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Problem: Channel Flow

1 Velocity Profile in a Turbulent Channel Flow
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We consider a flow in a closed channel with rectangular section. We as-
sume that the density of the fluid is constant. The governing equations
are

∂tu+ u · ∇u = −∇p+ ν∆u,

∇ · u = 0.

We impose a no-slip boundary condition u = 0 on the walls.

1. Let us write the velocity field u = ū+u′, where ·̄ denotes ensemble averaging, so that u′ = 0. Show
that the mean flow obeys the Reynolds equations:

∂tūi + ūj∂
j ūi = −∂ip̄+ ν∂j∂

j ūi − ∂jτij ,

∂iūi = 0,

with τij = uiuj − ūiūj = u′
iu

′
j the Reynolds stress tensor.

2. We assume that the flow statistics are stationary and homogeneous in x and z, and we denote
U = ū · ex and V = ū · ey. Show that V = 0.

3. Using the Reynolds equations in the direction y normal to the wall, show that the mean axial
pressure gradient is uniform across the flow:

∂p̄

∂x
=

dpw
dx

,

with pw = p(x, 0, 0) the mean pressure on the bottom wall.

4. Show that the Reynolds equations in the axial direction x becomes:

dτ

dy
=

dpw
dx

,

with τ = ν dU
dy − u′v′ the total shear stress. Deduce that dτ

dy is a constant.

5. Using symmetry arguments, show that τ(y) = τw(1 − y/H), with τw = τ(0) the wall shear stress.
Show that τw = ν

(
dU
dy

)
y=0

.

6. Using τw and ν, build from dimensional analysis a velocity uτ and a length scale δ characterizing
the flow close to the wall. We define the y coordinate in wall units y+ = y/δ. Show that y+ can be
interpreted as a local Reynolds number, which is of order one at scale δ, and which we denote Reτ
at scale H. Justify that we expect two different regimes, as a function of the distance to the wall,
corresponding to the different terms of τ .

7. List the dimensional parameters on which the flow depends. Deduce that

dU

dy
=

uτ

y
Φ
(y
δ
,
y

H

)
,

where Φ is a universal non-dimensional function. Does Φ depend upon Reτ? We assume that, close
to the wall, the flow does not depend explicitly on H: Φ(y/δ, y/H) ≈ ΦI(y/δ) for y ≪ H. Check
that, with the notation u+ = U/uτ , we have du+

dy+ = 1
y+ΦI(y

+).
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Fig. 7.4. Profiles of the fractional contributions of the viscous and Reynolds stresses
to the total stress. DNS data of Kim et al. (1987): dashed lines, Re = 5,600; solid
lines, Re = 13,750.

and the viscous lengthscale

δν ≡ ν

√
ρ

τw

=
ν

uτ
. (7.26)

The Reynolds number based on the viscous scales uτδν/ν is identically unity,
while the friction Reynolds number is defined by

Reτ ≡ uτδ

ν
=
δ

δν
. (7.27)

(In the DNS of Kim et al. 1987, the friction Reynolds numbers are Reτ = 180
at Re = 5,600, and Reτ = 395 at Re = 13,750.)

The distance from the wall measured in viscous lengths – or wall units –
is denoted by

y+ ≡ y

δν
=

uτy

ν
. (7.28)

Notice that y+ is similar to a local Reynolds number, so its magnitude can
be expected to determine the relative importance of viscous and turbulent
processes. In support of this supposition, Fig. 7.4 shows the fractional con-
tributions to the total stress from the viscous and Reynolds stresses in the
near-wall region of channel flow. When thay are plotted against y+, the pro-
files for the two Reynolds numbers almost collapse. The viscous contribution
drops from 100% at the wall (y+ = 0) to 50% at y+ ≈ 12 and is less than
10% by y+ = 50.

Different regions, or layers, in the near-wall flow are defined on the basis
of y+. In the viscous wall region y+ < 50, there is a direct effect of molecular
viscosity on the shear stress; whereas, conversely, in the outer layer y+ > 50
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Fig. 7.6. Near-wall profiles of mean velocity: solid line, DNS data of Kim et al. (1987):
Re = 13,750; dot–dashed line, u+ = y+; dashed line, the log law, Eqs. (7.43)–(7.44).

Thus, in this region, the mean velocity gradient is

du+

dy+
=

1

κy+
, (7.42)

which integrates to

u+ =
1

κ
ln y+ + B, (7.43)

where B is a constant. This is the logarithmic law of the wall due to von
Kármán (1930) – or simply, the log law – and κ is the von Kármán constant.
In the literature, there is some variation in the values ascribed to the log-law
constants, but generally they are within 5% of

κ = 0.41, B = 5.2. (7.44)

Figure 7.6 shows a comparison between the log law and the DNS data in the
inner part of the channel (y/δ < 0.25). Clearly there is excellent agreement
for y+ > 30.

The log law is more clearly revealed in a semi-log plot. Figure 7.7 shows
measured profiles of u+(y+) for turbulent channel flow at Reynolds numbers
between Re0 ≈ 3,000 and Re0 ≈ 40,000. It may be seen that the data collapse
to a single curve – in confirmation of the law of the wall – and that for
y+ > 30 the data conform to the log law, except near the channel’s mid-plane
(the last few data points for each Reynolds number).

The region between the viscous sublayer (y+ < 5) and the log-law region
(y+ > 30) is called the buffer layer . It is the transition region between the
viscosity-dominated and the turbulence-dominated parts of the flow. The
various regions and layers that are used to describe near-wall flows are
summarized in Table 7.1 and Fig. 7.8.

Figure 1: Relative contributions of the viscous and Reynolds stresses (left) and mean axial velocity (right)
as a function of the distance to the wall, obtained in Direct Numerical Simulations of a channel flow at
Re= 13750.

8. We denote fW (y+) =
∫ y+

0
ΦI(Y )/Y dY . Using boundary conditions, show that u+ = fW (y+), then

that f ′
W (0) = 1. Deduce from this that there exists a viscous sublayer where the velocity profile is

linear: u+ = y+.

9. While y ≪ H still holds, we now assume y ≫ δ, so that ΦI(y
+) = 1/κ is a constant, called the von

Kármán constant. Show that the velocity has a logarithmic profile: u+ = 1
κ ln y+ +B.

10. Interpret figure 1 based on the above questions.
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