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Problem set 1 — Fundamental concepts in geophysical fluid
dynamics

1 Balance relations
We recall that in a frame rotating with constant angular velocity Ω, a body of mass m experiences
two pseudo-forces: the Coriolis force −2mΩ × v where v is the velocity in the rotating frame, and the
centrifugal force −mΩ×Ω×r. In a gravity field ggrav, the centrifugal acceleration, which is conservative,
can be absorbed into a modified gravity term: g = ggrav + Ω2r⊥ where r⊥ is the projection orthogonal
to the axis of rotation. We introduce the geopotential Φ defined by g = −∇Φ. The equations of motion
for an ideal fluid in a rotating frame therefore become:

∂v

∂t
+ v · ∇v + 2Ω× v = −1

ρ
∇p−∇Φ, (1)

with v = ueλ + veϕ + wer the 3D velocity field (eλ and er are the usual azimuthal and radial vectors
in spherical coordinates and eϕ = −eθ is the opposite of the polar vector, with ϕ = π

2 − θ the latitude
and λ the longitude), ρ the density and p the pressure. We denote u = ueλ + veϕ the horizontal velocity
field. Although the concepts below apply both to the atmosphere and ocean, for simplicity we consider
only the atmosphere here, and assume that it is a dry ideal gas.

1. Hydrostatic balance. We would like to show that to describe the large-scale motion of the
atmosphere, we can simplify a little the above equations. To do so we will use observed estimates
for the following quantities: horizontal velocity U ∼ 10 m.s-1 with characteristic horizontal scale
L ∼ 1000 km, vertical velocity W ∼ 10−2 m.s-1 with characteristic scale H ∼ 1 km.

(a) We define the local vertical direction to be in the direction of the effective gravity, so that the
geopotential reads Φ = gz. Show that the equation of motion in the vertical direction reads

∂tw + u · ∇w + w∂zw − 2Ω cosϕu = −1

ρ

∂p

∂z
− g. (2)

(b) Estimate numerically the order of magnitude of each term on the left-hand side of Eq. (2).
Conclude that, at leading order, gravity is balanced by the vertical pressure gradient:

∂p

∂z
= −ρg. (3)

This relation is called hydrostatic balance.

(c) Justify that, assuming hydrostatic balance holds, we can use pressure as a vertical coordinate.
Show that the hydrostatic balance relation in pressure coordinates reads

∂Φ

∂p
= −1

ρ
. (4)

(d) Show that the component of the Coriolis force involving vertical velocity is negligible compared
to the one involving horizontal velocity. Conclude that the horizontal velocity satisfies the
equations:

∂tu+ v · ∇u+ 2Ω sinϕer × u = −1

ρ
∇p. (5)

We note f = 2Ω sinϕ the Coriolis parameter.
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2. Cartesian approximations. It is often convenient to replace the spherical coordinates with
Cartesian coordinates in the plane tangent to a fixed latitude: x = aλ cosϕ0 (zonal direction),
y = a(ϕ− ϕ0) (meridional direction), with a the radius of the planet. This affects the ∇ operator
(which we did not write in coordinates up to now) and the Coriolis parameter. Show that the
Coriolis parameter can be expanded at order zero, f = f0 (f -plane approximation), or at order one,
f = f0 + βy (β-plane approximation) and give the expression of f0 and β.

3. Geostrophic balance.

(a) We define the Rossby number as Ro = U/(fL). By considering (symbolically, not numerically)
the magnitude of the different terms in the left-hand side of Eq. (5), give an interpretation of
this nondimensional number. Estimate the Rossby number for the atmosphere.

(b) When the Rossby number is small, we expect that the Coriolis force and the horizontal pres-
sure gradient balance each other. This is called geostrophic balance. Show that the so-called
geostrophic wind is given by:

fu = −1

ρ

∂p

∂y
, fv =

1

ρ

∂p

∂x
. (6)

(c) Draw the streamlines of geostrophic wind close to a local pressure maximum (high) and close
to a local minimum (low).

4. Thermal wind.

(a) Show that, in pressure coordinates, geostrophic balance becomes

fu = −∂Φ
∂y

, fv =
∂Φ

∂x
. (7)

(b) Deduce from geostrophic and hydrostatic balance that the vertical shear of the horizontal wind
is related to the horizontal temperature gradient by:

f
∂u

∂p
=
Rd

p

∂T

∂y
, −f ∂v

∂p
=
Rd

p

∂T

∂x
. (8)

This relation is called thermal wind.

(c) Based on Fig. 1, is the meridional structure of the atmosphere consistent with the thermal wind
relation? Deduce the order of magnitude of the maximum zonal velocity at the tropopause
from the order of magnitude of the horizontal temperature gradient (use Rd = 287 kg-1.K-1).
Is this consistent with the observations?
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Figure 1: Observed zonally-averaged annual-mean temperature (left) and zonal wind (right). Figure
from Marshall and Plumb (2008, Chap. 5).
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2 Rossby Waves
The large-scale dynamics in the atmosphere and ocean is, to a good approximation, described by the
quasi-geostrophic equations1. The simplest version of these equations is:

∂tq + u · ∇q = 0, (9)

with q = −∆ψ + βy the potential vorticity and ψ the stream function for the horizontal velocity field:
u = ∇× (ψez). We assume that all the fields are independent of the vertical coordinate.

1. Linearize Eq. (9) around a state of rest, and show that it admits plane-wave solutions ψ(x, y, t) =
ψ0e

i(kx+ly−ωt) with dispersion relation ω = −βk/(k2 + l2). Such waves are called Rossby waves. In
which direction do Rossby waves propagate?

2. The relative vorticity is defined by ζ = (∇× u) · ez. Show that ζ = −∆ψ. We are going to give a
physical interpretation of the mechanism for propagation of Rossby waves using potential vorticity
conservation. Consider a horizontal material line with initially vanishing vorticity. Assume that
we displace northward from this line a fluid parcel. By considering the vorticity induced by this
displacement, explain that the initial displacement will propagate westward. Proceed similarly for
southward displacements.

3. We can decompose any field A into its zonal mean Ā = 1
L

∫ L

0
Adx and an eddy contribution A′:

A = Ā+A′. Recalling that the zonal momentum equation reads ∂tu+ u · ∇u = −∂xΦ+ fv, show
that the evolution equation for the zonally averaged zonal wind is:

∂tū = (f − ∂yū)v̄ − ∂yu′v′. (10)

In question 1, we have assumed ū = v̄ = 0 and shown that Rossby waves are solutions of the
linearized equations, corresponding to the eddy component here. Their properties would be different
if we would linearize about an arbitrary mean flow. Conversely, Eq. (10) tells us that eddies, and in
particular, Rossby waves, feed back on the mean flow through the −∂yu′v′ term. Can you interpret
this term in terms of transport of a physical quantity?

4. By computing explicitly the eddy momentum flux u′v′ and the group velocity for a plane Rossby
wave, show that such waves transport energy and momentum in opposite directions.

5. Explain that for plane Rossby waves, wave fronts are also streamlines. Show that if the wave front
is oriented from north west to south east, the momentum flux is towards the south, and towards
the north in the opposite case.

6. Fig. 2 shows the anomaly of geopotential height at a given level in the upper troposphere, on a
specific day. Interpreting it as a stream function for the eddy part of the flow, and relying on
question 5, suggest an interpretation of the role of Rossby waves in the maintenance of the Jet
Stream2.
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1See Vallis (2017, Chap. 5), for a detailed derivation.
2The model considered here, called barotropic, does not consider the vertical structure of the flow. This is sufficient to

capture Rossby wave dynamics, but it is not a particularly good model of the Jet Stream. See Vallis (2017) for more details.
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Momentum transport by Rossby waves 93
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Daily-mean 200 hPa geopotential height, 29 May 2008,
NCEP2 Reanalysis

Figure 6.4: Daily-mean 200 hPa height anomaly for 29 May 2008 over the southern hemisphere.
Anomaly is taken from the annual and zonal mean and the contour interval is 50 m. Trough and
ridge axes with positive (red) and negative (blue) tilt are marked subjectively to guide the eye.

the east of the trough axis, u⇤ > 0 and v⇤ > 0 also implying that u⇤v⇤ > 0. Averaged over
the eddy, we therefore have that [u⇤v⇤] > 0, there is a net northward flux of momentum
by the eddy!

Similar reasoning can be used to show that eddies with negative tilt have a southward
associated momentum flux (Fig. 6.3, right panel). Note that this does not depend on
the sign of the geopotential height anomaly; whichever direction the winds rotate, it is the
orientation of the trough/ridge axis that determines their meridional momentum flux.

Given the observed eddy momentum fluxes in the atmosphere are dominated by poleward
transport except in polar regions (Fig. 5.1), one would expect most eddies in the atmo-
sphere to have negative tilted trough/ridge axes, except perhaps near the poles, where
positive tilted trough/ridge axes may dominate. Indeed, these tilts are even observed in
single daily-mean snapshots of the upper tropospheric geopotential height (Fig. 6.4). Most
of the trough/ridge axes identified on Fig. 6.4 are negatively tilted, and those that are
positively tilted tend to be poleward of 60�S.

Of particular interest on Fig. 6.4 are the three anomalies of geopotential height over the
south Atlantic, extending from Argentina to southern Africa. This pattern is characteristic
of a Rossby wave train. Given the northward extension of these anomalies as one moves
east, we may identify this wavetrain as having positive k and l, and therefore northward
group velocity, and a southward momentum flux. This connects our kinematic discussion
with the dynamic one of the previous section; a Rossby wave produces northward momen-
tum fluxes by developing a negative tilt in the trough axes of its associated anomalies.

Figure 2: Daily-mean geopotential height anomaly for May 29, 2008 at 200 hPa (black lines). Figure
from Singh (2022). Red and blue lines are added as an indication.
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