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Problem: Channel Flow

1 Velocity Profile in a Turbulent Channel Flow

We consider a flow in a closed channel with rectangular section. We as-

are

sume that the density of the fluid is constant. The governing equations
2H| e Léey
du+u-Vu=—-Vp+rvAu, O
V.-u=0. L>H

We impose a no-slip boundary condition u = 0 on the walls.

1.

Let us write the velocity field u = @i+ u’, where - denotes ensemble averaging, so that u’ = 0. Show
that the mean flow obeys the Reynolds equations:

at’l_l,i + ﬂjajﬂi = — 2]3+ uﬁjajﬁi — ajnj,
d'u; =0,

with 7;; = Wu; — a5 = uéué the Reynolds stress tensor.

. We assume that the flow statistics are stationary and homogeneous in z and z, and we denote

U=1-e; and V =1-e,. Show that V =0.

. Using the Reynolds equations in the direction y normal to the wall, show that the mean axial

pressure gradient is uniform across the flow:

9p _ dpw
dr  dx’

with p,, = p(z,0,0) the mean pressure on the bottom wall.

. Show that the Reynolds equations in the axial direction z becomes:

ar _ dpw
dy  dz’

with 7 = 1/% — /v’ the total shear stress. Deduce that g—; is a constant.

. Using symmetry arguments, show that 7(y) = 7,(1 — y/H), with 7, = 7(0) the wall shear stress.

Show that 7, = v (%)yzo.

. Using 7, and v, build from dimensional analysis a velocity u, and a length scale ¢ characterizing

the flow close to the wall. We define the y coordinate in wall units y* = y/5. Show that y™ can be
interpreted as a local Reynolds number, which is of order one at scale 4, and which we denote Re.
at scale H. Justify that we expect two different regimes, as a function of the distance to the wall,
corresponding to the different terms of 7.

List the dimensional parameters on which the flow depends. Deduce that

U _urg (2.4,
dy Y 6 H

where ® is a universal non-dimensional function. Does ¢ depend upon Re,? We assume that, close

to the wall, the flow does not depend explicitly on H: ®(y/d,y/H) ~ ®;(y/d) for y < H. Check

that, with the notation ut = U/u,, we have ‘Ujf;—i = y%@l(yﬂ.
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Figure 1: Relative contributions of the viscous and Reynolds stresses (left) and mean axial velocity (right)
as a function of the distance to the wall, obtained in Direct Numerical Simulations of a channel flow at

Re= 13750.

. We denote fy(y*) = f0y+ ®;(Y)/YdY. Using boundary conditions, show that u™ = fy (y™), then
that f};,(0) = 1. Deduce from this that there exists a viscous sublayer where the velocity profile is

linear: ut = y™T.
. While y < H still holds, we now assume y > 4, so that ®;(y") = 1/k is a constant, called the von
Kdrmdn constant. Show that the velocity has a logarithmic profile: u* = L Iny™ + B.

10. Interpret figure 1 based on the above questions.
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