
Union of Reducibility Candidates for Orthogonal
Constructor Rewriting

Colin Riba

Projet Everest
INRIA Sophia Antipolis?

Colin.Riba@sophia.inria.fr

Abstract. We revisit Girard’s reducibility candidates by proposing a
general of the notion of neutral terms. They are the terms which do not
interact with some contexts called elimination contexts. We apply this
framework to constructor rewriting, and show that for orthogonal con-
structor rewriting, Girard’s reducibility candidates are stable by union.

1 Introduction

The most flexible termination proof methods for various extensions of typed λ-
calculi use type interpretations [Abe06, BGP06, BJO02, BR06, Par97]. Among
them we distinguish three families: Girard’s reducibility candidates [Gir72], Tait’s
saturated sets [Tai75], and interpretations based on biorthogonality [Gir87, Par97].
An interesting way to compare different type interpretations is to study their
stability by union. This is even a necessary property in some cases [Abe06, BR06,
Tat07].

This paper concerns the extension of the simply-typed λ-calculus with con-
structor rewriting. We are not interested in termination criteria by themselves,
but by the investigation of the closure properties of types interpretations that al-
low to formulate different termination criteria. We focus on Girard’s reducibility
candidates and their stability by union.

We give a generalization of the notion of neutral terms that allows to define
Girard’s reducibility candidates in a generic way. Neutral terms are the terms
that do not interact with some contexts called elimination contexts. Terms which
are not neutral are observable since they interact with some elimination contexts.
We call them values. We instantiate this framework with constructor rewriting.
In order to get interesting values, we use elimination contexts with destructors
to eliminate the constructors.

Next, we study the question of stability by union. By instantiating the con-
dition of [Rib07b], we show that reducibility candidates are stable by union
for orthogonal constructor rewriting. The proof uses a result of [KOvO01] on
the existence of external redexes for orthogonal Context-sensitive Conditional
Expression Systems (CCERSs).

? 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France.

The paper is organized as follows. We present our notations in Sect. 2.
Section 3 presents a general definition of reducibility families and type inter-

pretations. We apply it by briefly discussing Tait’s saturated sets for the pure
λ-calculus and one possible extension to deal with rewriting.

Section 4 is devoted to Girard’s reducibility candidates, of which we suggest
a generalization in Sect. 4.1. We instantiate it in Sect. 4.2 to the framework of
λ-calculus plus constructor rewriting.

We then discuss stability by union in Sect. 5. We first briefly present the
key problems and known results. Section 5.1 recalls a necessary and sufficient
condition for the stability by union of Girard’s candidates. In Sect. 5.2, we show
that this condition is met with orthogonal constructor rewriting.

We assume familiarity with typed λ-calculus [Bar92], reducibility [Gal89,
Kri90] and rewriting [Ter03]. Concerning CCERSs, we refer to [GKK05]. The
paper (except Sect. 5.2) is based on parts of the Phd thesis of the author [Rib07a]
(in French).

2 Simply Typed λ-Calculus with Constructor Rewriting

Given a set A, ~a denotes a finite sequence of elements of A of length |~a|.

Terms and types. A signature Σ is a family of sets (Σn)n∈N such that Σn contains
algebraic symbols of arity n. We consider λ-terms with uncurried symbols f in
a signature Σ and variables x ∈ X :

t, u ∈ Λ(Σ) ::= x | λx.t | t u | f(t1, . . . , tn) ,

where f ∈ Σn. Let Λ be the set of pure λ-terms Λ(∅). A substitution is a function
σ : X → Λ(Σ) of finite domain. The capture avoiding application of σ to the
term t is written tσ or t[σ(x1)/x1, . . . , σ(xn)/xn] if Dom(σ) = {x1, . . . , xn}.

Given base types B ∈ B, simple types are defined as usual:

T,U ∈ T (B) ::= B | U ⇒ T .

Typing contexts are functions Γ of finite domain from variables to types, written
x1 : T1, . . . , xn : Tn. Given a type assignment τ : Πn∈N.Σn → T (B)n+1, the
typing relation Γ `τ t : T is inductively defined by the following rules:

(Ax)
Γ, x : T `τ x : T

(Symb)
Γ `τ t1 : T1 . . . Γ `τ tn : Tn

Γ `τ f(t1, . . . , tn) : T
τ(f) = (T1, . . . , Tn, T)

(⇒I)
Γ, x : U `τ t : T

Γ `τ λx.t : U ⇒ T
(⇒E)

Γ `τ t : U ⇒ T Γ `τ u : U

Γ `τ t u : T

Constructor rewriting. Assume given a set C ⊆ Σ of constructor symbols c of
type (~T, B) with B ∈ B. For normalization, B must occur only at positive positions
in ~T [Men87]. As we are not interested in strong normalization conditions, we
do not care of this restriction here.

A constructor rewrite system (or rewrite system) on C is a set R of rewrite
rules f(~l) 7→R r such that r ∈ Λ(Σ), FV(r) ⊆ FV(f(~l)), f ∈ Σ\C (defined symbols
are not constructors) and ~l are terms of the grammar

p ::= x | c(p1, . . . , pn) ,

where c ∈ C (hence, ~l are patterns).
A rewrite system R is typed if for each rewrite rule f(~l) 7→R r with τ(f) =

(~T, T), there exists a (necessarily unique) context Γ with Dom(Γ) = FV(f(~l))
such that

Γ `τ f(~l) : T and Γ `τ r : T .

Example 2.1. We consider the type Nat of Peano’s numbers, with construc-
tors 0 : Nat and S : (Nat, Nat). The following system, defining addition, is a
constructor rewrite system:

plus(x, 0) 7→ x plus(x, S(y)) 7→ plus(S(x), y) .

Reductions. A rewrite relation is a binary relation →R⊆(Λ(Σ) \ X)×Λ(Σ) which
is stable by contexts and substitutions. We let (t)R =def {v | t →R v} and say
that a term t is R-reducible (or reducible) if (t)R 6= ∅. We define the product
extension of →R as (t1, . . . , tn) →R (u1, . . . , un) when there is k ∈ {1, . . . , n}

such that tk →R uk and ti = ui for all i 6= k. We denote by SNR the set of
strongly normalizing terms for →R, which is the smallest set of terms such that

∀t. (∀u. t →R u =⇒ u ∈ SNR) =⇒ t ∈ SNR .

Given a constructor rewrite system R, we let →βR be the smallest rewrite
relation on Λ(Σ) containing 7→R and β-reduction: (λx.t)u 7→β t[u/x].

3 Reducibility Families

In this section, we present a general notion of reducibility family and of type
interpretation. We then briefly take a look at their instantiation to deal with the
pure λ-calculus and with the combination of λ-calculus with rewriting.

Definition 3.1. Let →R be a rewrite relation on Λ(Σ).

(i) The function space is the function ⇒ : P(Λ(Σ))2 → P(Λ(Σ)) defined as

A ⇒ B =def {t | ∀u. u ∈ A =⇒ t u ∈ B} .

(ii) A reducibility family for →R is a set of sets Red ⊆ {A | X ⊆ A ⊆ SNR}

which is closed by intersections and by the function space.

(iii) A type interpretation in Red is a map J K : T (B) → Red such that for all
T,U ∈ T (B) we have JU ⇒ TK = JUK ⇒ JTK.

(iv) A type interpretation J K is adequate if for all Γ , t, T and σ we have(
Γ `τ t : T ∧ σ |=J K Γ

)
=⇒ tσ ∈ JTK ,

where σ |=J K Γ iff σ(x) ∈ JΓ(x)K for all x ∈ Dom(Γ).

Pure λ-calculus. Let Red be a reducibility family and J K : T (B) → Red be a
type interpretation. Let us see, in the case of the pure λ-calculus, some sufficient
conditions to ensure that J K is adequate. As usual, we reason by induction on
Γ ` t : T and by cases on the last applied typing rule.

We only have to check the rules (Ax), (⇒ E) and (⇒ I). The rule (Ax)
is trivial while (⇒ E) is dealt with by definition of the function space ⇒ .
Concerning the rule (⇒I), it is sufficient that for all A ∈ Red,

∀t, u ∈ Λ. (t[u/x] ∈ A ∧ u ∈ SNβ) =⇒ (λx.t)u ∈ A . (1)

As for X ⊆ A ⊆ SNβ, condition (1) has to be preserved by ⇒ : Red2 → Red.
We can conveniently formulate this by using elimination contexts [Abe04]. For
the pure λ-calculus, they are defined by the grammar

E[] ∈ E⇒ ::= [] | E[] t .

Then, we get the following clauses: for all E[] ∈ E , all x ∈ X and all t, u ∈ Λ,

E[] ∈ SNβ =⇒ E[x] ∈ A , (2)
(E[t[u/x]] ∈ A ∧ u ∈ SNβ) =⇒ E[(λx.t)u] ∈ A . (3)

The sets A ⊆ SNβ satisfying (2) and (3) are Tait’s saturated sets [Tai75]. The
set of saturated sets, denoted by SATβ, forms a reducibility family.

Remark 3.2. Note that properties (2) and (3) use call-by-name evaluation con-
texts to prove strong normalization of the full reduction →β.

Showing that SATβ is not empty amounts to showing that SNβ ∈ SATβ.
We must check properties (2) and (3) with A = SNβ, which in this case are
consequences of two important facts. First, a reduction step from a term of the
form E[(λx.t)u] (resp. E[x]) occurs either in the elimination context E[] or in
the term (λx.t)u, but involves no interaction between them:

∀v. E[x] →β v =⇒ (v = E ′[x] with E[] →β E
′[]) (4)

∀v. E[(λx.t)u] →β v =⇒ (v = E ′[s] with (E[], (λx.t)u) →β (E ′[], s)) (5)

Second, property (3) follows from (5) and the fact that (λx.t)u ∈ SNβ as
soon as t[u/x] ∈ SNβ and u ∈ SNβ. This property holds in turn thanks to the
Weak Standardization Lemma, which was used in [Alt93] for extensions of the
Calculus of Constructions. It is obvious for the pure λ-calculus.

Lemma 3.3 (Weak Standardization). A reduct of a β-redex (λx.t)u is either
t[u/x] or a β-redex (λx.t ′)u ′ with (t, u) →β (t ′, u ′).

λ-calculus with rewriting. To deal with rewriting, we must consider the rule
(Symb). For constructors, we have to use specific interpretations of base types
(eg. using inductive types, as in [BJO02]). We concentrate on symbols f ∈ Σ\C.
Given f of type (~T, T) and ~t ∈ J~TK, we have to make sure that f(~t) ∈ JTK.
Sufficient conditions for this are given by termination criteria, a subject that
we do not treat in this paper (see for instance [BJO02, Abe04, Abe06, BGP06,
BR06]).

Here, we are interested in the exploration of reducibility families that allow to
formulate termination criteria. As for the λ-calculus, we can use a non-interaction
property similar to (5):

∀v. E[f(~t)] →βR v =⇒ (
v = E ′[s] with (E[], f(~t)) →βR (E ′[], s)

)
. (6)

But rewrite systems do not satisfy in general the weak standardization lemma.
Therefore, in order to get f(~t) ∈ SNβR, we need v ∈ SNβR for all v such that
f(~t) →βR v. This is subsumed by the clause(

∀v. E[f(~t)] →βR v =⇒ v ∈ A
)

=⇒ E[f(~t)] ∈ A . (7)

In this case, we also need saturated sets to be stable by reduction: if t ∈ A and
t →βR u then u ∈ A.

4 Neutral Terms and Reducibility Candidates

We now turn to Girard’s reducibility candidates [Gir72]. They form a reducibility
family in which properties (3) and (7) can be formulated in a uniform and elegant
way. This is due to neutral terms, that enjoy non-interaction properties such
as (4), (5) and (6).

We first give a general formulation, and then apply it to constructor rewriting.

4.1 A General Formulation

We give a generalization of the original notion of neutral terms that allows to
define reducibility candidates in a generic way. The key idea is that neutral
terms are the terms that do not interact with elimination contexts. In the whole
section, we assume given a rewrite relation →R.

Elimination contexts will be defined as a special case of evaluation contexts.

Definition 4.1 (Evaluation Contexts). Let [] ∈ X be a distinguished vari-
able. A set of evaluation contexts for →R is a set E of terms E[] which is

(i) stable by reduction: if E[] ∈ E and E[] →R t then t = F[] ∈ E;
(ii) stable by composition: if E[] ∈ E and F[] ∈ E then E[F[]] ∈ E, where

E[t] =def (E[])[t/[]].

We now assume given a set E of evaluation contexts for →R.

Definition 4.2 (Neutral Terms). A term t is neutral for →R in E if for all
E[] ∈ E,

∀v. E[t] →R v =⇒ (v = E ′[t ′] with (E[], t) →R (E ′[], t ′)) .

We denote by NRE the set of neutral terms for →R in E.

The terms that are not neutral interact with evaluation contexts. They are
therefore observable, and we think of them as being values.

Definition 4.3 (Values). A value for →R in E is a term which is not neutral.
We denote by VRE the set of values for →R in E.

Example 4.4. For the pure λ-calculus, taking E⇒ as evaluation contexts, the
values are exactly the terms of the form λx.t. Hence values are determined by
the shape of evaluation contexts. Thanks to Weak Standardization (Lem. 3.3),
we can use call-by-name evaluation contexts to prove the strong normalization
of the full β-reduction (see also Rem. 3.2).

To build reducibility candidates, we are interested in neutral terms and evalu-
ation contexts that enjoy some properties. This leads to the notion of elimination
contexts.

Definition 4.5 (Elimination Contexts). Let E be a set of evaluation contexts
for →R. Then E is a set of elimination contexts for →R if

(i) all variables are neutral: X ⊆ NRE ,
(ii) if t ∈ NRE and E[] ∈ E then E[t] ∈ NRE .

Example 4.6. For the pure λ-calculus, E⇒ is a set of elimination contexts.

We now define reducibility candidates in the usual way: our generalization
regards neutral terms and their definition using elimination contexts. Assume
that E is a set of elimination contexts for →R.

Definition 4.7 (Reducibility Candidates). The set CRRE of reducibility can-
didates for →R in E is the set of all C ⊆ SNR such that

(CR0) if t ∈ C and t →R u then u ∈ C,
(CR1) if t ∈ NRE and ∀u. t →R u =⇒ u ∈ C then t ∈ C.

Note that CRRE is a complete lattice for ⊆ whose top element is SNR and
whose greatest lower bounds are intersections. In order to verify that X is con-
tained in any candidate, it is interesting to look at the least reducibility candi-
date. This is HNRE , the set of hereditary neutral terms, defined as the smallest
set of terms such that

∀t ∈ NRE . (∀u. t →R u =⇒ u ∈ HNRE) =⇒ t ∈ HNRE .

Since variables are neutral terms in normal form (recall that by assumption→R⊆(Λ(Σ) \ X)×Λ(Σ)), we have X ⊆ HNRE ⊆ C for every C ∈ CRRE .
The non-interaction between neutral terms and elimination contexts has the

following simple but fundamental consequence.

Lemma 4.8. Let t ∈ NRE and E[] ∈ E ∩ SNR. Then, for all C ∈ CRRE ,

(∀u. t →R u =⇒ E[u] ∈ C) =⇒ E[t] ∈ C .

Proof. First, since t ∈ NRE and E[] ∈ E , we have E[t] ∈ NRE by Def. 4.5.(ii).
Hence, we only have to show that (E[t])R ⊆ C.

We reason by induction on E[] ∈ SNR. Let v such that E[t] →R v. Since t is
neutral, we have v = E ′[t ′] with (E[], t) →R (E ′[], t ′), and there are two cases.

Case of E[] →R E
′[]. We have E ′[] ∈ E by Def. 4.1.(i) and E ′[] ∈ SNR since

E[] ∈ SNR. For all u ∈ (t)R, since E[u] →R E
′[u] and E[u] ∈ C, we have

E ′[u] ∈ C by (CR0). Hence, we can apply the induction hypothesis on E ′[]
and we conclude that E ′[t] ∈ C.

Case of t →R t
′. In this case, we have E[t ′] ∈ C by assumption. ut

We now give a sufficient condition for CRRE to be a reducibility family (in
the sense of Def. 3.1) when E contains []t for all t ∈ SNR. The key point is to
show that ⇒ is a function from CR2

RE to CRRE . We rely on Lem. 4.8.

Lemma 4.9. If E contains [] t for all t ∈ SNR and moreover []t ∈ SNR for
all t ∈ SNR, then CRRE is a reducibility family.

Proof. It remains to show that ⇒ : CR2
RE → CRRE . Let A,B ∈ CRRE . First,

we have A ⇒ B ⊆ SNR: for all t ∈ A ⇒ B, since X ⊆ A we have tx ∈ B ⊆ SNR,
hence t ∈ SNR. Let us now check the clauses (CR0) and (CR1).

(CR0) Let t ∈ A ⇒ B and u ∈ (t)R. For all a ∈ A, we have ta ∈ B, hence ua ∈ B
by (CR0) applied to B. It follows that u ∈ A ⇒ B.

(CR1) Let t ∈ NRE such that (t)R ⊆ A ⇒ B and let a ∈ A. For all u ∈ (t)R, we
have ua ∈ B. Since []a ∈ SNR, it follows from Lem. 4.8 that ta ∈ B. We
conclude that t ∈ A ⇒ B. ut

Example 4.10. For the pure λ-calculus, CRβE⇒ is the usual set of reducibility
candidates. In particular, each C ∈ CRβE⇒ satisfies property (3).

4.2 Application to Constructor Rewriting

Let R be a constructor rewrite system on C. If we use elimination contexts of
the form E⇒, then the values are the terms of the form λx.t.

However, we would like to build values from constructors. This is particularly
useful with inductive types [BJO02]. According to Def. 4.3, we have to make them
observable. To this end, we introduce appropriate destructors in elimination
contexts. To each c ∈ C of type (~T, B) with |~T | > 0 and each i ∈ {1, . . . , |~T |}, we
associate a new unary destructor symbol dc,i defined by the rewrite rule

dc,i(c(x1, . . . , xn)) 7→D xi .

Let f be a new nullary symbol. For the elimination of a nullary constructor c,
we use a new unary destructor dc defined by the rewrite rule

dc(c) 7→D f .

Lemma 4.11. Let E⇒C be the set of terms defined by the grammar

E[] ∈ E⇒C ::= [] | E[] t | d(E[]) ,

where d is a destructor of a constructor of C. Then,

(i) E⇒C is a set of evaluation contexts for →βRD.
(ii) The values in E⇒C for →βRD are exactly the terms of the form

– λx.t; or
– c(~t) with c ∈ C.

(iii) E⇒C is a set of elimination contexts for →βRD.
(iv) Each C ∈ CRβRDE⇒C satisfies properties (3) and (7).

Proof.
(i) It is clear that E⇒C is a set of evaluation contexts for →βRD.
(ii) It is clear that the terms of (ii) are values. We check that if t is a value,

then it is in one of these forms. Assume now that E[] ∈ E⇒C is a minimal
context that interacts with t. Note that the top symbol of E[] is either an
application or a destructor d. We consider these two cases:
The top symbol of E[] is an application. In this case, E[] is of the

form F[]u. By minimality, F[] = [] and t is an abstraction.
The top symbol of E[] is a destructor. In this case, E[] is of the form

d(F[]). By minimality, F[] = [] and t is a constructor.
(iii) The fact that E⇒C is a set elimination contexts is a direct consequence of

the shape of values (ii).
(iv) From (ii) we know that terms of the form (λx.t)u and f(~t) with f ∈ Σ \ C

are neutral. Properties (3) and (7) then follow from Lem. 4.8. ut

Example 4.12. Consider the system presented at example 2.1. Its values are
the terms of the form

λx.t S(t) 0 .

Indeed, we have

(λx.t)u →β t[u/x] dS,1(S(t)) →D t d0(0) →D f .

5 Stability by Union

A reducibility family Red is stable by union if

∀R. R ⊆ Red =⇒ ⋃
R ∈ Red .

The main question on stability by union is the following: given a rewrite relation→R, does there exists a reducibility family Red for →R which is stable by union
and leads to an adequate type interpretation?

For the pure λ-calculus, it is well-known that the answer is positive: Tait’s
saturated sets (presented in Sect. 3) are stable by union and lead to an adequate
type interpretation. This has been exploited for instance in [Abe06, Tat07].

The question becomes more difficult with rewriting. We have seen in Sect. 3
that rewrite systems do not satisfy in general the weak standardization lemma
(Lem. 3.3), and that we need a reducibility family satisfying a clause like (7). But
this is precisely what makes stability by union difficult. Assume given R ⊆ Red

such that for all v ∈ (E[f(~t)])βR, we have v ∈
⋃

R. Then, unless we find some
A ∈ R such that (E[f(~t)])βR ⊆ A, there is no reason to have E[f(~t)] ∈

⋃
R.

Besides, using intersection and union types, we have shown in [Rib07c] that
there are confluent typed rewrite systems for which no reducibility family that
is stable by union leads to an adequate type interpretation.

However, we can in some cases obtain a reducibility family which is sta-
ble by union. In [Rib07b], we have given a necessary and sufficient condition
for reducibility candidates to be stable by union; and in [Rib07c], we have
given a necessary and sufficient condition for the closure by union of biorthog-
onals [Gir87, Par97, DK00] to be reducibility candidates. The second condition
is strictly more general than the first one.

We now recall the condition established in [Rib07b] for the stability by union
of reducibility candidates, and then show that it is met with orthogonal con-
structor rewriting.

5.1 Reducibility Candidates

The study of stability by union of reducibility candidates of [Rib07b] carries
over to our generalization of neutral terms and elimination contexts. The key
observation is a characterization of the membership of a term to a candidate
using a weak observational preorder.

Definition 5.1. Let t .N u if and only if t, u ∈ SNR and

∀v ∈ VRE . t →∗
R v =⇒ u →∗

R v .

Every candidate C ∈ CRRE is a non-empty subset of SNR which is downward-
closed wrt. .N . Reducibility candidates are stable by union exactly when the
converse is also true.

Theorem 5.2 ([Rib07b]). The following are equivalent:

(i) CRRE is stable by union;
(ii) CRRE is the set of all non-empty C ⊆ SNR which are downward-closed wrt.

the preorder .N ;
(iii) every strongly normalizable neutral term t which is reducible has a reduct

u such that t .N u. Such u is a strong principal reduct1of t.

1 Called ”principal reduct” in [Rib07b].

Proof. For each t ∈ SNR, we let CR(t) be the smallest reducibility candidate
containing t. Note that CR(t) = {u | u .N t}.

(i) =⇒ (ii). Let C ⊆ SNR be a non-empty set downward-closed wrt. .N . Since
CR(t) is downward closed wrt. .N for all t ∈ SNR, C =

⋃
{CR(t) | t ∈ C}.

Hence C ∈ CR because CR is stable by union.
(ii) =⇒ (iii). Let t ∈ N ∩ SNR be reducible. For all u ∈ (t)R, the set CR(u) is

non-empty and downward-closed wrt. .. Therefore, the set C of all v such
that v ∈ CR(u) for some u ∈ (t)R is non-empty and downward-closed wrt.
.N . It follows that C ∈ CR and that t ∈ C since (t)R ⊆ C. Hence there is
u ∈ (t)R such that t .N u.

(iii) =⇒ (i). Let ∅ 6= C ⊆ CR. In order to show
⋃
C ∈ CR, the key-point is to

show that if t ∈ N is such that (t)R ⊆
⋃
C then t ∈

⋃
C. If (t)R = ∅ then

t ∈ C for all C ∈ C and we are done. Otherwise, we have t ∈ SNR since
(t)R ⊆

⋃
C ⊆ SNR. Let u be a strong principal reduct of t. There is C ∈ C

such that u ∈ C, and since t .N u and C is downward-closed wrt. .N , we
have t ∈ C, hence t ∈

⋃
C. ut

Example 5.3 ([Rib07b, Tat07]). For the pure λ-calculus, thanks to the weak
standardization lemma (Lem. 3.3), CRβE⇒ is stable by union.

5.2 Application to Orthogonal Constructor Rewriting

Recall that a rewrite system R is orthogonal if it is left-linear and has no critical
pairs [Ter03]. For instance, the system of Ex. 2.1 is orthogonal.

In this section, we show that ifR is an orthogonal constructor rewrite system,
then CRβRDE⇒C is stable by union. According to Thm. 5.2, this amounts to show-
ing that every strongly normalizing reducible neutral term has a strong principal
reduct. We prove it by using a general theorem on external redexes [KOvO01]
(see also [GKK05]). This result applies to the framework of orthogonal CCERSs,
of which our higher-order rewrite systems β ∪R ∪D are an instance.

To prove our result, we need some machinery to deal with the term structure.
We use the following standard notations: a position in a term t is a finite word
on N\ {0}, φ ·ψ denotes the concatenations of the words φ and ψ. Moreover, t|φ
is the subterm of t at position φ, and t[u]φ is the term t in which the subterm
of t at position φ is textually replaced by u.

The notion of descendant, which is standard in rewriting theory, is used to
trace terms during reduction. We do not detail the definition which is quite
technical and can be found in standard textbooks [Ter03], but we provide an
example.

Example 5.4. Consider the derivation

P : (λx.plus(x, 0)) 0 plus(y, S(z)) →β plus(0, 0) plus(y, S(z))

– The β-redex (λx.plus(x, 0)) 0 has no descendant along P.
– The first occurrence of 0 in plus(0, 0) is the only descendant along P of the

argument 0 of the β-redex (λx.plus(x, 0)) 0.

– plus(0, 0) is the only descendant of plus(x, 0) along P.
– plus(y, S(z)) is the only descendant of plus(y, S(z)) along P.

We use the notions of redex-arguments and of external redexes of [KOvO01,
GKK05].

Definition 5.5. A term u is a redex-argument of t if either

(i) t has a subterm of the form (λx.t1)t2 and u is a subterm of t1 or t2, or
(ii) t has a subterm of the form lσ, where l 7→R r is a rewrite rule and σ a

substitution, and there is a variable x of l such that u is a subterm of σ(x).

The key notion is that of external redex.

Definition 5.6. A redex at position φ in a term t is external if for any deriva-
tion P : t →∗

βRD v, no descendant of φ along P appears inside redex-arguments.

Hence every descendant of an external redex is external. Note that every
external redex is outermost, but the converse is false.

Using external redexes, we have the following weak standardization lemma.
We apply it in Lem. 5.8 to show that every neutral term which has an external
redex has a strong principal reduct.

Lemma 5.7 (Weak Standardization). Assume that R is orthogonal. Let
t →βRD u by contracting an external redex of t. If t →βRD v by contract-
ing a different redex, then there is w such that u →∗

βRD w and v →βRD w by
contracting a descendant of t →βRD u (which is therefore external in v).

Proof. Let φ and ψ be the respective positions of the redexes contracted in
t →βRD u and t →βRD v. We show that there exists w such that the redex
contracted in v →βRD w is a descendant of φ. It is an external redex of v because
φ is external in t.

Note that since φ is external in t, for every φ1, φ2 such that φ = φ1 · φ2,
φ2 is external in t|φ1

: if a descendant φ ′
2 of φ2 appears in a redex argument of

a reduct u of t|φ1
, then φ1 ·φ ′

2, which is a descendant of φ, appears in a redex
argument of t[u]φ1

, which is a reduct of t.
We now reason by induction on t.

t ∈ X . Not possible.
t = λx.t1. In this case, u = λx.u1 and v = λx.v1. Moreover we have φ = 1 ·φ1,

ψ = 1 ·ψ1, t1 →βRD u1 by contracting φ1 and t1 →βRD v1 by contracting
ψ1. Since φ1 is external in t1, by induction hypothesis there is w1 such that
u1 →∗

βRD w1 and v1 →βRD w1 by contracting a descendant of φ1. It follows
that u →∗

βRD λx.w1 and v →βRD λx.w1 by contracting a descendant of φ.
t = t1 t2 with t1 not an abstraction. There are i, j ∈ {1, 2} such that φ =

i · φ1 and ψ = j ·ψ1. Moreover, u = u1 u2 and v = v1 v2 with ti →βRD ui,
tj →βRD vj, uj = tj and vi = ti. There are two cases.
If i = j, then we reason as in the case of t = λx.t1.

Otherwise i 6= j. Let w = w1w2 with wi = ui and wj = vj. We have
u →βRD w and v →βRD w by contracting a descendant of φ.

t = (λx.t1)t2. Since φ is external in t, φ is the root β-redex of t. Therefore
u = t1[t2/x] and v = (λx.t ′1)t ′2 with (t1, t2) →βRD (t ′1, t

′
2). We are done

by taking w =def t
′
1[t ′2/x] since (λx.t ′1)t ′2 is a descendant of (λx.t1)t2 and

t1[t2/x] →∗
βRD t

′
1[t ′2/x].

t = f(~t) and t is not a RD-redex. We reason as in the case of t1 t2 with t1
not an abstraction.

t = f(~t) and t is a RD-redex. Since φ is external in t, it is the roof RD-redex
of t. Hence there is a rule l 7→RD r and a substitution σ such that t = lσ and
u = rσ. Because l is linear, there is a substitution σ ′ such that σ →βRD σ

′

and v = lσ ′. We are done by taking w =def rσ
′ since lσ ′ is a descendant of

lσ and rσ →∗
βRD rσ

′. ut

Lemma 5.8. Assume that R is orthogonal and let t ∈ NβRDE⇒C . If t →∗
βRD v

with v ∈ VβRDE⇒C , then for all u such that t →βRD u by contracting an external
redex of t, we have u →∗

βRD v.

Proof. Let u such that t →βRD u by contracting an external redex of t and
let v ∈ VβRDE⇒C such that t →∗

βRD v. Since t is neutral, we have t →+
βRD v.

We reason by induction on the length of the derivation.

Base Case. Since t is neutral, it follows from Lem. 4.11.(ii) that t →βRD v

by contracting a top redex of t. Since every external redex is outermost, it
follows that every external redex of t is a root redex of t. By orthogonality,
this is the redex contracted in t →βRD v, and we have u = v.

Induction Case. Assume that t →βRD s →∗
βRD v. If s is a value, then rea-

soning as in the base case we have s = u, hence u →∗
βRD v. Otherwise

s is neutral. If s is obtained from t by contracting the same redex as in
t →βRD u, then s = u and u →∗

βRD v. Otherwise, by weak standardization
(Lem. 5.7), there is w such that u →∗

βRD w and s →βRD w by contracting
an external redex of s. We then have w →∗

βRD v by induction hypothesis,
hence u →∗

βRD v. ut

If t is neutral and t →βRD u by contracting an external redex of t, then
we have t .N u. Hence u is a strong principal reduct of t. Then, by Thm. 5.2
CRβRDE⇒C is stable by union if all neutral terms have external redexes. It re-
mains to show this last property, which follows from the next theorem, proved
in [KOvO01]. We can apply it because the CCERS β ∪ R ∪ D is orthogonal as
soon as the rewrite system R is orthogonal.

Theorem 5.9 ([KOvO01, GKK05]). If R is orthogonal then every reducible
term has an external redex.

Theorem 5.10. If R is orthogonal then CRβRDE⇒C is stable by union.

References

[Abe04] A. Abel. Termination Checking with Types. RAIRO – Theoretical Infor-
matics and Applications, 38(4):277–319, 2004. Special Issue (FICS’03). 4,
5

[Abe06] A. Abel. Semi-Continuous Sized Types and Termination. In Proceedings
of CSL’06, volume 4207 of LNCS, pages 72–88. Springer, 2006. 1, 5, 9

[Alt93] T. Altenkirch. Constructions, Inductive Types and Strong Normalization.
PhD thesis, University of Edinburgh, 1993. 4

[Bar92] H.P. Barendregt. Lambda Calculi with Types. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2. Oxford University Press, 1992. 2

[BGP06] G. Barthe, B. Grégoire, and F. Pastawski. Type-Based Termination of
Recursives Definitions in the Calculus of Inductive Constructions. In Pro-
ceedings of LPAR’06, pages 257–271, 2006. 1, 5

[BJO02] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-Data-Types Sys-
tems. Theoretical Computer Science, 271:41–68, 2002. 1, 5, 7

[BR06] F. Blanqui and C. Riba. Combining Typing and Size Constraints for Check-
ing the Termination of Higher-Order Conditional Rewrite Systems. In
Proceedings of LPAR’06, volume 4246 of LNAI, 2006. 1, 5

[DK00] V. Danos and J.-L. Krivine. Disjunctive Tautologies as Synchronisation
Schemes. In Proceedings of CSL’00, volume 1862 of LNCS, pages 292–301,
2000. 9

[Gal89] J.H. Gallier. On Girard’s ”Candidats de Reducibilité”. In P. Odifredi,
editor, Logic and Computer Science. Academic Press, 1989. 2

[Gir72] J.-Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. PhD thesis, Université Paris 7, 1972. 1,
5

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
1, 9

[GKK05] J. Glauert, D. Kesner, and Z. Khasidashvili. Expression Reduction Systems
and Extensions: An Overview. In Processes, Terms and Cycles: Steps to the
Road of Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of
His 60th Birthday, volume 3838 of LNCS, pages 496–553. Springer, 2005.
2, 10, 11, 12

[KOvO01] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. Perpetuality ans Uni-
form Normalization in Orthogonal Rewrite Systems. Information and
Computation, 164(1):118–152, 2001. 1, 10, 11, 12

[Kri90] J.-L. Krivine. Lambda-Calcul, Types et Modèles. Masson, 1990. 2

[Men87] N. P. Mendler. Recursive Types and Type Constraints in Second Order
Lambda-Calculus. In Proceedings of LiCS’87, pages 30–36. IEEE Com-
puter Society, 1987. 3

[Par97] M. Parigot. Proofs of Strong Normalization for Second Order Classical
Natural Deduction. Journal of Symbolic Logic, 62(4):1461–1479, 1997. 1,
9

[Rib07a] C. Riba. Definitions par Réécriture dans le λ-Calcul: Confluence,
Réductibilité et Typage. PhD thesis, INPL, 2007. 2

[Rib07b] C. Riba. On the Stability by Union of Reducibility Candidates. In Pro-
ceedings of FoSSaCS’07, volume 4423 of LNCS, 2007. 1, 9, 10

[Rib07c] C. Riba. Strong Normalization as Safe Interaction. In Proceedings of
LiCS’07, pages 13–22. IEEE Computer Society, 2007. 9

[Tai75] W. W. Tait. A Realizability Interpretation of the Theory of Species. In
R. Parikh, editor, Logic Colloquium, volume 453 of LNCS, pages 240–251,
1975. 1, 4

[Tat07] M. Tatsuta. Simple Saturated Sets for Disjunction and Second-Order Exis-
tential Quantification. In Proceedings of TLCA’07, volume 4583 of LNCS,
pages 366–380. Springer, 2007. 1, 9, 10

[Ter03] Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2003. M. Bezem, J.W. Klop
and R.C. de Vrijer, eds. 2, 10

	Union of Reducibility Candidates for Orthogonal Constructor Rewriting
	Colin Riba

