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Problem set 2 — Equatorial waves

1 Shallow-water equations
In this exercise, we derive the shallow-water equations, which is a very useful model in geophysical fluid
dynamics. See Vallis (2017, Chap. 3) for more information.
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Fig. 3.1 A shallow water system. h is the thickness of a water column, H its mean
thickness, ⌘ the height of the free surface and ⌘b is the height of the lower, rigid,
surface, above some arbitrary origin, typically chosen such that the average of ⌘b is
zero. �⌘ is the deviation free surface height, so we have ⌘ = ⌘b + h = H +�⌘.

We consider a layer of fluid with constant density ρ. The fluid is bounded below by a rigid boundary
with equation z = ηb(x, y). The surface of the fluid layer has equation z = η(x, y). Hence the thickness
of the fluid layer is given by h = η − ηb. We denote H the average thickness and ∆η the position with
respect to this average thickness: η = H +∆η. We denote v = uex + vey + wez the three-dimensional
velocity field and u = uex + vey the horizontal velocity.

We first assume that the fluid layer has a free surface. Above it lies a fluid with negligible inertia
(ρ ≈ 0). In this exercise the fluid is non-rotating.

1. We assume that hydrostatic balance holds. Show that the pressure at any point is given by p =
ρg(η(x, y)− z).

2. Deduce that the equations for the horizontal velocity field become
Du

Dt
= −g∇zη, (1)

where ∇z denotes the gradient operator on a horizontal surface. Deduce that if u is initially
independent of z, it remains so.

3. Show that the mass continuity equation simplifies to ∇ · v = 0. Deduce the evolution equation for
the layer thickness:

Dh

Dt
+ h∇ · u = 0. (2)

2 Waves on the equatorial beta plane
In this exercise, we study the properties of waves propagating in a simple model for the atmosphere or
the upper ocean close to the equator. These waves play an important role in tropical meteorology and in
phenomena such as El Niño. This problem is based on Vallis (2017, Chap. 8); refer to the book for more
information.

Here we assume that the fluid has a flat bottom (ηb = 0).

1. Show that the shallow-water equations on a beta plane centered at the equator (i.e. expanding the
Coriolis parameter as f = βy) can be written as:

Du

Dt
− βyv = −g

∂h

∂x
, (3)

Dv

Dt
+ βyu = −g

∂h

∂y
, (4)

Dh

Dt
+ h∇ · u = 0, (5)
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where x and y represent the zonal and meridional directions, respectively.

2. We decompose the velocity and fluid thickness into a mean value and perturbations: u = U+u′, v =
V +v′, h = H+h′. Show that small perturbations about a state of rest (U = V = 0) evolve according
to the following equations:

∂tu
′ − βyv′ = −g∂xh

′, (6)
∂tv

′ + βyu′ = −g∂yh
′, (7)

∂th
′ +H∂xu

′ +H∂yv
′ = 0, (8)

We will drop the primes in the following.

3. Introducing the time and length units T = 1/
√
βcg and L =

√
cg/β, with cg =

√
gH the velocity

of pure gravity waves, show that the equations become:

∂tu− yv = −∂xϕ, (9)
∂tv + yu = −∂yϕ, (10)

∂tϕ+ ∂xu+ ∂yv = 0, (11)

with ϕ = gh the geopotential.

4. In the atmosphere, cg ≈ 25 m.s-1, and in the ocean, cg ≈ 2 m.s-1. Estimate the equatorial radius of
deformation L and the associated timescale T in both cases.

5. Show that
∂t(ζ − yϕ) + v = 0, (12)

with ζ = ∂xv − ∂yu the vorticity.

6. Acting on (9) with ∂t, on (10) with ∂tt, on (11) with ∂ty and on (12) with ∂x, show that the
meridional velocity satisfies the equation:

∂3v

∂t3
+ y2

∂v

∂t
− ∂

∂t

(
∂2v

∂x2
+

∂2v

∂y2

)
− ∂v

∂x
= 0. (13)

7. We seek wave solutions of the form v = ṽ(y)ei(kx−ωt). Show that the wave amplitude satisfies the
differential equation:

ṽ′′(y) +

[
ω2 − k2 − y2 − k

ω

]
ṽ(y) = 0. (14)

8. To put this equation in a standard form, we make the change of variable ṽ(y) = Ψ(y)e−y2/2. Show
that Ψ satisfies the Hermite equation:

Ψ′′(y)− 2yΨ′(y) + λΨ(y) = 0, (15)

with λ = ω2−k2− k
ω −1. It is known that this equation admits solution if and only if λ = 2m is an

even integer. The solutions are the Hermite polynomials Ψ = Hm; they are a family of orthogonal
polynomials with respect to the scalar product ⟨f, g⟩ =

∫ +∞
−∞ f(y)g(y)e−y2

dy.

9. Show that for high-frequency waves the dispersion relation becomes ω2 = k2 + 2m + 1, and for
low-frequency waves, ω = −k/(k2 + 2m + 1). Which types of waves are those dispersion relation
reminiscent of?

10. We consider the special case m = 0.

(a) Show that there are two solutions to the dispersion relation, ω = −k and ω = k/2±
√

k2/4 + 1.

(b) Show that necessarily, ṽ(y) = ṽ(0)e−y2/2.

(c) In the case ω = −k, show that u and ϕ can be written as u(x, y, t) = G(x + t)ye−y2/2 +

H(x + t, y), ϕ(x, y, t) = G(x + t)ye−y2/2 − H(x + t, y) where H satisfies an equation of the
form ∂yH − yH = K(x + t)e−y2/2. Show that H diverges as |y| → +∞, and conclude that
such solutions are unphysical.
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(d) In the case ω = k/2+
√
k2/4 + 1, show that the wave behaves like an inertia-gravity wave for

k → +∞ and like a Rossby wave for k → −∞ (the converse is true for ω = k/2−
√
k2/4 + 1).

For this reason these waves are sometimes called mixed Rossby-gravity waves, but they are also
known as Yanaï waves.

11. We note that v = 0 was a trivial solution of (13). Hence we search for solutions of the linear shallow-
water equations for which the meridional velocity identically vanishes. Such waves are called Kelvin
waves.

(a) Show that the equations become:

∂tu = −∂xϕ, (16)
yu = −∂yϕ, (17)

∂tϕ+ ∂xu = 0. (18)

(b) Show that the general solution is the sum of two traveling waves: u = F1(x− t, y)+F2(x+ t, y)
and ϕ = F1(x− t, y)− F2(x+ t, y).

(c) Using geostrophic balance, show that F1(x − t, y) = F (x − t)e−y2

and F2(x + t, y) = G(x +

t)ey
2

. Conclude that Kelvin waves can only propagate eastward, and that the geopotential is
proportional to the zonal velocity.

(d) Are Kelvin waves dispersive? Is the dispersion relation a solution of the general dispersion
relation for some value of m?

12. Make a sketch of the dispersion relation ω(k) for all the waves we have studied here, using the
asymptotic formulas obtained above when necessary.
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