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The lecture is based on the following reference:

• Gentry, Sahai, Waters, CRYPTO ’13 [5]

1 Introduction
Definition Let P be the set of plaintexts (here P = {0, 1}), and C the set of ciphertexts. A homomorphic
encryption (HE) over (P,C) consists of four probabilistic polynomial time (ppt) algorithms:

• KeyGen: 1λ → sk, pk, evk (evaluation key)

• Enc: pk,m→ c ∈ C with m ∈ P

• Dec: sk, c ∈ C → m′ ∈ P

• Eval: evk, f, (c1, . . . , cp) ∈ C` → cf ∈ C
f “function” with ` inputs, described by a binary circuit, {0, 1}` → {0, 1}

Functionality The homomorphic encryption scheme is said F-homomorphic for a family of circuits F
if:
If c1 = Encpk(m1), . . . , cp = Encpk(m`)
Then Decsk(Evalevk(f, (c1, . . . , c`) = f(m1, . . . ,m`)) ∀m1, . . .m` ∈ {0, 1} ∀f ∈ F , with overwhelming
probability over the random coins of KeyGen, Enc, Eval and Dec.

Security Indistinguishability under chosen-plaintext attack (IND-CPA) security of Enc: The distribu-
tions (pk, evk,Encpk(0)) and (pk, evk,Encpk(1)) are computationnally indistinguishable.

Remark Indistinguishability under chosen ciphertext attack (IND-CCA) security (with decryption
oracle) is impossible.
IND-CCA1 security (with decryption queries before the challenge phase) might be possible.

Compactness Homomorphic encryption (HE) is said compact if ∃c > 0 such that
∀f ∈ F,∀m1, . . . ,ml, bitsize(Eval(evk, f, Encpk(m1). . . Encpk(ml))) ≤ λc (to avoid trivial solutions)

A Homomorphic Encryption scheme (HE) is said fully-homomorphic if F is the set of all circuits and if
HE is compact.

1.1 Applications
• Confidential outsourced computations

• Secure multi-party computations
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2 History
It was suggested in 1978 by Rivest, Adleman, Dertouzos, which invented the concept [8].

Some partially homomorphic algorithms:

• El Gamal (×)
(gr1 , hr1 .M) & (gr2 , hr2 .M)
⇒ (gr1+r2 , hr1+r2m1m2)

• Goldwasser-Micali (+) [6]

• Paillier (+) [7]

• Boneh, Goh, Nissim (+∗ ×+∗) [1]

• First fully homomorphic encryption scheme: Gentry ’09 [4]

• Brakerski-Vaikuntanathan ’11 [2]
Fully Homomorphic Encryption (FHE) based on Learning With Errors (LWE).

3 The GSW basic encryption scheme (Gentry Sahai Waters)

KeyGen B ← U(Zm·(n−1)
q ), b = Bt+ e with t← U(Z(n+1)

q ) and e← DZm,αq

The hardness of Learning With Errors (LWE) makes it computationally indistinguable from uniform
distribution (over Zm·nq ). (Here, n,m = Õ(λ), q = λO(logλ), α '

√
n
q .)

PK := A = (b| −B) ∈ Zm.nq

sk := s =
(

1
t

)
∈ Znq (A · s = b−Bt = e)

Enc A′ = R.A with R← DZm×m,σ.
If A is uniform, then A′ will be almost uniform by leftover hash lemma (we can choose σ =

√
n).

Remark We can even take R← U({0, 1}n.m).
We define C = A′+M.Idn (which looks uniform, independently ofM) ensures indistinguishability under
chosen-plaintext attack (IND-CPA) security.

Dec We have:

C.s = A′s+Ms

= RAs+Ms

= Re+Ms

We have ‖R.e‖ ≤ poly(m).αq
If Cs− s is small, then reply 1.
If Cs is small, then reply 0.

Is it homomorphic?
Let C1.s = M1s+ e1 and c2.s = M2s+ e2.
Then (C1 + C2) is a valid ciphertext for M1 +M2.
We have:

(c1 + c2)s = M1s+ e1 +M2s+ e2
= (M1 +M2)s+ (e1 + e2)︸ ︷︷ ︸

new noise e+

The new noise satisfies ‖e+‖ ≤ ‖e1‖+ ‖e2‖.
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If α is small enough, then ‖e+‖ << q and Dec works correctly.

(C2.C1).s = C2(C1s)
= C2(M1s+ e1)
= M1(C2s) + C2e1 (M1 ∈ {0, 1} : scalar)
= M1(M2s+ e2) + C2e1

= (M1M2)s+M1e2 + C2e1

It fails because C2e1 is not small mod q! It’s not multiplicatively homomorphic.

4 The GSW homomorphic encryption scheme
4.1 Description
It relies on three functions:
BD Zq → {0, 1}l=blog2(q)c+1

x→ (x0, . . . , xl−1) such that x =
∑l−1
i=0 xi2i

BD −1: Zl → Zq
(x0, . . . , xl−1)→ x =

∑l−1
i=0 xi2i[q] (Note that we have BD−1 ◦BD = id,BD ◦BD−1 6= id )

P2 Zq → Zlq
x→ (x, 2x, 4x, . . . , 2l−1x)
Extended to vectors (acting entry by entry)
Extended to matrices (row after row).

Properties We have the following properties.

BD−1 ◦BD = id

< a, s > = < BD(a), P2(s) >
< a,P2(s) > = < BD−1(a), s >

Enc (M ∈ {0, 1}) does not output elements in Zn.nq , but in {0, 1}N.N instead, with N = n.l ' n log(q).
BD(R.A) = K
And, c = BD(RA) +MIdN

Remark The public key and secret key are the same as before.

C = BD(BD−1(BD(RA) +M.Id)) = BD(RA+M.BD−1(IdN.N ))
= BD(RA+M.BD−1(Id))

RA looks uniform mod q, so RA+M.BD−1(IdN.N )︸ ︷︷ ︸
fixed

looks uniform mod q, independently of M.

And BD(RA+M.BD−1(IdN.N )) too, as if its distribution did not depend on M: we have indistinguisha-
bility under chosen-plaintext attack (IND-CPA) security.

Dec (C ∈ {0, 1}N.N , s ∈ Znq )

C.P2(s) = BD(BD−1(BD(RA) +MId)).P2(s)
= BD−1(BD(RA) +MId).s
= (BD(RA) +MId).P2(s)
= BD(RA).P2(s) +M.P2(s)
= RAs+M.P2(s)
= Re︸︷︷︸

small

+M.P2(s)︸ ︷︷ ︸
big
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If c.P2(s)− P2(s) small then return 1.
If c.P2(s) small then return 0.

4.2 Homomorphism
Let’s assume that C1P2(s) = e1 +M1P2(s) and C2P2(s) = e2 +M2P2(s).
Now, the ci are {0, 1}N.N and we replaced s by P2(s).

Then (C1 + C2)P2(s) = (e1 + e2) + (M1 +m2)P2(s)
(C2.C1)P2(s) = (M2M1)P2(s) + (M1.e2 + C2.e1)

We have the following relations:
‖e+‖ ≤ ‖e1‖+ ‖e2‖
‖e×‖ ≤ |M1|.‖e2‖+ poly(N).‖e1‖ ≤ poly(m. log(q)).(‖e1‖+ ‖e2‖)

There are two difficulties to get Homomorphic Encryption for binary circuits:
1 - Add is mod q, instead of mod 2.
2 - C2.C1 is not binary. . . and we end up with the same problem as before.

1 - NAND {0, 1}2 → {0, 1} is universal. Hence, it is sufficient to play with NAND circuits.
Eval(NAND, c1, c2) := (Id− C2C1) (mod 2)
(Id− C2C1)P2(s) = (1−M2M1)︸ ︷︷ ︸

∈ {0, 1} if M1,M2 ∈ {0, 1}

P2(s) + (M1e2 + C2C1)

2 - Replace C2C1 by BD(BD−1(Id− C2C1)). Indeed, it is binary, and we have:
BD(BD−1(Id− C2C1))P2(s) : (1−M2M1)P2(s) + ex

‖ex‖ ≤ |M1|‖e2‖+ poly(N)‖e1‖
≤ poly(n log(q)).(‖e1‖+ ‖e2‖)

5 Noise growth and Fully Homomorphic Encryption
Fresh noises (at the input of the circuit) are smaller than B = αq.poly(n log(q))
At the end of the NAND circuit, the noise is smaller than B.poly(n log(q))D with D the circuit depth.
And finally, smaller than αq.poly(n log(q))D+1

We want te be able to decrypt the output ciphertext.
For this, it suffices to have α.q.poly(n log(q))D+1 ≤ q

16 .
This can be obtained by setting α ≈ 1

poly(n log(q))D+1

For a fixed α, we are limited to depth D circuits, for some D. So, it is not fully homomorphic.

Gentry’s bootstrapping from Homomorphic Encryption to Fully Homomorphic Encryption.
Let c be a ciphertext. Then define:
c′ := Evalevk(DecryptionCircuit, Encpk(c), Encpk(sk))

Decsk(c′) = DecryptionCircuit(Decsk(Encpk(c)), Decsk(Encpk(sk)))
= DecryptionCircuit(c, sk)
= plaintext underlying c

Remarks

• The decryption algorithm can be converted into a NAND circuit.

• The ciphertext c and the secret key sk are decomposed in bits c1, . . . , sk1, . . . , and each one of
these is re-encrypted.

• The decryption circuit must be already among the circuits we can homomorphically evaluate.

Exercise Implement decryption with a O(log(n log log(q))) depth circuit.
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We can set D ≥ O(log(n log log(q))) in GSW and get a Fully Homomorphic Encryption scheme via
Gentry’s bootstrapping. We obtain α ' 1

(n log log(q))log(n log log(q)) , which is only slightly smaller than
1

poly(n) .

Remark In [3], Brakerski and Vaikuntanathan get α ' 1
poly(n) ‖e×‖ ≤ |M1|.‖e2‖+ poly(N).‖e1‖

The other issue with Gentry’s bootstrapping is that we need to publicly give encpk(sk) (evaluation key).
(More precisely, we are given encryptions of the bits of sk.)
We do not know how to make this provably secure. We assume it is, and call it a circular security
assumption.
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