Ode YOCKO

geometrY Hartree-FOCK Optimisation

By Lauriane Pierrot Deseilligny & Côme Cattin

The problem

• Find a way to optimise geometry of simple compounds

- Via common quantum chemistry techniques
 - Density Functional Theory (DFT)
 - Hartree Fock

(CG < MM < MM polarisable < semi-empiriques < HF < DFT < post Hartree-Fock)

• Ultimate goal: compare geometry criteria with experimental

Hartree Fock method

 $\mathcal{H}\Phi(\{\mathbf{r}_i\}, \{\mathbf{R}_A\}) = \mathcal{E}\Phi(\{\mathbf{r}_i\}, \{\mathbf{R}_A\})$

 $\mathcal{H} = \mathcal{T}_n + \mathcal{T}_e + \mathcal{V}_{ne} + \mathcal{V}_{ee} + \mathcal{V}_{nn}$

- Slater Type Orbital (STO) = Gaussian Type Orbital
- Wave function = Slater determinant

$$\Psi_{\mathsf{HF}}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \cdots & \chi_N(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \cdots & \chi_N(\mathbf{x}_N) \end{vmatrix}$$

• Minimise HF energy

 $E_{\mathrm{HF}} = \langle \Psi_{\mathrm{HF}} | \mathcal{H}_{\mathrm{elec}} + \mathcal{V}_{\mathrm{nn}} | \Psi_{\mathrm{HF}} \rangle$

where
$$\mathcal{H}_{ ext{elec}} = \mathcal{T}_{ ext{e}} + \mathcal{V}_{ ext{ne}} + \mathcal{V}_{ ext{ee}}$$

∂E/∂R _I	Forces on the nuclei (<i>i</i> component); equilibrium geometry; transition state geometry; rotational contributions to the molecular entropy
$\partial E/\partial F_{\alpha}$	Dipole moment component
∂E/∂G _k	Generalized multipole moment corresponding to the k wave vector component of an external electric field ²
∂² E/∂ R _i ∂ R _j	Force constant matrix component; harmonic vibrational frequencies; signature of a stationary point on the energy hypersurface (minimum, first order saddle point, etc.)
$\partial^2 E/\partial R_i \partial F_\alpha$	Infrared intensities (in the doubly harmonic approximation)
$\partial^2 E / \partial F_{\alpha} \partial F_{\beta}$	(Static) dipole polarizability component
22 E/2 Gk2 Gk	Generalized multipole polarizability (\mathbf{k}, \mathbf{k}' component) ²
$\partial^2 E / \partial B_{\alpha} \partial u_{i\beta}$	NMR shielding constants
2 ² E/2 uka 2 ulb	Indirect NMR spin-spin coupling constants
$\partial^2 E / \partial B_{\alpha} \partial B_{\beta}$	(Static) dipole magnetizability ($\alpha\beta$ component)
$\partial^2 E / \partial F_{\alpha} \partial B_{\beta}$	Optical rotatory power and (optical) circular dichroism
$\partial^3 E / \partial R_i \partial R_j \partial R_k$	Cubic force constants; cubic anharmonic corrections to vibrational frequencies
$\partial^3 E/\partial F_{\alpha} \partial F_{\beta} \partial F_{\gamma}$	(Static) dipole hyperpolarizability
$\partial^3 E/\partial R_i \partial F_\alpha \partial F_\beta$	Polarizability derivatives; Raman intensities in the harmonic approximation (at low excitation frequency)
$\partial^3 E/\partial R_i \partial R_j \partial F_{\alpha}$	Electrical anharmonicity; intensity of infrared transitions forbidden in the harmonic approximation (mechanical anharmonicity also has a contribution)
$\partial^4 E/\partial R_i \partial R_i \partial R_k \partial R_l$	Quartic force constants; guartic anharmonic corrections to vibrational frequencies
$\partial^4 E / \partial Q_i^2 \partial Q_i^2$	Dominant quartic anharmonicity corrections to vibrational frequencies
$\partial^3 E/\partial R_i \partial F_\alpha \partial B_\beta$	Vibrational optical rotatory power
a ⁴ E/aRiaRiaRkaRl	Quartic force constants; quartic anharmonic corrections to vibrational frequencies
$\partial^4 E / \partial Q_i^2 \partial Q_i^2$	Dominant quartic anharmonicity corrections to vibrational frequencies

Abbreviations: R_i is a general nuclear coordinate, Q_i is a normal coordinate, F_{α} is the α component of the external homogeneous electric field, B_{α} is the α component of the external magnetic induction (field), G_k is the k component of a spatially modulated electric field $e^{i k r}$, and $u_{j\beta}$ is the β component of the magnetic moment of nucleus j.

 H_{elec} 's eigen vectors: Molecular orbitals ϕ (1,...,n electrons: 1 electrons vs the n-1 left)

$$H_{elec} \phi = \varepsilon \phi$$

Molecules= atoms and their electrons : Atomic orbitals

LCAO : "chemical interpretation"

$$\phi_i = \sum_r c_{ri} \chi_r$$

Pb if dimension = ∞ : "Solution" = truncate the AO basis

$$\hat{H}_e = \sum_i \hat{h}_1(\vec{x}_i) + \sum_{i,j} \hat{h}_2(\vec{x}_i, \vec{x}_j) \quad \hat{H}_e \phi = \varepsilon \phi \text{ becomes "SCF" convergence FC= } \varepsilon \text{ SC}$$

For the curious ones...

$$\hat{F} = \sum_{i=1}^{N} \sum_{m,n}^{N_b} c_{mi}^{\star} c_{ni} \langle \chi_m | \hat{h_1} | \chi_n \rangle + \frac{1}{2} \sum_{i,j}^{N} \sum_{m,np,q}^{N_b} c_{mi}^{\star} c_{pi} c_{nj}^{\star} c_{qj} \left[\langle \chi_m \chi_p | \hat{h_2} | \chi_n \chi_q \rangle - \langle \chi_p \chi_m | \hat{h_2} | \chi_n \chi_q \rangle \right] \\ - \sum_{i,j}^{N} \varepsilon_i \left[\sum_{mi}^{N_b} c_{mi}^{\star} c_{ni} \langle \chi_m | \chi_n \rangle - 1 \right]$$

n,m

Computational

Integral (for non-gaussian basis functions)

• Eigenvalue problem

• Self Consistent Field convergence

DFT: ρ, **v**ρ, **v**²ρ

Wavefunction, ket, basis, matrix (3N-6) \rightarrow functional equations on electronic density ρ (3 dim)

• More efficient, more elegant

• Bigger system

- But more empirical, various functional possibilities,
 - *cf.* Jacob's scale :)

Soon available

github.com/sequoia-dev/YOCKO

