
ENS Lyon M2 Physics Atmospheric and Oceanic Fluid Dynamics

Problem set 3 — Ekman layer

We start with the equations of motion for a fluid with constant density ρ0 in a rotating frame of
reference:

Dv

Dt
+ fk× v = −∇ϕ+ g + F,

∇ · v = 0,

with v = (u, v, w) the 3D velocity field, f the Coriolis parameter, k the unit vector in the local vertical
direction, g = −gk the acceleration of gravity, ϕ the geopotential, and F the divergence of the stress
tensor: Fi = ∂jτij/ρ0.

For simplicity, we will work in Cartesian coordinates, on an f -plane. The domain is a half-space
bounded by a flat horizontal surface, which we will always denote as z = 0. In atmospheric and oceanic
applications this surface can either be the continental surface or the sea floor (in both cases the half-
space of interest is then z > 0) or the sea surface (then the half-space of interest is z > 0 for the marine
atmospheric boundary layer, or z < 0 for the surface layer of the ocean).

This problem is inspired after McWilliams (2011, Chap. 6).

1 General properties
We first establish the main balance equations for Ekman layers and study their generic properties.

1. Show that if we neglect the advective terms in the horizontal momentum equations, and assume
that the divergence of the stress tensor is dominated by its vertical component in each direction,
we obtain the frictional-geostrophic balance:

−fv = −∂ϕ

∂x
+

1

ρ0

∂τxz
∂z

, (1)

fu = −∂ϕ

∂y
+

1

ρ0

∂τyz
∂z

. (2)

2. Justify that the stress can either be interpreted as a viscous stress or as Reynolds stresses. Which
one is the most relevant here?

3. We note τ s = (τsxz, τ
s
yz) the vertical component of the stress tensor at the surface (z = 0). We

further assume that the stress tensor decays away from the boundary: τxz, τyz → 0 as z → ±∞,
and we decompose the velocity field into a boundary-layer and interior components: u = ui + ub,
with ub → 0 as z → ±∞ (and similarly for v, w and ϕ). Justify that the interior solution satisfies
geostrophic balance: fui = −∂yϕ

i, fvi = ∂xϕ
i, wi = 0, and that it is depth-independent.

4. We define the horizontal mass transport in the Ekman layer as the vector field T = (Tx, Ty) with
Tx = ρ0

∫
ubdz, Ty = ρ0

∫
vbdz, where the integral extends over the half-space of interest (either

z < 0 or z > 0). Show that
fT = k× (τB − τT ), (3)

where τB is the bottom surface stress (0 for a top Ekman layer) and τT the top surface stress
(0 for a bottom Ekman layer). What is the direction of the vertically integrated mass transport
relative to the surface stress, for a bottom Ekman layer and for a top Ekman layer, in the Northern
Hemisphere? How is this modified in the Southern Hemisphere?

5. Show that the vertical velocity at the edge of the Ekman layer (z = +∞ for a bottom layer and
z = −∞ for a top layer) is given by:

wb(±∞) = k · ∇ × τ s

ρ0f
. (4)

This vertical motion is referred to as Ekman pumping.
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2 The laminar Ekman layer
Now we will search an explicit solution of the Ekman layer equations in the case where the stress is a
viscous stress: τij = µ∂jui with µ the dynamic viscosity.

1. We first consider the case of a semi-infinite fluid (in the z < 0 part of the domain) with imposed
stresses at the top boundary (z = 0), i.e. a top boundary layer, in the Northern Hemisphere (f > 0).
In the laminar case, the equations are:

−fvb = ν
∂2ub

∂z2
, (5)

fub = ν
∂2vb

∂z2
, (6)

with ν = µ/ρ0 the kinematic viscosity, and with boundary conditions

µ
∂ub

∂z
= τsxz at z = 0, and ub(z) → 0 at z → −∞, (7)

µ
∂vb

∂z
= τsyz at z = 0, and vb(z) → 0 at z → −∞. (8)

(a) We introduce the complex variable U = ub+ivb: show that it satisfies the equation νU ′′ = ifU

with boundary conditions νU ′(0) =
τs
xz+iτs

yz

ρ0
and U(−∞) = 0. Deduce that the general solution

is the linear combination U(z) = Aeαz +Be−αz where α =
√
f/ν(1+ i)/

√
2 and A and B are

constants.
(b) Using the boundary conditions, compute A and B and conclude that

ub =
ez/δ√
νf

[
τsxz
ρ0

cos
(z
δ
− π

4

)
+

τsyz
ρ0

cos
(z
δ
+

π

4

)]
, (9)

vb =
ez/δ√
νf

[
τsyz
ρ0

cos
(z
δ
− π

4

)
− τsxz

ρ0
cos

(z
δ
+

π

4

)]
, (10)

with δ =
√
2ν/f . What is the shape of the hodograph? What is the angle between the velocity

in the Ekman layer at the surface and the surface stress?
(c) Estimate the size of the Ekman layer using molecular viscosity ν ∼ 10−6 m2.s-1 and using an

eddy viscosity ν ∼ 0.1 m2.s-1. Which one is more realistic for the ocean surface and why?

2. In the case of a bottom Ekman layer, the problem is a bit different: we consider that it is not a given
surface stress which controls the Ekman layer, but rather the given interior geostrophic flow, and the
surface stress adjusts accordingly. The equation to solve is νU ′′ = ifU with boundary conditions
U(0) = −U i, so that the total velocity vanishes at the surface (no-slip boundary condition) and
U(+∞) = 0.

(a) Show that the solution in the bottom Ekman layer is:

ub = −e−z/δ
[
ui cos

(
−z

δ

)
− vi sin

(
−z

δ

)]
, (11)

vb = −e−z/δ
[
ui sin

(
−z

δ

)
+ vi cos

(
−z

δ

)]
. (12)

(b) Show that the surface stress can be expressed in terms of the interior flow as:

τsxz
ρ0

= ν
ui − vi

δ
, (13)

τsyz
ρ0

= ν
ui + vi

δ
. (14)

(c) Similarly, compute the mass transport and Ekman pumping:

Tx = −νρ0
fδ

(ui + vi), (15)

Ty =
νρ0
fδ

(ui − vi), (16)

wb =
ν

fδ
ζi, (17)
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under the approximations that ε = ν/δ does not vary spatially, and that the divergence of the
interior flow is small due to its small Rossby number.

(d) Assuming that the fluid is a single homogeneous layer of thickness H on top of the Ekman
layer, with vanishing vertical velocity at the top and with constant f , show that the Ekman
layer acts as a linear drag in the quasi-geostrophic vorticity equation:

Dζ

Dt
≈ − fδ

2H
ζ. (18)

(e) Draw a schematic of the hodograph for the velocity in the bottom Ekman layer.
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