
On the confluence of λ-calculus

with conditional rewriting

Frédéric Blanqui1, Claude Kirchner1, and Colin Riba2

1 INRIA & LORIA?

2 INPL & LORIA

Abstract. The confluence of untyped λ-calculus with unconditional re-
writing has already been studied in various directions. In this paper, we
investigate the confluence of λ-calculus with conditional rewriting and
provide general results in two directions. First, when conditional rules are
algebraic. This extends results of Müller and Dougherty for unconditional
rewriting. Two cases are considered, whether beta-reduction is allowed
or not in the evaluation of conditions. Moreover, Dougherty’s result is
improved from the assumption of strongly normalizing β-reduction to
weakly normalizing β-reduction. We also provide examples showing that
outside these conditions, modularity of confluence is difficult to achieve.
Second, we go beyond the algebraic framework and get new confluence
results using a restricted notion of orthogonality that takes advantage of
the conditional part of rewrite rules.

1 Introduction

Rewriting [10] and λ-calculus [3] are two universal computation models which
are both used, with their own advantages, in programming language design and
implementation, as well as for the foundation of logical frameworks and proof
assistants. Among other things, λ-calculus allows to manipulate abstractions and
higher-order variables, while rewriting is traditionally well suited for defining
functions over data-types and for dealing with equality.

Starting from Klop’s work on higher-order rewriting and because of their
complementarity, many frameworks have been designed with a view to integrate
these two formalisms. This integration has been handled either by enriching first-
order rewriting with higher-order capabilities, by adding to λ-calculus algebraic
features or, more recently, by a uniform integration of both paradigms. In the
first case, we find the works on combinatory reduction systems [17] and other
higher-order rewriting systems [20] each of them subsumed by van Oostrom and
van Raamsdonk’s axiomatization of HORS [23]. The second case concerns the
more atomic combination of λ-calculus with term rewriting [15, 5] and the last
category the rewriting calculus [9, 4].

? UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP, Campus Scientifique, BP 239, 54506
Vandoeuvre-lès-Nancy Cedex, France

Despite this strong interest in the combination of both concepts, few works
have considered conditional higher-order rewriting in λ-calculus. This is of par-
ticular interest for both computation and deduction. Indeed, conditional rewrit-
ing appears to be very convenient when programming with rewrite rules and its
combination with higher-order features provides a quite agile background for the
combination of algebraic and functional programming. This is also of main use
in proof assistants based on the de Bruijn-Curry-Howard isomorphism where, as
emphasized in deduction modulo [13, 5], rewriting capabilities for defining func-
tions and proving equalities automatically is clearly of great interest when mak-
ing large proof developments. Furthermore, while many confluence proofs often
rely on termination and local confluence, in some cases, confluence may be neces-
sary for proving termination (e.g. with type-level rewriting or strong elimination
[5]). It is therefore of crucial interest to have also criteria for the preservation
of confluence when combining conditional rewriting and β-reduction without as-
suming the termination of the combined relation. In particular, assuming the
termination of just one of the two relations is already of interest.

The earliest work on preservation of confluence when combining typed λ-
calculus and first-order rewriting concerns the simple type discipline [7] and the
result has been extended to polymorphic λ-calculus in [8]. Concerning untyped
λ-calculus, the result was shown in [19] for left-linear rewriting. It is extended
as a modularity result for higher order rewriting in [23]. In [12], it is shown that
left-linearity is not necessary provided that terms considered are strongly β-
normalizable and are well-formed with respect to the declared arity of symbols,
a property that we call here arity-compliance. Higher-order conditional rewriting
is studied in [1] and the confluence result relies on joinability of critical pairs,
hence on termination of the combined rewrite relation. Another form of higher-
order conditional rewriting is considered in [22]. It concerns confluence results
for a very general form of orthogonal systems. These systems are related to those
presented in Sect. 5. If modularity properties have been investigated in the pure
first-order conditional case (e.g. [18, 14]), to the best of our knowledge, there
was up to now no result on preservation of confluence when β-reduction is added
to conditional rewriting.

In this paper, we study the confluence property of the combination of β-
reduction with a confluent conditional rewrite system. This of course should
rely on a clear understanding of the conditional rewrite relation under use and,
as usual, the ways the matching is performed and instantiated conditions are
decided are crucial.

So, we start from λ-terms with curried constants and among them we dis-
tinguish applicative terms that contain no abstraction and algebraic terms that
furthermore have no active variables, i.e. variables occurring in the left-hand
side of an application. In this paper, we always consider algebraic left-hand
sides. So, rewriting does not use higher-order pattern-matching but just syntac-
tic matching. Furthermore, we consider two rewrite relations induced by a set
of conditional rules.→A is the conditional rewrite relation where the conditions
are checked without considering β-reduction and →B is the conditional rewrite

relation where β-reduction is allowed when evaluating the conditions. Then, we
study the confluence of the relations →β∪A and →β∪B, the respective combi-
nations of →A and →B with β-reduction. This is made precise in Sect. 2 and
accompanied of relevant examples.

We know that adding β-reduction to a confluent non left-linear algebraic
rewriting system results in a non confluent relation. Of course, with conditional
rewriting, non-linearity can be simulated by linear systems. Extending the re-
sult of Müller [19], we prove in Sect. 3 that confluence of →β∪A follows from
confluence of →A when conditional rules are applicative, left-linear and do not
allow their condition to test for equality of open terms. Such rules are called
semi-closed. We also adapt to conditional rewriting the method of Dougherty
[12] and extend it to show that for a large set of weakly β-normalizing terms, the
left-linearity and semi-closed hypotheses can be dropped provided the rules are
algebraic and terms are arity-compliant.

We then turn in Sect. 4 to the confluence modularity of →β∪B for rules
with algebraic right-hand side. In this case, we show that arity-compliance is
a sufficient condition to deduce confluence of →β∪B from confluence of →β∪A

(hence of→A). This is done first for left-linear semi-closed systems, a restriction
that we also show to be superfluous when considering only weakly β-normalizing
terms.

The case of non-algebraic rules is handled in Sect. 5. Such rules can contain
active variables and abstractions in right-hand sides or in conditions (but still
not in left-hand sides). In this case, the confluence of →β∪B no more follows
from the confluence of →A nor of →β∪A. We show that the confluence of →β∪B

holds under a syntactic condition, called orthonormality ensuring that if two
rules overlap at a non-variable position, then their conditions cannot be both
satisfied. An orthonormal system is therefore orthogonal, and the confluence of
→B∪β follows using usual proof methods.

We assume some familiarity with λ-calculus [3] and conditional rewriting
[11, 21] but we recall the main notations in the next section. By lack of place,
the main proofs are only sketched here. They are detailed in [6].

2 General definitions

This section introduces the main notions of the paper. We use λ-terms with
curried constants.

Definition 1 (Terms). We assume given a set F of function symbols and an
infinite set X of variables. The set T of terms is inductively defined as follows:

t, u ∈ T ::= f ∈ F | x ∈ X | tu | λx.t

A term is applicative if it contains no abstraction and algebraic (“not variable-
applying” in [19]) if it furthermore contains no subterm of the form xt with
x ∈ X . We use t to denote a sequence of terms t1, . . . , tn of length |t| = n.

As usual, terms are considered modulo α-conversion. Let FV(t) be the set
of variables free in t. We denote by tσ the capture-avoiding application of the
substitution σ to the term t. By {x 7→ t}, we denote the substitution σ such that
xiσ = ti. As usual, positions in a term are strings over {1, 2}. The subterm of t

at position p is denoted by t|p. If t is applicative, the replacement of t|p by some
term u is denoted by t[u]p. A context is a term with exactly one free occurrence
of a distinguished variable []. If C is an applicative context then C[t] stands for
C[t]p, where p is the position of [] in C.

A rewrite relation is a binary relation on terms → which is closed by term
formation rules : if s → t then λx.s → λx.t, su → tu and us → ut ; and by
substitution : s → t implies sσ → tσ. Its inverse is denoted by ←; its reflexive
closure by →=; its reflexive and transitive closure by →∗; and its reflexive,
symmetric and transitive closure by ↔∗. The joinability relation is ↓ =→∗←∗.
The β-reduction relation is the smallest rewrite relation→β such that (λx.s)t→β

s{x 7→ t}. A term t →-rewrites (or →-reduces) to u if t→∗ u (we omit → when
clear from the context). We write →R∪S for the union of the relations →R and
→S . We call parallel rewrite relation any reflexive rewrite relation � closed by
parallel application : [s � s′ & t � t′]⇒ st � s′t′.

We now introduce conditional rewriting. Let us emphasize that we consider
first-order syntactical matching.

Definition 2 (Conditional rewriting). A conditional rewrite system R is a
set of conditional rewrite rules3:

d1 = c1 ∧ · · · ∧ dn = cn ⊃ l→ r

where l is a non-variable algebraic term, di, ci and r are arbitrary terms and
FV(di, ci, r) ⊆ FV(l). A system is right-applicative (resp. right-algebraic) if
all its right-hand sides are applicative (resp. algebraic). A system is applicative
(resp. algebraic) if all its rules are made of applicative (resp. algebraic) terms.

The join rewrite relation induced by R is usually defined as →A=
⋃

i≥0 →Ai

[21] where →A0
= ∅ and for all i ≥ 0, →Ai+1

is the smallest rewrite relation such
that for all rule d = c ⊃ l → r ∈ R, for all substitution σ, if dσ ↓Ai

cσ then
lσ →Ai+1

rσ. This relation is sometimes called the standard conditional rewrite
relation.

We define the β-standard rewrite relation induced by R as →B=
⋃

i≥0 →Bi

where →B0
= ∅ and for all i ≥ 0, →Bi+1

is the smallest rewrite relation such that
for all rule d = c ⊃ l→ r ∈ R, for all σ, if dσ ↓Bi∪β cσ then lσ →Bi+1

rσ.
If →Ai

is confluent for all i ≥ 0, we say that →A is level confluent. It is
shallow confluent when →∗

Ai
and →∗

Aj
commute for all i, j ≥ 0.

Other forms of conditional rewriting appear in the literature [11]. Natural
rewriting is obtained by taking↔∗

A instead of ↓A in the evaluation of conditions.
Oriented rewriting is obtained by taking→∗

A. A particular case of both standard
and oriented rewriting is normal rewriting, in which the terms c are closed and
in →A-normal form.

3 The symbol = does not need to be interpreted by a symmetric relation.

Examples. We begin by some basic functions on lists.

car (x :: l) → x

car [] → err

cdr (x :: l) → l

cdr [] → err

get l 0 → car l

get l (s n) → get (cdr l) n

len [] → 0
len (x :: l) → s (len l)

filter p [] → []
p x = tt ⊃ filter p (x :: l)→ x :: (filter p l)
p x = ff ⊃ filter p (x :: l)→ filter p l

Define > with > (s x) 0 → tt, > 0 y → ff and > (s x) (s y) → > x y. We
can now define app such that app f n l applies f to the nth element of l. It uses
ap as an auxiliary function:

> (len l) n = tt ⊃ app f n l → ap f n l

> (len l) n = ff ⊃ app f n l → err

ap f 0 l → f (car l) :: cdr l

ap f (s n) l → car l :: ap f n (cdr l)

We represent first-order terms as trees with nodes nd y l where y is intended to
be a label and l the list of sons.

Positions are lists of integers and occ u t tests if u is an occurrence of t. We
define it with occ [] t → tt and

> (len l) x = ff ⊃ occ (x :: o) (nd y l) → ff

> (len l) x = tt ⊃ occ (x :: o) (nd y l) → occ o (get l x)

To finish, rep t o s replaces by s the subterm of t at occurrence o. Its rules are
occ u t = tt ⊃ rep t o s → re t o s and occ u t = ff ⊃ rep t o s → err. The rules
re s [] t → s and re (nd y l) (x :: o) s → nd y (app (λz.re z o s) x l) define the
function re.

The system Tree that consists of rules defining car cdr, get, len and occ is
algebraic. Rules of app and ap are right-applicatives and those for filter contain
in their conditions the variable p in active position. This definition of re involves a
λ-abstraction in a right hand side. In Sect. 5, we prove confluence of the relation
→β∪B induced by the whole system.

3 Confluence of →β with conditional rewriting

In this section, we study the confluence of →β∪A. The simplest result is the
preservation of confluence when R can not check arbitrary equalities (Sect. 3.1).
In Sect. 3.2, we consider more general systems and prove that the confluence of
→β∪A follows from the confluence of →A on terms having a β-normal form of a
peculiar kind.

In [19], Müller shows that the union of β-reduction and the rewrite relation
→A induced by a left-linear non-conditional applicative system is confluent as
soon as →A is. This result is generalized as modularity result for higher-order
rewriting in [23].

The importance of left-linearity is known since Klop [16]. We exemplify
it with Breazu-Tannen’s counter-example [7]. The rules − x x → 0 and

− (s x) x → s 0 are optimization rules for minus. Together with usual rules
defining this function, they induce a confluent rewrite relation. With the fixpoint
combinators of the λ-calculus, we can build a term Y →∗

β s Y . This term makes
the application of the two rules above possible on β-reducts of − Y Y , leading
to an unjoinable peak : 0←A − Y Y →∗

β − (s Y) Y →A s 0.
With conditional rewriting, we do not need non-linear matching to distin-

guish − (s x) x from − x x, since this can be done within the conditions. The
previous system can be encoded into a left-linear conditional system with the
rules x = y ⊃ −x y → 0 and s x = y ⊃ −x y → s 0. Of course, the relation
→A is still confluent. However, the same unjoinable peak starting from − Y Y

makes fail the confluence of →β∪A.
There are two ways to overcome the problem: limiting the power of rewriting

or limiting the power of β-reduction. The first way is treated in Sect. 3.1, in which
we limit the comparison power of conditional rewriting by restricting ourselves
to left-linear and semi-closed systems. This can also be seen as a way, from
the point of view of rewriting, to isolate the effect of fixpoints: since two distinct
occurrences of Y can not be compared, they can be unfolded independently from
each other.

Then, in Sect. 3.2, we limit the power of →β by restricting ourselves to sets
of terms having a special kind of β-normal-form. This amounts to only consider
terms in which fixpoints do not have the ability to modify the result of →β∪A.
In fact, it is sufficient that they do not modify the result of →β alone. More
precisely, fixpoints are allowed when they are eliminated by head β-reductions.

3.1 Confluence of left-linear semi-closed systems

We now introduce semi-closed systems.

Definition 3 (Semi-closed systems). A system is semi-closed if in every rule
d = c ⊃ l→ r, each ci is algebraic and closed.

The system Tree of Sect. 2 is left-linear and semi-closed. Given a semi-closed
left-linear system, we show that confluence of →β∪A follows from confluence of
→A. This follows from a weak commutation of →A and Tait and Martin-Löf
β-parallel reduction relation �β, defined as the smallest parallel rewrite relation
(Sect. 2) closed by the rule (beta) [3]:

(beta)
s �β s′ t �β t′

(λx.s)t �β s′{x 7→ t′}

We will use some well known properties of �β. If σ �β σ′ then sσ �β sσ′; this
is the one-step reduction of parallel redexes. We can also simulate β-reduction:
→β⊆ �β ⊆→∗

β. And third, �β has the diamond property: �β�β ⊆ �β�β. This
corresponds to the fact that any complete development of →β can be done in
one �β-step.

Müller [19] uses a weaker parallelization of →β : its relation is defined w.r.t.
the applicative structure of terms only and does not reduces in one step nested

β-redexes. Consequently, it does not enjoy the diamond property on which we
rely in Sect. 4. Nested parallelizations (corresponding to complete developments)
are already used in [23] for their confluence proof of HORS. However, our method
inherits more from [19] than [23], as we use complete developments of →β only,
whereas complete developments of →β and of →A are used for the modularity
result of [23].

Proposition 4. Let R be a semi-closed, left-linear and right-applicative system
and assume that →∗

Ai−1
commutes with →∗

β. For any rule d = c ⊃ l → r ∈ R

and substitution σ, if u�β lσ →Ai
rσ, then there exists σ′ such that u = lσ′ →Ai

rσ′ �β rσ.

Proof Sketch. Since l is algebraic and linear, there is a substitution σ′ such
that σ �β σ′ and u = lσ′. It follows that rσ �β rσ′ and it remains to show that
dσ′ ↓Ai−1

cσ′. Since lσ →Ai
rσ, there is v such that dσ →∗

Ai−1
v ←∗

Ai−1
cσ.

Thus, dσ �
∗
β dσ′ and, by assumption, there is v′ such that dσ′ →∗

Ai−1
v′ �∗

β v.
Since c is algebraic and closed, we have cσ = c and v in β-normal form. Hence,
v′ = v and dσ′ ↓Ai−1

c. �

Lemma 5 (Commutation of →A and �β). If R is a semi-closed left-linear
right-applicative system, then �

∗
β →

∗
A ⊆ →

∗
A �

∗
β.

Proof Sketch. The result follows from the commutation of →∗
Ai

and �
∗
β for

all i ≥ 0. The case i = 0 is trivial. For i > 0, there are three steps. First, we
show by induction on the definition of the parallel rewrite relation �β that if
u�β s→Ai

t then there exists v such that u→∗
Ai

v �β t. If u is s this is obvious.
If s is an abstraction, the result follows from induction hypothesis (IH) and the
context closure of →Ai

(CC). If s = s1s2, there are two cases: if t = t1t2 with
sk →=

Ai
tk then we conclude by (IH) and (CC). Otherwise, we use Prop. 4.

Second, use induction on the number of Ai-steps to show that �β →∗
Ai
⊆

→∗
Ai

�β. Finally, to conclude that �
∗
β →

∗
Ai
⊆→∗

Ai
�
∗
β , use an induction on the

number of �β-steps. �

A direct application of Hindley-Rosen’s Lemma offers then the preservation
of confluence.

Theorem 6 (Confluence of →β∪A). Let R be a semi-closed left-linear right-
applicative system. If →A is confluent then so is →β∪A.

For the system Tree of Sect. 2, the relation→A is confluent. As the rules are
left-linear and semi-closed, Theorem 6 applies and →β∪A is confluent.

3.2 Confluence on weakly β-normalizing terms

We now turn to the problem of dropping the left-linearity and semi-closure
conditions.

As seen above, fixpoint combinators make the commutation of →∗
β and →∗

A

fail when rewriting involves equality tests between open terms. When using

weakly β-normalizing terms, we can project rewriting on β-normal forms (βnf),
thus eliminating fixpoints as soon as they are not significant for the reduction.

Hence, we seek to obtain βnf(s) →∗
A βnf(t) whenever s →∗

β∪A t. This re-
quires three important properties.

First, β-normal forms should be stable by rewriting. Hence, we assume that
right-hand sides are algebraic. Moreover, we re-introduce some information from
the algebraic framework, giving maximal arities to function symbols in F .

Second, we need normalizing β-derivations to commute with rewriting. This
follows from using the leftmost-outermost strategy of λ-calculus [3].

Finally, we need rule conditions to be algebraic. Indeed, consider the rule
x b = y ⊃ f x y → a that contains an non-algebraic condition. The relation →A

is confluent but a←∗
β∪A f (λx.x) ((λz.z)(λx.x) b) →∗

β f (λx.x) b is an unjoinable
critical peak.

Definition 7 (Arity-compliance). We assume that every symbol f ∈ F is
equipped with an arity αf ≥ 0. A term is arity-compliant if it contains no sub-
term of the form ft with f ∈ F and |t| > αf . A rule d = c ⊃ l → r is
almost arity-compliant if l and r are arity-compliant and l is of the form f l with
|l| = αf . A rule is arity-compliant if, furthermore, d and c are arity-compliant.
Let U be the set of terms having an arity-compliant β-normal form.

Remark that a higher-order rule (with active variables and abstractions) can
be arity-compliant.

Arity-compliance is useful because it prevents collapsing rules from creating
β-redexes. For example, the rule id x → x forces the arity of id to be 1. Hence
the term id (λx.x) y is not arity-compliant. Moreover it is a β-normal form that
→A-reduces to the β-redex (λx.x)y. It is then easy to build an arity-uncompliant
term that makes the preservation of confluence to fail. Let Y = ωsωs with ωs =
λx.s x x. The term − (idωsωs) (id ωsωs) is an arity-uncompliant β-normal form.
Reducing the id’s leads to −Y Y which is the head of an unjoinable critical peak.

However, we do not assume that every term at hand is arity-compliant.
Indeed, a term that has an arity-compliant β-normal form does not need to
be arity-compliant itself. More precisely, for a weakly β-normalizing term, the
leftmost-outermost strategy (for →β) never evaluates subterms that are not β-
normalizing and it follows that such subterms may be arity-uncompliant without
disturbing the projection on β-normal forms.

The point is the well-foundedness of the leftmost-outermost strategy for →β

on weakly β-normalizing terms [3]. This strategy can be described by means of
head β-reductions, that are easily shown to commute with (parallel) conditional
rewriting. Any λ-term can be written λx.v a0 a1 . . . an where either v ∈ X ∪F (a)
or v is a λ-abstraction (b). We denote by →h the head β-step λx.(λy.b)a0a→h

λx.b{y 7→ a0}a. Let s � t iff either s is of the form (b) and s →h t, or s is of
the form (a) with n ≥ 1 and t = ai for some i ≥ 0. In the latter case, the free
variables of t can be bound in s. Hence, t can be a subterm of a term α-equivalent
to s ; for instance λx.fx � y for all y ∈ X .

Lemma 8. Let WN be the set of weakly β-normalizing terms ; (i) if s ∈ WN
and s � t then t ∈ WN , (ii) � is well-founded on WN .

It follows that we can reason by well-founded induction on �. For all i ≥ 0,
we use a nested parallelization of →Ai

. It corresponds to the one used in [23],
that can be seen as a generalization of Tait and Martin-Löf parallel relation.
As for �β and →β , in the orthogonal case, a complete development of →Ai

can
be simulated by one step �Ai

-reduction. This relation is also an adaptation to
conditional rewriting of the parallelization used in [12].

Definition 9 (Conditional nested parallel relations). For all i ≥ 0, let
�Ai

be the smallest parallel rewrite relation closed by:

(rule)
d = c ⊃ l → r ∈ R lσ →Ai

rσ σ �Ai
θ

lσ �Ai
rθ

Recall that lσ →Ai
rσ is ensured by dσ ↓Ai−1

cσ. These relations enjoy some
nice properties: (1) →Ai

⊆ �Ai
⊆ →∗

Ai
, (2) s �Ai

t ⇒ u{x 7→ s}�Ai
u{x 7→ t}

and (3) [s �Ai
t & u �Ai

v] ⇒ u{x 7→ s}�Ai
v{x 7→ t}. The last one implies

commutation of �Ai
and →h. Commutation of rewriting with head β-reduction

has already been coined in [2]. We now turn to the main lemma.

Lemma 10. Let R be an arity-compliant algebraic system. If s ∈ U and s→∗
β∪A

t, then t ∈ U and βnf(s)→∗
A βnf(t).

Proof Sketch. We show by induction on i the property for→∗
β∪Ai

. We denote
by (I) the corresponding induction hypothesis. The case i = 0 is trivial. Assume
that i > 0. An induction on the number of →β∪Ai

-steps leads us to prove that
βnf(s)�Ai

βnf(t) whenever s�Ai
t and s has an arity-compliant β-normal form.

We reason by induction on �.
First (1), assume that s is of the form (a). If no rule is reduced at its head, the

result follows from induction hypothesis on �. Otherwise, there is a rule d = c ⊃
l → r such that s = λx.lσa and t = λx.rθb with lσ�Ai

rθ and dσ ↓Ai−1
cσ. Since

l is algebraic, βnf(s) is of the form λx.lσ′a′ where σ′ = βnf(σ) and a′ = βnf(a).
Since βnf(s) is arity-compliant, a′ = ∅, hence a = ∅ and s = λx.lσ. Therefore,
because lσ �Ai

rθ, we have b = ∅ and t = λx.rθ. It remains to show that t has
an arity-compliant normal form and that βnf(s) = λx.lσ′ �Ai

βnf(t). Because l

is algebraic, its variables are ≺+ l. We can then apply induction hypothesis on
σ �Ai

θ. It follows that θ has an arity-compliant normal form θ′ with σ′ �Ai
θ′.

Since r is algebraic, λx.rθ′ is the (arity-compliant) β-normal form of t. Hence
it remains to show that lσ′ �Ai

rθ′. Because σ′ �Ai
θ′, it suffices to prove that

lσ′ →Ai
rσ′. Thus, we are done if we show that dσ′ ↓Ai−1

cσ′. Since d and c

are algebraic, βnf(dσ) = dσ′ and βnf(cσ) = cσ′. Now, since d is algebraic and
arity-compliant and σ′ is arity compliant, dσ′ is arity-compliant. The same holds
for cσ′. Hence we conclude by applying induction hypothesis (I) on dσ ↓Ai−1

cσ.
Second (2), when s is of the form (b) we head β-normalize it and obtain a term

s′ of the form (a) having an arity-compliant β-normal form. Using commutation

of �Ai
and →h, we obtain a term t′ such that s′ �Ai

t′. Since s �+ s′, we can
reason as in case (1). �

The preservation of confluence is a direct consequence of the projection on
β-normal forms.

Theorem 11. Let R be an arity-compliant algebraic system such that →A is
confluent. Then, →β∪A is confluent on U .

Comparison with Dougherty’s work. This section is an extension of [12]. We give
a further exploration of the idea that preservation of confluence, when using
hypothesis on →β , should be independent from any typing discipline for the
λ-calculus.

Moreover, we extend its result in three ways. First, we adapt it to conditional
rewriting. Second, we allow nested symbols in lhs to be applied to less arguments
than their arity. And third, we use weakly β-normalizing terms whose normal
forms are arity-compliant ; whereas Dougherty uses the set of strongly normal-
izing arity-compliant terms which is closed by reduction.

4 Using →β in the evaluation of conditions

The goal of this section is to give conditions on R to deduce confluence of
→β∪B from confluence of→A. We achieve this by exhibiting two different criteria
ensuring that

→∗
β∪B ⊆ →

∗
β→

∗
A←

∗
β . (?)

The first case concerns left-linear and semi-closed systems. This holds only
on some sets of terms that, after Dougherty [12], we call R-stable, although
our definition of stability does not require strong β-normalization (see Sect. 3.2
and Def. 12). This is an extra hypothesis compared to the result of Sect. 3.1.
The second case is a direct extension of Lemma 10 to →β∪B. In both cases, we
assume the rules to be algebraic and arity-compliant. We are then able to obtain
confluence of →β∪B since, in each case, our assumptions ensure that the results
of Sect. 3 applies, hence that →β∪A is confluent whenever →A is.

It is important to underline the meaning of (?). Given an arity-compliant
algebraic rule d = c ⊃ l → r, every β-redex occurring in dσ or cσ also occurs
in lσ. Then, (?) means that there is a β-reduction starting from lσ that reduces
these redexes and produce a substitution σ′ such that lσ →∗

β lσ′ →A rσ′ ←∗
β rσ.

In other words, if the conditions are satisfied with σ and→β∪B (i.e. dσ ↓β∪B cσ),
then they are satisfied with σ′ and →A (i.e. dσ′ ↓A cσ′).

We now give some examples of non arity-compliant or non algebraic rules in
which, at the same time, (?) fails and →β∪B is not confluent whereas →β∪A for
(1), (3), (4) and at least →A for (2) is.

(1) gx→ xc gx = d ⊃ fx→ a fx→ b

(2) xc = d ⊃ fx→ a fx→ b

(3) hx→ x hxc = d ⊃ fx→ a fx→ b

(4) hxy → gxy gx→ x hxc = d ⊃ fx→ a fx→ b

The first and second examples respectively contain a rule with a non algebraic
right-hand side and a rule with a non algebraic condition. Examples (3) and (4)
use non arity-compliant terms, in the conditional part and in the right-hand side
of a rule respectively. For these four examples, the step f(λx.d) →B a is not in
→∗

β→
∗
A←

∗
β and a←B f(λx.d)→B b is an unjoinable peak.

However, (?) is by no means a necessary condition ensuring that →β∪B is
confluent when →β∪A so is. In the above examples, confluence of →β∪B can be
recovered when adding appropriate rules, yet not restoring (?).

As we are interested in deducing the confluence of→β∪B from the confluence
of →A, it is more convenient to take in Def. 2 →B=

⋃
i≥0 →Bi

with →B0
=→A

instead of →B0
= ∅ (this does not change →B since →A⊆→B).

4.1 Confluence of left-linear systems

In this paragraph, we prove (?) provided that rules are arity-compliant, algebraic,
left-linear and semi-closed. This inclusion is shown on R-stable sets of terms.

Definition 12 (R-stable sets). Let R be a set of rules. A set S is almost
R-stable if it contains only arity-compliant terms, is stable by subterm and β-
reduction, and C[rσ] ∈ S whenever C[lσ] ∈ S and d = c ⊃ l → r ∈ R.
An almost R-stable set S is R-stable if dσ, cσ ∈ S whenever C[lσ] ∈ S and
d = c ⊃ l→ r ∈ R.

This includes the set of strongly →β∪A-normalizable arity-compliant terms
and any of its subset closed by subterm and reduction, by using a simple type
discipline for instance.

The inclusion (?) is proved by induction on the stratification of →B with
→B0

=→A. The base case corresponds to →∗
β∪A ⊆ →

∗
β→

∗
A←

∗
β , which does not

require rule conditions to be algebraic nor arity-compliant.
The previous examples show however that this may fail in presence of arity-

uncompliant or non-algebraic right-hand sides. Note that the result is proved
only on almost R-stable sets of terms. Note also that a set containing a term
reducible by the first rule of example (4) above is obviously not stable. Finally,
note that the β-expansion steps are needed because rules can be duplicating.

Lemma 13. Let R be a semi-closed left-linear right-algebraic system. On any
almost R-stable set of terms, →∗

β∪A ⊆ →
∗
β→

∗
A←

∗
β.

Proof Sketch. The proof is in four steps. We begin (1) to show that →A

�β ⊆ �β →∗
A �β, reasoning by cases on the step �β. This inclusion relies on

an important fact of algebraic terms: if s is algebraic and sσ �β v then v �β sσ′

with σ �
∗
β σ′. From (1), it follows that (2) →∗

A �β ⊆ �β →
∗
A �

∗
β, by induction

on the number of→A-steps. Then (3), we obtain→∗
A �

∗
β ⊆ �

∗
β →

∗
A �

∗
β using an

induction on the number of �β-steps and the diamond property of �β. Finally
(4), we deduce that (�β∪ →A)∗ ⊆ �

∗
β →

∗
A �

∗
β by induction on the length of

(�β∪ →A)∗. �

We now turn to the main result of this subsection. As seen in the previous
examples, rules have to be algebraic and arity-compliant.

Lemma 14. Let R be a semi-closed left-linear algebraic system. On any R-
stable set of terms, →∗

β∪B ⊆ →
∗
β→

∗
A←

∗
β.

Proof Sketch. The first point is to see that (1)→∗
B1
⊆→∗

β→
∗
A←

∗
β. This is done

by induction on the number of B1-steps, using Lemma 13. We then deduce (2)
→∗

β∪B1
⊆→∗

β→
∗
A←

∗
β, by induction on the number of →β∪B1

-steps. The result
follows from an induction on i showing that →Bi

⊆→B1
. �

Theorem 15. Assume that R is a semi-closed left-linear algebraic system. If
→A is confluent, then →β∪B is confluent on any R-stable set of terms.

Recall that in this case →β∪A-confluence follows from →A-confluence by
Thm. 6.

4.2 Confluence on weakly β-normalizing terms

This subsection concerns the straightforward extension to →B of the results of
Sect. 3.2. The definition of �Bi

follows the same scheme as the one of �Ai
; the

only difference is that Bi is used everywhere in place of Ai. It follows that given
a rule d = c ⊃ l → r, to have lσ�Bi

rθ, we must have σ�Bi
θ and dσ ↓β∪Bi−1

cσ.
The relations �Bi

enjoy the same nice properties as the �Ai
’s.

Lemma 16. Let R be an arity-compliant algebraic system. If s ∈ U and s→∗
β∪B

t, then t ∈ U and βnf(s)→∗
A βnf(t).

The only difference in the proof is that the case i = 0 is now ensured by
Lemma 10 (since →B0

=→A). The theorem follows easily:

Theorem 17. Let R be an arity-compliant algebraic system such that →A is
confluent. Then, →β∪B is confluent on U .

5 Orthonormal systems

In this section, we give a criterion ensuring confluence of →β∪B when conditions
and right-hand sides possibly contain abstractions and active variables.

This criterion comes from peculiarities of orthogonality with conditional
rewriting. In non-conditional rewriting, a system is orthogonal when it is left-
linear and has no critical pair. A critical pair comes from the superposition of
two different rule left-hand sides at non-variable positions. The general defini-
tion of orthogonal conditional systems is the same. But, in conditional rewriting,
there can be superpositions of two different rules left-hand sides whose condi-
tions cannot be satisfied with the same substitution. Such critical pairs are said
infeasible and it could be profitable to consider systems whose critical pairs are
all infeasible.

In [21], it is remarked that results on the confluence of natural and normal
orthogonal conditional systems should be extended to systems that have no
feasible critical pair. But the results obtained this way are not directly applicable

since proving unfeasibility of critical pairs may require confluence. In Takahashi’s
work [22], conditions can be any predicate P on terms. Confluence is proved with
the assumption that they are stable by reduction: if Pσ holds and σ → θ, then Pθ

holds. For the systems studied in this section, stability of conditions by reduction
precisely follows from confluence. Hence the results of [22] do not directly apply.

The purpose of this section is to give a syntactic condition on rules that imply
unfeasibility of critical pairs, hence confluence.

Definition 18 (Conditional critical pairs). Given two rules d = c ⊃ l → r

and d′ = c′ ⊃ l′ → r′, if p is a non-variable position in l and σ is a most general
unifier of l|p and l′, then

dσ = cσ ∧ d′σ = c′σ ⊃ (l[r′]pσ, rσ)

is a conditional critical pair. A critical pair d = c ⊃ (s, t) is feasible for →A

(resp. →B) if there is a substitution σ such that dσ ↓A cσ (resp. dσ ↓β∪B cσ).

As an example, consider the rules used to define occ in Sect. 2. There is a
superposition between the left-hand sides of the last two rules giving the critical
peak ff ← occ (x :: o) (nd y l)→ occ o (get l x). But a peak of this form can occur
only if there are two terms s, t such that tt ←∗ ≥ (len s) t →∗ ff. Using the
stratification of →A, the confluence of→Ai

implies that this pair is not feasible.
Hence the above peak cannot occur with →Ai+1

and this relation is confluent.
This method can be used on systems with higher-order terms in right-hand

sides and conditions, as for example the rules defining app and filter. Hence, it is
useful for proving the confluence of →β∪B for systems where this relation does
not need to be included in ↔∗

β∪A. In this section, we generalize the method and
apply it on a class of systems called orthonormal. As in the previous section, we
use stratification of →B, but now with →B0

= ∅. A symbol f ∈ F is defined if it
is the head of a rule left-hand side.

Definition 19 (Orthonormal systems). A system is orthonormal if (1) it
is left-linear; (2) in every rule d = c ⊃ l → r, the terms in c are closed β-
normal forms not containing defined symbols; and (3) for every critical pair
d = c ⊃ (s, t), there exists i 6= j such that di = dj and ci 6= cj .

Note that an orthonormal system is left-linear and semi-closed, but does not
need to be arity-compliant or algebraic. Note also that the form of the conditions
leads to a normal conditional rewrite relation. The reader can check that the
whole system given in Sect. 2 is orthonormal.

We now prove that →β∪B is shallow confluent (i.e. →∗
β∪Bi

and →∗
β∪Bj

com-

mute for all i, j ≥ 0) when R is orthonormal. The first point is that confluence
of →β∪Bi

implies commutation of →∗
β and →∗

Bi+1
. The proof is as in Sect. 3.1,

except that in a rule d = c ⊃ l → r, c are closed →β∪B-normal forms. The
main Lemma concerns commutation of parallel relations of �Bi

and �Bj
for all

i, j ≥ 0. But here, we use a weak form of parallelization: �Bi
is simply the par-

allel closure of→Bi
. The name of the Lemma is usual for this kind of result with

rewriting (see [21]). Write <mul for the multiset extension of the usual ordering
on naturals numbers.

Lemma 20 (Parallel Moves). Let R be an orthonormal system. If {n, m} <mul

{i, j} implies commutation of →∗
β∪Bn

and →∗
β∪Bm

, then �Bi
and �Bj

commute.

Proof Sketch. The key point is the commutation of →∗
β∪Bn

and →∗
β∪Bm

for
{n, m} <mul {i, j}. It implies that two rules whose respectives conditions are
satisfied with →∗

β∪Bi
and→∗

β∪Bj
are not superposable at non-variable positions.

The rest of the proof follows usual schemes (see Sect. 7.4 in [21]). �

Now, an induction on <mul provides the commutation of →β∪Bi
and →β∪Bj

for all i, j ≥ 0. Shallow confluence immediately follows.

Theorem 21. If R is an orthonormal system, then →β∪B is shallow confluent.

Hence, the relation →β∪B induced by the system of Sect. 2 is confluent.

6 Conclusion

Our results are summarized in the following table.

§ Terms Lhs Rhs Conditions Result

3.1 T Linear Applicative Semi-Closed
→A Confluent ⇒
→A∪β Confluent

3.2 U
Arity-Compliant

& Algebraic
Arity-Compliant

& Algebraic
idem

4.1 R-stable Linear Algebraic
Semi-Closed
& Algebraic

→A Confluent ⇒
→B∪β Confluent

4.2 U
Arity-Compliant

& Algebraic
Arity-Compliant

& Algebraic
idem

5 T Linear Orthonormal
→B∪β

Shallow Confluent

We provide detailed conditions to ensure modularity of confluence when com-
bining β-reduction and conditional rewriting, either when the evaluation of con-
ditions uses β-reduction or when it does not. This has useful applications on
the high-level specification side and for enriching the conversion used in logical
frameworks or proof assistants, while still preserving the confluence property.

These results lead us to the following remarks and further research points.
The results obtained in Sect. 3 and 4 for the standard conditional rewrite systems
extend to the case of oriented systems (hence to normal systems) and to the
case of level-confluent natural systems. For natural systems, the proofs follow
the same scheme, provided that level-confluence of →A is assumed. However, it
would be interesting to know if this restriction can be dropped.

Problems arising from non left-linear rewriting are directly transposed to left-
linear conditional rewriting. The semi-closure condition is sufficient to avoid this,
and it provides the counter part of left-linearity for unconditional rewriting. As
a matter of a fact, it is well known that orthogonal standard conditional rewrite

systems are not confluent, but confluence of orthogonal semi-closed standard
systems holds. However, two remarks have to be made about this restriction.
First, it would be interesting to know if it is a necessary condition and besides,
to characterize a class of non semi-closed systems that can be translated into
equivalent semi-closed ones. Second, semi-closed terminating standard systems
behave like normal systems. But normal systems can be easily translated in
equivalent non-conditional systems. Moreover such a translation preserves good
properties such as left-linearity and non-ambiguity. As many of practical uses of
rewriting rely on terminating systems, semi-closed standard systems may be in
practice essentially an intuitive way to design rewrite systems that can be then
efficiently implemented by non-conditional rewriting.

An interesting extension of this work consists in adapting to conditional
rewriting the axiomatization and the results of [23]. This should leads to a gen-
eralization of the higher-order conditional systems of [1].

Acknowledgments. We are quite grateful to the anonymous referees for their
constructive and accurate comments and suggestions.

References

[1] J. Avenhaus and C. Loŕıa-Sáenz. Higher order conditional rewriting and narrow-
ing. In Proceedings of the 1st International Conference on Constraints in Com-
putational Logics, volume 845 of LNCS, pages 269–284. Springer Verlag, 1994.

[2] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of Strong Normalisation
and Confluence in the Algebraic λ-Cube. Journal of Functional Programming,
7(6):613–660, November 1997.

[3] H.P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in
Logic and the Foundation of Mathematics. North Holland, 1984. Second edition.

[4] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Patterns Type Systems.
In Principles of Programming Languages, New Orleans, USA. ACM, 2003.

[5] F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical
Structures In Computer Science, 15(1):37–92, 2005.

[6] F. Blanqui, C. Kirchner, and C. Riba. On the confluence of lambda-calculus with
conditional rewriting. HAL technical report, Oct 2005.

[7] V. Breazu-Tannen. Combining algebra and higher-order types. In 3rd IEEE
Symposium on Logic in Computer Science Edinburg (UK), july 1988.

[8] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic con-
fluence. Information and Computation, 114(1):1–29, October 1994.

[9] H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic Journal
of the Interest Group in Pure and Applied Logics, 9(3):427–498, May 2001.

[10] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 243–320. North-Holland, 1990.

[11] N. Dershowitz and M. Okada. A rationale for conditional equational programming.
Theoretical Computer Science, 75:111–138, 1990.

[12] D.J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus.
Information and Computation, 101(2):251–267, December 1992.

[13] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Journal of
Automated Reasoning, 31(1):33–72, Nov 2003.

[14] Bernhard Gramlich. On termination and confluence properties of disjoint and
constructor-sharing conditional rewrite systems. Theoretical Computer Science,
165(1):97–131, September 1996.

[15] J.-P. Jouannaud and M. Okada. Executable higher-order algebraic specification
languages. In Proceedings of LICS’91.

[16] J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Center
Tracts. CWI, 1980. PhD Thesis.

[17] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. TCS, 121:279–308, 1993.

[18] A. Middeldorp. Completeness of Combinations of Conditional Constructor Sys-
tems. Journal of Symbolic Computation, 17(1):3–21, January 1994.

[19] F. Müller. Confluence of the lambda calculus with left linear algebraic rewriting.
Information Processing Letters, 41:293–299, 1992.

[20] T. Nipkow. Higher-order critical pairs. In Proceedings of LICS’91.

[21] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, April 2002.

[22] M. Takahashi. Lambda-calculi with conditional rules. In TLCA’93, LNCS, pages
406–417. Springer-Verlag, 1993.

[23] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence:
the higher-order case. In LFCS’94, volume 813 of LNCS, 1994.

A Proofs of Section 3.2

We begin by proving the well-foundedness of �.

Lemma 22. Let WN be the set of weakly β-normalizing terms. The set WN
is stable by � and � is well-founded on WN .

Proof. For the first part, let be s ∈ WN and s � t. If s is of the form (b), the
first step of the leftmost-outermost derivation normalizing s is t. Hence t ∈ WN .
Otherwise, if t has no β-normal form, then s has no β-normal form.

For the second part, we write #(s) for the number of →h-steps in the
leftmost-outermost derivation starting from s and |s| for the size of s. We show
that if s � t, then (#(s), |s|) >lex (#(t), |t|). If s is of the form (b), by the first
point t ∈ WN . Since s →h t, we have #(s) > #(t). Otherwise, the leftmost-
outermost strategy starting from s reduces by leftmost-outermost reductions
each ai (1 ≤ i ≤ n). Hence #(s) ≥ #(t). But in this case, t is a proper subterm
of s, hence |s| > |t|.

Then, we consider the properties (1)-(3) of the walk relations �Ai
.

Proposition 23. For all i ≥ 0,

1. →Ai
⊂ �Ai

⊂ →∗
Ai

.

2. s �Ai
t ⇒ u{x 7→ s}�Ai

u{x 7→ t}.

3. [s �Ai
t & u �Ai

v] ⇒ u{x 7→ s}�Ai
v{x 7→ t}.

Proof. The first point is shown by induction on the definition of �Ai
; the second

by induction on u. For the last one, we also use an induction on �Ai
in u�Ai

v.
If u is v, the result is trivial. If u �Ai

v was obtained by parallel application or
if u is an abstraction, the result follows from induction hypothesis. Otherwise,
u �Ai

v is obtained by (rule). That is, there is a rule d = c ⊃ l → r ∈ R
such that u = lσ, v = rθ, σ �Ai

θ and lσ →Ai
rσ. Since →Ai

is a rewrite
relation, we have lσ{x 7→ s}�Ai

rσ{x 7→ s}. By induction hypothesis, we have
σ{x 7→ s}�Ai

θ{x 7→ t}. Therefore lσ{x 7→ s}�Ai
rθ{x 7→ t}.

We now turn to the commutation of �Ai
and→h. This is a direct consequence

of the case (3) of the above Proposition.

Lemma 24. For all i ≥ 0, �Ai
commutes with →h.

Proof. Assume that s ←h λx.(λy.a0)a1 . . . ap �Ai
t. Because rules have non-

variable algebraic left hand-sides, t = λx.(λy.b0)b1 . . . bp with for all k ∈ {0, . . . , p},
ak �Ai

bk. On the other hand, s = λx.a0{y 7→ a1}a2 . . . ap. It follows from
Prop. 23.3 that a0{x 7→ a1} �Ai

b0{x 7→ b1} (in one step). Hence we have
s �Ai

λx.b0{y 7→ b1}b2 . . . bp ←h t.

u

B Proofs of Section 4.1

We begin by two technical properties. The first one is a generalization of the
diamond property of �β .

Proposition 25. Let be n ≥ 0 and assume that s, s1, . . . , sn are terms such that
for all 1 ≤ i ≤ n, s �β si. Then there is a term s′ such that for all 1 ≤ i ≤ n,
si �β s′.

Proof. The proof is by induction on the structure of s. First, if s is a constant
symbol or a variable, then it is a β-normal from and we are done. If s is an
abstraction λx.t, then for all 1 ≤ i ≤ n, si is of the form λx.ti and we conclude
by induction hypothesis on t, t1, . . . , tn. Now assume that s is an application.
There are two cases. First, s = tu where t is not an abstraction. Then, for all
1 ≤ i ≤ n, si is of the form tiui with t �β ti and u �β ui and we conclude
by induction hypothesis. Otherwise, s must be of the form (λx.t)u and for all
1 ≤ i ≤ n, si is either of the form (λx.ti)ui (1) or of the form ti{x 7→ ui} (2). In
both cases we have t �β ti and u �β ui. By induction hypothesis, there are two
terms t′, u′ such that for all 1 ≤ i ≤ n, ti �β t′ and ui �β u′. Therefore, in case
(1), we have (λx.ti)ui �β t′{x 7→ u′} and in case (2) ti{x 7→ ui} �β t′{x 7→ u′}.
Hence, for all 1 ≤ i ≤ n, si �β t′{x 7→ u′}.

For the following Proposition, we define O(t, u), the set of occurrences of t

in u as : O(t, u) = ε if t = u ; otherwise O(t, u1u2) = 1.O(t, u1) ∪ 2.O(t, u2),
O(t, λx.u) = 1.O(t, u) and O(t, x) = O(t, f) = ∅.

Proposition 26. Let s be an algebraic term.

1. If sσ �β v then there is σ′ such that σ �
∗
β σ′ and v �β sσ′.

2. If sσ �
∗
β v then there is σ′ such that σ �

∗
β σ′ and v �

∗
β sσ′.

Note that s does not needs to be linear.

Proof. 1. Since s is algebraic, every occurrence of β-redex of sσ is of the form
p.d where p is the occurrence of a variable x in s and d is an occurrence in σ(x).
Therefore, v is of the form

s[t(x, p)]{p ; p∈O(x,s) & x∈FV (s)}

where, for all x ∈ FV (s), for all p ∈ O(x, s), σ(x) �β t(x, p). By Prop. 25, for all
x ∈ FV (s), there exists t(x) such that for all p ∈ O(x, s), t(x, p) �β t(x). Hence

v �β s[t(x)]{p ; p∈O(x,s) & x∈FV (s)} .

That is, v �β sσ′ with σ′(x) = t(x).
2. We reason by induction on the number of �β-steps. If sσ = v the result

is trivial. Otherwise, sσ �
∗
β v is sσ �β v′ �∗

β v. By (1), there is a substitution σ′

such that sσ �β v′ �β sσ′. By strong confluence of �β, there is a v′′ such that
sσ′ �∗

β v′′�∗
β v and the length of sσ′ �∗

β v′′ is no more than the length of v′ �∗
β v.

Hence, we can apply induction hypothesis on sσ′ �∗
β v′′ and thus obtain σ′′ such

that sσ �
∗
β v �

∗
β sσ′′.

We now turn to the inclusion →∗
βA⊆→

∗
β→

∗
A←

∗
β on almost R-stable terms.

We begin by showing that →A �β ⊆ �β →∗
A �β.

Proposition 27. Let R be a semi-closed left-linear right-algebraic system. On
any almost R-stable set of terms, →A �β ⊆ �β →∗

A �β.

Proof. Let R be the binary relation be such that, for all t, u,

R(t, u)⇔ ∀s [s→A t �β u ⇒ ∃s′ t′(s �β s′ →∗
A t′ �β t)]

We have to show that R is reflexive and compatible with terms formations rules,
parallel application and with the rule (beta).

Reflexivity of R is trivial. We now prove that R is compatible with term-
formation rules, parallel application and (beta).

Term-Formation Note that compatibility with parallel application contains
compatibility with application. Hence compatibility with context is only
compatibility with λ-abstraction.
We have to show that if R(t1, u1) holds, then R(λx.t1, λx.u1) holds whenever
t1 �β u1. So assume R(t1, u1), t1 �β u1 and let s be such that s→A λx.t1 �β

λx.u1. Write t for λx.t1 and u for λx.u1. If the contractum of the step s→A t

is in a proper subterm of t, we have s = λx.s1 with s1 →A t1 and we conclude
by assumption and context compatibility of →A and �β. Otherwise, there

is a rule d = c ⊃ l → r such that s = lσ and t = rσ. As r is algebraic,
by Prop. 26 there is a substitution σ′ such that σ �

∗
β σ′ and u �β rσ′. By

linearity of l, we have lσ �β lσ′. We now show that lσ′ →A rσ′. To this end
he have to show that dσ′ ↓A c. But dσ�

∗
β dσ′ and by Lem. 5 there are terms

v such that dσ′ →∗
A v ←∗

β←
∗
A c. Because terms in c and right-hand sides

of rules are build without abstraction symbols, there cannot be any β-step
starting from an →A-reduct of c. Hence dσ′ ↓A c and we are done.

Parallel application We have to show that

[R(t1, u1) & R(t2, u2)] ⇒ R(t1 t2, u1 u2)

whenever t1 �β u1 and t2 �β u2. So, assume R(t1, u1), R(t2, u2), and let s

be such that s →A t1 t2 �β u1 u2 where ti �β ui. Write t for t1 t2 and u

for u1 u2. If the contractum of the step s →A t is in a proper subterm of t

we can conclude by assumption and context compatibility of →A and �β.
Otherwise s = lσ and t = rσ for a rule d = c ⊃ l → r and we conclude as in
Case 1.

(beta) rule We have to show that

[R(t1, u1) & R(t2, u2)] ⇒ R((λx.t1)t2, u1{x 7→ u2})

whenever t1 �β u1 and t2 �β u2. So assume R(t1, u1), R(t2, u2), and let s be
such that s→A (λx.t1)t2 �β u1{x 7→ u2} where ti �β ui. Write t for (λx.t1)t2
and u for u1{x 7→ u2}. As above, if s→A t, is a rooted rewrite step, we refer
to the Case 1.
Otherwise, as s is arity-compliant, λx.t1 is not the instantiated right hand
side of a rule d = c ⊃ l → r. Indeed, if it where, we would have s = f ls2 with
l = f l. But the term f ls2 is not arity-compliant, contradicting the hypothesis
of stability. So we are in cases where s = (λx.s1)t2 (resp. (λx.t1)s2) with
s1 →A t1 (resp. s2 →A t2). In both cases, we conclude by assumption and
context compatibility of →A and �β.

Lemma 28. Let R be a semi-closed left-linear right-algebraic system. On any
almost R-stable set of terms, →∗

β∪A⊆→
∗
β→

∗
A←

∗
β.

Proof. The proof is in three steps.
We first show (1) →∗

A �β ⊆ �β →∗
A �

∗
β , by induction on the number of

A-steps. Assume that s→∗
A t′ →A t�β u. By Lemma 27, there are v and v′ such

that t′ �β v →∗
A v′ �β u. By induction hypothesis, there are s′ and s′′ such that

s �β s′ →∗
A s′′ �∗

β v. Then, by Lemma 5, there is t′′ such that s′′ →∗
A t′′ �∗

β v′.
Thus, s �β s′ →∗

A t′′ �∗
β u.

We now show (2) →∗
A �

∗
β ⊆ �

∗
β →

∗
A �

∗
β, by induction on the number of

�β-steps. Assume that s→∗
A t�β u′�∗

β u. After (1), there are s′ and t′ such that
s�β s′ →∗

A t′�∗
β u′. By strong confluence of �β, there is v such that t′�∗

β v�
∗
β u,

where t′ �∗
β v is no longer than u′ �∗

β u. Hence, by induction hypothesis, there
are s′′ and t′′ such that s′ �∗

β s′′ →∗
A t′′ �∗

β v. Therefore, s �
∗
β s′′ →∗

A t′′ �∗
β u.

We now prove (3) (�β∪ →A)∗ ⊆ �
∗
β →

∗
A �

∗
β , by induction on the length

of (�β∪ →A)∗. Assume that s →�β∪A t →∗
�β∪A

u. There are two cases. First,

s�β t. This case follows directly from the induction hypothesis. Second, s→A t.
By induction hypothesis, there are t′ and u′ such that t �

∗
β t′ →∗

A u′ �∗
β u. After

(2), there are s′′ and u′′ such that s �
∗
β s′′ →∗

A u′′ �∗
β u′. Finally, by Lemma 5,

there is t′′ such that u′′ →∗
A t′′ and t′�∗

β. Hence, s �
∗
β s′′ →∗

A t′′ �∗
β t.

We conclude by the fact that �
∗
β =→∗

β .

We now turn to the proof of →∗
β∪B ⊆ →

∗
β→

∗
A←

∗
β on R-stables sets.

Lemma 29. Let R be an arity-compliant semi-closed left-linear algebraic sys-
tem. On any set of R-stable terms, →∗

β∪B⊆→
∗
β→

∗
A←

∗
β.

Proof. We first prove (1) →B1
⊆→∗

β→
∗
A←

∗
β . Let R be the binary relation such

that for all s, t ∈ T ,

R(s, t) ⇔ [s→B1
t⇒ s→∗

β→
∗
A←

∗
β t] .

We have to show that R is compatible with term-formation rules and that for all
d = c ⊃ l → r ∈ R, for all substitution σ, if dσ ↓A∪β cσ then R(lσ, rσ) holds.
We only show this latter property. Let d = c ⊃ l → r be a rule and assume
that lσ →B1

rσ. Then, dσ ↓β∪A cσ. Since c is a closed algebraic term, we have
dσ →∗

β∪A u ←∗
A c with both c and u in β-normal form. Because dσ is stable,

we can apply Lemma 28 and obtain v such that dσ →∗
β v →∗

A u. By Prop.
26, there is σ′ such that v →∗

β dσ′. Now, by Lemma 5, dσ′ →∗
A u. Therefore,

s→A t.
We now prove (2)→∗

β∪B1
⊆→∗

β→
∗
A←

∗
β , by induction on the number of β∪B1-

steps. Assume that s →∗
β∪B1

t →β∪B1
u. By induction hypothesis, s →∗

β s′ →∗
A

t′ ←∗
β t. There are two cases. First, t →β u. By β-confluence, t′ →∗

β u′ ←∗
β u.

Applying Lem. 28 leads to s′ →∗
β→

∗
A←

∗
β u′ and we get s→∗

β→
∗
A←

∗
β u. Assume

now that t →B1
u. From (1) it follows that, t →∗

β t′2 →
∗
A u′ ←∗

β u. Then, by
virtue of β-confluence, t′ →∗

β t′′ ←∗
β t′2. Commutation of β and A (Lem. 5)

gives u′′ such that t′′ →∗
A u′′ ←∗

β u′. Finally, by Lemma 28, s′ →∗
β→

∗
A←

∗
β u′′.

Therefore, s→∗
β→

∗
A←

∗
β u.

We then prove by induction on i ≥ 1 that →Bi
⊆→B1

. Let i ≥ 1 and let Pi

be the binary relation such that for all s, t ∈ T ,

Pi(s, t) ⇔ [s→Bi
t⇒ s→B1

t] .

We have to show that Pi is compatible with term-formation rules and that for all
d = c ⊃ l → r ∈ R, for all substitution σ, if dσ ↓A∪β cσ then Pi(lσ, rσ) holds.
We only show this latter property. Let d = c ⊃ l→ r be a rule and assume that
lσ →Bi

rσ. Then, dσ ↓β∪Bi−1
cσ. By induction hypothesis and since c is a closed

algebraic term, we have dσ →∗
β∪B1

u←∗
A c with both c and u in β-normal form.

By (2), dσ →∗
β→

∗
A u←A c. Therefore, lσ →B1

rσ.

Theorem 30. Assume that R is an arity-compliant semi-closed left-linear alge-
braic system. If →A is confluent then →β∪B is confluent on any set of R-stable
terms.

Proof. Let S be a stable set of terms and let s ∈ S such that u←∗
β∪B s→∗

β∪B t.
By lemma 29, there are u′, s′1, s

′
2 and t′ such that u →∗

β u′ ←∗
A s′1 ←

∗
β s and

s →∗
β s′2 →

∗
A t′ ←∗

β t. In other words, u′ ↔∗
β∪A t′. Since A is confluent, by

Theorem 6, there is s′′ such that u→∗
β u′ →∗

β∪A s′′ ←∗
β∪A t′ ←∗

β t. We conclude
by the fact that →A⊆→B.

C Proofs of Section 5

We begin by the commutation of →∗
β and →∗

Bi
.

Lemma 31. If R is an orthonormal system and →β∪Bi
is confluent then →∗

Bi+1

and →∗
β commute.

Proof. The proof follows the lines of the proof of Lemma 5. It also uses the
relation �β defined in Sect. 3. We just prove that if d = c ⊃ l → r is a rule
such that u �β lσ →Bi+1

rσ then there is a v such that u →∗
Bi+1

v �β rσ.

As l is a non variable linear algebraic term, there is a substitution σ′ such
that σ �β σ′ and lσ �β lσ′ = u. Therefore, rσ �β rσ′. It remains to show that
lσ′ →Bi+1

rσ′. Recall that dσ →∗
β∪Bi

c. As dσ →∗
β dσ′, by hypothesis, there is v

such that dσ′ →∗
β∪Bi

v ←∗
β c. But c are β-normal forms, hence v = c. Therefore,

lσ′ →Bi+1
rσ′ �β rσ.

We now turn to parallel moves. Lemma 20 is decomposed into Lemmas 32
and 33. We denote by →= the reflexive closure of a rewrite relation →.

Lemma 32. Let R be an orthonormal system and i, j ≥ 0. Assume that, for all
n, m such that {n, m} <mul {i, j} diagram (i) commutes. Let d = c ⊃ l → r be
a conditional rewrite rule in R. Then, diagram (ii) commutes.

s
β∪Bn

∗
//

β∪Bm ∗

��

t

β∪Bm∗

��
u

β∪Bn

∗
// v

lσ
Bi

//

�Bj

��

rσ

�Bj

��
u

Bi

=
// v

(i) (ii)

Proof. The results holds if i = 0 since →B0
= ∅. If j = 0, then u = lσ and take

v = rσ.
Assume that i, j > 0 and write q1, . . . , qn for the (disjoint) occurrences in lσ

of the redexes contracted in lσ�Bj
u. Therefore, for all k, 1 ≤ k ≤ n, there exists

a rule ρk : dk = ck ⊃ lk → rk and a substitution θk such that lσ|qk
= lkθk. Thus,

u = lσ[r1θ1]q1
. . . [rnθn]qn

. It is possible to rename variables and assume that ρ,
ρ1, . . . ρn have disjoint variables. Therefore, we can take σ ≡ θ1 ≡ · · · ≡ θn.

Assume that there is a non-variable superposition, i.e. that a qk is a non
variable occurrence in l. Hence rules ρ and ρk forms an instance of a critical pair
d′µ = c′ ⊃ (l[rk]qk

µ, rµ) and there exists a substitution µ′ such that σ = µµ′.
By definition of orthonormal systems, |d′µ| ≥ 2 and there is m 6= p such that

c′m 6= c′p and d′mµ = d′pµ. Let us write h for max(i, j) − 1. As d′mµ = d′pµ we
have d′mσ = d′pσ and it follows that c′m ←

∗
β∪Bh

d′mσ = d′pσ →
∗
β∪Bh

c′p. But
{h, h} <mul {i, j} and by assumption →β∪Bh

is confluent. Therefore we must
have c′m ↓β∪Bh

c′p. But it is not possible since c′m and c′p are distinct normal
forms. Hence, conditions of ρ and ρk can not be both satisfied by σ and →β∪Bh

and it follows that there is no non-variable superposition.
Therefore, each qk is of the form uk.vk where l|uk

is a variable xk. Let σ′ be
such that σ′(xk) = σ(xk)[rkσ]vk

and σ′(y) = σ(y) if y 6≡ xk for all 1 ≤ k ≤ n.
Then, lσ �Bj

lσ′ and by linearity of l, u = lσ′. Furthermore, rσ �Bj
rσ′. We

now show that lσ′ →Bi
rσ′. We have dσ →∗

β∪Bi−1
c and dσ →∗

Bj
dσ′. As

i, j > 0, we have {i− 1, j} <mul {i, j}. Therefore, by assumption →∗
β∪Bi−1

and

→∗
β∪Bj

commute and there exist terms c′ such that dσ′ →∗
β∪Bi−1

c′ ←∗
β∪Bj−1

c.

But as terms in c are →β∪B-normal forms, we have c′ = c and it follows that
lσ′ →Bi

rσ′.

Lemma 33. Let R be an orthonormal system and i, j ≥ 0. Diagram (iii) com-
mutes if and only if for all rule d = c ⊃ l→ r, diagrams (iv) and (v) commute.

s
�Bi

//

�Bj

��

t

�Bj

��
u

�Bi

// v

lσ
Bi

//

�Bj

��

rσ

�Bj

��
u

Bi

=
// v

lσ
Bj

//

�Bi

��

rσ

�Bi

��
u

Bj

=
// v

(iii) (iv) (v)

Proof. The “only if” statement is trivial. For the “if” case, let s, t, u be three
terms such that u �Bj

s �Bi
t. If s is t (resp. u), then take v = u (resp. v = t).

Otherwise, we reason by induction on the structure of s. If there is a rooted
reduction, we conclude by commutation of diagrams (iv) and (v). Now assume
that both reductions are nested. If s is an abstraction, we conclude by induction
hypothesis. Otherwise s is an application s1s2, and by assumption u = u1u2

and t = t1t2 with uk �Bj
sk �Bi

tk. In this case also we conclude by induction
hypothesis.

We now turn to the main result with orthonormal systems.

Theorem 34. If R is an orthonormal system then →β∪B is shallow confluent.

Proof. By induction on <mul, we show the commutation of →∗
β∪Bi

and →∗
β∪Bj

for all i, j ≥ 0. The least unordered pair {i, j} with respect to <mul is {0, 0}. As
→β∪B0

=→β by definition, this case holds by confluence of β.
Now, assume that i > 0 and that the commutation of →∗

β∪Bn
and →∗

β∪Bm

holds for all n, m with {n, m} <mul {i, 0}. As {i−1, i−1} <mul {i, 0},→β∪Bi−1

is confluent and the commutation of →∗
β∪Bi

and →∗
β∪B0

(=→∗
β) follows from

lemma 31.
The remaining case is when i, j > 0. Using the induction hypothesis, from

Lemma 32 and 33, we obtain commutation of �Bi
and �Bj

, which in turn implies

commutation of →∗
Bi

and →∗
Bj

. Now, as {i− 1, i− 1}<mul {i, j}, by Lemma 31,
→∗

β and →∗
Bi

commute. This way, we also obtain the commutation of →∗
β and

→∗
Bj

. Then, the commutation of →∗
β∪Bi

and →∗
β∪Bj

easily follows.

