
Constructive Proofs of Completeness,
Extra-intuitionistic Principles,

and Delimited Control Operators

Danko Ilik

based on work with Hugo Herbelin

Lyon, January 6, 2011

Completeness Proofs as Programs
Research theme

Definition (Completeness)

φ is true iff φ is provable

Application:

Ï Automatic switching between model theoretic and proof
theoretic reasoning (in Coq)

Theoretical questions:

Ï Algorithm behind Gödel’s completeness proof

Ï Normalisation-by-evaluation for classical logic

Ï Constructive proof of completeness for Kripke models

Talk Outline

Constructive Completeness for Intuitionistic Logic

Delimited Control Operators in Logic

Talk Outline

Constructive Completeness for Intuitionistic Logic

Delimited Control Operators in Logic

Constructive Completeness for Intuitionistic Logic

Kinds of semantics:

Ï Reformulation of derivation rules: BHK, Kleene’s realisability,
Algebraic semantics

Ï More independent: Beth, Kripke
Ï cf. Boolean semantics and classical derivation systems

Completeness for Kripke semantics:

Ï Gödel-Kreisel’s meta-mathematical results (Kreisel 1962)

Ï Classical Henkin-style proof (Kripke 1965)

Ï Proof using the Fan Theorem (Veldman 1976)

Ï Normalisation-by-evaluation gives a proof, but without ∨,∃

Gödel-Kreisel’s Meta-mathematical Results
Strong Completeness, Weak Completeness, Markov’s Principle, and Double-negation Shift
for Σ0

1-formulae

(∀M . M Íφ) −→ `φ (SC)

6`φ −→ ¬(∀M . M Íφ) (WC)

For A0-decidable,
¬¬∃nA0(n) →∃nA0(n), (MP)

∀α¬¬∃nA0(α,n) →∀α∃nA0(α,n), (DNSΣ+)

∀α¬¬∃nA0(α,n) →¬¬∀α∃nA0(α,n), (DNSΣ)

Theorem (Gödel-Kreisel)

Ï MP+WC → SC

Ï SC →DNSΣ+→ MP

Ï WC →DNSΣ

Kripke Models

Start with a structure K = (K ,≤,D,,⊥), where ≤ is a partial order
on K , and extend to non-atomic formulas:

w

A∧B w A and w B

A∨B w A or w B

A → B for any w′ ≥ w, if w′ A then w′ B

∀xP(x) for any w′ ≥ w and any a ∈ D(w′), w′ P(a)

∃xP(x) there is a ∈ D(w) such that w P(a)

⊥ w ⊥

Kripke Models
Completeness

Theorem (Completeness)

(∀K . ∀w ∈ K . w Γ→ w A) −→ Γ` A

Prove the more general:

Theorem (Completeness for U)

There is a so called “universal” model U such that
∀Γ ∈U . ΓA −→ Γ` A

Proof.
U := (U ,≤,,⊥), where

Ï U is the set of contexts, assigning formulas to free variables

Ï Γ1 ≤ Γ2 := Γ1 ⊆ Γ2

Ï Γ P := Γ` P

Ï Γ⊥ := Γ⊥

Kripke Models
Completeness - Veldman’s Proof

For full intuitionistic logic – with ∨ and ∃ – Veldman used the Fan
Theorem:

(∀α.∃n.A(αn) →∃N .∀α.∃k ≤ N .A(αk) (FAN)

where
α :N→ 2

n,k,N :N

αn : 2∗

and A is decidable i.e.
A : 2∗ → 2

Kripke Models
Normalisation-by-evaluation as Completeness

Theorem (Completeness for U)

There is a so called “universal” model U such that
∀Γ ∈U . ΓA −→ Γ` A

is a special case of Berger-Schwichtenberg’s – but without ∨,∃
Theorem (Normalisation-by-evaluation)

↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

↓τ := a 7→ a τ-atomic

↓τ→σ := S 7→λa. ↓σ ·(S· ↑τ ·a) a-fresh

↑τ := a 7→ a τ-atomic

↑τ→σ := e 7→ S 7→↑σ ·(e(↓τ ·S))

Completeness/NBE for λ→∨
What the problem is

Theorem (NBE)
↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

Proof of case ↑A∨B.
Given a derivation Γ`ne A∨B, decide: ΓA or ΓB?

Shift (S) and Reset (#) Delimited Control Operators
Examples

#V → V

#F[S k.p] → #p{k :=λx.#F[x]}

1+#(2+S k.k(k4))

→1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9

Shift (S) and Reset (#) Delimited Control Operators
Examples

#V → V

#F[S k.p] → #p{k :=λx.#F[x]}

1+#(2+S k.k(k4))

→1+#((λa.#(2+a)) ((λa.#(2+a))4))

→+1+#(#(#8))

→+9

Completeness/NBE for λ→∨
Solution of Danvy: use shift and reset

Theorem (NBE – Danvy)

↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

Proof of case ↑A∨B.
Given a derivation e of Γ`ne A∨B, decide: ΓA or ΓB, by

S k. case e of (x.#k(left ↑A
x:A,Γ x)) (y.#k(right ↑B

y:B,Γ y))

Completeness/NBE for λ→∨
Solution of Danvy: is it a proof?

Ï We are convinced the program computes correctly

Ï There should be a corresponding completeness proof for
Kripke model

Ï Type-and-effect system: types A → B become A/α→ B/β, what
is the logical meaning?

Completeness for Intuitionistic Predicate Logic (IQC)
Extracting a notion of model from Danvy’s solution

Like with Kripke models, start with a structure (K ,≤,D,s,(·)⊥),
and extend strong forcing (s) to non-atomic formulas:

ws

A∧B wA and wB

A∨B wA or wB

A → B for any w′ ≥ w, if w′A then w′B

∀xP(x) for any w′ ≥ w and any a ∈ D(w′), w′P(a)

∃xP(x) there is a ∈ D(w) such that wP(a)

where the non-s-annotated is (non-strong) forcing:

wA :=∀C.∀w1 ≥ w.(∀w2 ≥ w1.w2 s A → w2
C ⊥) → w1

C ⊥

Completeness for IQC via Kripke-style Models

Theorem (NBE)
↓A
Γ ("reify") : ΓA −→ Γ`nf A

↑A
Γ ("reflect") : Γ`ne A −→ ΓA

Proof of case ↑A∨B.
Given a derivation e of Γ`ne A∨B, prove ΓA∨B i.e.

∀C. ∀Γ1 ≥ Γ. (∀Γ2 ≥ Γ1. Γ2 S A or Γ2 s B → Γ2 `C
⊥) → Γ1 `C

⊥

by

C 7→ Γ1 7→ k 7→ case e of (x.k(left ↑A
x:A,Γ1

x)) (y.k(right ↑B
y:B,Γ1

y))

Conclusion of Part I

Contribution:

Ï New notion of model for Intuitionistic logic

Ï β-Normalises λ-calculus with sum

Ï Formalised in Coq

Ï But, not as simple as Kripke models

More details in my thesis: www.lix.polytechnique.fr/∼danko

Talk Outline

Constructive Completeness for Intuitionistic Logic

Delimited Control Operators in Logic

Delimited control operators in Logic

Ï Should allow us to give a constructive proof of completeness
for Kripke semantics (Danvy’s NBE functional program)

Ï Herbelin: delimited control allows to derive Markov’s Principle
(Herbelin 2010) and the Double Negation Shift

Ï Allow to simulate any monadic computational effect (Filinski
1994)

Proof term λ-calculus with S and #
Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

Proof term λ-calculus with S and #
Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

Proof term λ-calculus with S and #
Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

Proof term λ-calculus with S and #
Proof terms:

p,q,r ::= a | ι1p | ι2p | case p of
(
a.q‖b.r

) | (p,q) | π1p | π2p | λa.p |
| pq | λx.p | pt | (t,p) | dest p as (x.a) in q | #p | S k.p

Values:
V ::= a | ι1V | ι2V | (V ,V) | (t,V) | λa.p | λx.p

Pure evaluation contexts:

P ::= [] | case P of
(
a1.p1‖a2.p2

) | π1P | π2P | dest P as (x.a) in p |
Pq | (λa.q)P | Pt | ι1P | ι2P | (P,p) | (V ,P) | (t,P)

Reduction: (Call-by-value strategy)

(λa.p)V → p{V /a} case ιiV of
(
a1.p1‖a2.p2

)→ pi{V /ai}

(λx.p)t → p{t/x} dest (t,V) as (x.a) in p → p{t/x}{V /a}

πi(V1,V2) → Vi #P[S k.p] → #p {(λa.#P[a])/k}

#V → V E[p] → E[p′] when p → p′

Typing/Logical system MQC+

The usual rules of MQC (minimal predicate logic), potentially
annotated,

· · · `+
T · · ·

· · · `+
T · · ·

plus rules for reset and shift:

Γ`+
T p :T

Γ`+¦ #p :T

Γ,k :A ⇒ T `+
T p :T

Γ`+
T S k.p :A

T denotes a {⇒,∀}-free formula (“Σ-formula”)

Deriving MP and DNS

Markov’s Principle (predicate logic version):

¬¬S ⇒ S, for S a Σ-formula

λa.#⊥E(a(λb. S k.b))

Double Negation Shift (predicate logic version):

∀x(¬¬A(x)) ⇒¬¬(∀xA(x))

λa.λb.#b(λx. S k.axk)

Deriving MP and DNS

Markov’s Principle (predicate logic version):

¬¬S ⇒ S, for S a Σ-formula

λa.#⊥E(a(λb. S k.b))

Double Negation Shift (predicate logic version):

∀x(¬¬A(x)) ⇒¬¬(∀xA(x))

λa.λb.#b(λx. S k.axk)

Equiconsistency of MQC+ with MQC

By the call-by-value continuation-passing-style translation (related
to Glivenko’s double-negation translation)

AT :=(AT ⇒ T) ⇒ T

AT :=A if A is a atomic

(A�B)T :=AT�BT for �=∨,∧
(A ⇒ B)T :=AT ⇒ BT

(∃A)T :=∃AT

(∀A)T :=∀AT

Relationship to Classical and Intuitionistic Logic

Theorem (Equiconsistency)

Given a derivation of Γ`+ A, which uses S and # for the Σ-formula
T, we can build a derivation of ΓT `m AT .

Theorem (Glivenko’s Theorem extended to quantifiers)

`+ ¬¬A ←→ DNS `i A⊥ ←→`c A

Properties of MQC+

Theorem (Subject Reduction)

If Γ`+¦ p : A and p → q, then Γ`+¦ q : A.

Theorem (Progress)

If `+¦ p : A, p is not a value, and p is not of form P[S k.p′], then p
reduces in one step to some proof term r.

Theorem (Normalisation)
For every closed proof term p0, such that `+ p0 : A, there is a finite
reduction path p0 → p1 → . . . → pn ending with a value pn.

Corollary (Disjunction and Existence Properties)

If `+ A∨B, then `+ A or `+ B.
If `+ ∃xA(x), then there exists a closed term t such that `+ A(t).

Conclusion of Part II

Ï Contribution:
Ï A typing system for delimited control which remains

intuitionisitc (DP and EP) while deriving MP, DNS
Ï But, only one use of MP is allowed

Ï Future work:
Ï Annotating a derivation by a context ∆, like in (Herbelin 2010):

Γ`+
α:T ,∆ p :T

Γ`+
∆ #αp :T

Γ,k :A ⇒ T `+
α:T ,∆ p :T

Γ`+
α:T ,∆ Sαk.p :A

Ï Connection to Fan Theorem, Open Induction, and other
principles of Intuitionistic Reverse Mathematics

Ï A logical study of computational effects

Kripke and Kripke-style Models

To show their equivalence, and hence completeness for standard
Kripke models, the following should be provable for our models:

∀C. ∀w1 ≥ w. (∀w2 ≥ w1. w2 A+w2 B → w2 C
⊥) → w1 C

⊥
w A+w B

This is possible if we add some arithmetic and make the rule for
shift “polymorphic”:

Γ,∀n′(A(n′) ⇒ T(n′)) `+
T(−) T(n)

Γ`+
T(−) A(n)

But, that system has yet to be studied. In particular, are there any
complications when including arithmetic?

	Introduction
	

	Constructive Completeness for Intuitionistic Logic
	

	Delimited Control Operators in Logic
	

	Appendix

