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1 Identity-Based Encryption and
bilinear maps

1.1 Generalities

1.1.1 Diffie-Hellman Problems and the Diffie-Hellman Key Agreement
Protocol

The Diffie-Hellman key exchange is a protocol allowing two parties to obtain shared
cryptographic keys over a public communication channel.

Let G = 〈g〉 be a cyclic group of prime order q > 2λ, where g is a generator of G and
λ ∈ N the security parameter. Since G is generated by g, for any element h ∈ G, there
exists a unique x ∈ Zq such that h = gx: x is called the discrete logarithm of h according
to the generator g.

From now on, x
R←− S denotes the fact that x is chosen uniformly at random from the

set S. Finding the discrete logarithm can be described as a computational problem.

Definition 1 (Discrete Logarithm Problem). In a cyclic group G = 〈g〉 of order q > 2λ,

the Discrete Logarithm problem is, given g ∈ G and h = gx with x
R←− Zq, to compute

the exponent x ∈ Zq. We say that the Discrete Logarithm assumption holds in G if, for
any probabilistic polynomial-time (PPT) algorithm A, we have

AdvDL
A (λ) := Pr[h = gx | x← A(G, g, h) : h

R← G] ∈ negl(λ),

where the probability is taken over all coin tosses and negl(λ) denotes the set of negligible
functions of λ ∈ N.

Related to the problem of computing discrete logarithms are the so-called Diffie-
Hellman problems. There are two important variants: we now present two assumptions
based on the fact that these two problems are hard.

Definition 2 (Computational Diffie-Hellman assumption (CDH)). The Computational
Diffie-Hellman (CDH) assumption holds in G if no Probabilistic Polynomial-Time algo-

rithm (PPT) can compute gab given (g, ga, gb), with a, b
R←− Zq. We say that the CDH

assumption holds in G if, for any PPT algorithm A, it holds that

AdvCDH
A (λ) := Pr[h = gab | h← A(G, g, ga, gb) : a, b

R← Zq] ∈ negl(λ),

where the probability is taken over all coin tosses.
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Definition 3 (Decisional Diffie-Hellman assumption (DDH)). The Decision Diffie-Hellman
(DDH) assumption holds in G if the distributions

D0 = {(g, ga, gb, gab) | a, b R←− Zq}

and
D1 = {(g, ga, gb, gc) | a, b, c R←− Zq}

are computationally indistinguishable, i.e. for all PPT A,

AdvDDH
A (λ) =

∣∣ Pr
x←D0

[A(x) = 1]− Pr
x←D1

[A(x) = 1]
∣∣

=
∣∣∣Pr[A(g, ga, gb, gab) = 1 | a, b R←− Zq]−Pr[A(g, ga, gb, gc) = 1 | a, b, c R←− Zq]

∣∣∣ ∈ negl(λ),

The DDH assumption is the basis for the Diffie-Hellman key-agreement protocol, which
allows two remote parties A and B to agree on a common random key while only com-
municating through a public channel. The key K should only be computable by A and
B and look random to any adversary who passively observes the protocol run. This
protocol consists in the following exchange: A picks a

R← Zq at random and computes

ga which is sent to B. Likewise, B picks b
R← Zq and computes gb which is sent to A.

A Ba
R←− Zq b

R←− Zq

ga

public channel

gb

Then, A and B compute K = gab = (ga)b = (gb)a. To everyone but A and B, the key
K is pseudo-random (i.e., computationally indistinguishable from a random element of
the same group) under the DDH assumption. Importantly, the protocol is only secure
against passive adversaries, who are not allowed to inject their own messages in the
public channel.

1.1.2 ElGamal Encryption

The ElGamal key encryption scheme is based on the Diffie-Hellman key exchange pro-
tocol. Recall that a public-key encryption scheme is a tuple (Keygen,Encrypt,Decrypt)
of algorithms where only the last algorithm is deterministic. The ElGamal encryption
scheme can be seen as a non-interactive Diffie-Hellman key exchange. It proceeds as
follows:

• KeyGen(λ): choose a group G of prime order q > 2λ, a generator g of G and

x
R←− Zq.

Then, output the public key PK and the secret key SK, which are defined as

PK = {G, q, g,X = gx} and SK = {x}.
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• Encrypt(M,PK): to encrypt M ∈ G, choose r
R←− Zq, and then compute

C = (C1, C2) = (gr,M ·Xr).

• Decrypt(SK, c): compute and output M = C2/C
x
1 = c2/g

rx = C2/X
r.

The ElGamal encryption scheme can be shown to satisfy the notion of semantic secu-
rity under the DDH assumption.

Definition 4 (Indistinguishability under chosen-plaintext attacks (IND-CPA)). An en-
cryption scheme is said to be semantically secure (or IND-CPA secure) iff no PPT
adversary A has non-negligible advantage in the following game:

1. The challenger generates (PK,SK)← KeyGen(λ) and gives the public key PK to
the adversary A;

2. A chooses M0,M1 of same length;

3. The challenger chooses b
R←− {0, 1} and gives c = Encrypt(Mb, PK) to A;

4. A outputs b′ ∈ {0, 1} and wins iff b′ = b.

The scheme is secure if the adversary A cannot win with significantly better probability
than 1/2. In particular, it must hold that

AdvA(λ) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣ =
1

2

∣∣∣Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
∣∣∣ ∈ negl(λ),

where the probabilities are taken over the random coins of the challenger and those of
the adversary.

Note: Algorithm Encrypt has to be probabilistic, otherwise, A could just run it and
verify if C = Encrypt(M0, PK).

It has been shown in [TY98] that the ElGamal encryption scheme provides IND-CPA
security under the DDH assumption.

Theorem 1 (Tsiounis-Yung). The ElGamal encryption scheme is IND-CPA secure if
and only if the DDH assumption holds in G.

Proof. Suppose an adversary A with non-negligible advantage ε. Then, there is a DDH
distinguisher B. Algorithm B takes as input (g, ga, gb, T ), where a, b ∈R Zq and either
T = gab or T ∈R G.

• B defines PK such that X = ga and then runs A which chooses M0,M1 ∈ G.

• B picks d
R←− {0, 1} and computes C = (C1, C2) = (gb,Md · T ).

If T = gab, C = (gb,Md · gab) = (gb,Md · Xb), so that C is a valid ElGamal
encryption of Md.
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If T ∈R G, we can write T = gab+c for some uniformly distributed c ∈R Zq, so that

C = (gb,Md · T ) = (gb,Md · gc ·Xb) = (gb,Mrand ·Xb),

where Mrand = Md · gc is uniformly random in G. In particular, in A’s view, Md

is perfectly hidden by gc and C contains no information on d ∈ {0, 1}.

• B runs A which outputs d′ ∈ {0, 1}:
If d′ = d, B outputs 1 (meaning T = gab)

Otherwise, B outputs 0 (meaning T ∈R G)

Now, by the definition of A’s advantage, we know that

Pr[B = 1|T = gab] = Pr[d′ = d|T = gab] =
1

2
+ ε

since C is a valid ElGamal encryption of Md when T = gab. On the other hand,
Pr[B = 1|T ∈R G] = Pr[d′ = d|T ∈R G] = 1

2 since, if T ∈R G, the ciphertext C contains
no information on d ∈ {0, 1} and A can only guess d′ = d with probability 1/2. So, B
has a non-negligible advantage

AdvB(λ) = |Pr[B = 1|T = gab]− Pr[B = 1|T ∈R G]| = ε

as a DDH distinguisher.

Note that the proof does not hold anymore if we do not encode the message M as an
element of G. For example, let p = 2q + 1, where p and q are both prime. Since Z∗p is a
multiplicative group of order p−1, we can choose G as the cyclic group Gq ⊂ Z∗p of order
q generated by g = x2 mod p, where x ∈R Z∗p is chosen at random. Hence, the ElGamal
encryption scheme can be instantiated in the group Gq = 〈g〉 ⊂ Z∗p and computing the
ciphertext as

(C1, C2) =
(
gr mod p, M ·Xr mod p

)
,

with r
R← Zq. Then, suppose that we allow the message M to be in Z∗p\Gq. An adversary

could trivially win by simply choosing M0 = p − 1 = −1 ∈ Z∗p\Gq and M1 ∈ Gq
and, upon receiving the ciphertext (C1, C2), testing whether Cq2 mod p = 1. Note that
Cq2 mod p = 1 if M1 was encrypted. Otherwise, Cq2 ≡ −1 (mod p).

1.2 Pairing-Based Cryptography

Definition 5. A pairing is a bilinear map e : G1 × G2 → GT for cyclic abelian groups
G1, G2, GT of order p (usually prime) such that:

• e(ga, hb) = e(gb, ha) = e(g, h)ab, ∀g ∈ G1, ∀h ∈ G2, ∀(a, b) ∈ Z2;

• If p is prime, then e(g, h) = 1GT
⇐⇒ g = 1G1 or g2 = 1G2.
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Concretely, when we will use a pairing, we will assume that it is efficiently computable.
Pairings are usually instantiated using elliptic curves: G1 and G2 are elliptic curves

subgroups and GT is a finite field subgroup.
In some cases G1 = G2, so that e is called symmetric. In these symmetric config-

urations, the DDH problem becomes easy in G = G1 = G2: given (g, ga, gb, gc), we
have the equivalence c = ab ⇐⇒ e(ga, gb) = e(g, gc) = e(g, g)ab. Since e is efficiently
computable, it is trivial to decide if c = ab mod p.

Also, the Discrete Logarithm problem is not any harder in the groups (G1, G2) (re-
gardless of whether G1 = G2 or not) than in GT : for example, if g, g1 ∈ G1, then
logg(g1) = loge(g,h) e(g1, h) for any h ∈ G2, so that a Discrete Logarithm instance in G1

is easily turned into a Discrete Logarithm instance in GT . The same holds for a DL
instance in G2.

1.2.1 One-Round Tripartite Diffie-Hellman

A tripartite key-agreement protocol based on pairings has been described in [Jou00].
The goal is to have three parties A, B and C agree on a shared key K, which is only
computable to the three of them and infeasible to predict for the rest of the world.
Moreover, they want to do it by having each player A, B or C send only one message
to the two other players.

First, we have to define a computational assumption related to pairings. For simplicity,
we consider symmetric pairings e : G×G→ GT (namely, configurations with G = G1 =
G2), but the following definition can be generalized to the case G1 6= G2.

Definition 6 (DBDH assumption). The Decision Bilinear Diffie-Hellman (DBDH) as-
sumption holds in (G,GT ) if the distributions

D0 = {(g, ga, gb, gc, e(g, g)abc | a, b, c R←− Zp}

and
D1 = {(g, ga, gb, gc, e(g, g)d | a, b, c, d R←− Zp}

are computationally indistinguishable. The advantage of a distinguisher can be defined
as the distance between two probabilities, analogously to the DDH case.

We can now describe the tripartite Diffie-Hellman key agreement protocol. The proto-
col only takes one round as each player only sends one message to the two other players

Let e : G×G→ GT be a symmetric bilinear map, with a generator g ∈ G. The three
parties proceed as follows.

1. A chooses a
R←− Zp and sends ga to B and C;

2. B chooses b
R←− Zp and sends gb to A and C;

3. C chooses c
R←− Zp and sends gc to A and B.
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When the protocol ends, A, B and C are all able to compute the shared key

K = e(g, g)abc = e(gb, gc)a = e(ga, gc)b = e(ga, gb)c,

which is pseudo-random to everyone but A B or C. Namely, under the DBDH assump-
tion, K = e(g, g)abc is computationally indistinguishable from a random element of GT
given (g, ga, gb, gc).

The main interest of this tripartite key-agreement is that it needs only one round.
However, this protocol is secure only against passive adversaries.

1.2.2 Short signatures

The standard security notion for signature scheme is called existential unforgeability un-
der chosen-message attacks (EUF-CMA) or, more simply, security under chosen-message
attacks (CMA).

Definition 7 (CMA). A signature scheme (KeyGen, Sign, Verify) is EUF-CMA-secure
iff no PPT adversaries has non-negligible advantage in the following game:

1. The challenger generates (PK,SK)← KeyGen(λ) and PK is given to A.

A set Q = is initialized.

2. A makes signing queries:

• A chooses a message M and obtains a signature σ ← Sign(SK,M) from the
challenger;

• The challenger updates Q and sets Q := Q ∪ {M}.
Note that signing queries are made adaptively in that each query may depend on
the answer to previous queries.

3. A outputs a pair (M∗, σ∗) and wins if and only if Verify(M∗, σ∗, PK) = 1 and
M∗ 6∈ Q.

Here, A’s advantage is its probability of success, taken over all random choices.

We now describe a pairing-based signature scheme, due to Boneh, Lynn and Shacham
[BLS01], which provides short signatures. For the security level of AES-128, the scheme
yields signatures of 256 bits. It can be proved CMA-secure under the CDH assumption
in the random oracle model.

The signature scheme of Boneh, Lynn and Shacham (BLS) is described as follows.

• KeyGen(λ): choose groups (G,GT ) of prime order p > 2λ with a bilinear map

e : G × G → GT , a generator g
R←− G, a hash function H : {0, 1}∗ → G, which

will be modeled as a random oracle in the security analysis. Then, pick a group

element X = gx ∈ G, for a randomly chosen x
R←− Zp which will be the private key.

Define
PK = {(G,GT ), g,X = gx, H}

and SK = {x}.
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• Sign(SK,M): given M ∈ {0, 1}∗, compute and output the signature

σ = H(M)x ∈ G.

• Verify(M,σ, PK): to verify a candidate signature σ ∈ G on a message M , decide if
(g,X,H(M), σ) is a Diffie-Hellman tuple. Namely, decide if logH(M)(σ) = loggX.
This can be done by exploiting the easiness of DDH in G and testing the equality

e(σ, g) = e(H(M), X).

If the latter equality holds, return 1. Otherwise, return 0.

1.3 Identity-Based Encryption (IBE)

Shamir suggested the concept of IBE in [Sha84]. The idea is that any easy-to-remember
string can be a public key. The motivation for IBE schemes is to simplify key manage-
ment and remove the need of public key certificates as much as possible: since a key
is the identity of its owner, there is no need to bind them by a digital certificate and
a public repository containing a list of user names and their associated public keys be-
comes useless since public keys are human-memorable. End users do not have to enquire
for a certificate for their public key. The only things that still must be certified are
the public keys of trusted authorities called private key generators (PKGs) that have to
generate private keys associated to users identities thanks to their secret key. This does
not completely remove the need of certificates but, since many users depend on the same
authority, this need is drastically reduced.

1.3.1 Definition

Definition 8 (Identity-Based-Encryption). An IBE scheme is a tuple of algorithms
(Setup, KeyGen, Encrypt, Decrypt) such that:

• Setup(λ): given a security parameter λ ∈ N, outputs a pair (MPK,MSK) (run
by an authority called Private-Key Generator (PKG));

• KeyGen(MSK, ID): given MSK and user’s identity ID, outputs dID (run by the
PKG);

• Encrypt(MPK,M, ID): given MPK, a plaintext M and the receiver’s identity
ID, outputs a ciphertext C;

• Decrypt(MPK, dID, c): given MPK, a private key dID and a ciphertext C, outputs
M or an error symbol ⊥ indicating a decryption failure.
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1.3.2 The Boneh-Franklin IBE

This scheme has been described in [BF01] and is the first example of IBE scheme.
The Boneh-Franklin IBE scheme can be described as follows:

• Setup(λ):

1. Choose groups (G,GT ) of prime order p > 2λ with a bilinear map e : G×G→
GT and a generator g

R←− G,

2. Choose α
R←− Zp and compute g1 = gα ∈ G,

3. Choose a hash function H : {0, 1}∗ → G that will be modeled as a random
oracle in the security analysis.

Define
MPK = {(G,GT ), g, g1 = gα, H}

and MSK = α.

• KeyGen(MSK, ID): to generate a private key for the identity ID, compute and
output

dID = H(ID)α ∈ G.

• Encrypt(MPK,M, ID): given a message M ∈ GT , the master public key MPK
and the receiver’s identity ID ∈ {0, 1}∗,

1. Pick r
R←− Zp,

2. Compute

C = (C1, C2) =
(
gr,M · e

(
g1, H(ID)

)r)
.

• Decrypt(MPK, dID, C): parse C as (C1, C2) and compute

M = C2/e(C1, dID).

The scheme is correct since

e(dID, g) = e(H(ID)α, g) = e(H(ID), gα) = e(H(ID), g1) (1.1)

(Note that each private key is a BLS signature delivered by the PKG on the identity
ID). Hence, if we raise both members of (1.1) to the power r ∈ Zp, where r is the
encryption exponent, we obtain the equality

e(dID, C1) = e(H(ID), g1)
r,

which explains why the decryption algorithm successfully recovers the message M .
We will see that, under the DBDH assumption, the Boneh-Franklin IBE satisfies the

notion of semantic security for IBE schemes. In the context of identity-based encryption,
the usual notion of semantic security must be strengthened by allowing the adversary to
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corrupt some identities before trying to threaten other identities. Allowing the adversary
to corrupt a polynomial number of identites further gurantees that the scheme will be
collusion-resistant: namely, a coalition made of an arbitrary (but polynomial) number of
dishonest users of identities ID1, . . . , IDq will not be able to reconstruct the authority’s
master secret key MSK by pooling their private keys dID1 , . . . , dIDq . The required
collusion-resistance property is one of the main difficulties that make the construction
of IBE schemes non-trivial.

Definition 9 ([BF01]). An IBE scheme is semantically secure (or IND-ID-CPA secure)
if no PPT adversary has non-negligible advantage in the following game:

1. The challenger generates (MPK,MSK) ← Setup(λ), gives MPK to A and ini-
tializes a set Q := ∅.

2. A corrupts identities of its choice and repeats the following kinds of queries:

• A chooses an identity ID and obtains dID ← KeyGen(MSK, ID) from the
challenger.

• The challenger updates Q := Q ∪ {ID}.
Note that each query may depend on the answer to previous queries.

3. A chooses M0,M1 and a target identity ID∗ 6∈ Q.

4. Challenger picks d
R←− {0, 1} and returns C∗ = Encrypt(MPK,Md, ID

∗).

5. A corrupts more identities under the restriction that ID∗ can never be corrupted.
Hence, it must hold that ID∗ 6∈ Q at then end of the game.

6. A outputs d′ ∈ {0, 1} and wins if and only if d′ = d.

The adversary’s advantage is defined as the distance AdvA(λ) = |Pr[d′ = d]− 1
2 |.
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