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Completeness Proofs as Programs
Research theme

Definition (Completeness)

φ is true iff φ is provable

Application:

Ï Automatic switching between model theoretic and proof
theoretic reasoning (in Coq)

Theoretical questions:

Ï Algorithm behind Gödel’s completeness proof

Ï Normalisation-by-evaluation for classical logic

Ï Constructive proof of completeness for Kripke models
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Constructive Completeness for Intuitionistic Logic

Kinds of semantics:

Ï Reformulation of derivation rules: BHK, Kleene’s realisability,
Algebraic semantics

Ï More independent: Beth, Kripke
Ï cf. Boolean semantics and classical derivation systems

Completeness for Kripke semantics:

Ï Gödel-Kreisel’s meta-mathematical results (Kreisel 1962)

Ï Classical Henkin-style proof (Kripke 1965)

Ï Proof using the Fan Theorem (Veldman 1976)

Ï Normalisation-by-evaluation gives a proof, but without ∨,∃



Gödel-Kreisel’s Meta-mathematical Results
Strong Completeness, Weak Completeness, Markov’s Principle, and Double-negation Shift
for Σ0

1-formulae

(∀M . M Íφ) −→ `φ (SC)

6`φ −→ ¬(∀M . M Íφ) (WC)

For A0-decidable,
¬¬∃nA0(n) →∃nA0(n), (MP)

∀α¬¬∃nA0(α,n) →∀α∃nA0(α,n), (DNSΣ+)

∀α¬¬∃nA0(α,n) →¬¬∀α∃nA0(α,n), (DNSΣ)

Theorem (Gödel-Kreisel)

Ï MP+WC → SC

Ï SC →DNSΣ+→ MP

Ï WC →DNSΣ



Kripke Models

Start with a structure K = (K ,≤,D,,⊥), where ≤ is a partial order
on K , and extend  to non-atomic formulas:

w

A∧B w A and w B

A∨B w A or w B

A → B for any w′ ≥ w, if w′ A then w′ B

∀xP(x) for any w′ ≥ w and any a ∈ D(w′), w′  P(a)

∃xP(x) there is a ∈ D(w) such that w  P(a)

⊥ w ⊥



Kripke Models
Completeness

Theorem (Completeness)

(∀K . ∀w ∈ K . w  Γ→ w A) −→ Γ` A

Prove the more general:

Theorem (Completeness for U )

There is a so called “universal” model U such that
∀Γ ∈U . ΓA −→ Γ` A

Proof.
U := (U ,≤,,⊥), where

Ï U is the set of contexts, assigning formulas to free variables

Ï Γ1 ≤ Γ2 := Γ1 ⊆ Γ2

Ï Γ P := Γ` P

Ï Γ⊥ := Γ⊥



Kripke Models
Completeness - Veldman’s Proof

For full intuitionistic logic – with ∨ and ∃ – Veldman used the Fan
Theorem:

(∀α.∃n.A(αn) →∃N .∀α.∃k ≤ N .A(αk) (FAN)

where
α :N→ 2

n,k,N :N

αn : 2∗

and A is decidable i.e.
A : 2∗ → 2



Kripke Models
Normalisation-by-evaluation as Completeness

Theorem (Completeness for U )

There is a so called “universal” model U such that
∀Γ ∈U . ΓA −→ Γ` A

is a special case of Berger-Schwichtenberg’s – but without ∨,∃
Theorem (Normalisation-by-evaluation)

↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

↓τ := a 7→ a τ-atomic

↓τ→σ := S 7→λa. ↓σ ·(S· ↑τ ·a) a-fresh

↑τ := a 7→ a τ-atomic

↑τ→σ := e 7→ S 7→↑σ ·(e(↓τ ·S))



Completeness/NBE for λ→∨
What the problem is

Theorem (NBE)
↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

Proof of case ↑A∨B.
Given a derivation Γ`ne A∨B, decide: ΓA or ΓB?



Shift (S ) and Reset (#) Delimited Control Operators
Examples

#V → V

#F[S k.p] → #p{k :=λx.#F[x]}

1+#(2+S k.k(k4))

→1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9
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Completeness/NBE for λ→∨
Solution of Danvy: use shift and reset

Theorem (NBE – Danvy)

↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

Proof of case ↑A∨B.
Given a derivation e of Γ`ne A∨B, decide: ΓA or ΓB, by

S k. case e of (x.#k(left ↑A
x:A,Γ x)) (y.#k(right ↑B

y:B,Γ y))



Completeness/NBE for λ→∨
Solution of Danvy: is it a proof?

Ï We are convinced the program computes correctly

Ï There should be a corresponding completeness proof for
Kripke model

Ï Type-and-effect system: types A → B become A/α→ B/β, what
is the logical meaning?



Completeness for Intuitionistic Predicate Logic (IQC)
Extracting a notion of model from Danvy’s solution

Like with Kripke models, start with a structure (K ,≤,D,s,(·)⊥),
and extend strong forcing (s) to non-atomic formulas:

ws

A∧B wA and wB

A∨B wA or wB

A → B for any w′ ≥ w, if w′A then w′B

∀xP(x) for any w′ ≥ w and any a ∈ D(w′), w′P(a)

∃xP(x) there is a ∈ D(w) such that wP(a)

where the non-s-annotated  is (non-strong) forcing:

wA :=∀C.∀w1 ≥ w.(∀w2 ≥ w1.w2 s A → w2 
C ⊥) → w1 

C ⊥



Completeness for IQC via Kripke-style Models

Theorem (NBE)
↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

Proof of case ↑A∨B.
Given a derivation e of Γ`ne A∨B, prove ΓA∨B i.e.

∀C. ∀Γ1 ≥ Γ. (∀Γ2 ≥ Γ1. Γ2 S A or Γ2 s B → Γ2 `C
⊥) → Γ1 `C

⊥

by

C 7→ Γ1 7→ k 7→ case e of (x.k(left ↑A
x:A,Γ1

x)) (y.k(right ↑B
y:B,Γ1

y))



Conclusion of Part I

Contribution:

Ï New notion of model for Intuitionistic logic

Ï β-Normalises λ-calculus with sum

Ï Formalised in Coq

Ï But, not as simple as Kripke models

More details in my thesis: www.lix.polytechnique.fr/∼danko
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Delimited control operators in Logic

Ï Should allow us to give a constructive proof of completeness
for Kripke semantics (Danvy’s NBE functional program)

Ï Herbelin: delimited control allows to derive Markov’s Principle
(Herbelin 2010) and the Double Negation Shift

Ï Allow to simulate any monadic computational effect (Filinski
1994)



Proof term λ-calculus with S and #
Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V ) | (t,V ) | λa.p | λx.p

Pure evaluation contexts:

P ::= [ ] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V ) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′
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Typing/Logical system MQC+

The usual rules of MQC (minimal predicate logic), potentially
annotated,

· · · `+
T · · ·

· · · `+
T · · ·

plus rules for reset and shift:

Γ`+
T p :T

Γ`+¦ #p :T

Γ,k :A ⇒ T `+
T p :T

Γ`+
T S k.p :A

T denotes a {⇒,∀}-free formula (“Σ-formula”)



Deriving MP and DNS

Markov’s Principle (predicate logic version):

¬¬S ⇒ S, for S a Σ-formula

λa.#⊥E(a(λb. S k.b))

Double Negation Shift (predicate logic version):

∀x(¬¬A(x)) ⇒¬¬(∀xA(x))

λa.λb.#b(λx. S k.axk)
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Equiconsistency of MQC+ with MQC

By the call-by-value continuation-passing-style translation (related
to Glivenko’s double-negation translation)

AT :=(AT ⇒ T) ⇒ T

AT :=A if A is a atomic

(A�B)T :=AT�BT for �=∨,∧
(A ⇒ B)T :=AT ⇒ BT

(∃A)T :=∃AT

(∀A)T :=∀AT



Relationship to Classical and Intuitionistic Logic

Theorem (Equiconsistency)

Given a derivation of Γ`+ A, which uses S and # for the Σ-formula
T, we can build a derivation of ΓT `m AT .

Theorem (Glivenko’s Theorem extended to quantifiers)

`+ ¬¬A ←→ DNS `i A⊥ ←→`c A



Properties of MQC+

Theorem (Subject Reduction)

If Γ`+¦ p : A and p → q, then Γ`+¦ q : A.

Theorem (Progress)

If `+¦ p : A, p is not a value, and p is not of form P[S k.p′], then p
reduces in one step to some proof term r.

Theorem (Normalisation)
For every closed proof term p0, such that `+ p0 : A, there is a finite
reduction path p0 → p1 → . . . → pn ending with a value pn.

Corollary (Disjunction and Existence Properties)

If `+ A∨B, then `+ A or `+ B.
If `+ ∃xA(x), then there exists a closed term t such that `+ A(t).



Conclusion of Part II

Ï Contribution:
Ï A typing system for delimited control which remains

intuitionisitc (DP and EP) while deriving MP, DNS
Ï But, only one use of MP is allowed

Ï Future work:
Ï Annotating a derivation by a context ∆, like in (Herbelin 2010):

Γ`+
α:T ,∆ p :T

Γ`+
∆ #αp :T

Γ,k :A ⇒ T `+
α:T ,∆ p :T

Γ`+
α:T ,∆ Sαk.p :A

Ï Connection to Fan Theorem, Open Induction, and other
principles of Intuitionistic Reverse Mathematics

Ï A logical study of computational effects



Kripke and Kripke-style Models

To show their equivalence, and hence completeness for standard
Kripke models, the following should be provable for our models:

∀C. ∀w1 ≥ w. (∀w2 ≥ w1. w2 A+w2 B → w2 C
⊥) → w1 C

⊥
w A+w B

This is possible if we add some arithmetic and make the rule for
shift “polymorphic”:

Γ,∀n′(A(n′) ⇒ T(n′)) `+
T(−) T(n)

Γ`+
T(−) A(n)

But, that system has yet to be studied. In particular, are there any
complications when including arithmetic?


	Introduction
	

	Constructive Completeness for Intuitionistic Logic
	

	Delimited Control Operators in Logic
	

	Appendix

