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Abstract. We discuss a complete axiomatization of Monadic Second-
Order Logic (MSO) on infinite words.By using model-theoretic methods,
we give an alternative proof of D. Siefkes’ result that a fragment with
full comprehension and induction of second-order Peano’s arithmetic is
complete w.r.t. the validity of MSO-formulas on infinite words. We rely
on Feferman-Vaught Theorems and the Ehrenfeucht-Fräıssé method for
Henkin models of MSO. Our main technical contribution is an infinitary
Feferman-Vaught Fusion of such models. We show it using Ramseyan
factorizations similar to those for standard infinite words.

1 Introduction

We discuss the completeness of an axiomatization of Monadic Second-Order
Logic (MSO) on infinite words. MSO on infinite words is known to be decidable
since the celebrated work of Büchi [2]. The usual route is to translate MSO-
formulas to finite state automata running on infinite words. Such automata
provide an established framework for the specification and verification of non-
terminating programs, while MSO is a yardstick language for expressing proper-
ties about them. We refer to e.g. [7,6,8] for comprehensive presentations of the
subject.

D. Siefkes has shown in [11] that a fragment of second-order Peano’s arith-
metic containing the comprehension axiom scheme and the induction axiom is
complete with respect to the standard model: every MSO-formula true on infinite
words is provable. The approach taken there was to formalize the translation of
MSO-formulas to Büchi automata. This requires to represent automata in the
logic and to formalize the correctness proof of the translation in the correspond-
ing deduction system.

In this paper, we give an alternative proof of Siefkes’ completeness result by
using model-theoretic tools. This leads to a more abstract proof which does not
require explicit manipulation of automata in the logic. To our knowledge, such
approaches to MSO have not been much explored compared to the great body
of work on automata and corresponding algebraic structures [6,8].
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We follow the method of [5], where complete axiomatizations of variants
of MSO on finite trees are presented. Starting from Henkin completeness, we
show that all models of our axiomatization are equivalent w.r.t. the validity of
MSO-formulas. As in [5], we use Feferman-Vaught Theorems obtained by the
Ehrenfeucht-Fräıssé method [10].

In contrast with [10,7], works like [5] or the present one have to handle non-
standards models of second-order arithmetic. As far as Henkin completeness is
concerned, a model M of MSO can be seen as a structure with two domains:
a domain Mι of individuals and a domain Mo ⊆ P(Mι) of sets of individuals
(called predicates in this paper). Besides non-standards individuals (whose order
type is very different from ω), the main difficulty is thatMo is in general strictly
contained in P(Mι): there might not be “enough” predicates.

A crucial observation due to K. Doets [3] makes apparent in (possibly non-
standard) models a structure similar to standard infinite words. Our main techni-
cal contribution is a kind of Feferman-Vaught Infinitary Fusion for such models.
Intuitively, it is a model-theoretic counterpart to a run of a Büchi automaton on
a standard infinite word. The point is to ensure that such a “run” always exists
as a predicate of a given model. For this, we use Ramseyan factorizations similar
to those of infinite words (see e.g. [8]).

The paper is organized as follows. In Section 2, we describe our formal system
for MSO, as well as the class of models we are interested in. These models are
motivated by usual results on Henkin completeness for second-order logic that
we briefly recall. We present in Section 3 the notions on the Ehrenfeucht-Fräıssé
method that we will need. We use it to prove a Feferman-Vaught Finite Sums
Lemma for linearly ordered structures with parameters, which is discussed in
Section 4. We then give the main argument for completeness in Section 5. It
relies on an infinitary version of the Finite Sums Lemma, that we call “Infinite
Fusion” and which is shown in Section 6.

A full version of this paper is available on the author’s web page
http://perso.ens-lyon.fr/colin.riba/papers/msofull.pdf.

2 A Deduction System for Monadic Second-Order Logic
on Infinite Words

2.1 Language

We consider a formulation of Monadic Second-Order Logic (MSO) based on
a two-sorted language: There is one sort ι intended to range over individuals
and one sort o intended to range over monadic (or one-place) predicates on
individuals. We assume given two countable sets Vι = {x, y, z, . . . } and Vo =
{X,Y, Z, . . . } of respectively individual and predicate variables. The formulas of
MSO are then defined by the following grammar:

φ, ψ ∈ Λ ::= Xx | x < y | ¬φ | φ ∨ ψ | ∃X φ | ∃xφ

The set FV(φ) of free (individual and predicate) variables of a formula φ is
defined as usual. A sentence (or closed formula) is a formula with no free variable,
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i.e. a formula φ such that FV(φ) = ∅. Formulas are identified modulo renaming
of their bound variables. The capture-avoiding substitution of y for x in φ is
written φ[y/x].

Note that there is no primitive equality in Λ. This is discussed in Section 2.4.
The other logical connectives are defined as usual:

φ→ ψ := ¬φ ∨ ψ
φ ∧ ψ := ¬(¬φ ∨ ¬ψ)
φ←→ ψ := (φ→ ψ) ∧ (ψ → φ)

∀X φ := ¬∃X ¬φ
∀xφ := ¬∃x¬φ

2.2 Deduction for Second-Order Logic

We now discuss formal deduction for second-order logic. As usual, the rules for
second-order logic are those of the (two-sorted) classical predicate calculus to-
gether with the comprehension axiom scheme (see e.g. [9]). There are several
different formulations equivalent w.r.t. provability. The following Natural De-
duction system is a possible choice.

The deduction relation is writen Γ ` φ, where Γ is a (possibly empty) finite
unordered list of (possibly not closed) formula, and φ is a (possibly not closed)
formula. It is inductively defined by the following rules.

– Rules for propositional logic:

Γ ` φ ∨ ¬φ Γ, φ ` φ
Γ ` φ Γ ` ¬φ

Γ ` ψ

Γ ` φ
Γ ` φ ∨ ψ

Γ ` ψ
Γ ` φ ∨ ψ

Γ ` φ ∨ ψ Γ, φ ` ϕ Γ,ψ ` ϕ
Γ ` ϕ

– Rules for predicate logic (where X ,Y ∈ Vι or X ,Y ∈ Vo):

Γ ` φ[Y/X ]

Γ ` ∃X φ
Γ ` ∃X φ Γ, φ ` ψ

Γ ` ψ
(X /∈ FV(Γ, ψ))

– Comprehension scheme (for all formula φ):

Γ ` ∃X ∀x (Xx←→ φ)
(X /∈ FV(φ))

2.3 Models of Second-Order Logic

We discuss the class of structures (or models) we will use to interpret the lan-
guage of MSO presented in Section 2.1. These structures are motivated by known
results on Henkin completeness that we briefly recall.
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Structures, Assignments and Satisfiability. We consider (Henkin) structures M
of the form (Mι,Mo, <M) where Mι is a non-empty set of individuals, Mo ⊆
P(Mι) is a non-empty set of predicates and <M is a binary relation onMι. We
call Mι and Mo respectively the individual and predicate domains of M.

An M-assignment is a map ρ : (Vι ∪ Vo) → (Mι ∪Mo) which respects the
sorts, i.e. such that ρ(x) ∈ Mι and ρ(X) ∈ Mo if x ∈ Vι and X ∈ Vo. Given
x ∈ Vι and a ∈ Mι, we write ρ[a/x] for the assignment which maps x to a
and is equal to ρ everywhere else. The assignment ρ[A/X] (where X ∈ Vo and
A ∈Mo) is defined similarly.

Given a structure M, an M-assignment ρ and a formula φ, we define the
satisfaction relation M, ρ |= φ by induction on φ as usual:

M, ρ |=Xx iff ρ(x) ∈ ρ(X)
M, ρ |=x < y iff ρ(x) <M ρ(y)
M, ρ |=¬φ iff M, ρ 6|= φ
M, ρ |=φ ∨ ψ iff M, ρ |= φ or M, ρ |= ψ
M, ρ |=∃X φ iff there is some A ∈Mo such that M, ρ[A/X] |= φ
M, ρ |=∃xφ iff there is some a ∈Mι such that M, ρ[a/x] |= φ

We say that φ is valid in M (notation M |= φ) if M, ρ |= φ for every ρ. A set
of formulas ∆ is valid in M (notation M |= ∆) if M |= φ for every φ ∈ ∆.

It is sometimes convenient to consider formulas with a fixed assignment of
their free variables to some structure M. These formulas are called formulas
with parameters in M. We define them as pairs of a formula φ and a finite
partial M-assignment ν : (Vι ∪ Vo) ⇀ (Mι ∪Mo). The set of free variables of
the formula with parameters (φ, ν) is FV(φ, ν) := FV(φ)\dom(ν). We will often
write φ[ν(X )/X | X ∈ dom(ν)] for the formula with parameters (φ, ν).

The satisfaction of a formula with parameters (φ, ν) in a structure M and
assignment ρ (notation M, ρ |= (φ, ν)) is defined as the satisfaction of φ in M
and assignment ρ[ν(X )/X | X ∈ dom(ν)]. The corresponding validity relation
M |= (φ, ν) holds if M, ρ |= (φ, ν) for every ρ.

Second-Order Henkin Structures. Deduction without the comprehension scheme
is correct in any structure M: if ` φ is derivable without using the compre-
hension then φ is valid in M. The following notions are useful to handle the
comprehension scheme. A set of individuals A ∈ P(Mι) is definable if there is a
formula φ and an M-assignment ρ such that

A = {a ∈Mι | M, ρ[a/x] |= φ}

Of course, all A ∈ Mo are definable. The converse is more interesting, since M
satisfies every instance of the comprehension scheme if and only if Mo is the
set of all definable A ∈ P(Mι). In this case, we callM a second-order (Henkin)
structure.

Remark 2.1. (i) We say that M is full if Mo = P(Mι). Full structures are
second-order.
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(ii) Finite boolean combinations of definable predicates are definable. Hence,
the predicate domain of a second-order structure is closed under finite
boolean operations.

Henkin Completeness. Usual Henkin completeness holds for deduction w.r.t.
validity in all second-order Henkin structures (see e.g. [9]):

Theorem 2.2 (Henkin Completeness). Let ∆ be a set of sentences and φ
be a sentence. Assume that for all second-order Henkin structure M, if M |= ∆
then M |= φ. Then there is a finite set Γ ⊆ ∆ such that Γ ` φ.

2.4 Equality

Monadic Second-Order Logic has a definable equality (see e.g. [9]):

(x
.
= y) := ∀X (Xx→ Xy)

Thanks to the comprehension scheme, it is an equivalence relation which more-
over satisfies Leibniz’s scheme:

` ∀x (x
.
= x) ` ∀xy (x

.
= y → y

.
= x) ` ∀xyz (x

.
= y → y

.
= z → x

.
= z)

` ∀xy (x
.
= y → φ[x/z]→ φ[y/z]) (for all formula φ)

Remark 2.3. Given a second-order structureM, we haveMι, ∅ ∈ Mo sinceMι

is definable by the formula (x
.
= x).

Second-Order Structures with Correct Equality. It is well-known that the equal-
ity

.
= may not be correct: Given a structureM, it is possible thatM |= (a

.
= b)

but a 6= b, even if M is second-order (see e.g. [9]). We say that a structure M
has correct equality if M |= (a

.
= b) implies a = b for all a, b ∈Mι.

Remark 2.4. (i) Full structures have correct equality.
(ii) Consider an arbitrary structure M with correct equality. Note that every

singleton {a} with a ∈ Mι is definable (by the formula with parameters
(x

.
= y, [a/x])). According to Remark 2.1.(ii), it follows that ifM is second-

order, then Mo contains all the finite subsets of Mι.
In particular, finite second-order structures with correct equality are full.

As far as Henkin completeness is concerned, it is always possible to assume
that a second-order structure has correct equality. We in fact have the following
strengthening of Henkin completeness (see e.g. [9]):

Corollary 2.5. Let ∆ be a set of sentences and φ be a sentence. Assume that
for all second-order Henkin structure M with correct equality, if M |= ∆ then
M |= φ. Then there is a finite set Γ ⊆ ∆ such that Γ ` φ.
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2.5 Axiomatization

The standard model is N := (N,P(N), <N), where <N is the usual order on
natural numbers. Recall that thanks to the celebrated result of Büchi [2], the
monadic theory of N (i.e. the set of sentences φ such that N |= φ) is decidable.

In this section, we describe a set MSOω of sentences which completely ax-
iomatizes the monadic theory of N: for all sentence φ, if N |= φ then MSOω ` φ.
The axiomatization we consider is an adaptation of that of [11] to the language
of MSO presented in Section 2.1. This is essentially a fragment of second-order
Peano’s arithmetic with full comprehension and induction.

For the completeness proof of MSOω, we shall also discuss variations on
Ramsey’s theorem and the axiom of choice in Sections 5 and 6.

Definition 2.6 (MSOω). MSOω is the set of the following sentences:

– Linear Order axioms:

∀x¬(x < x) ∀xyz (x < y → y < z → x < z)

∀xy (x < y ∨ x .
= y ∨ y < x)

– Unboundedness axiom:
∀x∃y (x < y)

– Induction axiom:

∀X [∀x (∀y (y < x→ Xy)→ Xx)→ ∀xXx]

– Predecessor axiom:

∀x (∃y(y < x)→ ∃y[y < x ∧ ¬∃z (y < z ∧ z < x)])

A formula φ is derivable in MSOω if MSOω ` φ is derivable using the deduc-
tion system of Section 2.2.

A second-order structure with correct equality M is a model of MSOω if
M |= MSOω.

In this paper, we give a model-theoretic proof of Siefkes’ completeness result:

Theorem 2.7 (Completeness of MSOω [11]). For all sentence φ, if N |= φ
then MSOω ` φ.

Following the method of [5], our route to Theorem 2.7 is to use usual Henkin
completeness (as formulated in Corollary 2.5), and to show that all models of
MSOω are equivalent w.r.t. the validity of MSO-formulas. This is the main result
of the paper.

Theorem 2.8 (Main Theorem). Let M be a model of MSOω and φ be a
sentence. We have M |= φ if and only if N |= φ.

Theorem 2.8 is proved in Section 5. As [5], we rely on Feferman-Vaught
Theorems proved by the Ehrenfeucht-Fräıssé method.

We now discuss some aspects of the different axioms of MSOω. All structures
considered here are second-order and have correct equality.
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Orders. We use the following defined formula:

x ≤ y := x < y ∨ x .
= y

Hence, in a structure M with correct equality, given a, b ∈ Mι we have M |=
a ≤ b if and only if (a = b or a <M b).

A structureM is linearly ordered if is satisfies the Linear Order axioms. The
first two sentences say that <M is strict and transitive. Note that <M is thus
antisymmetric: if a <M b then b 6<M a. The third sentence says that <M is
total. Since M is assumed to have correct equality, it is equivalent to requiring
that for all a, b ∈Mι we have either a <M b or a = b or b <M a.

Induction. The induction axiom holds in the standard model N but is false for
instance in the full structure of real numbers.1

Assume thatM satisfies the induction axiom. The contrapositive of induction
says that each non-empty predicate A ∈Mo has minimal elements. If moreover
M is linearly ordered, then A has a unique least element.

Successors and Predecessors. IfM is linearly ordered and satisfies the induction
axiom, then every a ∈ Mι which is not maximal has a successor, i.e. there
is a unique least b >M a. However, a non minimal a ∈ Mι may not have a
predecessor, i.e. a greatest b <M a.2 The predecessor axiom ensures that every
non-minimal individual has a predecessor.

Unboundedness. The axiom of Unboundedness is a kind of infinity axiom. Given
a structure M, we say that U ∈ Mo is unbounded in M if for all a ∈ M there
is some b ∈ U such that a <M b. If <M is strict and transitive, then U must be
infinite. Note however that the converse does not hold, even for models of MSOω.

Remark 2.9 (Non-Standard Models of MSOω). A model M of MSOω can be
non-standard (i.e. non-isomorphic to the standard model N) for two reasons:
(i) because its predicate domain Mo is different from P(Mι) or (ii) because its
individual domain is not isomorphic to N. Let us discuss these two points in view
of Theorem 2.8.

(i) It is well-known that ifM is full (i.e.Mo = P(Mι)), thenMι is isomorphic
to N (see e.g. [9]). Hence non-standard models M have Mo ( P(Mι).

(ii) Thanks to the Löwenheim-Skolem Theorem (see e.g. [1]), we can always
assume that an MSOω-model M has a countable individual domain Mι.
However, the order structure ofM can be very different from that of N. For
instance, ifM is a non-standard model of second-order Peano’s arithmetic,
then it is also a model of MSOω. But M is also a non-standard model of
First-Order Peano’s Arithmetic, and it is well-known (see e.g. [1]) that its
order type is that of: N followed by Q copies of Z. In particular, segments
of the form [a, b) = {c ∈Mι | a ≤M c <M b} may be infinite.

1 The monadic theory of R is undecidable (see [7] for references).
2 Besides completeness w.r.t. N, recall that the monadic theory of the ordinal ω2 is

independent from ZFC (see [10]).



8

3 The Ehrenfeucht-Fräıssé Method

We present the notions on the Ehrenfeucht-Fräıssé method that we will need.
They are mostly variations on those used in [5]. See [4] for a standard reference.

For the remaining of the paper, we fix enumerations of the individual and
predicate variables. Let Vι = {x1, . . . , xp, . . . } and Vo = {X1, . . . , Xq, . . . }. We
say that φ is a p-q-formula if FV(φ) ⊆ {x1, . . . , xp, X1, . . . , Xq}.

Unlike the rest of the paper, the results discussed in this section are insensitive
on whether we are dealing with Henkin structures, general models, or second-
order version thereof. For convenience, we will only consider Henkin structures
which are not necessarily second-order. In this context, two formulas φ and ψ
are logically equivalent if (φ←→ ψ) is valid in all such structures.

3.1 Logical Equivalence Up To Bounded Quantifier Depth

The first step is to classify formulas according to their quantifier-depth.

Definition 3.1 (Quantifier-Depth). The quantifier depth qd(φ) of a for-
mula φ is defined by induction on φ as follows:

qd(Xx) := 0
qd(x < y) := 0

qd(¬φ) := qd(φ)

qd(∃xφ) := qd(φ) + 1
qd(∃X φ) := qd(φ) + 1
qd(φ ∨ ψ) := max(qd(φ), qd(ψ))

We let Λp,qn be the set of p-q-formulas of q.d. ≤ n and write Λn for Λ0,0
n .

A remarkable property of languages without function symbols, such as the
language of MSO, is the following standard observation (see e.g. [4]).

Lemma 3.2 (Finiteness Lemma). Up to logical equivalence, there are only
finitely many p-q-formulas of quantifier depth ≤ n.

Recall that logical equivalence is defined as validity of equivalence in all
(possibly non second-order) structures. Requiring instead validity of equivalence
in all second-order structures has no impact on finiteness: This amounts to add
the comprehension axiom scheme, and adding axioms can only reduce the number
of equivalence classes.

3.2 Structures with Parameters

A structure with parameters is a structureM together with a1, . . . , ap ∈Mι and
A1, . . . , Aq ∈ Mo. We write a for a finite sequence of individuals of length |a|,
and similarly for A. If |a| = p and |A| = q then we say that (M, a, A) is a
p-q-structure.

If φ is a p-q-formula, we write (M, a, A) |= φ for M |= φ[a/x][A/X]. Two
p-q-structures (M, a, A) and (N , b, B) are n-equivalent (notation ≡p,qn ) if they
satisfy the same p-q-formulas of q.d. ≤ n. We write ≡n instead of ≡p,qn when
p, q are clear from the context. The Finiteness Lemma allows to characterize the
n-equivalence class of a p-q-structure by a single p-q-formula:
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Corollary 3.3. For all n ∈ N and all p-q-structure (M, a, A), there is a formula
φ ∈ Λp,qn such that for all p-q-structure (N , b, B), we have (N , b, B) |= φ if and
only if (M, a, B) ≡n (N , b, B). Such a φ is an n-characteristic of (M, a, B).

Moreover, there is a finite set Φp,qn ⊆ Λp,qn of n-characteristics which contains
an n-characteristic of each p-q-structure.

3.3 Ehrenfeucht-Fräıssé Games

Ehrenfeucht-Fräıssé games are a convenient characterization of ≡n-equivalence
for languages satisfying the Finiteness Lemma. There are different possible for-
mulations for second-order logic. Our presentation is inspired from [5], which is
itself that of [4] adapted to non-full models.

Definition 3.4 (Ehrenfeucht-Fräıssé Games). Given structures (M, a, A),
(N , b, B) and n ∈ N, the Ehrenfeucht-Fräıssé Game EFn((M, a, A), (N , b, B)) is
an n-round game played between two players called “Spoiler” and “Duplicator”.

At each round, Spoiler plays first and chooses either an individual or a predi-
cate in one of the two structures. Duplicator then responds in the other structure
by choosing an individual if Spoiler chose an individual or a predicate if Spoiler
chose a predicate. After n rounds, Spoiler and Duplicator have build a finite
relation

{(a′1, b′1), . . . , (a′p, b
′
p), (A

′
1, B

′
1), . . . , (A′

q, B
′
q)}

with n = p+ q, a′ ∈Mι, b
′ ∈ N ι, A

′ ∈Mo and B
′ ∈ N o. Then Duplicator wins

if and only if (M, aa′, AA
′
) ≡0 (N , bb′, BB′

).

Our presentation differs from [5,4] on the following point. In these works,
Duplicator wins if the finishing tuple is a finite partial isomorphism between the
two structures. In our case, equality is not a quantifier-free formula, and we take
a coarser wining condition based on ≡0-equivalence.

Ehrenfeucht-Fräıssé games characterize ≡n-equivalence:

Theorem 3.5. Given two structures (M, a, A) and (N , b, B) and n ∈ N, Dupli-
cator has a wining strategy in EFn((M, a, A), (N , b, B)) if and only if (M, a, A)
and (N , b, B) are ≡n-equivalent.

4 Finite Sums of Segments

We now discuss how to restrict structures into segments that can be concate-
nated. This will be done for second-order linearly ordered structures with correct
equality. The Ehrenfeucht-Fräıssé method gives simple proofs that concatena-
tion of segments preserves ≡n-equivalence. This leads to a partial sum opera-
tion on ≡n-classes. We follow well-known patterns of Feferman-Vaught Theo-
rems [10,7,5].
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4.1 Restrictions and Relativizations

Segments will be obtained from structures by restrictions and relativizations.
The restriction of a structure M to some non-empty predicate A ∈ Mo is the
structureM�A defined as expected: its individual domain isMι∩A, its predicate
domain is {B∩A | B ∈Mo} and its relation <M�A is the restriction of <M to A:
<M�A := <M ∩ (A× A). It is convenient to write the individual and predicate
domains of M�A respectively as Mι�A and Mo�A.

Restrictions of Structures with Parameters. We shall also need the less usual
restriction of structures with parameters. Let p, q ∈ N. Consider a structure
M with individual parameters a = a1 . . . ap and predicate parameters A =
A1 . . . Aq. Let A ∈ Mo be non-empty and such that a1, . . . , ap ∈ A. We define
the restriction of (M, a, A) to A to be the structure:

(M, a, A)�A := (M�A, a1 . . . ap, (A1 ∩A) . . . (Aq ∩A))

Relativization of Formulas. An analogous operation can be defined on formulas.
Let φ and ϕ be two formulas with no free variables in common, and let y be a
variable not appearing free in φ. The relativization of φ to ϕ[y], notation φ�ϕ[y],
is defined by induction on φ as follows:

φ�ϕ[y] := φ if φ is atomic
(φ ∨ ψ)�ϕ[y] := (φ�ϕ[y]) ∨ (ψ�ϕ[y])

(¬φ)�ϕ[y] := ¬(φ�ϕ[y])
(∃X φ)�ϕ[y] := ∃X (φ�ϕ[y]) if X /∈ FV(ϕ)
(∃xφ)�ϕ[y] := ∃x (ϕ[x/y] ∧ φ�ϕ[y]) if x /∈ FV(ϕ) ∪ {y}

If (φ, ν) is a formula with parameters in a structureM, and if A ∈Mo contains
all individual parameters of φ, then (φ, ν)�A is defined as ((φ�(Xx)[x]), ν[A/X])
where X,x /∈ FV(φ, ν).

The Transfer Property. We now check that restriction and relativization are
equivalent w.r.t. satisfaction. This in particular implies that restriction preserves
the comprehension scheme: M�A is second-order if M is second-order.

Proposition 4.1 (Transfer). Let p, q ∈ N and (M, a, A) be a p-q-structure.
Let ϕ be a formula with parameters in M and whose free variables are disjoint
from {x1, . . . , xp, X1, . . . , Xq}. Given x0 /∈ {x1, . . . , xp}, let A ∈ Mo be non-
empty and such that (M, a, A) |= ∀x (Ax←→ ϕ[x/x0]). Assume that a ∈ A.

Let φ be a formula with FV(φ) ⊆ {x1, . . . , xp, X1, . . . , Xq}. Then we have
(M, a, A)�A |= φ if and only if (M, a, A) |= φ�ϕ[x0].

4.2 Finite Sums of Segments

A segment of a structure M is a predicate of the form

[a, b) := {c ∈Mι | a ≤M c <M b} where a <M b
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We write [−, b) for [a, b) if M is linearly ordered with least element a. Two
consecutive segments (M, a, A)�[a, b) and (M, b, A)�[b, c) can be concatenated
to (M, ab, A)�[a, c). Using the Ehrenfeucht-Fräıssé method, it is easy to show
that concatenation of segments preserves ≡n-equivalence.

Similar operations have already been defined for full models (see e.g. [10])
as well as for Henkin models [5]. Our operation differs from [5] in the treatment
of predicate parameters: since we only need the concatenation of consecutive
segments which are restrictions of the same structure M, we can share the
predicate parameters in the two components. This simplifies both the statement
and the proof of the Lemma.

Lemma 4.2 (Finite Sums of Segments). Consider two second-order linearly
ordered structures M and N , both with correct equality. Let n ∈ N.

If (M, a, A)�[t0, t1) ≡n (N , b, B)�[u0, u1)

and (M, a′, A)�[t1, t2) ≡n (N , b′, B)�[u1, u2)

then (M, aa′, A)�[t0, t2) ≡n (N , bb′, B)�[u0, u2).

5 Completeness of MSOω w.r.t. the Standard Model

In this section, we present a proof of Theorem 2.8. We use an infinitary version
of the Finite Sums Lemma which is discussed in Section 6.

We actually prove the following formulation of Theorem 2.8:

Theorem 5.1. Let M be a model of MSOω. For all n ∈ N we have M≡n N.

Doets’ Lemma. Our way to Theorem 5.1 starts from the simple but crucial
observation that bounded segments of models of MSOω are ≡n-equivalent to
finite linear orders. To our knowledge, this is due to K. Doets [3] for the Π1

1 -
case (first-order logic with universal prenex quantification on predicates). Recall
that a bounded segment of an arbitrary model of MSOω may not be finite (see
Remark 2.9).

In our context, a finite linear order is a structure of the form N�[m0,m1) with
m0 < m1 ∈ N. Note that if m1 −m0 = k1 − k0 (where m0 < m1 and k0 < k1),
then N�[m0,m1) ≡n N�[k0, k1) for all n ∈ N.

Lemma 5.2 (Doets’ Lemma). Let M be a model of MSOω and n ∈ N. For
all a <M b, there is a finite linear order L such that M�[a, b) ≡n L.

Ramseyan Factorizations. LetM be a model of MSOω. In order to obtainM≡n
N from Doets’ Lemma 5.2, we would like to perform a kind of infinite sum of the
(M�[a, b))a<Mb. We rely on a weak form of Ramsey’s theorem which is similar
to the usual Ramseyan factorizations of infinite words discussed e.g. in [8].

Recall from Corollary 3.3 that ifM is a linearly ordered second-order struc-
ture with correct equality, then for all n ∈ N and all a <M b, there is a φ ∈ Φ0,0

n

such that M |= φ�[a, b). We say that M has Ramseyan factorizations if there is
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φ ∈ Φ0,0
n and an unbounded U ∈ Mo which is homogeneous for φ. We actually

need a slightly stronger statement involving formulas with predicate parameters.
Given a structure M and a predicate U ∈ Mo, we let [U ]

2 ⊆ Mι ×Mι be
the set of pairs (a, b) ∈ U × U such that a <M b.

Theorem 5.3 (Ramseyan Factorizations). Let M be a model of MSOω and
let n, q ∈ N. Given A1, . . . , Aq ∈ Mo and an unbounded U ∈ Mo, there is an

unbounded predicate V ⊆ U and a φ ∈ Φ0,q
n such that for all (a, b) ∈ [V ]

2
we

have (M, , A) |= φ�[a, b).

Theorem 5.3 follows from Theorem I.1.c.3 of [11]. See also the full version of
this paper. Together with Doets’ Lemma, we obtain:

Corollary 5.4. Let M be a model of MSOω and n ∈ N. There is an unbounded
U ∈ Mo and a finite linear order L such that for all (a, b) ∈ [U ]

2
we have

M�[a, b) ≡n L.

Infinite Fusion. Let M be a model of MSOω and n ∈ N. Using Corollary 5.4
and Doets’ Lemma 5.2 we arrive at the following point: There are unbounded
U ∈Mo and V ∈ P(N) together with u ∈ U and v ∈ V such that

M�[−, u) ≡n N�[−, v)

and for all (u0, u1) ∈ [U ]
2

and all (v0, v1) ∈ [V ]
2

M�[u0, u1) ≡n N�[v0, v1)

We can conclude that M ≡n N from these assumptions thanks to the Infinite
Fusion Lemma 6.2. We state and prove it in Section 6, and this will achieve the
proof of Theorem 5.1.

6 The Infinite Fusion Lemma

In this section, we state and prove the Infinite Fusion Lemma. Besides Ramseyan
factorizations (already discussed in Section 5), we shall also use a weak form of
the axiom of choice which is called Splicing in [11].

6.1 Splicing

We discuss the Splicing Theorem of [11] and one of its corollary that we actually
use in the Infinite Fusion Lemma.

LetM be a model of MSOω and U ∈Mo. Individuals a, b ∈Mι are consec-
utive in U if a, b ∈ U , a <M b and there is no c ∈ U such that a <M c <M b.

The Splicing Theorem is the following: Given a formula (∃Xφ) with predicate
parameters in M, if for all a, b consecutive in U we have M |= ∃Xφ�[a, b), then
there is a predicate A ∈ Mo such that for all a, b consecutive in U we have
M |= φ[A/X]�[a, b). This is Theorem I.5.b.1 of [11].
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For the Infinite Fusion Lemma, we shall use a variant of Splicing that we call
Idempotent Splicing. The main difference is that we need to obtain a predicate
A ∈Mo which is correct for all (a, b) ∈ [U ]

2
, and not just the consecutive ones.

On the other hand, we only need it for those ≡qn-characteristics which moreover
define an idempotent coloring.

Proposition 6.1 (Idempotent Splicing). Let M be a model of MSOω and
let n, q ∈ N.

Given and A1, . . . , Aq ∈Mo, let φ ∈ Φ0,(q+1)
n and U ∈Mo be such that

(i) (M, , A) |= ∃X φ[X/Xq+1]�[a, b) for all (a, b) ∈ [U ]
2
, and

(ii) there is a second-order linearly ordered 0-(q + 1)-structure with correct
equality (N , , , BB) and b0 <N b1 <N b3 such that φ holds in
(N , , BB)�[b0, b2), (N , , BB)�[b0, b1) and (N , , BB)�[b1, b2).

Then there is a predicate A ∈ Mo such that for all (a, b) ∈ [U ]
2

we have
(M, , AA) |= φ�[a, b).

In Proposition 6.1 above, condition (i) is actually the premise of the Splicing
Theorem. Condition (ii) intuitively says that φ defines an idempotent coloring.
We give more details on Splicing in the full version of the paper.

6.2 Infinite Fusion

As usual with the Ehrenfeucht-Fräıssé method, we perform an induction on the
quantifier depth of formulas. This to consider structures with parameters.

Lemma 6.2 (Infinite Fusion). Let M and N be models of MSOω. Let n ∈ N.
Let U ∈ Mo and V ∈ N o be unbounded, and assume that their respective

least elements u and v are not the least elements of respectively Mι and N ι.
Let a ∈Mι�[−, u), b ∈ N ι�[−, v) both of length p ∈ N and A ∈Mo, B ∈ N o

both of length q ∈ N. Assume that

(M, a, A)�[−, u) ≡n (N , b, B)�[−, v)

and that for all (u0, u1) ∈ [U ]
2

and all (v0, v1) ∈ [V ]
2

we have

(M, , A)�[u0, u1) ≡n (N , , B)�[v0, v1)

Then (M, a, A) ≡n (N , b, B).

Using Lemma 6.2, we can achieve the proof of Theorem 5.1 as follows. Let
M be a model of MSOω and let n ∈ N. By Corollary 5.4 there is a finite linear
order L and an unbounded predicate U ∈ Mo such that M�[a, b) ≡n L for all

(a, b) ∈ [U ]
2
. Since M is a second-order linearly ordered structure with correct

equality, we can moreover assume that the least element u of U is not the least
element of M. By Doets’ Lemma 5.2, the segment M[−, u) is ≡n-equivalent to
N�[−, v) for some v > 0. We thus obtain an unbounded set V ∈ P(N) with least
element v, and such thatM�[−, u) ≡n N�[−, v) andM�[u0, u1) ≡n N�[v0, v1) for

all (u0, u1) ∈ [U ]
2

and all (v0, v1) ∈ [V ]
2
. We conclude M≡n N by Lemma 6.2.

The rest of this section is devoted to the proof of Lemma 6.2. We reason by
(external) induction on n ∈ N.
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Base Case (n = 0). We just have to show that (M, a, A) and (N , b, B) agree
on atomic formulas φ with individual variables in {x1, . . . , xp} and predicate
variables in {X1, . . . , Xq}. We only detail the case of xi < xj , that of Xixj being
similar.

Since ai, aj <M u, the formula (xi < xj) holds in (M, a, A) if and only
if it holds in (M, a, A)�[−, u). The same holds for N , and we are done since
(M, a, A)�[−, u) ≡0 (N , b, B)�[−, v).

Inductive Step. We now consider the inductive step: we show the property
for n+1 assuming it for n. Using Theorem 3.5, we consider the different possible
moves of Spoiler, and then build the answer of Duplicator.

Spoiler plays an individual, say a ∈Mι. Since U is unbounded, there is u′ ∈ U
strictly greater than a. Also using the unboundedness of V , let v′ ∈ V be strictly
greater than v.

We have (M, a, A)�[−, u′) ≡n+1 (N , b, B)�[−, v′) thanks to the Finite Sums
Lemma 4.2 applied to the assumptions (M, a, A)�[−, u) ≡n+1 (N , b, B)�[−, v)
and (M, , A)�[u, u′) ≡n+1 (N , , B)�[v, v′). Now, by Theorem 3.5 there is some
b ∈ N ι�[−, v′) such that (M, aa,A)�[−, u′) ≡n (N , bb, B)�[−, v′). The predi-
cates U ′ := {s ∈ U | s ≥M u′} and V ′ := {t ∈ V | t ≥N v′} are both un-

bounded. For all (u0, u1) ∈ [U ′]
2
, (v0, v1) ∈ [V ′]

2
, we have (M, , A)�[u0, u1) ≡n

(N , , B)�[v0, v1). Moreover, since M and N are both linearly ordered and with
correct equality, u′ and v′ are the least elements of respectively U ′ and V ′. We
can thus conclude by induction hypothesis.

Spoiler plays a predicate, say A ∈ Mo. Since M has Ramseyan factorizations
(Theorem 5.3) we get an unbounded predicate U ′ ⊆ U and an n-characteristic

φ ∈ Φ0,q+1
n such that for all (u0, u1) ∈ [U ′]

2
we have (M, , AA) |= φ�[u0, u1),

i.e. (M, , AA)�[u0, u1) |= φ thanks to the Transfer Property (Proposition 4.1).
Since U ′ is unbounded and since on the other hand M is a second-order lin-
early ordered structure with correct equality, we can assume that U ′ has a least
element u′.

We now claim that for all (v0, v1) ∈ [V ]
2

we have (N , , B) |= (∃X φ)�[v0, v1).

– Proof (of the claim). Fix (u0, u1) ∈ [U ′]
2 ⊆ [U ]

2
. For all (v0, v1) ∈ [V ]

2
, since

by assumption (N , , B)�[v0, v1) ≡n+1 (M, , A)�[u0, u1), by Theorem 3.5 there
is some Bv0,v1 ∈ N o such that (N , , BBv0,v1)�[v0, v1) ≡n (M, , AA)�[u0, u1),
hence (N , BBv0,v1)�[v0, v1) |= φ. ut

By Proposition 6.1 (Idempotent Splicing), there is a predicate B ∈ N o such

that (N , , BB) |= φ�[v0, v1) for all (v0, v1) ∈ [V ]
2
. Note that condition (ii) of

Proposition 6.1 is satisfied with (M, , AA) and any u′0 <M u′1 <M u′2 in the
unbounded predicate U ′.

We now build Duplicator’s response to A ∈ Mo. We have to take care of
the initial segment (M, , AA)�[−, u′). Using the unboundedness of V , let v′ ∈ V
be strictly greater than v. Reasoning as above, we get (M, a, A)�[−, u′) ≡n+1
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(N , b, B)�[−, v′) using the Finite Sums Lemma 4.2. Let V ′ := {c ∈ V | v′ ≤N
c}. By Theorem 3.5, there is some B′ ∈ N o such that (N , , BB′)�[−, v′) ≡n
(M, , AA)�[−, u′). Since N is second-order, let B′′ := B′�[−, v′) ∪ B�[v′,−),
where [v′,−) := {c ∈ N ι | v′ ≤N c}. Now, (N , b, BB′′) (together with V ′)
satisfies the premise of the induction hypothesis and we are done.

7 Conclusion

We gave a model-theoretic proof of Siefkes’ completeness result for MSOω [11].
It is based on Ramsey’s Theorem for additive colorings, with constructions rem-
iniscent from algebraic approaches to ω-rational languages [8]. Further works
will begin by clarifying these relationships. An interesting question is the proof-
theoretic analysis of MSOω. The algebraic approach to parity conditions [8] can
be interesting in this perspective. An other direction is the completeness of MSO
on infinite trees, and the comparison with Walukiewicz’s completeness result for
the µ-calculus [12].
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