
Fibrations of Tree Automata
Colin Riba

ENS de Lyon, Université de Lyon, LIP∗

colin.riba@ens-lyon.fr http://perso.ens-lyon.fr/colin.riba/

Abstract
We propose a notion of morphisms between tree automata based on game semantics. Morphisms
are winning strategies on a synchronous restriction of the linear implication between acceptance
games. This leads to split indexed categories, with substitution based on a suitable notion
of synchronous tree function. By restricting to tree functions issued from maps on alphabets,
this gives a fibration of tree automata. We then discuss the (fibrewise) monoidal structure issued
from the synchronous product of automata. We also discuss how a variant of the usual projection
operation on automata leads to an existential quantification in the fibered sense. Our notion of
morphism is correctin the sense that it respects language inclusion, and in a weaker sense also
complete.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages. F.4.1 Mathem-
atical Logic. F.4.2 Formal Languages.

Keywords and phrases Tree automata, Game semantics, Categorical logic.

1 Introduction

This paper proposes a notion of morphism between tree automata based on game semantics.
We follow the Curry-Howard-like slogan: Automata as objects, Executions as morphisms.

We consider general alternating automata on infinite ranked trees. These automata
encompass Monadic Second-Order Logic (MSO) and thus most of the logics used in veri-
fication [6]. Tree automata are traditionally viewed as positive objects: one is primarily
interested in satisfaction or satisfiability, and the primitive notion of quantification is ex-
istential. In contrast, Curry-Howard approaches tend to favor proof-theoretic oriented and
negative approaches, i.e. approaches in which the predominant logical connective is the
implication, and where the predominant form of quantification is universal.

We consider full infinite ranked trees, built from a non-empty finite set of directions D
and labeled in non-empty finite alphabets Σ. The base category Tree has alphabets as
objects and morphisms from Σ to Γ are (Σ→ Γ)-labeled D-ary trees.

The fibre categories are based on a generalization of the usual acceptance games, where
for an automaton A on alphabet Γ (denoted Γ ` A), input characters can be precomposed
with a tree morphism M ∈ Tree[Σ,Γ], leading to substituted acceptance games of type
Σ ` G(A,M). Usual acceptance games, which correspond to the evaluation of Σ ` A on
a Σ-labeled input tree, are substituted acceptance games 1 ` G(A, t) with t ∈ Tree[1,Σ].
Games of the form Σ ` G(A,M) are the objects of the fibre category over Σ.

For morphisms, we introduce a notion of “synchronous” simple game between accept-
ance games. We rely on Hyland & Schalk’s functor (denoted HS) from simple games to
Rel [9]. A synchronous strategy Σ ` σ : G(A,M) −~ G(B, N) is a strategy in the simple
game G(A,M)(G(B, N) required to satisfy (in Set) a diagram of the form of (1) below,

∗ UMR 5668 CNRS ENS Lyon UCBL INRIA

© Colin Riba;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://perso.ens-lyon.fr/colin.riba/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Fibrations of Tree Automata

expressing that A and B are evaluated along the same path of the tree and read the same
input characters:

HS(σ) //

��

G(B, N)
��

G(A,M) // (D + Σ)∗

(1)

This gives a split fibration game of tree automata and acceptance games. When restrict-
ing the base to alphabet morphisms (i.e. functions Σ→ Γ), substitution can be internalized
in automata. By change-of-base of fibrations, this leads to a split fibration aut. In the
fibers of aut, the substituted acceptance games have finite-state winning strategies, whose
existence can be checked by trivial adaptation of usual algorithms.

Each of these fibrations is monoidal in the sense of [17], by using a natural synchronous
product of tree automata. We also investigate a linear negation, as well as existential
quantifications, obtained by adapting the usual projection operation on non-deterministic
automata to make it a left-adjoint to weakening, the adjunction satisfying the usual Beck-
Chevalley condition.

Our linear implication of acceptance games seems to provide a natural notion of prenex
universal quantification on automata not investigated before. As expected, if there is a
synchronous winning strategy σ A −~ B, then L(A) ⊆ L(B) (i.e. each input tree accepted
by A is also accepted by B). Under some assumptions on A and B the converse holds:
L(A) ⊆ L(B) implies σ A −~ B for some σ.

At the categorical level, thanks to (1), the constructions mimic relations in slices cat-
egories Set/(D + Σ)∗ of the co-domain fibration: substitution is given by a (well chosen)
pullback, and the monoidal product of automata is issued from the Cartesian product of
plays in Set/(D + Σ)∗ (i.e. also by a well chosen pullback).

The paper is organized as follows. Section 2 presents notations for trees and tree auto-
mata. Our notions of substituted acceptance games and synchronous arrow games are then
discussed in Sect. 3. Substitution functors and the corresponding fibrations are presented
in Sect. 4, and Section 5 overviews the monoidal structure. We then state our main correct-
ness results in Sect. 6. Section 7 presents existential quantifications and quickly discusses
non-deterministic automata. A short Appendix A gives some definitions on simple games,
and a long version of the paper with full proofs [16] can be found on the webpage of the
author.

2 Preliminaries

Fix a singleton set 1 = {•} and a finite non-empty set D of (tree) directions.

Alphabets and Trees. We write Σ,Γ, . . . for alphabets, i.e. finite non-empty sets. We let
Alph be the category whose objects are alphabets and whose morphisms β ∈ Alph[Σ,Γ]
are functions β : Σ→ Γ.

We let Tree[Σ] be the set of Σ-labeled full D-ary trees, i.e. the set of maps T : D∗ → Σ.
Let Tree be the category with alphabets as objects and with morphisms Tree[Σ,Γ] :=
Tree[(Σ → Γ)], i.e. (Σ → Γ)-labeled trees. Maps M ∈ Tree[Σ,Γ] and L ∈ Tree[Γ,∆] are
composed as

L ◦M : p ∈ D∗ 7→ (a ∈ Σ 7→ L(p)(M(p)(a)))

Colin Riba 3

and the identity IdΣ ∈ Tree[Σ,Σ] is defined as IdΣ(p)(a) := a. Note that Tree[1,Σ] is in
bijection with Tree[Σ].

There is a faithful functor from Alph to Tree, mapping β ∈ Alph[Σ,Γ] to the constant
tree morphism (_ 7→ β) ∈ Tree[Σ,Γ] that we simply write β.

Tree Automata. Alternating tree automata [14] are finite state automata running on full
infinite Σ-labeled D-ary trees. Their distinctive feature is that transitions are given by
positive Boolean formulas with atoms pairs (q, d) of a state q and a tree direction d ∈ D

((q, d) means that one copy of the automaton should start in state q from the d-th son of
the current tree position).

Acceptance for alternating tree automata can be defined either via run trees or via the
existence of winning strategies in acceptance games [14]. In both cases, we can w.l.o.g.
restrict to transitions given by formulas in (irredundant) disjunctive normal form [15]. In
our setting, it is quite convenient to follow the presentation of [19], in which disjunctive
normal forms with atoms in Q×D are represented as elements of P(P(Q×D)).

An alternating tree automaton A on alphabet Σ has the form (Q, qı, δ,Ω) where Q is
the finite set of states, qı ∈ Q is the initial state, the acceptance condition is Ω ⊆ Qω and
following [19], the transition function δ has the form

δ : Q× Σ −→ P(P(Q×D))

We write Σ ` A if A is a tree automaton on Σ. Usual acceptance games are described in
Sec. 3.1. It is customary to put restrictions on the acceptance condition Ω ⊆ Qω, typically
by assuming it is generated from a Muller family F ∈ P(P(Q)) as the set of π ∈ Qω such
that Inf(π) ∈ F . We call such automata regular1. They have decidable emptiness checking
and the same expressive power as MSO on D-ary trees (see e.g. the survey [18]).

3 Categories of Acceptance Games and Automata

We present in this Section the categories SAG(W)
Σ of substituted acceptance games. Their ob-

jects will be substituted acceptance games (to be presented in Sect. 3.1) and their morphisms
will be strategies in corresponding synchronous arrow games (to be presented in Sect. 3.2).
Substituted acceptance games and synchronous arrow games are the two main notions we
introduce in this paper. Our categories of Aut(W)

Σ of automata will be full subcategories of
SAG(W)

Σ , while SAG(W)
Σ and Aut(W)

Σ will be the total categories of our fibrations

game(W) : SAG(W) −→ Tree aut(W) : Aut(W) −→ Alph

to be presented in Sect. 4. Appendix A summarizes the basic notion of games we are using.

3.1 Substituted Acceptance Games
Consider a tree automaton A = (Q, qı, δ,Ω) on Γ and a morphism M ∈ Tree[Σ,Γ]. The
substituted acceptance game Σ ` G(A,M) is the positive game

G(A,M) := (D∗ × (AP +AO), E, ∗, λ, ξ,W)

1 By adding states to A if necessary, one can describe Ω by an equivalent parity condition.

4 Fibrations of Tree Automata

whose positions are given by AP := Q and AO := Σ × P(Q × D), whose polarized root is
∗ := (ε, qı) with ξ(∗) = P, whose polarized moves (E, λ) are given by

from (D∗ ×AP) to (D∗ ×AO) : (p, q) P−→ (p, a, γ) iff γ ∈ δ(q,M(p)(a))
from (D∗ ×AO) to (D∗ ×AP) : (p, a, γ) O−→ (p.d, q) iff (q, d) ∈ γ

and whose winning condition is given by

(ε, q0) · (ε, a0, γ0) · (p1, q1) · . . . · (pn, qn) · (pn, an, γn) · . . . ∈ W iff (qi)i∈N ∈ Ω

The input alphabet of Γ ` A is Γ, and we use the tree morphism M ∈ Tree[Σ,Γ] in a
contravariant way to obtain a game with “input alphabet” Σ, that we emphasize by writing
Σ ` G(A,M). Input characters a ∈ Σ are chosen by P, directions d ∈ D are chosen by O.

Write Σ ` σ G(A,M) if σ is a winning P-strategy on Σ ` G(A,M), and Σ G(A,M)
if Σ ` σ G(A,M) for some σ.

Correspondence with usual Acceptance Games. Usual acceptance games model the eval-
uation of automata Σ ` A on input trees t ∈ Tree[Σ]. They correspond to games of the
form 1 ` G(A, ṫ), where ṫ ∈ Tree[1,Σ] is the tree morphism corresponding to t ∈ Tree[Σ].

Note that in these cases, AO is of the form 1×P(Q×D) ' P(Q×D), so that the games
1 ` G(A, ṫ) are isomorphic to the acceptance games of [19].

I Definition 3.1. Let Σ ` A.

(i) A accepts the tree t ∈ Tree[Σ] if there is a strategy σ such that 1 ` σ G(A, ṫ).
(ii) Let L(A) ⊆ Tree[Σ], the language of A, be the set of trees accepted by A.

3.2 Synchronous Arrow Games
Consider games Σ ` G(A,M) and Σ ` G(B, N) with A = (QA, qıA, δA,ΩA) and B =
(QB, qıB, δB,ΩB). Similarly as in Sect. 3.1 above, write

AP := QA AO := Σ× P(QA ×D) BP := QB BO := Σ× P(QB ×D)

We define the synchronous arrow game

Σ ` G(A,M) −~ G(B, N)

as the negative game (V,E, ∗, λ, ξ,W) whose positions are given by

V := (D∗×AP)× (D∗×BP) + (D∗×AO)× (D∗×BP) + (D∗×AO)× (D∗×BO)

whose polarized root is ∗ := ((ε, qıA), (ε, qıB)) with ξ(∗) := O, whole polarized edges (E, λ)
are given in Table 1, and whose winning condition is given by

((ε, q0
A) , (ε, q0

B)) · . . . · ((ε, qnA) , (ε, qnB)) · . . . ∈ W
iff

(
(qiA)i∈N ∈ ΩA =⇒ (qiB)i∈N ∈ ΩB

)
Note that P-plays end in positions of the form

((p, qA) , (p, qB)) ∈ (D∗ ×AP) × (D∗ ×BP)
and ((p, a, γA) , (p, a, γB)) ∈ (D∗ ×AO) × (D∗ ×BO)

Colin Riba 5

λ G(A,M) −−~ G(B, N)
((p, qA) , (p, qB))

O ↓
((p, a, γA) , (p, qB)) if γA ∈ δA(qA,M(p)(a))

P ↓
((p, a, γA) , (p, a, γB)) if γB ∈ δB(qB, N(p)(a))

O ↓
((p, a, γA) , (p.d, q′B)) if (q′B, d) ∈ γB

P ↓
((p.d, q′A) , (p.d, q′B)) if (q′A, d) ∈ γA

Figure 1 Moves of G(A, M) −~ G(B, N)

Each of these position is of homogeneous type, and moreover in each case the D∗ and Σ
components coincide. On the other hand, O-plays end in positions of the form

((p, a, γA) , (p, qA)) ∈ (D∗ ×AO) × (D∗ ×BP)
and ((p, a, γA) , (p · d, qB)) ∈ (D∗ ×AO) × (D∗ ×BP)

Each of these intermediate position is of heterogeneous type, and in the second one, the D∗
components do not coincide.

We write Σ ` σ : G(A,M) −~ G(B, N) if σ is a P-strategy on G(A,M) −~ G(B, N), and
Σ ` σ G(A,M) −~ G(B, N) if σ is moreover winning. Finally, we write

Σ G(A,M) −~ G(B, N)

if there is a winning P-strategy σ on G(A,M) −~ G(B, N).
I Remark. Recall that if ΩA and ΩB are Borel sets, then W is a Borel set and by Martin’s
Theorem [12], either P or O has a winning strategy. Moreover, if the automata A and B are
regular (in the sense of Sect. 2), then W is an ω-regular language. If in addition the trees
M and N are regular (in the usual sense), then the game is equivalent to a finite regular
game. By Büchi-Landweber Theorem, the existence of a winning strategy for a given player
is decidable, and the winning player has finite state winning strategies (see e.g. [18]).

3.3 Characterization of the Synchronous Arrow Games
We now give a characterization of synchronous arrow games in traditional games semantics.
Our characterization involve relations in slices categories Set/J , that will give rise to a strong
analogy between our fibrations game(W) and aut(W) and substitution (a.k.a change-of-base)
in the codomain fibration cod : Set→ → Set.

Simple Games. Recall the usual notion of simple games (see e.g. [1, 7]). Simple games are
usually negative, but given positive games A and B, their negative linear arrow A(B can
still be defined. Moreover, simple games, with linear arrows A(B between games A and
B of the same polarity, form a category that we write SGG. When equipped with winning
conditions, winning strategies compose, giving rise to a category that we write SGGW.

A P-strategy Σ ` σ : G(A,M) −~ G(B, N) is a morphism of SGG from the substituted
acceptance game G(A,M) to the substituted acceptance game G(B, N). If σ is moreover
winning, then it is a morphism of SGGW.

6 Fibrations of Tree Automata

The Hyland & Schalk Functor. Hyland & Schalk have presented in [9] a faithful functor,
that we denote HS, from simple games to the category Rel of sets and relations. This
functor can easily be extended to a functor HS : SGG(W) → Rel.

Given a play s ∈ ℘(A(B) we let s�A ∈ ℘(A) be its projection on A and similarly for
B,2 so that HS(s) := (s�A, s�B). Given a P-strategy σ : A(B we have σ ⊆ ℘P(A(B)
and thus

HS(σ) := {HS(s) | s ∈ σ} ⊆ ℘(A)× ℘(B)

We write ℘Σ(A,M) for the plays of the substituted acceptance game Σ ` G(A,M).
Given Σ ` σ : G(A,M) −~ G(B, N), we thus have

HS(σ) ⊆ ℘Σ(A,M)× ℘Σ(B, N)

Synchronous Relations. We will now see that P-strategies on a synchronous arrow game
can be seen as relations in slice categories Set/J . We call such relations synchronous.

Given a set J , define the category Rel(Set/J) as follows:
Objects are indexed sets A g→ J , written simply A when g is understood from the context.
Morphisms from A

g→ J to B
h→ J are given by relations R̊ : A −p→ B such that the

following commutes:

R̊π1
tt

π2
**A

g ++
B

hssJ

Traces. For the synchronous arrow games, synchronization is performed using the following
notion of trace. Given Γ ` A and M ∈ Tree[Γ,Σ], define

tr : ℘Σ(A,M) −→ (D + Σ)∗

inductively as follows

tr(ε) := ε tr(s→ (p, a, γ)) := tr(s) · a tr(s→ (p · d, q)) := tr(s) · d

The image of tr is the set TrΣ := (Σ ·D)∗ + (Σ ·D)∗ · Σ.

Characterization of the Synchronous Arrow. We can now characterize the synchronous
arrow games. First, via the functor HS, synchronous strategies are synchronous relations.

I Proposition 3.2. Strategies on the synchronous arrow game G(A,M) −~ G(B, N) are
exactly the strategies σ : G(A,M)(G(B, N) such that

HS(σ)

��

// ℘Σ(B, N)
tr
��

℘Σ(A,M)
tr

// TrΣ

(2)

Second, plays on the synchronous arrow can be obtained in a canonical way from plays on
its components.

2 We write ℘(A) for the set of plays on A, and ℘P(A) for the set of P-plays.

Colin Riba 7

I Proposition 3.3. Let Σ ` G(A,M) and Σ ` G(B, N). The following is a pullback in Set:

℘P
Σ(G(A,M) −~ G(B, N))y

(−)�G(B,N) //

(−)�G(A,M)
��

℘Σ(B, N)

tr
��

℘Σ(A,M)
tr

// TrΣ

We write tr−~ for any of two equal maps

tr ◦ (−)�G(A,M) , tr ◦ (−)�G(B, N) : ℘P
Σ(G(A,M) −~ G(B, N)) −→ TrΣ

3.4 Categories of Substituted Acceptance Games and Automata
We now define our categories SAG(W)

Σ of substituted acceptance games and their full sub-
categories Aut(W)

Σ of tree automata. That they indeed form categories follows from the
characterization Prop. 3.2, together with the fact that Rel(Set/J) and SGG(W) are cat-
egories, and the fact that the identity strategies id : G(A,M)(G(B, N) are synchronous.

Objects of SAGΣ and SAGW
Σ are games Σ ` G(A,M),

Morphisms of SAGΣ are synchronous strategies Σ ` σ : G(A,M) −~ G(B, N),
Morphisms of SAGW

Σ are synchronous winning strategies Σ ` σ G(A,M) −~ G(B, N).

Objects of AutΣ and AutW
Σ are automata Σ ` A,

Morphisms of AutΣ are synchronous strategies Σ ` σ : G(A, IdΣ) −~ G(B, IdΣ),
Morphisms of AutW

Σ are synchronous winning strategies Σ ` σ G(A, IdΣ) −~ G(B, IdΣ).

A Lifting Property. Among the useful consequences of Prop. 3.3, we state the following
lifting property.

I Proposition 3.4. Consider Σ ` G(A,M) and Σ ` G(B, N). Assume that, in Rel(Set/TrΣ)
we have an isomorphism R̊ : (℘Σ(A,M) tr−→ TrΣ) −p→/TrΣ (℘Σ(B, N) tr−→ TrΣ).
There is a (unique, total) isomorphism σ : G(A,M) −→SAGΣ G(B, N) s.t. HS(σ) = R.

In general we can not ask σ to be winning, and in particular to be a morphism of SAGW
Σ .

4 Fibrations of Acceptance Games and Automata

A tree morphism L ∈ Tree[Σ,Γ] defines a map L∗ from the objects of SAGΓ to the objects
of SAGΣ: we let L∗(Γ ` G(A,M)) := Σ ` G(A,M ◦ L).

In this Section, we show that L∗ extends to functors L∗ : SAG(W)
Γ −→ SAG(W)

Σ and
that the operation (−)∗ is itself functorial and thus leads to split indexed categories (−)∗ :
Treeop −→ Cat. By applying Groethendieck completion, we obtain our split fibrations of
acceptance games game(W) : SAG(W) −→ Tree.

On the other hand, by restricting substitution to tree morphisms generated by alphabet
morphisms β ∈ Alph[Σ,Γ], we obtain functors β∗ : Aut(W)

Γ −→ Aut(W)
Σ giving rise to split

fibrations of tree automata aut(W) : Aut(W) −→ Alph.
Our substitution functors L∗ are build in strong analogy with change-of-base functors

Set/TrΓ → Set/TrΣ of the codomain fibration cod : Set→ → Set. We refer to [10] for basic
material about fibrations.

8 Fibrations of Tree Automata

4.1 Substitution Functors
Change-of-Base in Set→. A morphism L ∈ Tree[Σ,Γ] induces a map Tr(L) : TrΣ −→ TrΓ
inductively defined as follows (where (−)D is the obvious projection TrΣ → D∗):

Tr(L)(ε) := ε Tr(L)(w ·a) := Tr(L)(w) ·L(wD)(a) Tr(L)(w ·d) := Tr(L)(w) ·d

The map Tr(L) gives rise to the usual change-of-base functor L• : Set/TrΓ → Set/TrΣ,
defined using chosen pullbacks in Set:

L•(℘Γ(A,M))y
//

L•(tr)
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

Substitution on Plays. The action of the substitution L∗ on plays can be described, sim-
ilarly as the action of L• on objects of Set/TrΓ, by a pullback property.

Consider Γ ` G(A,M), so that Σ ` G(A,M ◦ L). A position (p, a, γA) of the game
Σ ` G(A,M ◦ L) can be mapped to the position (p, L(p)(a), γA) of the game Γ ` G(A,M).
Moreover, since δA(qA, (M ◦ L)(p)(a)) = δA(qA,M(p)(L(p)(a))), we have

(p, qA)→ (p, a, γA) if and only if (p, qA)→ (p, L(p)(a), γA)

This gives a map

℘(L) : ℘Σ(A,M ◦ L) −→ ℘Γ(A,M)

If we are also given Γ ` G(B, N), then we similarly obtain

℘(L)−~ : ℘Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) −→ ℘Γ((G(A,M) −~ G(B, N))

These two maps are related via HS as expected: HS◦℘(L)−~ = (℘(L)×℘(L))◦HS. Moreover,

I Proposition 4.1. We have, in Set:

℘Σ(A,M ◦ L)y
℘(L) //

tr
��

℘Γ(A,M)

tr
��

TrΣ
Tr(L) // TrΓ

℘P
Σ(G(A,M ◦ L) −~ G(B, N ◦ L))y

℘(L)−~
))

tr−~

��
TrΣ

Tr(L)
**

℘P
Γ(G(A,M) −~ G(B, N))

tr−~

��
TrΓ

Substitution on Strategies. The action of L∗ on strategies is defined using Prop. 4.1:
Given Γ ` σ : G(A,M) −~ G(B, N), so that σ ⊆ ℘P

Γ(G(A,M) −~ G(B, N)), we define

L∗(σ) := ℘(L)−1
−~(σ) ⊆ ℘P

Σ(G(A,M ◦ L) −~ G(B, N ◦ L))

I Proposition 4.2. L∗(σ) is a strategy. If moreover σ is winning, then L∗(σ) is also winning.

Colin Riba 9

Functoriality of Substitution. Proposition 4.1 can be formulated by saying that the maps
〈tr, ℘(L)〉 and 〈tr−~, ℘(L)−~〉 are bijections, respectively:

℘Σ(A,M ◦ L) '−→ TrΣ ×TrΣ ℘Γ(A,M)
℘P

Σ(G(A,M ◦ L) −~ G(B, N ◦ L)) '−→ TrΣ ×TrΣ ℘
P
Γ(G(A,M) −~ G(B, N))

These bijections are crucial to prove that

I Proposition 4.3. L∗ is a functor from SAG(W)
Γ to SAG(W)

Σ .

4.2 Fibrations of Acceptance Games
Consider now L ∈ Tree[Σ,Γ] and K ∈ Tree[Γ,∆]. Since Tr(K ◦ L) = Tr(K) ◦ Tr(L) and
℘(K ◦ L)(−~) = ℘(K)(−~) ◦ ℘(L)(−~) we immediately get

I Proposition 4.4. The operations (−)∗ : Treeop → Cat, mapping Σ to SAG(W)
Σ , and

mapping L ∈ Tree[Σ,Γ] to L∗ : SAG(W)
Γ → SAG(W)

Σ are functors.

By using Groethendieck completion (see e.g. [10, §1.10]), this gives us split fibrations of
acceptance games game(W) : SAG(W) −→ Tree that we do not detail here by lack of space.

4.3 Fibrations of Automata
In order to obtain fibrations of automata, we restrict substitution to tree morphisms gen-
erated by alphabet morphisms β ∈ Alph[Σ,Γ]. The crucial point is that these restricted
substitutions can be internalized in automata.

Given Γ ` A with A = (Q, qı, δ,Ω), and β ∈ Alph[Σ,Γ], define the automaton Σ ` A[β]
as A[β] := (Q, qı, δβ ,Ω) where δβ(q, a) := δ(q, β(a)).

I Proposition 4.5. Σ ` G(A[β], IdΣ) = Σ ` G(A, β).

It is easy to see that (−)∗ restricts to a functor from Alphop to Cat, so that we get fibrations

aut(W) : Aut(W) −→ Alph

5 Symmetric Monoidal Structure

We now consider a synchronous product of automata. When working on complete automata
(to be defined in Sect. 5.1 below), it gives rise to split symmetric monoidal fibrations, in the
sense of [17].

According to [17, Thm. 12.7], split symmetric monoidal fibrations can equivalently be
obtained from split symmetric monoidal indexed categories. In our context, this means that
the functors (−)∗ extend to

(−)∗ : Treeop −→ SymMonCat (−)∗ : Alphop −→ SymMonCat

where SymMonCat is the category of symmetric monoidal categories and strong monoidal
functors. Hence, we equip our categories of (complete) acceptance games and automata with
a symmetric monoidal structure. Substitution turns out to be strict symmetric monoidal.

We refer to [13] for background on symmetric monoidal categories.

10 Fibrations of Tree Automata

5.1 Complete Tree Automata

An automaton A is complete if for every (q, a) ∈ Q × Σ, the set δ(q, a) is not empty and
moreover for every γ ∈ δ(q, a) and everydirection d ∈ D, we have (q′, d) ∈ γ for some q′ ∈ Q.

Given an automaton A = (Q, qı, δ,Ω) its completion is the automaton Â := (Q̂, qı, δ̂, Ω̂)
with states Q̂ := Q + {true, false}, with acceptance condition Ω̂ := Ω + Q∗ · true · Q̂ω, and
with transition function δ̂ defined as

δ̂(true, q) := {{(true, d) | d ∈ D}} δ̂(false, q) := {{(false, d) | d ∈ D}}

δ̂(q, a) := {{(false, d) | d ∈ D}} if q ∈ Q and δ(q, a) = ∅
δ̂(q, a) := {γ̂ | γ ∈ δ(q, a)} otherwise

where, given γ ∈ δ(q, a), we let γ̂ := γ ∪ {(true, d) | there is no q ∈ Q s.t. (q, d) ∈ γ}.

I Proposition 5.1. L(A) = L(Â).

Restricting to complete automata gives rise to full subcategories ŜAG
(W)
Σ and Âut

(W)
Σ of

resp. SAG(W)
Σ and Aut(W)

Σ , and thus induces fibrations

ĝame : ŜAG
(W)

−→ Tree âut : Âut
(W)

−→ Alph

5.2 The Synchronous Product

Assume given complete automata Σ ` A and Σ ` B. Define Σ ` A~ B as

A~ B := (QA ×QB, (qıA, qıB), δA~B,ΩA~B)

where (qnA, qnB)n∈N ∈ ΩA~B iff ((qnA)n∈N ∈ ΩA and (qnB)n∈N ∈ ΩB), and where we let
δA~B((qA, qB), a) be the set of all the γA ~ γB for γA ∈ δA(qA, a) and γB ∈ δB(qB, a),
with γA ~ γB := {((q′A, q′B), d) | d ∈ D and (q′A, d) ∈ γA and (q′B, d) ∈ γB}.

Note that since A and B are complete, each γA~B ∈ δA~B((qA, qB), a) uniquely decom-
poses as γA~B = γA ~ γB.

Action on Plays. The unique decomposition property of γA~B allows to define projections

$i : ℘Σ(A1 ~A2,M) −→ ℘Σ(Ai,M)
$−~i : ℘Σ (G(A1 ~ B1,M) −~ G(A2 ~ B2, N)) −→ ℘Σ (G(Ai,M) −~ G(Bi, N))

We write SP := 〈$1, $2〉 and SP−~ := 〈$−~1 , $−~2 〉.

I Proposition 5.2. We have, in Set:

℘Σ(A~ B,M)y
$2 //

$1

��

℘Σ(B,M)

tr
��

℘Σ(A,M) tr // TrΣ

℘P
Σ(G(A~ B,M) −~ G(C ~D,N))y

$−~2 **
$−~1

��

℘P
Σ(G(B,M) −~ G(D, N))

tr
��

℘P
Σ(G(A,M) −~ G(C, N))

tr
// TrΣ

Colin Riba 11

Action on Synchronous Games. The action of ~ on the objects of ŜAG
(W)
Σ is given by

(Σ ` G(A,M))~ (Σ ` G(B, N)) := Σ ` G(A[π]~ B[π′], 〈M,N〉)

where π and π′ are suitable projections. For morphisms, let Σ ` σ : G(A0,M0) −~ G(A1,M1)
and Σ ` τ : G(B0, N0) −~ G(B1, N1). Then since Σ ` G(Ai[πi], 〈Mi, Ni〉) = Σ ` G(Ai,Mi)
and Σ ` G(Bi[π′i], 〈Mi, Ni〉) = Σ ` G(Bi, Ni), thanks to Prop. 5.2 we can simply let
σ ~ τ := SP−1

−~(σ, τ).

I Proposition 5.3. The product _~_ gives functors ŜAG
(W)
Σ × ŜAG

(W)
Σ −→ ŜAG

(W)
Σ .

5.3 Symmetric Monoidal Structure

Thanks to Prop. 5.2 and Prop. 3.4 the symmetric monoidal structure of ~ in ŜAG
(W)
Σ

can be directly obtained from the symmetric monoidal structure of the tensorial product of
Rel(Set/TrΣ).

Symmetric Monoidal Structure in Rel(Set/J). We define a product ⊗ in Rel(Set/J):
On Objects: for (A, g) and (B, h) objects in Rel(Set/J) the product A⊗B is A×J B with

the corresponding map, that is

A⊗B := {(a, b) ∈ A×B | g(a) = h(b)} g◦π1=h◦π2−→ J

On Morphisms: given R ∈ Rel(Set/J)[A,C] and P ∈ Rel(Set/J)[B,D], we define R⊗P ∈
Rel(Set/J)[A⊗B,C ⊗D] as

R⊗ P := {((a, b), (c, d)) ∈ (A⊗B)× (C ⊗D) | (a, c) ∈ R and (b, d) ∈ P}

For the unit, we choose some I = (: I '−→ J). Note that is required to be a bijection.
The natural isomorphisms are given by:

α̊A,B,C := {(((a, b), c) , (a, (b, c))) | gA(a) = gB(b) = gC(c)}
λ̊A := {((e, a) , a) | (e) = gA(a)}
ρ̊A := {((a, e) , a) | gA(a) = (e)}

γ̊A,B := {((a, b) , (b, a)) | gA(a) = gB(b)}

We easily get:

I Proposition 5.4. The category Rel(Set/J), equipped with the above data, is symmetric
monoidal.

Unit Automata. The requirement that the monoidal unit : I → J of Rel(Set/J) should
be a bijection leads us to the following unit automata. We let I := (QI , qI , δI ,ΩI) where
QI := 1, qI := •, ΩI = QωI and δI(qI , a) := {{(qI , d) | d ∈ D}}.

Note that since δI is constant, we have Σ ` G(I,M) = Σ ` G(I, Id). Moreover,

I Proposition 5.5. Given M ∈ Tree[Σ,Γ], we have, in Set, a bijection

tr : ℘Σ(I,M) '−→ TrΣ

12 Fibrations of Tree Automata

Symmetric Monoidal Structure. Using Prop. 3.4, the structure isos of Rel(Set/TrΣ) can
be lifted to ŜAG

(W)
Σ (winning is trivial). Moreover, the required equations (naturality and

coherence) follows from Prop. 3.3, Prop 5.2, and the fact that ((SP × SP) ◦ HS)(σ ~ τ) =
HS(σ) ⊗ HS(τ) (where composition on the left is in Set, and the expression denotes the
actions of the resulting function on the set of plays (σ ~ τ)).

All the symmetric monoidal structure restricts from ŜAG
(W)
Σ to Âut

(W)
Σ .

I Proposition 5.6. The categories ŜAG
(W)
Σ and Âut

(W)
Σ equipped with the above data, are

symmetric monoidal.

5.4 Symmetric Monoidal Fibrations
In order to obtain symmetric monoidal fibrations, by [17, Thm. 12.7], it remains to check
that substitution is strong monoidal. It is actually strict monoidal: it directly commutes
with ~ and preserves the unit, as well as all the structure maps.

I Proposition 5.7.

(i) Given L ∈ Tree[Σ,Γ], the functors L∗ : ŜAG
(W)
Γ → ŜAG

(W)
Σ are strict monoidal.

(ii) Given β ∈ Alph[Σ,Γ], the functors β∗ : Âut
(W)
Γ → Âut

(W)
Σ are strict monoidal.

6 Correctness w.r.t. Language Operations

This Section gathers several properties stating the correctness of our constructions w.r.t.
operations on recognized languages. We begin in Sect. 6.1 by properties on the symmetric
monoidal structure, the most important one being that the synchronous arrow is correct,
in the sense that Σ ` A −~ B implies L(A) ⊆ L(B). Then, in Sect. 6.2, we discuss
complementation of automata, and its relation with the synchronous arrow.

6.1 Correctness of the Symmetric Monoidal Structure
We begin by a formal correspondence between acceptance games and synchronous games
of a specific form. This allows to show that the synchronous arrow is correct, in the sense
that Σ ` A −~ B implies L(A) ⊆ L(B). We then briefly discuss the correctness of the
synchronous product w.r.t. language intersection.

I Proposition 6.1. Given Σ ` A and t ∈ Tree[Σ], there is a bijection:

{σ | 1 ` σ G(A, ṫ)} ' {θ | 1 ` θ G(I, Id1) −~ G(A, ṫ)}

I Remark. The above correspondence is only possible for acceptance games over 1:
In Σ ` σ G(A,M), σ is a positive P-strategy, hence chooses the input characters in Σ.
In Σ ` θ G(IΣ, IdΣ) −~ G(A,M), the strategy θ is a negative. It plays positively in
Σ ` G(A,M), but must follow the input characters chosen by O in Σ ` G(IΣ, IdΣ).

We now check that the arrow G(A,M) −~ G(B, N) is correct w.r.t. language inclusion:

I Proposition 6.2 (Correctness of the Arrow). Assume given Σ ` σ G(A,M) −~ G(B, N).

(i) For all t ∈ Tree[Σ], we have ṫ∗(σ) G(A,M ◦ ṫ) −~ G(B, N ◦ ṫ).
(ii) If 1 G(A,M ◦ ṫ) then 1 G(B, N ◦ ṫ).

Colin Riba 13

(iii) For all tree t ∈ Tree[Σ], if M(t) ∈ L(A) then N(t) ∈ L(B).

The converse property will be discussed in Sect. 7. We finally check that the synchronous
product is correct.

I Proposition 6.3. L(Â~ B̂) = L(A) ∩ L(B).

6.2 Complementation and Falsity
Complementation. Given an automaton A = (Q, qı, δ,Ω), following [19], we let its com-
plement be ∼A := (Q, qı, δ∼A,Ω∼A), where Ω∼A := Qω \ Ω and

δ∼A(q, a) := {γ∼ ∈ P(Q×D) | ∀γ ∈ δ(q, a), γ∼ ∩ γ 6= ∅}

The idea is that P on ∼A simulates O on A, so that the correctness of ∼A relies on determ-
inacy of acceptance games. In particular, thanks to Borel determinacy [12], we have:

I Proposition 6.4 ([19]). Given A with ΩA a Borel set, we have L(∼A) = Tree[Σ] \L(A).

Note that if A is complete, then ∼A is not necessarily complete, but δ∼A is always not
empty and so are the γ’s in its image.

The Falsity Automaton ‹. We let ‹ := (Q‹, q‹, δ‹,Ω‹) where Q‹ := 1, q‹ := •, Ω‹ = ∅
and δ‹(q‹, a) := {{(q‹, d)} | d ∈ D}. Note that I = ∼‹. In particular, it is actually P who
guides the evaluation of ‹, by choosing the tree directions.

I Proposition 6.5. Let A and B be complete. Then Σ A~ B −~ ‹̂ iff Σ A −~ ∼̂B.

I Corollary 6.6. Let A be a complete automaton on Σ. Then 1 ∼̂A iff 1 A −~ ‹̂.

7 Projection and Fibred Simple Coproducts

We now check that automata can be equipped with existential quantifications in the fibered
sense. Namely, given a projection π ∈ Alph[Σ × Γ,Σ], the induced weakening functor
π∗ : Âut

(W)
Σ → Âut

(W)
Σ×Γ has a left-adjoint qΣ,Γ, and moreover this structure is preserved by

substitution, in the sense of the Beck-Chevalley condition (see e.g. [10]). This will lead to a
(weak) completeness property of the synchronous arrow on non-deterministic automata, to
be discussed below.

Recall from [11, Thm. IV.1.2.(ii)] than an adjunction qΣ,Γ a π∗, with π∗ a functor,
is completely determined by the following data: To each object Σ × Γ ` A, an object
Σ ` qΣ,ΓA, and a map ηA : Σ × Γ ` A −→ Σ × Γ ` (qΣ,ΓA)[π] satisfying the following
universal lifting property:

For every
σ : Σ× Γ ` A −→ Σ× Γ ` B[π]
there is a unique

τ : Σ ` qΣ,ΓA −→ Σ ` B

s.t. A
ηA //

σ
''

(qΣ,ΓA)[π]

π∗(τ)
��
B[π]

(3)

In our context, the Beck-Chevalley condition amounts to the equalities

∆ ` (qΣ,ΓA)[β] = ∆ ` q∆,Γ(A[β × IdΓ]) ηA[β×IdΓ] = (β × IdΓ)∗(ηA) (4)

14 Fibrations of Tree Automata

It turns out that the usual projection operation on automata (see e.g. [19]) is not functorial.
Surprisingly, this is independent from whether automata are non-deterministic or not3. We
devise a lifted projection operation, which indeed leads to a fibered existential quantification,
and which is correct, on non-deterministic automata, w.r.t. the recognized languages.

The Lifted Projection. Consider Σ × Γ ` A with A = (Q, qı, δ,Ω). Define Σ ` qΣ,ΓA as
qΣ,ΓA := (Q× Γ + {qı}, qı, δqA,ΩqA) where

δqA(qı, a) :=
⋃
b∈Γ{γ+b | γ ∈ δ(qı, (a, b))}

δqA((q,_), a) :=
⋃
b∈Γ{γ+b | γ ∈ δ(q, (a, b))}

and, given γ ∈ P(Q×D) and b ∈ Γ, we let γ+b := {((q+b, d) | (q, d) ∈ γ} with q+b := (q, b).
For the acceptance condition, we let qı·(q0, b0)·. . .·(qn, bn)·. . . in ΩqA iff qı·q0·. . .·qn·. . . ∈ Ω.

Action on Plays of The Lifted Projection. The action on plays of qΣ,Γ is characterized
by the map ℘(q) : ℘Σ×Γ(A) −→ ℘Σ(qΣ,ΓA) inductively defined as ℘(q)(ε, qı) := (ε, qı) and

℘(q)((ε, qı)→∗ (p, q)→ (p, (a, b), γ)) := ℘(q)((ε, qı)→∗ (p, q))→ (p, a, γ+b)
℘(q)((ε, qı)→∗ (p, (a, b), γ)→ (p.d, q)) := ℘(q)((ε, qı)→∗ (p, (a, b), γ))→ (p.d, q+b)

I Proposition 7.1. If A is a complete automaton, then ℘(q) is a bijection.

The Unit Maps η(−). Consider the injection ιΣ,Γ : ℘Σ(qΣ,ΓA) −→ ℘Σ×Γ((qΣ,ΓA)[π])
inductively defined as ιΣ,Γ((ε, qıA)) := (ε, qıA) and ιΣ,Γ(s → (p, q+b)) := ιΣ,Γ(s) → (p, q+b)
and ιΣ,Γ(s→ (p, a, γ+b)) := ιΣ,Γ(s)→ (p, (a, b), γ+b).
If Σ× Γ ` A is complete, we let the unit ηA be the unique strategy of ŜAG

W
Σ×Γ such that

HS(ηA) = {(t, ιΣ,Γ ◦ ℘(q)(t)) | t ∈ ℘Σ×Γ(A)}. We do not detail the B.-C. condition (4).

The Unique Lifting Property (3). Consider some Σ×Γ ` σ : A −~ B[π] with A complete.
We let τ be the unique strategy such that HS(τ) = {(℘(q)(s), ℘(π)(t)) | (s, t) ∈ HS(σ)}. It
is easy to see that τ is winning whenever σ is winning. Moreover

I Lemma 7.2. σ = π∗(τ) ◦ ηA.

For the unicity part of the lifting property of ηA, it is sufficient to check:

I Lemma 7.3. If π∗(θ) ◦ ηA = π∗(θ′) ◦ ηA then θ = θ′.

Non-Deterministic Tree Automata. An automaton A is non-deterministic if for every γ
in the image of δ and every direction d ∈ D, there is at most one state q such that (q, d) ∈ γ.
I Remark. If A and B are non-deterministic, then so are A~ B and q(A).

I Proposition 7.4 ([4, 15, 19]). For each regular automaton Σ ` A there is a complete
non-deterministic automaton Σ ` ND(A) such that L(A) = L(ND(A)).

I Proposition 7.5. If Σ × Γ ` A is non-deterministic and complete, then L(qΣ,ΓA) =
πΣ,Γ(L(A)) where πΣ,Γ ∈ Alph[Σ× Γ,Σ] is the first projection.

I Proposition 7.6. Consider complete regular automata Σ ` A and Σ ` B.
If L(A) ⊆ L(B) then Σ ND(A) −~ ∼̂C with C := ND(∼B).

3 It is well-known that the projection operation is correct w.r.t. the recognized languages only on non-
deterministic automata.

Colin Riba 15

8 Conclusion

We presented monoidal fibrations of tree automata and acceptance games, in which the fibre
categories are based on a synchronous restriction of linear simple games.

For technical simplicity, we did not yet consider monoidal closure, but strongly expect
that it holds. One of the main question is whether suitable restrictions of these categories
are Cartesian closed, so as to interpret proofs from intuitionistic variants of MSO. Among
other questions are the status of non-determinization (i.e. whether it can be made functorial,
or even co-monadic), as well as relation with the Dialectica interpretation (in the vein of
e.g. [8]). Our result of weak completeness (Prop. 7.6) suggests strong connections with the
notion of guidable non-deterministic automata of [2]. On a similar vein, connections with
game automata [3, 5] might be relevant to investigate.

Acknowledgments. This work benefited from numerous discussions with Pierre Clairam-
bault and Thomas Colcombet.

References
1 S. Abramsky. Semantics of Interaction. In A. M. Pitts and P. Dybjer, editors, Semantics

and Logics of Computation, volume 14 of Publications of the Newton Institute, page 1.
Cambridge University Press, 1997.

2 T. Colcombet and C. Löding. The Non-deterministic Mostowski Hierarchy and Distance-
Parity Automata. In ICALP 2008, volume 5126 of Lecture Notes in Computer Science,
pages 398–409. Springer, 2008.

3 J. Duparc, F. Facchini, and F. Murlak. Definable Operations On Weakly Recognizable Sets
of Trees. In FSTTCS, volume 13 of LIPIcs, pages 363–374. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011.

4 E. A. Emerson and C. S. Jutla. Tree Automata, Mu-Calculus and Determinacy (Extended
Abstract). In FOCS, pages 368–377. IEEE Computer Society, 1991.

5 A. Facchini, F. Murlak, and M. Skrzypczak. Rabin-Mostowski Index Problem: A Step
beyond Deterministic Automata. In LICS, pages 499–508. IEEE Computer Society, 2013.

6 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

7 J. M. E. Hyland. Game Semantics. In A. M. Pitts and P. Dybjer, editors, Semantics
and Logics of Computation, volume 14 of Publications of the Newton Institute, page 131.
Cambridge University Press, 1997.

8 J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic, 114(1-3):43–78,
2002.

9 J. M. E. Hyland and A. Schalk. Abstract Games for Linear Logic. Electr. Notes Theor.
Comput. Sci., 29:127–150, 1999.

10 B. Jacobs. Categorical Logic and Type Theory. Studies in logic and the foundations of
mathematics. Elsevier, 2001.

11 S. Mac Lane. Categories for the Working Mathematician. Springer, 2 edition, 1998.
12 D. A. Martin. Borel Determinacy. The Annals of Mathematics, Second Series, 102(2):363–

371, 1975.
13 P.-A. Melliès. Categorical semantics of linear logic. In Interactive models of computation

and program behaviour, volume 27 of Panoramas et Synthèses. SMF, 2009.
14 D. E. Muller and P. E. Schupp. Alternating Automata on Infinite Trees. Theor. Comput.

Sci., 54:267–276, 1987.

16 Fibrations of Tree Automata

15 D. E. Muller and P. E Schupp. Simulating Alternating Tree Automata by Nondeterministic
Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra.
Theor. Comput. Sci., 141(1&2):69–107, 1995.

16 C. Riba. Fibrations of Tree Automata. Available at http://perso.ens-lyon.fr/colin.
riba/papers/fibaut.pdf, 2015.

17 M. Shulman. Framed bicategories and monoidal fibrations. Theory and Applications of
Categories, 20(18):650–738, 2008.

18 W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume III, pages 389–455. Springer, 1997.

19 I. Walukiewicz. Monadic second-order logic on tree-like structures. Theor. Comput. Sci.,
275(1-2):311–346, 2002.

http://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf
http://perso.ens-lyon.fr/colin.riba/papers/fibaut.pdf

Colin Riba 17

A Simple Graph Games

We work on simple graph games with winning, of the form G = (V,E, ∗, λ, ξ,W). They are
played by Opponent (O) and Proponent (P) on the graph with vertices in V , edges in E,
root ∗, edge labeling λ : E → {O,P}, polarity ξ : {∗} → {O,P} and winning condition
W ⊆ V ω. Vertices are game positions, while edges are moves: Opponent plays O-labeled
moves and Proponent plays P-labeled moves. We write v → w if (v, w) ∈ E.

We assume that games are alternating, in the sense that u → v → w implies λ(u →
v) 6= λ(v → w), and polarized in the sense that λ(u→ v) = λ(u→ w) for all coinitial edges
u→ v, u→ w, and moreover λ(∗ → u) = ξ(∗) for all ∗ → u. A game is positive if ξ(∗) = P
and negative otherwise. A play is a finite path starting from the root ∗. It is a P-play (resp.
an O-play) if it is either empty or ends with a P-move (resp. an O-move). A P-strategy is a
non-empty set σ of P-plays which is
P-prefix-closed: if s→∗ v ∈ σ and s is a P-play then s ∈ σ, and
P-deterministic: if s→ w ∈ σ and s→ w′ ∈ σ then w = w′.

Consider a P-strategy σ and an O-play s. We say that s is an O-interrogation of σ if either
s = ∗ and G is a positive game, or if s = t → u for some P-play t ∈ σ. We say that σ is
total if for every O-interrogation s of σ, we have s → v ∈ σ for some v. A P-strategy σ is
winning if it is total and moreover, for all infinite path π ∈ V ω, we have π ∈ W whenever
π(0)→ . . .→ π(n) ∈ σ for infinitely many n ∈ N.

	Introduction
	Preliminaries
	Categories of Acceptance Games and Automata
	Substituted Acceptance Games
	Synchronous Arrow Games
	Characterization of the Synchronous Arrow Games
	Categories of Substituted Acceptance Games and Automata

	Fibrations of Acceptance Games and Automata
	Substitution Functors
	Fibrations of Acceptance Games
	Fibrations of Automata

	Symmetric Monoidal Structure
	Complete Tree Automata
	The Synchronous Product
	Symmetric Monoidal Structure
	Symmetric Monoidal Fibrations

	Correctness w.r.t. Language Operations
	Correctness of the Symmetric Monoidal Structure
	Complementation and Falsity

	Projection and Fibred Simple Coproducts
	Conclusion
	Simple Graph Games

