Proposition 4.12.(i). The base case t = u is trivial. Assume that
t →β∪Ri v →∗β∪Ri u. By induction hypothesis we have βnf(v) →∗Ri βnf(u). There are
two cases. If t→β v, then βnf(t) = βnf(v) and we are done. Otherwise we have t→Ri v,
hence βnf(t)→∗Ri βnf(v)→∗Ri βnf(u) by (i).

Preservation of confluence is a direct consequence of the projection on β-normal forms.

Theorem 4.15 Let a : Σ → N be an arity and R be an algebraic conditional rewrite system
which respects a. If →R is confluent on ANa, then →β∪R is confluent on ANa.

Proof. Let s, t, u such that s ∈ ANa and u ←∗β∪R s →∗β∪R t. By two applications of
Lemma 4.14 we get that βnf(u) ←∗R βnf(s) →∗R βnf(t), with moreover βnf(s), βnf(t) and
βnf(u) ∈ ANa. Hence we conclude by →R-confluence on ANa. In diagrammatic form,

s
β∪R
∗

%%KKKKKKKKKKKK
β∪R

∗
yyssssssssssss

β ∗
��

u

β ∗
��

βnf(s)

R
∗

$$R
∗

zz

t

β∗
��

βnf(u)

R
∗

%%

βnf(t)
R
∗

yy
v

25

5 Using beta-reduction in the evaluation of conditions

In this section we focus on the combination of β-reduction with the join β-conditional rewrite
relation →R(β) issued from a conditional rewrite system R (see Definition 2.9).
We give sufficient conditions on R to deduce the confluence of →β∪R(β) from the confluence

of →R. We achieve this by exhibiting two different criteria ensuring that derivations combining
β-reduction and β-conditional rewriting can be projected, via β-reductions, to derivations made
of conditional rewriting only (hence without using β-reduction in the evaluation of conditions):

s
β∪R(β)

∗
//

β ∗
��

t

β∗
��

s ′ R
∗ // t ′

(6)

It is easy to see that property (6) combined to the confluence of →β∪R entails the confluence
of →R. We can actually prove property (6) on some subsets of Λ(Σ) only. This motivates the
assumptions on the following proposition.

Proposition 5.1 Let R be a conditional rewrite system and S ⊆ Λ(Σ) be a set of terms closed
under →β∪R(β). Assume that →β∪R is confluent on S. If property (6) is satisfied for all s, t ∈ S
then →β∪R(β) is confluent on S.

Proof. Let t ∈ S and u, v such that

u ←∗β∪R(β) t →∗β∪R(β) v .

Note that u, v ∈ S since S is closed under →β∪R(β). By property (6) applied twice and by
confluence of →β∪R on S, there is w such that u →∗β∪R w ←∗β∪R v. We conclude by the fact
that →R⊆→R(β). In diagrammatic form,

u
β

∗��

t
β∪R(β)

∗
oo β∪R(β)

∗
//

β

∗

��β

∗

��

v
β

∗ ��·

β∪R
∗

**

·R
∗

oo · R
∗

// ·

β∪R
∗

ttw

Our two different criteria to obtain (6) are the extensions to β-conditional rewriting of the two
criteria studied for conditional rewriting in Section 4.

— The first one concerns left-linear (and semi-closed) rewriting, with no termination assump-
tion on β-reduction.

— The second one concerns arity-preserving algebraic rewriting, with a weak-normalization
assumption on β-reduction.

In the left-linear and semi-closed case, allowing β-reduction in the evaluation of conditions
imposes us to put stronger assumptions on R than for conditional rewriting in Section 4.1:
rewrite rules need to be algebraic and to respect and arity. Recall that these assumptions

26

were already made in Section 4.2 when considering possibly non left-linear rewriting on weakly
β-normalizing terms.
The following example presents rules which either are not algebraic or do not respect the arity

prescribed by left-hand sides. With these rules property (6) fails and →β∪R(β) is not confluent
whereas →R and →β∪R are confluent.

Example 5.2 With the conditional rewrite systems (7), (8), (9) and (10) below,

(i) the relations →R and →β∪R are confluent,

(ii) property (6) is not satisfied and the relation →β∪R(β) is not confluent.

g x y 7→ x y g x c = d ⊃ f x 7→ a x f x 7→ b x (7)
x c = d ⊃ f x 7→ a x f x 7→ b x (8)

id x c = d ⊃ f x 7→ a x f x 7→ b x (9)
h x y 7→ id x y h x c = d ⊃ f x 7→ a x f x 7→ b x (10)

where id is defined by id x 7→ x.

Proof.

(i) Since the symbol d is not defined, these systems lead to normal conditional rewrite rela-
tions. Since they are left-linear and semi-closed, we can apply Theorem 4.7, and deduce
the confluence of →β∪R from the confluence of →R. Since they are left-linear systems, if
their critical pairs are unfeasible, we can obtain the confluence of →R by Theorem 3.12.
Each system has a unique conditional rule and a unique critical pair, issued from the root
superposition of this rule with f x 7→ b x. In each case, the number of occurrences of the
symbol c in a term is preserved by→R. Moreover, for each instantiation of the conditional
rule, the instantiated left-hand side of the condition contains at least one occurrence of c.
It follows that it cannot reduce to d, and that the critical pair is unfeasible. Therefore, we
obtain the confluence of →R by Theorem 3.12. and we deduce the confluence of →β∪R
thanks to Theorem 4.7.

(ii) In each case, the step f λx.d →R(β) a λx.d is not in →∗β→∗R←∗β and the following peak is
unjoinable

a λx.d ←R(β) f λx.d →R(β) b λx.d .

Note that systems (7) and (8) contain respectively a right-hand side and a condition which
are not algebraic, and that systems (9) and (10) contain respectively a right-hand side and a
condition that do not respect the arity of id imposed by the rewrite rule id x 7→ x.
Note also that (6) is reminiscent of a property required on the substitution calculus used

in [OR94]. This would require to see →β as the substitution calculus. But this does not fit in
our framework, in particular because we consider→β and rewriting at the same level. Moreover,
the substitution calculus used in [OR94] is required to be complete (i.e. strongly normalizing
and confluent), which is not the case here for →β.

27

Outline. We begin in Section 5.1 by the extension of Theorem 4.6 to β-conditional rewriting
for left-linear and semi-closed systems. In this case, preservation of confluence only holds on
terms respecting an arity (namely conditionally (R, a)-stable terms, see Definition 5.5). This is
an extra hypothesis compared to the results of Section 4.1. Then, in Section 5.2 we consider
the case of Theorem 4.15. It directly extends to β-conditional rewriting. In both cases, we
assume that rules are algebraic and respect an arity. In each case our assumptions ensure that
the results of Section 4 apply, hence that →β∪R is confluent whenever →R is confluent. Hence,
using Proposition 5.1 we deduce the confluence of →β∪R(β) from the confluence of →R and
property (6).

Remarks. In [BKR06], we have shown (6) by using a stratification of →R(β) in which, instead
of having→R(β)0= ∅ as in Definition 2.9, we had→R(β)0=→β (it is easy to show that these two
base cases induce the same relation →R(β)).
We proceed here in a slightly different and more general way. We show (6) with →R(β)0= ∅

and use the following intermediate property: for all i ∈ N,

t
β∪R(β)i

∗
//

β ∗
��

u

β∗
��

t ′ Ri
∗ // u ′

(11)

5.1 Confluence for left-linear semi-closed systems

This section is devoted to the proof of (11) for left-linear semi-closed systems. Using Propo-
sition 5.1 and Theorem 4.6, we then easily deduce the confluence of →β∪R(β) when →R is
confluent. We postpone the proof of (11) until Lemma 5.9, Section 5.1.2. The material used in
the proof is presented and motivated in Section 5.1.1 below.

5.1.1 Preliminaries

The proof of (11) involves some intermediate lemmas and the extension of (R, a)-stable sets of
terms to conditional rewriting. In order to motivate them, we sketch some steps of the proof.
Property (11) is proved by induction on i ∈ N. Assuming the property for i ∈ N, we discuss it
for i + 1. We reason by induction on the length of the derivation t →∗β∪R(β)i+1

u. We present
the ingredients used in the different steps of this induction.

The base case. In the base case, we have t→β∪R(β)i+1 u in one step. The case of t→β u is
trivial: take t ′ =def u

′ =def u. The case of t→R(β)i+1 u is more involved. We show

t
R(β)i+1 //

β ∗
��

u

β∗
��

t ′ Ri+1
// u ′

(12)

Consider a rule ~d = ~c ⊃ l 7→R r. Recall from Example 5.2 that it must be algebraic and respect
an arity. Hence every β-redex occurring in ~dσ or ~cσ also occurs in lσ. Then, property (12)

28

means that there is a β-reduction starting from lσ that reduces these redexes and produce a
substitution σ ′ such that

lσ →∗β lσ ′ →Ri+1 rσ ′ ←∗β rσ .

In other words, if the conditions are satisfied with σ and →β∪R(β)i (i.e. ~dσ ↓β∪R(β)i ~c, recall
that ~c are closed terms since R is semi-closed), then they are satisfied with σ ′ and →Ri (i.e.
~dσ ′ ↓Ri ~c). Let us look at this more precisely. Assume that ~dσ ↓β∪R(β)i ~c. Hence there are
terms ~v such that

~dσ →∗β∪R(β)i
~v ←∗β∪R(β)i

~c .

By induction hypothesis on i, we get terms ~w and ~v ′ such that

~dσ
β∪R(β)i

∗
//

β ∗
��

~v

β∗
��

~c
β∪R(β)i

∗
oo

~w Ri
∗ // ~v ′

In order to conclude, we need a substitution σ ′ such that σ →∗β σ ′ and ~w →∗β ~dσ ′. Using
the algebraicity of ~d, this follows from Proposition 5.4, which is stated and proved below. The
remaining of the proof uses the commutation of →β and →Ri (Lemma 4.5) and relies on the
semi-closure and the right-applicativity of R (which follows from its algebraicity). See the proof
of Lemma 5.9 in Section 5.1.2 for details.
We need to show that if t is an algebraic term such that tσ→∗β v, then there is a substitution

σ ′ such that σ→∗β σ ′ and v→∗β tσ ′. This is provided by the two following technical propositions.
The first one is a generalization of the diamond property of �β. It is a direct consequence of
Lemma 3.2 in [Tak95].

Proposition 5.3 Let n ≥ 0 and assume that s, s1, . . . , sn are terms such that s �β si for all
i ∈ {1, . . . , n}. Then there is a term s ′ such that s�β s

′ and si �β s ′ for all i ∈ {1, . . . , n}.

We deduce the following property. The proof of case (ii) uses the diamond property of �β.

Proposition 5.4 Let t1, . . . , tn be algebraic terms and let σ be a substitution.

(i) If tiσ �β ui for all i ∈ {1, . . . , n}, then there is a substitution σ ′ such that σ �β σ
′ and

ui �β tiσ
′ for all i ∈ {1, . . . , n}.

(ii) If tiσ →∗β ui for all i ∈ {1, . . . , n}, then there is a substitution σ ′ such that σ →∗β σ ′ and
ui →∗β tiσ ′ for all i ∈ {1, . . . , n}.

Note that the terms t1, . . . , tn need not be linear.

Proof.

(i) Since ti is algebraic, every occurrence of a β-redex in ti is of the form p.d where p is
an occurrence of a variable x in ti. Since �β is reflexive, for each i ∈ {1, . . . , n}, each
x ∈ FV(ti) and each p ∈ Occ(x, ti), there is a term s(i,x,p) such that

tiσ|p = σ(x) �β s(i,x,p)

29

and for all i ∈ {1, . . . , n},

ui = ti[p← s(i,x,p) | x ∈ FV(ti) ∧ p ∈ Occ(x, ti)] .

By Proposition 5.3, for all x ∈ FV(t1, . . . , tn), there is a term vx such that σ(x) �β vx and
s(i,x,p) �β vx for all i ∈ {1, . . . , n} and all p ∈ Occ(x, ti). Therefore, for all i ∈ {1, . . . , n}

we have
ui �β ti[p← vx | x ∈ FV(ti) ∧ p ∈ Occ(x, ti)] .

Let σ ′ be the substitution of same domain as σ such that σ ′(x) = vx for all x ∈ FV(t1, . . . , tn)

and σ ′(x) = σ(x) for all x /∈ FV(t1, . . . , tn). Then we have σ�β σ
′ and ui �β tiσ ′ for all

i ∈ {1, . . . , n}.

(ii) By induction on k ∈ N, we show that if tiσ �kβ ui for all i ∈ {1, . . . , n}, then there is σ ′

such that σ�∗β σ
′ and ui �∗β tiσ

′ for all i ∈ {1, . . . , n}.

The base case tiσ �0β ui for all i ∈ {1, . . . , n} is trivial. For the induction case, there are
u ′1, . . . , u

′
n such that tiσ �kβ u ′i �β ui for all i ∈ {1, . . . , n}. Then, by (i), there is σ ′

such that σ �β σ
′ and u ′i �β tiσ

′ for all i ∈ {1, . . . , n}. Since �β satisfies the diamond
property (Proposition 5.3), for all i ∈ {1, . . . , n} there is u ′′i such that tiσ ′ �kβ u

′′
i �β ui,

and by induction hypothesis on k, there is σ ′′ such that σ ′ �∗β σ
′′ and u ′′i �∗β tiσ

′′ for all
i ∈ {1, . . . , n}. We deduce that ui �∗β tiσ

′′ for all i ∈ {1, . . . , n}.

In diagrammatic form:

~tσ
�β // ~u ′

�β

k
//

�β
��

~u

�β
��

~tσ ′ �β

k // ~u ′′

�β∗
��

~tσ ′′

The induction case. In the induction case, we have t →∗β∪R(β)i+1
u in more than one step.

Hence, this derivation can be written as t→β∪R(β)i+1 v→∗β∪R(β)i+1
u for some v. If t→β v, then

we easily conclude by induction hypothesis on v→∗β∪R(β)i+1
u. Otherwise, we have t→R(β)i+1 v

and things get more involved. Using the induction hypothesis on v →∗β∪R(β)i+1
u and the

discussion of the above paragraph for t→R(β)i+1 v, we arrive at the following situation:

t
R(β)i+1 //

β

∗��

v
β∪R(β)i+1

∗
//

β

∗
�� β

∗
��

u
β

∗
t ′ Ri+1

// v ′′ v ′ Ri+1
∗ // u ′

30

Using the confluence of →β and the commutation of →β with →Ri (Lemma 4.5), we get

t
R(β)i+1 //

β

∗��

v
β∪R(β)i+1

∗
//

β

∗
}} β

∗
!!

u
β

∗ !!
t ′ Ri+1

// v ′′
β

∗ !!

v ′ Ri+1
∗ //

β

∗~~

u ′

β

∗
~~

v ′′′ Ri+1
∗ // u ′′

In order to conclude we use the following property: for all i ∈ N,

t
β∪Ri
∗

//

β ∗
��

u

β∗
��

t ′ Ri
∗ // u ′

(13)

The intricate case of property (13) is when there is an Ri-step followed by a β-step:

t →Ri v →β u .

In this case, we have to make sure that the step t→Ri v did not create the β-redex contracted
in v→β u. As seen in Section 3.1, this follows from arity assumptions on terms.
We therefore use terms whose arity is compatible with that of the rewrite system. We need

this property to be preserved by →β∪R(β), but also by the conditions of rewrite rules: given a
semi-closed rule ~d = ~c ⊃ l 7→R r and a substitution σ, if lσ respects a : Σ→ N, then the terms
rσ,~dσ should also respect a. This is the case when r,~d are algebraic and respect a. Moreover,
in the following we have to make sure that every term at hand satisfy these properties. In
particular, if we have a rule ~d = ~c ⊃ l 7→ r such that lσ and all its reducts respect an arity a,
this has to be the case of ~dσ too (the case of ~c follows from semi-closure). Hence, we consider
sets of terms which are stable under the rewrite relation →R issued from the rewrite system

7→R =def {(l, di) | d1 = c1 ∧ . . .∧ dn = cn ⊃ l 7→R r ∧ i ∈ {1, . . . , n}}

∪ {(l, r) | d1 = c1 ∧ . . .∧ dn = cn ⊃ l 7→R r} .
This motivates the following definition, which extends (R, a)-stability (Definition 3.6) to condi-
tional rewriting.

Definition 5.5 (Conditionally (R, a)-Stable Terms) Let a : Σ→ N be an arity and R be a
conditional rewrite system. A set of terms S is conditionally (R, a)-stable if it is (R, a)-stable.

We now show (13). The proof of this property occupies Proposition 5.6 and Lemma 5.7. Note
that we prove Proposition 5.6 for systems whose conditions need not be algebraic. However,
this property may fail in presence of right-hand sides which either are not algebraic or do not
respect the arity prescribed by the left-hand sides. Note also that we work on conditionally
(R, a)-stable terms.

Proposition 5.6 Let R be a left-linear semi-closed system which is right-algebraic and respects
a : Σ → N, and let S ⊆ Λ(Σ) be conditionally (R, a)-stable. For all i ∈ N and all t, u, v ∈ S, if

31

t→Ri u�β v, then there are t ′ and v ′ such that t�β t
′ →∗Ri v ′ �β v :

t
Ri //

�β
��

u
�β // v

�β
��

t ′ Ri
∗ // v ′

Proof. The base case i = 0 is trivial, and we assume i > 0. We reason by induction on t using
Lemma 2.3.

t = λ~x.x t1 . . . tn. In this case, u = λ~x.xu1 . . . un with (t1, . . . , tn)→Ri (u1, . . . , un). Moreover,
v = λ~x.x v1 . . . vn with (u1, . . . , un) �β (v1, . . . , vn). By induction hypothesis, there are
(t ′1, . . . , t

′
n) and (v ′1, . . . , v

′
n) such that

(t1, . . . , tn) �β (t ′1, . . . , t
′
n) →∗Ri (v ′1, . . . , v

′
n) �β (v1, . . . , vn) .

It follows that

λ~x.x t1 . . . tn �β λ~x.x t ′1 . . . t
′
n →∗Ri λ~x.x v ′1 . . . v

′
n �β λ~x.x v1 . . . vn .

t = λ~x.ft1 . . . tn. If u = λ~x.fu1 . . . un with

(t1, . . . , tn) →Ri (u1, . . . , un) ,

then v = λ~x.fv1 . . . vn with (u1, . . . , un) �β (v1, . . . , vn) and we reason as in the previous
case.

Otherwise, there is a rule ~d = ~c ⊃ l 7→R r, a substitution σ and k ∈ {1, . . . , n} such that
t = λ~x.lσtk+1 . . . tn and u = λ~x.rσtk+1 . . . tn. As t and R respect a, we have n = k, hence
t = λ~x.lσ, u = λ~x.rσ and v = λ~x.w with rσ�β w.

Since r is algebraic, by Proposition 5.4.(i) there is σ ′ such that σ�β σ
′ and w�β rσ

′. As
l is linear, by Proposition 4.4 we have lσ �β lσ

′. It remains to show that lσ ′ →Ri rσ ′.
Since lσ→Ri rσ, there are terms ~v such that ~dσ→∗Ri−1 ~v←∗Ri−1 ~c. Since ~dσ→∗β ~dσ ′, by
Lemma 4.5, we obtain terms ~v ′ such that

~dσ →∗β ~dσ ′ →∗Ri−1 ~v ′ ←∗β ~v ←∗Ri−1 ~c .

Since terms ~c are applicative and closed, they are algebraic, and since R is right-algebraic,
terms ~v are also algebraic, hence in β-normal form. It follows that ~v = ~v ′, hence that
~dσ ′ ↓Ri−1 ~c, and we deduce that lσ ′ →Ri rσ ′.

t = λ~x.(λx.t0)t1 . . . tn (n ≥ 1). Then u is of the form u = λ~x.(λx.u0)u1 . . . un and we have
(t0, . . . , tn)→Ri (u0, . . . , un). If v = λ~x.(λx.v0)v1 . . . vn with

(u0, . . . , un) �β (v0, . . . , vn) ,

then we conclude by induction hypothesis, as in the first case.

Otherwise, v = λ~x.v0[v1/x]v2 . . . vn with (u0, . . . , un) �β (v0, . . . , vn). By induction hy-
pothesis, we have

(t0, . . . , tn) �β (t ′0, . . . , t
′
n) →∗Ri (v ′0, . . . , v

′
n) �β (v0, . . . , vn) .

32

It follows that by using (�β), (�App) we have

λ~x.(λx.t0)t1 . . . tn λ~x.v0[v1/x]v2 . . . vn
Oβ Oβ

λ~x.t ′0[t
′
1/x]t

′
2 . . . t

′
n →∗Ri λ~x.v ′0[v

′
1/x]v

′
2 . . . v

′
n .

Lemma 5.7 Let R be a semi-closed left-linear right-algebraic system which respects a : Σ→ N,
and let S ⊆ Λ(Σ) be conditionally (R, a)-stable. For all s, t ∈ S, if s→∗β∪Ri t then there are s ′,
t ′ such that s→∗β s ′ →∗Ri t ′ ←∗β t :

s
β∪Ri
∗

//

β ∗
��

t

β∗
��

s ′ Ri
∗ // t ′

Proof. The proof is in three steps.

(i) We show →∗Ri �β ⊆ �β →∗Ri �∗β by induction on the number of Ri-steps. Assume that
s→∗Ri t ′ →Ri t�β u. By Lemma 5.6, there are v and v ′ such that t ′ �β v→∗Ri v ′ �β u.
By induction hypothesis, there are s ′ and s ′′ such that s �β s

′ →∗Ri s ′′ �∗β v. Then, by
Lemma 4.5, there is t ′′ such that s ′′ →∗Ri t ′′ �∗β v ′. Thus, s�β s

′ →∗Ri t ′′ �∗β u.
(ii) We show →∗Ri �∗β ⊆ �∗β →∗Ri �∗β by induction on the number of �β-steps. Assume that

s →∗Ri t �β u
′ �∗β u. After (i), there are s ′ and t ′ such that s �β s

′ →∗Ri t ′ �∗β u ′.
By the diamond property of �β, there is v such that t ′ �∗β v �∗β u, where t ′ �∗β v is
no longer than u ′ �∗β u. Hence, by induction hypothesis, there are s ′′ and t ′′ such that
s ′ �∗β s

′′ →∗Ri t ′′ �∗β v. Therefore, s�∗β s
′′ →∗Ri t ′′ �∗β u.

(iii) We prove (�β∪→Ri)∗ ⊆ �∗β →∗Ri �∗β by induction on the length of (�β∪→Ri)∗. Assume
that s→�β∪Ri t→∗�β∪Ri u. There are two cases. First, s�β t. This case follows directly
from the induction hypothesis. Second, s →Ri t. By induction hypothesis, there are
t ′ and u ′ such that t �∗β t

′ →∗Ri u ′ �∗β u. After (ii), there are s ′ and t ′′ such that
s �∗β s

′ →∗Ri t ′′ �∗β t ′. Finally, by Lemma 4.5, there is u ′′ such that t ′′ →∗Ri u ′′ �∗β u ′.
Hence, s�∗β s

′ →∗Ri u ′′ �∗β u.
We conclude by the fact that �∗β =→∗β.
Remark. Note that β-reduction is the only way to obtain a term not respecting a from a term
respecting it. For instance, with a(id) = 1 the term (λx.x y y)id respects a whereas id y y does
not respect a.

Proposition 5.8 Let R be an algebraic conditional rewrite system and t ∈ Λ(Σ) that both
respect a : Σ→ N. If t→R(β) u then u respects a.

Proof. We reason by induction on t, using Lemma 2.3. The only case which does not directly
follow from the induction hypothesis is when t = λ~x.ft1 . . . tn and there is a rule ~d = ~c ⊃ l 7→R r,
a substitution σ and k ∈ {1, . . . , n} such that t = λ~x.lσtk+1 . . . tn. Since t and R respect a, we
have k = n. Hence u = λ~x.rσ and u respects a since r is an algebraic term that respects a.

33

5.1.2 Confluence of beta-reduction with beta-conditional rewriting

We now have all we need to show property (11). As seen in Example 5.2, rules have to be
algebraic and arity compliant. We reason by induction on i ∈ N.

Lemma 5.9 Let R be a semi-closed left-linear algebraic system which respects a : Σ→ N, and
let S ⊆ Λ(Σ) be conditionally (R, a)-stable. For all t, u ∈ S, if t →∗β∪R(β)i

u then there are t ′,
u ′ such that t→∗β t ′ →∗Ri u ′ ←∗β u :

t
β∪R(β)i

∗
//

β ∗
��

u

β∗
��

t ′ Ri
∗ // u ′

(14)

Proof. We show (14) by induction on i ∈ N. The base case i = 0 is trivial. We assume that
the property holds for i ≥ 0 and show it for i+ 1. The proof is in two steps.

(i) We begin by showing that diagram (15) commutes:

t
R(β)i+1 //

β ∗
��

u

β∗
��

t ′ Ri+1
// u ′

(15)

We reason by induction on t, using Lemma 2.3. The only case that does not directly follow
from the induction hypothesis is when t = λ~x.ft1 . . . tn and there is a rule ~d = ~c ⊃ l 7→R r,
a substitution σ and k ∈ {1, . . . , n} such that t = λ~x.lσtk+1 . . . tn and u = λ~x.rσtk+1 . . . tn
with lσ→R(β)i+1 rσ. Since t and R respect a, we have k = n, hence u = λ~x.rσ.

To deduce (15), it remains to show that there is a substitution σ ′ such that

lσ →∗β lσ ′ →Ri+1 rσ ′ ←∗β rσ .

Since lσ →R(β)i+1 rσ, there are terms ~v such that ~dσ →∗β∪R(β)i
~v ←∗β∪R(β)i

~c. By
induction hypothesis on i, there are terms ~w and ~v ′ such that

~dσ →∗β ~w →∗Ri ~v ′ ←∗β ~v .

By Proposition 5.4.(ii), as terms ~d are algebraic there is a substitution σ ′ such that σ→∗β σ ′
and ~w→∗β ~dσ ′. By Lemma 4.5 (commutation of →Ri with →β), we obtain terms ~v ′ such
that ~dσ ′ →∗Ri ~v ′ ←∗β ~v. It follows that

~dσ →∗β ~dσ ′ →∗Ri ~v ′ ←∗β ~v ←∗β∪R(β)i
~c .

Since terms ~c are algebraic and R is right-applicative, every reduct of ~c by →R(β) is β-
normal. We thus have ~v ′ = ~v and by induction hypothesis on i we deduce that ~c →∗Ri ~v.
It follows that ~dσ ′ ↓Ri ~c, hence lσ ′ →Ri+1 rσ ′. We have lσ→∗β lσ ′ and rσ→∗β rσ ′ since
σ→∗ σ ′, hence

t →∗β λ~x.lσ ′ →Ri+1 λ~x.rσ ′ ←∗β u .

34

(ii) We now show (14) by induction on the length of t→∗β∪R(β)i+1
u. Assume that

t→β∪R(β)i+1 v→∗β∪R(β)i+1
u .

By induction hypothesis, there are v ′ and u ′ such that v →∗β v ′ →∗Ri+1 u ′ ←∗β u. and
there are two cases. If t→β v, then we are done since t→∗β v ′.
Otherwise, we have t→R(β)i+1 u. From (i), there are t ′ and v ′′ such that

t→∗β t ′ →∗Ri+1 v ′′ ←∗β v .
Now, by confluence of →β, there is v ′′′ such that v ′′ →∗β v ′′′ ←∗β v ′. Commutation of →β

and →Ri+1 (Lemma 4.5) applied to v ′′′ ←∗β v ′ →∗Ri+1 u ′ gives us a term u ′′ such that
v ′′′ →∗Ri+1 u ′′ ←∗β u ′. We thus have t ′ →∗β∪Ri+1 u ′′ and by Lemma 5.7 there are t ′′ and
u ′′′ such that t ′′ →∗β→∗Ri+1←∗β u ′′′. Therefore, t→∗β→∗Ri+1←∗β u.
In diagrammatic form,

t
R(β)i+1 //

β

∗��

v
β∪R(β)i+1

∗
//

β

∗
}} β

∗
""

u
β

∗ !!
t ′ Ri+1

//
β

∗��

v ′′
β

∗ !!

v ′ Ri+1
∗ //

β

∗}}

u ′

β

∗
~~

t ′′

Ri+1
∗

,,

v ′′′
Ri+1
∗

// u ′′

β

∗
}}

u ′′′

We easily deduce (6) from (14). We get the confluence of →β∪R using Theorem 4.6. By
Proposition 5.1, the confluence of →β∪R(β) follows from the confluence of →R on conditionally
(R, a)-stable sets of terms.

Theorem 5.10 Let R be a semi-closed left-linear algebraic system which respects a : Σ → N.
Then, on any conditionally (R, a)-stable set of terms, if →R is confluent then so is →β∪R(β).

Proof. Since R is semi-closed, left-linear and right-applicative, confluence of →β∪R follows
from confluence of →R by Theorem 4.6. We then conclude by Lemma 5.9 and Proposition 5.1,
since conditionally (R, a)-stable sets of terms are closed under →β∪R(β).

5.2 Confluence on weakly beta-normalizing terms

In this section, we extend to →R(β) the results of Section 4.2. The main point is to obtain
the lemma corresponding to Lemma 4.14. Moreover, as in Section 5.1, for all i ∈ N we project→R(β)i on →Ri . We thus want to obtain the following property, which implies (6):

t
β∪R(β)i

∗
//

β ∗
��

u

β∗
��

βnf(t)
Ri
∗ // βnf(u)

(16)

35

We use the same tools as in Section 4.2. We consider weakly β-normalizing terms whose β-
normal form respects the arity specified by rewrite rules, and we reason by induction on �. We
also assume that rewrite rules are algebraic.
We denote by �R(β) the nested parallelization of join β-conditional rewriting, defined similarly

as in Definition 4.11. It satisfies Proposition 4.12 and Lemma 4.13.
We now show (16) using exactly the same method as for showing (4) in Lemma 4.14.

Lemma 5.11 Let a : Σ→ N be an arity and R be an algebraic conditional rewrite system which
respects a. For all i ∈ N, if t ∈ ANa and t→∗β∪R(β)i

u, then u ∈ ANa and βnf(t)→∗Ri βnf(u).

Proof. We reason exactly as in the proof of Lemma 4.14. We prove the property by induction
on i ∈ N. In the induction case we show that for all t ∈ ANa,

t
�R(β)i+1 //

β ∗
��

u

β∗
��

βnf(t)
�Ri+1

// βnf(u)

(17)

We reason by induction on � using Lemma 2.3. The only difference with the proof of Lemma 4.14
is the case where t = λ~x.ft1 . . . tn and there is a rule ~d = ~c ⊃ l 7→ r such that t = λ~x.lσ~a and
u = λ~x.rθ~b with lσ �R(β)i+1 rθ and ~dσ ↓β∪R(β)i ~cσ. Exactly for the same reasons as in
Lemma 4.14, we have ~a = ~b = ∅, t = λ~x.lσ and u = λ~x.rσ. Moreover, βnf(t) = λ~x.lσ ′ and
βnf(u) = λ~x.rθ ′ with σ ′ =def βnf(σ) and θ ′ = βnf(θ), and by induction hypothesis on � we
have σ ′ �Ri+1 θ

′. It remains to show that lσ ′ �Ri+1 rθ
′. Because σ ′ �Ri+1 θ

′, it suffices to
prove that lσ ′ →Ri+1 rσ ′. Thus, we are done if we show that ~dσ ′ ↓Ri ~cσ ′. Since ~d and ~c are
algebraic, βnf(~dσ) = ~dσ ′ and βnf(~cσ) = ~cσ ′. Now, since ~d is algebraic and respects a, and
since σ ′ respects a, it follows that ~dσ ′ respects a. The same holds for ~cσ ′. Hence we conclude
by applying on ~dσ ↓β∪R(β)i ~cσ the induction hypothesis on i.

We deduce the preservation of confluence.

Theorem 5.12 Let a : Σ → N be an arity and R be an algebraic conditional rewrite system
which respects a. If →R is confluent on ANa, then →β∪R(β) is confluent on ANa.

Proof. We can reason as described at the beginning of this section, using Proposition 5.1,
Theorem 4.15 and Lemma 5.11. A direct proof is also possible, reasoning as for Theorem 4.15.

6 Orthonormal systems

In this section, we give a criterion ensuring the confluence of →β∪R(β) when conditions and
right-hand sides possibly contain abstractions and active variables.
This criterion comes from peculiarities of orthogonality with conditional rewriting. As re-

marked in Section 3.2, a conditional critical pair can be feasible or not. In [Ohl02], it is re-
marked that results on the confluence of semi-equational and normal orthogonal conditional
systems could be extended to systems that have no feasible critical pair. But the results ob-
tained this way are not directly applicable, since proving unfeasibility of critical pairs may require
confluence. An example of such situation is the following rewrite system.

36

Example 6.1 Consider the following two rules, taken from the system presented in Sec-
tion 2.4.2:

> (length l) x = false ⊃ occ (cons x o) (node y l) 7→ false
> (length l) x = true ⊃ occ (cons x o) (node y l) 7→ occ o (get l x)

The only conditional critical pair between them is

> (length l) x = true ∧ > (length l) x = false ⊃ (false , occ o (get l x))

The condition of this pair cannot be satisfied by a confluent relation. Hence, if →β∪R(β)i is
confluent then we can reason as in Lemma 4.5 and obtain the confluence →β∪R(β)i+1 .

In this section, we define a class of systems, called orthonormal, that allows to generalize
this reasoning. As in Example 6.1, confluence can be shown stratified way: the confluence of→β∪R(β)i implies the unfeasibility of critical pairs w.r.t. →β∪R(β)i , which in turn entails the
confluence of the next stratum →β∪R(β)i+1 . We thus obtain the level confluence of →β∪R(β).
Rules of orthonormal systems can have λ-terms in their right-hand sides and conditions.

Moreover, no arity assumption is made. Hence, orthonormality ensures the confluence of β-
conditional rewriting combined to β-reduction when we cannot deduce it from the confluence of
conditional rewriting (see Section 5).
Systems similar to orthonormal systems have already been studied in the first-order case [GM88,

KW97]. It is worth relating orthonormal systems with approaches to conditional rewriting in
which conditions are arbitrary predicates on terms. For first-order conditional rewriting this
approach has been taken in [BK86]. It has been applied to λ-calculus [Tak93], and this is the
way conditional rewrite rules are handled in the very expressive framework of CCERSs [GKK05].
Neither of these approaches can directly handle Example 6.1. In each case, confluence is proved
under the assumption that the predicates used in conditions are stable by reduction, while
proving this property in the case of Example 6.1 requires confluence.
A symbol f ∈ Σ is defined if it is the head of the left-hand side of a rule.

Definition 6.2 (Orthonormal Systems) A conditional rewrite system R is orthonormal if

(i) it is left-linear;

(ii) in every rule ~d = ~c ⊃ l 7→R r, the terms in ~c are closed β-normal forms not containing
defined symbols;

(iii) for every critical pair

d1 = c1 ∧ . . . ∧ dn = cn ⊃ (s, t)

there exist distinct i, j ∈ {1, . . . , n} such that di = dj and ci 6= cj.

Condition (ii) is a simple syntactic and decidable way to ensure that orthonormal systems are
normal (recall from Remark 2.12 that normality is in general undecidable). As explained in
Example 6.1, assuming the confluence of →β∪R(β)i , condition (iii) implies the unfeasibility of
critical pairs w.r.t.→β∪R(β)i , hence the confluence of the next stratum→β∪R(β)i+1 . This entails
the level confluence of →β∪R(β). We actually prove in Theorem 6.7 the shallow confluence of→β∪R(β), which is a stronger property (see Definition 2.15). Theorem 6.7 is thus an extension
of the shallow confluence of orthogonal first-order normal conditional rewriting (Theorem 3.12)
to orthonormal β-conditional rewriting.
The most important point w.r.t. the results of Section 5 is that orthonormal systems do not

need to respect an arity nor to be algebraic.

37

Example 6.3 The system presented in Section 2.4.2 is orthonormal.

We now show that→β∪R(β) is shallow confluent when R is orthonormal. This result is stated
and proved in Theorem 6.7 below. We use some intermediate lemmas. The parallel moves
property occupies Lemmas 6.5 and 6.6. We begin by showing that the confluence of →β∪R(β)i
implies the commutation of →∗β and →∗R(β)i+1

.

Lemma 6.4 Let R be an orthonormal system. For all i ∈ N, if →β∪R(β)i is confluent then→R(β)i+1 commutes with →β :

· R(β)i+1

∗
//

β ∗
��

·
β∗
��

·
R(β)i+1

∗ // ·

Proof. We reason as in Lemma 4.5. We show property (18) below and then deduce the
commutation of →R(β)i+1 and →β using Lemma 2.18 and the fact that →∗β= �∗β.

t
R(β)i+1 //

�β
��

v

�β
��

u
R(β)i+1

∗ // w

(18)

The only difference with the proof of Lemma 4.5 is when t→R(β)i+1 v by contracting a rooted
redex. In this case, there is a rule ~d = ~c ⊃ l 7→R r and a substitution σ such that t = lσ and v =

rσ. We show that there is a term w such that u→∗R(β)i+1
w�β rσ. As l is a non-variable linear

algebraic term, there is a substitution σ ′ such that σ�βσ
′ and lσ�β lσ

′ = u. Therefore we have
rσ�βrσ

′. It remains to show that lσ ′ →R(β)i+1 rσ
′. Recall that ~dσ→∗β∪R(β)i

~c. By assumption

(confluence of →β∪R(β)i), since ~dσ →∗β ~dσ ′ there are ~v such that ~dσ ′ →∗β∪R(β)i
~v ←∗β∪R(β)i

~c.
But ~c are β ∪R(β)-normal forms, hence ~v = ~c. We conclude that lσ ′ →R(β)i+1 rσ

′ �β rσ.

We follow the usual scheme of proofs of confluence of orthogonal conditional rewrite sys-
tems [Ohl02]. For all i ∈ N, we denote by →‖R(β)i the smallest parallel rewrite relation con-
taining →R(β)i (see Definition 2.5). Hence, →‖R(β)i is strictly included in the nested parallel
relation �R(β)i used in Section 5.2 (Definition 4.11). The main property is the commutation of→‖R(β)i and →‖R(β)j for all i, j ∈ N, which corresponds to the usual parallel moves property.
Let <mul be the multiset extension of the usual ordering on naturals numbers. In our case, the
parallel moves property is:

Parallel Moves. Given i, j ∈ N, if →β∪R(β)n commutes with →β∪R(β)m for all n,m such that
{n,m} <mul {i, j}, then →‖R(β)i commutes with →‖R(β)j .

The proof is decomposed into Lemma 6.5 and Lemma 6.6. In Lemma 6.5, assuming the
commutation of →β∪R(β)n and →β∪R(β)m for all n,m such that {n,m} <mul {i, j}, we consider,
for the commutation of →‖R(β)i and →‖R(β)j , the particular case of a rooted R(β)i-reduction.

Lemma 6.5 Let R be an orthonormal system and i, j ≥ 0. Assume that →β∪R(β)n commutes
with →β∪R(β)m for all n, m such that {n,m} <mul {i, j}. Then for all rules ~d = ~c ⊃ l 7→R r, we
have

lσ
R(β)i //

‖R(β)j
��

rσ

‖R(β)j
��

u
R(β)i

= // v

38

Proof. The result holds if i = 0 since →R(β)0= ∅. If j = 0, then u = lσ and take v = rσ.
Assume that i, j > 0 and write q1, . . . , qn for the (disjoint) occurrences in lσ of the redexes

contracted in lσ →‖R(β)j u. Therefore, for all k, 1 ≤ k ≤ n, there exists a rule ρk : ~dk = ~ck ⊃
lk 7→R rk and a substitution θk such that lσ|qk = lkθk. Thus, u = lσ[r1θ1]q1 . . . [rnθn]qn . It is
possible to rename variables and assume that ρ, ρ1, . . . ρn have disjoint variables. Therefore, we
can take σ = θ1 = · · · = θn.
Assume that there is a non-variable superposition, i.e. that a qk is a non variable occurrence

in l. Hence rules ρ and ρk form an instance of a critical pair ~d ′µ = ~c ′ ⊃ (l[rk]qkµ, rµ) and there
exists a substitution µ ′ such that σ = µµ ′. By definition of orthonormal systems, |~d ′µ| ≥ 2

and there is m 6= p such that c ′m 6= c ′p and d ′mµ = d ′pµ. Let us write h for max(i, j) − 1. As
d ′mµ = d ′pµ we have d ′mσ = d ′pσ and it follows that

c ′m ←∗β∪R(β)h
d ′mσ = d ′pσ →∗β∪R(β)h

c ′p .

But {h, h} <mul {i, j} and by assumption →β∪R(β)h is confluent. Therefore we must have
c ′m ↓β∪R(β)h c

′
p. But it is not possible since c ′m and c ′p are distinct normal forms. Hence,

conditions of ρ and ρk cannot be both satisfied by σ and →β∪R(β)h and it follows that there is
no non-variable superposition.
Therefore, each qk is of the form uk.vk where l|uk is a variable xk. Let σ ′ be such that

σ ′(xk) = σ(xk)[rkσ]vk and σ ′(y) = σ(y) if y 6= xk for all 1 ≤ k ≤ n. Then, lσ →‖R(β)j lσ
′ and

by linearity of l, u = lσ ′. Furthermore, rσ→‖R(β)j rσ
′. We now show that lσ ′ →R(β)i rσ

′. We
have ~dσ →∗β∪R(β)i−1

~c and ~dσ →∗R(β)j
~dσ ′. As i, j > 0, we have {i − 1, j} <mul {i, j}. Therefore,

by assumption →β∪R(β)i−1 and →β∪R(β)j commute and there exist terms ~c ′ such that

~dσ ′ →∗β∪R(β)i−1
~c ′ ←∗β∪R(β)j−1

~c .

As terms ~c are →β∪R(β)-normal forms, we have ~c ′ = ~c and it follows that lσ ′ →R(β)i rσ
′.

Now, in Lemma 6.6 we show that the commutation of→‖R(β)i and→‖R(β)j is ensured by the
two particular cases of rooted R(β)i-reduction and R(β)j-reduction.

Lemma 6.6 Let R be an orthonormal system and i, j ≥ 0. Property (i) below holds if and only
if for all rules ~d = ~c ⊃ l 7→R r, properties (ii) and (iii) hold.

s
‖R(β)i //

‖R(β)j
��

t

‖R(β)j
��

u
‖R(β)i

// v

lσ
R(β)i //

‖R(β)j
��

rσ

‖R(β)j
��

u
R(β)i

= // v

lσ
R(β)j //

‖R(β)i
��

rσ

‖R(β)i
��

u
R(β)j

= // v

(i) (ii) (iii)

Proof. The “only if” statement is trivial. For the “if” case, let s, t, u be three terms such that
u←‖R(β)j s→‖R(β)i t. If s is t (resp. u), then take v = u (resp. v = t). Otherwise, we reason
by induction on the structure of s. If there is a rooted reduction, we conclude by properties (ii)
and (iii). Now assume that both reductions are nested. In this case s cannot be a symbol f ∈ Σ
nor a variable. If s is an abstraction, we conclude by induction hypothesis. Otherwise s is an
application s1s2, and by assumption u = u1u2 and t = t1t2 with uk ←‖R(β)j sk →‖R(β)i tk. In
this case also we conclude by induction hypothesis.

Now, an induction on <mul provides the commutation of →β∪R(β)i and →β∪R(β)j for all
i, j ≥ 0, i.e. the shallow confluence of →β∪R(β).

39

Theorem 6.7 If R is an orthonormal system, then →β∪R(β) is shallow confluent.

Proof. We reason by induction on unordered pairs {i, j} seen as multisets and compared with
the well-founded relation <mul. We show the commutation of →β∪R(β)i and →β∪R(β)j for all
i, j ≥ 0. The least unordered pair {i, j} (considered as a multiset) with respect to <mul is {0, 0}.
As →β∪R(β)0=→β by definition, this case holds by confluence of β.
Now, assume that i > 0 and that the commutation of →β∪R(β)n and →β∪R(β)m holds for

all n,m with {n,m} <mul {i, 0}. As {i − 1, i − 1} <mul {i, 0}, →β∪R(β)i−1 is confluent and the
commutation of →β∪R(β)i with →β∪R(β)0 (=→β) follows from Lemma 6.4.
The remaining case is when i, j > 0. Using the induction hypothesis, from Lemma 6.5 and

Lemma 6.6, we obtain the commutation of →‖R(β)i and →‖R(β)j , which in turn implies the
commutation of →∗R(β)i

and →∗R(β)j
. Now, as {i − 1, i − 1} <mul {i, j}, by Lemma 6.4, →β and→R(β)i commute. This way, we also obtain the commutation of →β and →R(β)j . Then, the

commutation of →∗β∪R(β)i
and →∗β∪R(β)j

easily follows.

Example 6.8 The relation→β∪R(β) induced by the system presented in Section 2.4.2 is shallow
confluent and thus confluent.

7 Conclusion

Our results are summarized in Figure 1 page 6.
We provide detailed conditions to ensure modularity of confluence when combining β-reduction

and conditional rewriting, either when the evaluation of conditions uses β-reduction or when it
does not. This has useful applications on the high-level specification side and for enriching the
conversion used in logical frameworks or proof assistants, while still preserving the confluence
property.
These results lead us to the following remarks and further research points. The results obtained

in Section 4 and 5 for the join conditional rewrite systems extend to the case of oriented systems
(hence to normal systems) and to the case of level-confluent semi-equational systems. For semi-
equational systems, the proofs follow the same scheme, provided that level-confluence of →R is
assumed. However, it would be interesting to know if this restriction can be dropped.
Problems arising from non left-linear rewriting are directly transposed to left-linear conditional

rewriting. The semi-closure condition is sufficient to avoid this, and it seems to provide the
counterpart of left-linearity for unconditional rewriting. However, two remarks have to be made
about this restriction. First, it would be interesting to know if it is a necessary condition
and besides, to characterize a class of non semi-closed systems that can be translated into
equivalent semi-closed ones. Second, semi-closed terminating join systems behave like normal
systems. But normal systems can be easily translated into equivalent non-conditional systems.
Moreover such a translation preserves good properties such as left-linearity and non ambiguity.
As many practical uses of rewriting rely on terminating systems, semi-closed join systems may
be in practice essentially an intuitive way to design rewrite systems that can be then efficiently
implemented by non-conditional rewriting.
A wider interesting perspective would be to extend the results to CCERSs [GKK05].

40

References

[ALS94] J. Avenhaus et C. Loría-Sáenz – “Higher Order Conditional Rewriting and Nar-
rowing”, Proceedings of the 1st International Conference on Constraints in Compu-
tational Logics, LNCS, vol. 845, Springer Verlag, 1994, p. 269–284. 3

[Bar84] H.P. Barendregt – The Lambda-Calculus, its Syntax and Semantics, Studies in
Logic and the Foundation of Mathematics, North Holland, 1984, Second edition. 3,
5, 15, 19, 23

[BCKL03] G. Barthe, H. Cirstea, C. Kirchner et L. Liquori – “Pure Patterns Type Sys-
tems”, Principles of Programming Languages, New Orleans, USA, ACM, 2003. 3

[BFG97] F. Barbanera, M. Fernández et H. Geuvers – “Modularity of Strong Normal-
ization and Confluence in the Algebraic-lambda-Cube”, Journal of Functional Pro-
gramming 7 (1997), no. 6, p. 613–660. 24

[BK86] J.A. Bergstra et J.W. Klop – “Conditional rewrite rules: Confluence and termi-
nation”, Journal of Computer and System Sciences 32 (1986), no. 3, p. 323–362. 11,
18, 37

[BKR06] F. Blanqui, C. Kirchner et C. Riba – “On the Confluence of Lambda-Calculus
with Conditional Rewriting”, Proceedings of FoSSaCS’06, LNCS, vol. 3921, 2006. 5,
28

[Bla05] F. Blanqui – “Definitions by Rewriting in the Calculus of Constructions”, Mathe-
matical Structures in Computer Science 15 (2005), no. 1, p. 37–92. 3

[BT88] V. Breazu-Tannen – “Combining Algebra and Higher-Order Types”, Proceedings
of LiCS’88, IEEE Computer Society, 1988. 3, 16

[BTG89] V. Breazu-Tannen et J. Gallier – “Polymorphic Rewriting Conserves Algebraic
Strong-Normalization and Confluence”, Proceedings of ICALP’89, 1989. 16

[BTG94] — , “Polymorphic Rewriting Conserves Algebraic Confluence”, Information and
Computation 114 (1994), no. 1, p. 1–29. 3, 16

[BTM87] V. Breazu-Tannen et A. Meyer – “Computable Values Can Be Classical”, Pro-
ceedings of POPL’87, ACM, 1987. 15

[Böh68] C. Böhm – “Alcune Proprietà delle Forme β-η-Normali nel λ-K-Calcolo”, Tech. Re-
port 696, Pubblicazioni dell’ Istituto per le Applicazioni del Calcolo, ROMA, 1968.
8

[CK01] H. Cirstea et C. Kirchner – “The rewriting calculus — Part I and II”, Logic
Journal of the Interest Group in Pure and Applied Logics 9 (2001), no. 3, p. 427–498.
3

[DHK03] G. Dowek, T. Hardin et C. Kirchner – “Theorem Proving Modulo”, Journal of
Automated Reasoning 31 (2003), no. 1, p. 33–72. 3

[DJ90] N. Dershowitz et J.-P. Jouannaud – “Rewrite Systems”, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B) (J. van Leeuwen,
éd.), North-Holland, 1990, p. 243–320. 3

41

[DO90] N. Dershowitz et M. Okada – “A rationale for conditional equational program-
ming”, Theoretical Computer Science 75 (1990), p. 111–138. 5

[Dou92] D.J. Dougherty – “Adding Algebraic Rewriting to the Untyped Lambda Calculus”,
Information and Computation 101 (1992), no. 2, p. 251–267. 3, 4, 15, 16, 17, 18, 22,
23

[GKK05] J. Glauert, D. Kesner et Z. Khasidashvili – “Expression Reduction Systems
and Extensions: An Overview”, Processes, Terms and Cycles: Steps to the Road of
Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion os His 60th Birthday,
LNCS, vol. 3838, Springer, 2005, p. 496–553. 3, 37, 40

[GM88] E. Giovannetti et C. Moiso – “Notes on the Elimination of Conditions”, Proceed-
ings of CTRS’87, LNCS, vol. 308, Springer, 1988, p. 91–97. 37

[Gra96] B. Gramlich – “On Termination and Confluence Properties of Disjoint and
Constructor-Sharing Conditional Rewrite Systems”, Theoretical Computer Science
165 (1996), no. 1, p. 97–131. 4

[Hue80] G. Huet – “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems”, Journal of the Association for Computing Machinery 27 (1980),
no. 4, p. 797–821. 15, 17

[Hue86] — , “Formal Structures for Computation and Deduction”, Technical report, INRIA,
Rocquencourt, 1986. 4, 12

[JO91] J.-P. Jouannaud et M. Okada – “Executable Higher-Order Algebraic Specification
Languages”, Proceedings of LiCS’91, IEEE Computer Society, 1991. 3

[Kap84] S. Kaplan – “Conditional Rewrite Rules”, Theoretical Computer Science 33 (1984),
p. 175–193. 11

[Klo80] J.W. Klop – Combinatory Reduction Systems, Mathematical Center Tracts, vol. 127,
CWI, 1980, PhD Thesis. 12, 15

[KOR93] J.W. Klop, V. van Oostrom et F. van Raamsdonk – “Combinatory Reduc-
tion Systems: Introduction and Survey”, Theoretical Computer Science 121 (1993),
p. 279–308. 3

[KW97] U. Kühler et C.-P. Wirth – “Conditional Equational Specifications of Data Types
with Partial Operations for Inductive Theorem Proving”, Proceedings of RTA’97,
LNCS, vol. 1232, Springer, 1997, p. 38–52. 37

[Mid91] A. Middeldorp – “Confluence of the Disjoint Union of Conditional Term Rewriting
Systems”, Proceedings of CTRS’91, LNCS, vol. 516, 1991, p. 295–306. 4

[Mül92] F. Müller – “Confluence of the Lambda Calculus with Left Linear Algebraic Rewrit-
ing”, Information Processing Letters 41 (1992), p. 293–299. 3, 4, 12, 15, 16, 18, 19,
20, 22

[Nip91] T. Nipkow – “Higher-Order Critical Pairs”, Proceedings of LiCS’91, IEEE Computer
Society, 1991. 3

42

[Ohl02] E. Ohlebusch – Advanced Topics in Term Rewriting, Springer, April 2002. 5, 11,
18, 36, 38

[Oka89] M. Okada – “Strong Normalizability for the Combined System of the Typed
Lambda-Calculus and an Arbitrary Convergent Term Rewrite System”, Proceedings
of ISSAC’89, ACM, 1989, p. 357–363. 16

[OR94] V. van Oostrom et F. van Raamsdonk – “Weak Orthogonality Implies Conflu-
ence: the Higher-Order Case”, Proceedings of LFCS’94, LNCS, vol. 813, 1994. 3, 16,
20, 23, 27

[Par89] M. Parigot – “On the Representation of Data in Lambda-Calculus”, Proceedings of
CSL’89, LNCS, vol. 440, 1989, p. 309–321. 8

[Sco75] D. Scott – “Lambda Calculus and Recursion Theory”, Proc. of the third Scandina-
vian Logic Symposium (S. Kanger, éd.), North Holland, 1975, p. 154–193. 12

[Tak93] M. Takahashi – “Lambda-Calculi with Conditional Rules”, Proceedings of
TLCA’93, LNCS, Springer-Verlag, 1993, p. 406–417. 3, 37

[Tak95] — , “Parallel Reductions in λ-Calculus”, Information and Computation 118 (1995),
p. 120–127. 19, 29

[Toy87] Y. Toyama – “On the Church-Rosser Property for the Direct Sum of Term Rewriting
Systems”, Journal of the Association for Computing Machinery 34 (1987), no. 1,
p. 128–143. 3

[Vri89] R.C. de Vrijer – “Extending the Lambda Calculus with Surjective Pairing is Con-
servative”, Proceedings of LiCS’89, IEEE Computer Society, 1989, p. 204–215. 4,
12

[Wad71] C.P. Wadsworth – “Semantics and Pragmatics of the Lambda-Calculus”, Thèse,
Oxford University, 1971. 7

[Wol93] D.A. Wolfram – The Clausal Theory of Types, Cambridge Tracts in Theoretical
Computer Science, vol. 21, Cambridge University Press, 1993. 3

43

	Introduction
	Lambda-calculus and conditional rewriting
	Terms and rewrite relations
	Lambda-calculus
	Conditional rewriting
	Examples
	Coherence of lambda-calculus with surjective pairing
	A term manipulation system

	Confluence

	Confluence: from unconditional to conditional rewriting
	Confluence of beta-reduction with unconditional rewriting
	Left-linear rewriting
	Strongly beta-normalizing terms

	Orthogonal conditional rewriting
	Overview of the results

	Confluence of beta-reduction with conditional rewriting
	Confluence for left-linear semi-closed systems
	Confluence on weakly beta-normalizing terms

	Using beta-reduction in the evaluation of conditions
	Confluence for left-linear semi-closed systems
	Preliminaries
	Confluence of beta-reduction with beta-conditional rewriting

	Confluence on weakly beta-normalizing terms

	Orthonormal systems
	Conclusion

