
H-LLL: Using Householder Inside LLL

Ivan Morel
ÉNS Lyon, Université de Lyon

University of Sydney
Laboratoire LIP, France

CNRS-ENSL-INRIA-UCBL
ivan.morel@ens-lyon.fr

Damien Stehlé
CNRS, Macquarie University

and University of Sydney
Department of Mathematics

and Statistics
University of Sydney
NSW 2006, Autralia

damien.stehle@gmail.com

Gilles Villard
CNRS, Université de Lyon

Laboratoire LIP, France
CNRS-ENSL-INRIA-UCBL

gilles.villard@ens-lyon.fr

ABSTRACT
We describe a new LLL-type algorithm, H-LLL, that relies
on Householder transformations to approximate the under-
lying Gram-Schmidt orthogonalizations. The latter com-
putations are performed with floating-point arithmetic. We
prove that a precision essentially equal to the dimension suf-
fices to ensure that the output basis is reduced. H-LLL re-
sembles the L2 algorithm of Nguyen and Stehlé that relies
on a floating-point Cholesky algorithm. However, replac-
ing Cholesky’s algorithm by Householder’s is not benign,
as their numerical behaviors differ significantly. Broadly
speaking, our correctness proof is more involved, whereas
our complexity analysis is more direct. Thanks to the new
orthogonalization strategy, H-LLL is the first LLL-type al-
gorithm that admits a natural vectorial description, which
leads to a complexity upper bound that is proportional to
the progress performed on the basis (for fixed dimensions).

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-

ity]: Numerical Algorithms and Problems—Computations
on matrices

General Terms
Algorithms

Keywords
Lattice Reduction, LLL, Floating-Point Arithmetic, House-
holder’s Algorithm

1. INTRODUCTION
Lattice reduction is a fundamental tool in diverse fields

of computational mathematics [2] and computer science [8].
The LLL algorithm, invented in 1982 by Arjen Lenstra, Hen-
drik Lenstra Jr and László Lovász [7], allows one to perform

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$10.00.

lattice reduction in time polynomial in both the dimensions
and the bit-sizes of the entries of the input matrix.

In terms of efficiency, the major weakness of the origi-
nal rational algorithm and its improved variants [5, 17] is
that they perform all computations with exact arithmetic,
leading to the use of very large integers. This considerably
slows down the algorithm, making it impractical for large
dimensions or entries. As early as 1983, Odlyzko, in his first
attempts to cryptanalyze knapsack cryptosystems [10], used
floating-point arithmetic (fpa for short) within LLL to avoid
the rational arithmetic cost overhead. The cost of updating
the basis being negligible compared to the cost of computing
and updating the Gram-Schmidt orthogonalization (GSO
for short) of the vectors, it seems natural to compute the
latter using fpa, while using exact arithmetic to update the
basis. This was at first implemented in a heuristic manner,
without ensuring the accuracy of the computations. In a pio-
neering work [13], Schnorr showed that the natural heuristic
approach can be made rigorous.

In the present paper we present a new fp LLL algorithm
that relies on the computation of the QR-factorization of
the basis using Householder’s algorithm. H-LLL computes
fp approximations to the coefficients of the R-factor and
uses them to perform exact operations on the basis. We
prove that if the precision is large enough, then H-LLL runs
correctly. The bound on the precision depends on the di-
mension only (it is actually essentially equal to it). Our
analysis relies on bounds on the errors made while comput-
ing the R-factor of a given reduced basis. Those bounds are
proved in [1]. Exploiting them while requiring a fairly small
precision is where the technical complexity of the present
work lies. In particular, the bounds do not seem sufficient
to perform a size-reduction, a crucial step in the LLL algo-
rithm (even with the weaker version of Definition 2). This
is where H-LLL differs from most LLL variants: rather than
fully size-reducing the current vector, we transform it so that
enough information is obtained to decide whether Lovász’s
condition is satisfied. The correctness of H-LLL is thus
harder to prove, but its unique design allows us to explic-
itly bound the bit-complexity in terms of the actual work
that was performed on the lattice basis. All other LLL al-
gorithms work on the underlying quadratic form, whereas
ours can be interpreted as working on vectors. Considering
a basis matrix (b1, . . . ,bd) ∈ Z

n×d with vectors of euclidean
norms ≤ ‖B‖, the total bit complexity is:

O

»„

d + log
Y db

i

de
i

+
1

d
log

Y ‖bb
i‖

‖be
i‖

«

nM(d)(d + log ‖B‖)
–

,

where db
i (resp. de

i) is the determinant of the lattice spanned
by the first i columns of B at the beginning (resp. the end),
and M(x) = O(x2) is the cost of multiplying two x-bit
long integers. The product

Q

di is classically referred to

as the potential. The term log
Q db

i

de
i

quantifies the actual

progress made with respect to the potential, while the term

log
Q ‖bb

i‖

‖be
i
‖

quantifies the progress made with respect to the

norms of the vectors. One can note that the obvious bound
on the latter (d log ‖B‖) is negligible compared to the ob-
vious bound on the former (d2 log ‖B‖). The overall bit
complexity is O(nd2M(d) log ‖B‖(d + log ‖B‖)).

Related works. As mentioned previously, the first rig-
orous fp LLL was invented by Schnorr in 1988 (see [13]).
However, the precision used in the fp computations was a
linear function of both the bit-size of the matrix entries and
the dimension, with rather large constant factors. Since
then, Schnorr et. al have described several heuristic reduc-
tion algorithms [15, 6, 14, 12], notably introducing in [15]
the concept of lazy size-reduction and in [6] the idea to use
Householder’s algorithm. The outputs of those heuristic al-
gorithms may be certified LLL-reduced with [18], but so far
there does not exist any proved variant of LLL relying on
Householder’s algorithm and using a fp precision that does
not depend on the bit-size of the matrix entries. The L2

algorithm [9] of Nguyen and Stehlé is a proven fp LLL, also
of complexity O(nd2M(d) log ‖B‖(d + log ‖B‖)), that relies
on a lazy size-reduction based on Cholesky’s algorithm. Al-
though this approach is close to the present work, there are
a few key differences caused by the use of different orthog-
onalization algorithms. The first difference is the nature of
the numerical errors. Both Cholesky’s algorithm and House-
holder’s are backward stable [4] and forward stable when the
input is LLL-reduced [9, 1]. When computing the R-factor
of a given basis, the error made using Cholesky’s relates to
the diagonal coefficient of the row, which induces an abso-
lute error on the Gram-Schmidt coefficients. When using
Householder’s, the same error involves the diagonal coeffi-
cient of the column, inducing possibly much larger absolute
errors on the Gram-Schmidt coefficients. This leads us to
use a slightly relaxed definition of reduction, which is a fix-
point under perturbation of the original basis [1]. The dif-
ferent nature of the error makes the correctness harder to
obtain. The second difference is the number and type of
arithmetic operations made. Cholesky’s algorithm uses the
exact Gram matrix of the basis to compute the R-factor,
which implies additional integer arithmetic. Furthermore
the overall number of operations needed to compute and up-
date the GSO-related quantities using Cholesky’s algorithm
is roughly twice the number of operations needed when using
Householder’s. Also, the precision required is higher when
using the Cholesky factorization, which can be explained
intuitively by its condition number being greater than the
condition number of the QR-factorization. This leads to the
fact that H-LLL requires a precision of ≈ d bits, whereas
L2 requires a precision of ≈ 1.6d bits. Finally, the vectorial
nature of H-LLL makes its complexity analysis simpler than
that of L2: the amortized cost analysis (which allows to get
a complexity bound that is quadratic when the dimensions
are fixed) is much more direct.

Road-map. In Section 2, we give some reminders that are
necessary for the description and analysis of H-LLL. In Sec-

tion 3, we describe a new (incomplete) size-reduction al-
gorithm and analyze it. H-LLL relies on the (incomplete)
size-reduction algorithm and is presented in Section 4.

Notation. Vectors will be denoted in bold. If b is a vec-
tor, then ‖b‖ will denote its euclidean norm. For a ma-
trix A = (ai,j) ∈ R

m×n, its j-th column will be denoted
by aj . If b is a vector and i ≤ j are two valid entry indices,
then b[i..j] is the (j−i+1)-dimensional sub-vector of b con-
sisting of its entries within indices i and j. The notation ⌊x⌉
denotes an arbitrary integer closest to x. We define sign(x)
as 1 if x ≥ 0 and −1 otherwise. We use a standard base-2
arbitrary precision fp model, such as described in [4, Sec.
2.1]. The notation ⋄(a) refers to the fp rounding of a. If x is
a variable, the variable x hopefully approximates x and ∆x
is the distance between them. For complexity statements,
we count all elementary bit operations.

Glossary. The variables α, δ, δ, δ′, η, η, θ, θ and ρ all refer
to parameters related to the LLL-reduction. For simplicity,
the reader may think of α ≈ 2/

√
3, 1 ≈ δ < δ < δ′ <

1, 1/2 < η < η ≈ 1/2, 0 < θ < θ ≈ 0 and ρ ≈
√

3.
The variables c0, c1 are polynomially bounded functions of d
and n (and the variables above) and can be safely thought
of as constants.

2. LATTICE REDUCTION
A euclidean lattice L is a discrete subgroup of R

n. A
basis B = (b1, . . . ,bd) ∈ Ld of L is a tuple of linearly
independent vectors such that L is precisely the set of all
integer linear combinations of the bi’s. The integer d ≤ n is
the dimension of L. Any lattice L of dimension d ≥ 2 has
infinitely many bases, which can all be derived from any ar-
bitrary basis of L by applying unimodular transformations,
i.e., invertible integral operations. Lattice reduction aims
at finding ’good’ bases, i.e., bases with reasonably short and
orthogonal vectors. Having such a basis allows one to obtain
information about the lattice more easily. In the following
we consider only integer lattices, i.e., L ⊆ Z

n. We represent
a basis B by using the n × d integer matrix whose columns
are the bi’s. We will now introduce some elementary notions
about lattices. We refer to [8] for more details.

Orthogonalization. The Gram-Schmidt orthogonaliza-
tion maps a basis B = (b1, . . . ,bd) to a tuple of orthogonal
vectors (b∗

1, . . . ,b
∗
d) defined by:

∀i ≤ d, b
∗
i = bi −

X

j<i

〈bi,b
∗
j 〉

‖b∗
j‖2

b
∗
j .

The GSO quantifies the orthogonality of the bi’s. If
the 〈bi,b

∗
j 〉/‖b∗

j‖2’s are small and the ‖b∗
i ‖’s do not de-

crease too fast, then the bi’s are fairly orthogonal. The GSO
is closely related to the R-factor of the QR-factorization of
the basis matrix. For a given B ∈ R

n×d of rank d, there ex-
ist matrices Q ∈ R

n×d and R ∈ R
d×d, such that QT Q = I,

R is upper triangular with positive diagonal coefficients
and B = QR. Such a factorization is unique and we
have Ri,i = ‖b∗

i ‖ and Ri,j = 〈bj ,b
∗
i 〉/‖b∗

i ‖ for any i < j.

Lattice invariants. An invariant of a lattice L is a quantity
that does not depend on the particular choice of a basis of L.
The minimum is defined by: λL = min(‖b‖,b ∈ L \ {0}).
The determinant det L =

p

det(BT B) =
Q ‖b∗

i ‖ is another
lattice invariant.

LLL-reduction. The LLL-reduction is an efficiently com-
putable relaxation of a reduction introduced by Hermite [3].
We give a generalization of the definition of [7].

Definition 1. Let η ≥ 1/2 and δ ≤ 1. A
basis (b1, . . . ,bd) is (δ, η)-LLL reduced if for
any i < j, |Ri,j | ≤ ηRi,i (size-reduction condition) and
if for any i, δR2

i−1,i−1 ≤ R2
i−1,i + R2

i,i (Lovász’s condition).

For the purpose of this work, we need a slightly weaker
definition of reduction, introduced in [1]. One can recover
Definition 1 by taking θ = 0.

Definition 2. Let η ≥ 1/2, δ ≤ 1 and θ ≥ 0.
A basis (b1, . . . ,bd) is (δ, η, θ)-LLL reduced if for
any i < j, |Ri,j | ≤ ηRi,i + θRj,j (weak size-reduction con-
dition) and if Lovász’s condition holds.

The latter definition is essentially equivalent to the for-
mer, as it only differs when Rj,j ≫ Ri,i, which corre-
sponds to quite orthogonal vectors. The following theorem
(from [1]) formalizes this equivalence by exhibiting prop-
erties of (δ, η, θ)-reduced bases similar to the properties of
(δ, η)-reduced bases [7].

Theorem 2.1. Let η ∈ [1/2, 1], θ ≥ 0, δ ∈ (η2, 1]

and α =
θη+

√
(1+θ2)δ−η2

δ−η2 . Let (b1, . . . ,bd) be a (δ, η, θ)-

LLL reduced basis of a lattice L. Then for all i, we
have Ri,i ≤ αRi+1,i+1 and Ri,i ≤ ‖bi‖ ≤ αi−1Ri,i.

We also have ‖b1‖ ≤ αd−1λL, ‖b1‖ ≤ α
d−1
2 (det L)

1
d

and
Q ‖bi‖ ≤ α

d(d−1)
2 (det L).

The LLL algorithm. LLL [7] computes a (δ, η)-LLL-
reduced basis in time polynomial both in the dimensions d
and n and the bit-size of the entries log ‖B‖, provided that
η ∈ [1/2, 1) and δ ∈ (δ − η2, 1). Although there are many
LLL variants, they all roughly follow the same high-level
design, described in Algorithm 1.

Algorithm 1 A generic LLL algorithm.

Input: A basis (b1, . . . ,bd) of a lattice L.
Output: An LLL-reduced basis of L.
1: κ := 2.
2: While κ ≤ d, do
3: Size-reduce bκ.
4: If Lovász’s condition holds for κ, then κ := κ + 1.
5: Else swap bκ−1 and bκ; κ := max(κ − 1, 2).

Perturbation analysis of the R-factor. In this paper we
introduce a new variant of LLL that relies on the approxi-
mate computation of the R-factor of B using Householder’s
algorithm (Algorithm 2). With fpa, all operations are per-
formed in the naive order, and all sums of several terms are
computed sequentially. In order to ensure the soundness
of the operations we will perform on the basis (in H-LLL),
which are dictated by the values of the Ri,j , we need to ad-
dress the issue of the accuracy of the computed R-factor.
It is known (see [4, Ch. 19]) that Householder’s algorithm
computing the R-factor is backward-stable (i.e., its output
is the R-factor of a matrix that is close to its input), but it is
not forward-stable in the general case. Theorem 2.3 (proved
in [1]) bounds the sensibility of the R-factor to column-
wise input perturbations, when the input is LLL-reduced.

Combined with the backward stability of Householder’s al-
gorithm (Theorem 2.2, proved in [1]), Corollary 2.4 shows
the forward-stability of Householder’s algorithm in the case
of LLL-reduced inputs.

Algorithm 2 Householder’s algorithm.

Input: A rank d matrix B ∈ R
n×d.

Output: An approximation to the R-factor of B.
1: R := ⋄(B).
2: For i from 1 to d, do
3: For j from 1 to i − 1, do
4: ri[j..n] = ri[j..n] − (vT

j ri[j..n]) · vj ; ri[j] := σjri[j].
5: r := ri[i..n];vi := r.
6: σi := sign(r[1]); s := σi‖r‖.
7: vi[1] := (−Pn−i+1

j=2 r[j]2)/(r[1] + s).

8: If vi[1] 6= 0, then vi := vi/
p

−s · vi[1].

9: ri[i..n] := (‖r‖, 0, . . . , 0)T .
10: Return the first d rows of R.

Theorem 2.2. Let B ∈ R
n×d be a rank d matrix given

as input to Algorithm 2. Let us assume that the com-
putations are performed with fpa in precision p such that
8d(n + 9)2−p ≤ 1. Let R ∈ R

d×d be the output. Then
there exists Q ∈ R

n×d with orthonormal columns such
that ∆B = B − QR satisfies:

∀i ≤ d, ∆‖bi‖ ≤ 8d(n + 9)2−p · ‖bi‖.

Theorem 2.3. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1].
Let B ∈ R

n×d of rank d be (δ, η, θ)-LLL-reduced. Let ε ≥ 0
such that c0ρ

dε < 1, where ρ = (1 + η + θ)α and:

c0 = max

8

>

<

>

:

1 + |1 − η − θ|α
(η + θ)

“

−1 +
q

3
2

” ,
4
√

6

1 + η

p

1 + dη2

9

>

=

>

;

n
√

d.

If ∆B ∈ R
n×d is such that ∀i, ∆‖bi‖ ≤ ε·‖bi‖ and if R+∆R

is the R-factor of B + ∆B (which exists), then:

∀i ≤ d, ∆‖ri‖ ≤ c0ρ
iε · Ri,i.

The following result provides an error bound for the R ma-
trix computed by Algorithm 2 using precision p fpa, starting
from a B in R

n×d whose d−1 first columns are LLL-reduced.

Corollary 2.4. Let η ∈ [1/2, 1), θ ≥ 0 and δ ∈ (η2, 1).
Let B ∈ R

n×d be a rank d matrix whose first (d − 1)
columns are (δ, η, θ)-LLL-reduced and which is given as in-
put to Algorithm 2. Let us assume that the computations
are performed with fpa in precision p such that c1ρ

d2−p < 1,
where c1 = 8d(n + 9)c0. Let R = R + ∆R ∈ R

d×d be the
output matrix. Then:

∀j ≤ i < d, ∆Rj,i ≤ c1ρ
i2−p · Ri,i

and

∀i < d, ∆Ri,d ≤ c1(1 + 1/θ)ρi+12−p · (Ri,i + ‖bd‖).

Thus denoting the quantity c1(1+1/θ)ρi+1 by φ(i), we have
for any j ≤ i < d:

∆Rj,i ≤ 2−pφ(i)Ri,i and ∆Ri,d ≤ 2−pφ(i)(Ri,i + ‖bd‖).

Proof. The first statement is a direct consequence of The-
orems 2.2 and 2.3. Let i < d. We consider the basis
(b′

1, . . . ,b
′
i+1) defined by b′

j = (bT
j , 0)T for j ≤ i and b′

i+1 =

(bT
d , Ri,i + ‖bd‖/θ)T . By construction, it is (δ, η, θ)-LLL re-

duced. Furthermore, calling Algorithm 2 on (b′
1, . . . ,b

′
i+1)

leads to exactly the same fp operations as on (b1, . . . ,bd),
for the approximation of R′

i,i+1 = Ri,d. Therefore, using the
first part of the result:

∆Ri,d = ∆R′
i,i+1 ≤ c1ρ

i+12−p · R′
i+1,i+1.

Then we use R′
i+1,i+1 ≤ Ri,i + (1 + 1/θ)‖bd‖. 2

This result implies that if we start from a (δ, η, θ)-LLL-
reduced basis, then we can use Householder’s algorithm to
check that it is reduced for (arbitrarily) slightly weaker pa-
rameters. It is incorrect to say that if we start from a (δ, η)-
reduced basis, then Householder’s algorithm allows to check
that it is (δ′, η′)-reduced for slightly weaker parameters δ′

and η′ (a counter-example is provided in [16]). This is the
reason that underlies the weakening of the LLL-reduction.

3. AN INCOMPLETE SIZE-REDUCTION
In the present section, we present a novel algorithm (Algo-

rithm 3) that relies on a fp Householder’s algorithm (Algo-
rithm 2). It does not size-reduce the vector bκ under scope,
it does not even weakly size-reduce it in general. However,
to some extent, it decreases the length of bκ. This is ex-
actly the progress it attempts to make (see Step 7). Also,
we will prove that the output basis is of sufficient numerical
quality for Lovász’s condition to be (approximately) tested.
If the latter is satisfied, then we know a posteriori that the
basis was indeed weakly size-reduced (see Section 4). The
condition on the precision p ensures the soundness of the
computations.

The algorithm contains a main loop (Steps 1–7). The vec-
tor bκ becomes more reduced with respect to the previous
ones every time the loop is iterated. Within the loop, House-
holder’s algorithm is called (Step 2) to obtain an approxi-
mation to rκ. This approximation is then used to perform
a partial size-reduction (Steps 3–6), whose progress may be
limited by the inaccuracies created at Step 2. Note that only
the GSO computations are performed approximately, the
basis operations being always exact. Right before the end,
at Step 8, new approximations rκ and vκ are computed to
ensure that the output vectors r1, . . . , rκ and v1, . . . ,vκ are
exactly those that would have been returned by Algorithm 2
given the first κ columns of the returned B as input.

During the execution, the quantities Ri,κ for i < κ are
known only approximately, and are updated within the loop
made of Steps 3–5. To simplify the exposure, we introduce
some notation. We will denote by Ri,κ (resp. Ri,κ) the ap-
proximate (resp. exact) value of Ri,κ at Step 2. We will

denote by R
′
i,κ the approximate value of Ri,κ at the begin-

ning of Step 4. This is an approximation to R′
i,κ = Ri,κ −

Pκ−1
j=i+1 XjRi,j . Finally, we define R′′

i,κ = R′
i,κ − XiRi,i,

which is the new (exact) value of Ri,κ after Step 4. We
will also use the index i0 to denote the largest i < κ such
that Xi 6= 0, with i0 = 0 if not defined.

We analyze Algorithm 3 as follows. We first consider the
effect of one iteration of the loop made of Steps 3–6 on the
Ri,κ’s and ‖bκ‖. This study will then lead us to correctness
and complexity results on Algorithm 3.

Algorithm 3 The incomplete size-reduction algorithm.

Input: A matrix B ∈ Z
n×d, κ ≤ d and the output

r1, . . . , rκ−1,v1, . . . ,vκ−1, σ1, . . . , σκ−1 of Algorithm 2
when given as input the first κ − 1 columns of B. We
assume that the first κ − 1 columns of B are (δ, η, θ)-
LLL-reduced with η ∈ (1/2, 1), δ ∈ (η2, 1) and θ ∈
(0, η − 1/2).

Input: ⋄(2−cd) (for an arbitrary c > 0) and a fp preci-

sion p > log2(2
cd
2

+9κ3φ(κ)α/θ).
1: Do
2: Compute rκ using Steps 3–4 of Algorithm 2.
3: For i from κ − 1 to 1, do

4: Xi =
j

⋄
“

Ri,κ

Ri,i

”m

.

5: For j from 1 to i−1, do Rj,κ := ⋄
`

Rj,κ − ⋄
`

XiRj,i

´´

.

6: t := ⋄(‖bκ‖2); bκ := bκ − P

i<κ Xibi.

7: Until ⋄(‖bκ‖2) > ⋄(⋄(2−cd) · t).
8: Compute rκ,vκ, σκ using Steps 3–9 of Algorithm 2.
9: Return B, r1, . . . , rκ, v1, . . . ,vκ and σ1, . . . , σκ.

3.1 Analysis of Steps 3–6
The aim of the next lemmata is to bound the magnitude

of R′
i,κ and its error ∆R′

i,κ. As is often the case in numerical
analysis, the error and magnitude bounds are intertwined.
This issue is solved by building up an induction on the two
bounds (Lemmata 3.2 and 3.3), and the induction itself is
solved in Lemma 3.4. This allows us to lower bound the
decrease of ‖bκ‖ after an iteration of the loop (in Theo-
rem 3.7).

Lemma 3.1. For any i < κ, the quantity |Xi|Ri,i is upper
bounded by both

Ri,i

2
+ (1 + 2−p+1φ(i))|R′

i,κ| and 4|R′
i,κ|.

Proof. The result being obviously correct when Xi = 0, we
assume that Xi 6= 0. We have that |Xi| is no greater than

1/2 + ⋄(|R′
i,κ|/Ri,i) ≤ 1/2 + (1 + 2−p)|R′

i,κ|/Ri,i.

Therefore, by using Corollary 2.4:

|Xi||Ri,i| ≤
Ri,i

2
+

1 + 2−p

1 − 2−pφ(i)
|R′

i,κ|

≤ Ri,i

2
+ (1 + 2−p+1φ(i))|R′

i,κ|.

Since Xi 6= 0, we have |R′
i,κ| ≥ Ri,i

2
≥ (1−2−pφ(i))Ri,i

2
. Thus:

|Xi||Ri,i| ≤ 2(1 + 2−p+1φ(i))|R′
i,κ|,

which completes the proof. 2

Lemma 3.2. For any i ≤ i0, we have:

|R′
i,κ| ≤‖bκ‖ + καi0−iRi0,i0

+ (1 + 2−p+1φ(i0))

i0
X

j=i+1

“

ηαj−i + θ
”

|R′
j,κ|.

Proof. By using the LLL-reducedness of the first κ − 1

columns of B, we have:

|R′
i,κ| ≤ |Ri,κ| +

i0
X

j=i+1

|Xj ||Ri,j |

≤ ‖bκ‖ +

i0
X

j=i+1

(ηαj−i + θ)|Xj |Rj,j

≤ ‖bκ‖ + καi0−iRi0,i0 .

The result is then provided by Lemma 3.1. 2

Lemma 3.3. For any i ≤ i0, we have:

∆R′
i,κ ≤ 2−p+2φ(i)(‖bκ‖ + Ri,i) + 2−p+4

i0
X

j=i+1

φ(j)|R′
j,κ|.

Proof. Using the bound [4, Eq. (3.5)], Corollary 2.4,
Lemma 3.1 and the LLL-reducedness of the first κ − 1
columns of B, we have that ∆R′

i,κ is bounded by:

κ2−p+1

|Ri,κ|+
i0

X

j=i+1

|XjRi,j |
!

+

i0
X

j=i+1

|Xj |∆Ri,j + ∆Ri,κ

≤ κ2−p+1

‖bκ‖ +

i0
X

j=i+1

|XjRi,j |
!

+ 2

i0
X

j=i+1

|Xj |∆Ri,j +2∆Ri,κ

≤ κ2−p+1‖bκ‖ + 2−p+1
i0

X

j=i+1

|Xj |(κRi,i +φ(j)Rj,j) +2∆Ri,κ

≤ κ2−p+1‖bκ‖ + 2−p+1φ(i)(‖bκ‖ + Ri,i)

+ 2−p+3
i0

X

j=i+1

(καj−i + φ(j))|R′
j,κ|,

which provides the result. 2

Lemma 3.4. For any i ≤ i0, we have that

|R′
i,κ| ≤ 2κρi0−i (‖bκ‖ + Ri0,i0). This bound also holds

for any |Ri,κ| at any moment within the loop made of
Steps 3–5.

Proof. Using Lemmata 3.2 and 3.3, we bound |R′
i,κ| by:

|R′
i,κ| + ∆R′

i,κ

≤ |R′
i,κ| + 2−p+2φ(i)(‖bκ‖ + Ri,i) + 2−p+4

i0
X

j=i+1

φ(j)|R′
j,κ|

≤ α‖bκ‖ + 2καi0−iRi0,i0

+

i0
X

j=i+1

“

ηαj−i + θ + 2−p+5φ(i0)α
j−i

”

|R′
j,κ|.

We now define (ui)i≤i0 by ui0 = |Ri0,κ| and, for i < i0:

ui = α‖bκ‖ + 2καi0−iRi0,i0 +

i0
X

j=i+1

A(i, j)uj ,

with A(i, j) = ηαj−i + θ + 2−p+5φ(i0)α
j−i. For any i ≤ i0,

we have |R′
i,κ| ≤ ui. Moreover, using the fact that Ri,i ≤

αRi+1,i+1, we obtain that for i < i0 − 1:

ui − αui+1 ≤ A(i, i + 1)ui+1 ≤ α(η + θ)ui+1.

Thus ui ≤ ρui+1 and, by using Corollary 2.4, we have that
for any i < i0:

ui ≤ ρi0−i−1ui0−1

≤ ρi0−i−1α (‖bκ‖ + 2κRi0,i0 + (η + θ) (‖bκ‖ + ∆Ri0,κ))

≤ 2ρi0−i−1`

ρ‖bκ‖ +καRi0,i0 +α(η + θ)2−pφ(i0)Ri0,i0

´

,

which gives the result for i < i0. To conclude, note that:

ui0 ≤ ‖bκ‖ + ∆Ri0,κ ≤ 2(‖bκ‖ + 2−pφ(i0)Ri0,i0).

This completes the proof. 2

We can now use Lemma 3.4 to obtain a bound on
the ∆R′

i,κ’s that does not depend on the computed R
′
i,κ’s

but only on their exact values.

Lemma 3.5. For any i ≤ i0, we have:

∆R′
i,κ ≤ 2−p+6κ2φ(i0)(‖bκ‖ + Ri0,i0).

Proof. Using Lemma 3.4, we have:

i0
X

j=i+1

φ(j)|R′
j,κ| ≤ 2κ(‖bκ‖ + Ri0,i0)

i0−1
X

j=i+1

φ(j)ρi0−j

≤ 2κ2(‖bκ‖ + Ri0,i0)φ(i0).

Together with Lemma 3.3, the latter provides the result. 2

Now that we understand precisely the R′
i,κ’s, we study

the R′′
i,κ’s.

Lemma 3.6. Let η̄ = 1/2 + 2−p+1φ(κ). We have:

|R′′
i,κ| ≤ η̄Ri,i+

˛

˛

˛

˛

2−p+7κ2φ(i0)(‖bκ‖ + Ri0,i0) if i ≤ i0
2−pφ(i)‖bκ‖ if i > i0.

Proof. Suppose first that i ≤ i0. Then

|R′′
i,κ| = |R′

i,κ − XiRi,i|
≤ ∆R′

i,κ + |R′
i,κ − XiRi,i| + |Xi|∆Ri,i

≤ ∆R′
i,κ + Ri,i ·

˛

˛

˛

˛

˛

R
′
i,κ

Ri,i

− Xi

˛

˛

˛

˛

˛

+ |Xi|∆Ri,i

≤ ∆R′
i,κ +

Ri,i

2
+ 2−p|R′

i,κ| +

1

2
+ 2

|R′
i,κ|

Ri,i

!

∆Ri,i

≤ ∆R′
i,κ +

Ri,i

2
+ 2−p|R′

i,κ| +

1 + 2
|R′

i,κ|
Ri,i

!

∆Ri,i

≤ ∆R′
i,κ +

„

1

2
+ 2−pφ(i)

«

Ri,i + 2−p+2φ(i)|R′
i,κ|,

where we used Corollary 2.4. Therefore, using Lemmata 3.4
and 3.5, we get the result.

Suppose now that i > i0. Then, using Corollary 2.4:

|R′′
i,κ| = |R′

i,κ| ≤ |R′
i,κ| + ∆R′

i,κ

≤ Ri,i/2 + 2−pφ(i)(‖bκ‖ + Ri,i),

which completes the proof. 2

The latter bound on the R′′
i,κ’s shows that at Step 6, the

length of the vector bκ is likely to decrease.

Theorem 3.7. Consider bκ at the beginning of Step 6.
Let b′′

κ be its new value at the end of Step 6. Then

‖b′′
κ‖ ≤ 2κ max

i≤κ
Ri,i + 2−p+7κ3φ(κ)‖bκ‖.

Proof. Using Lemma 3.6:

‖b′′
κ‖ ≤

κ
X

i=1

|R′′
i,κ| = Rκ,κ +

i0
X

i=1

|R′′
i,κ| +

κ−1
X

i=i0+1

|Ri,κ|

≤ Rκ,κ + 2−p+7κ2i0φ(i0)Ri0,i0 + κη max
i<κ

Ri,i

+ 2−p+7κ3φ(κ)‖bκ‖.
The latter provides the result. 2

3.2 Correctness and Cost of Algorithm 3
The following lemma ensures the soundness of the test of

Step 7. It also implies that the algorithm terminates.

Lemma 3.8. Consider bκ at the beginning of Step 6. Let
b′′

κ be its new value at the end of Step 6. If the test of Step 7
succeeds, then ‖b′′

κ‖2 ≥ 2−cd−1‖bκ‖2. If the test of Step 7
fails, then ‖b′′

κ‖2 ≤ 2−cd+1‖bκ‖2.

Proof. Using [4, Eq. (3.5)], we have for any b ∈ Z
n that

⋄(‖b‖2) ∈ (1± n2−p+1)‖b‖2. Thus ⋄
`

⋄(2−cd) · ⋄(‖bκ‖2)
´

∈
(1 ± n2−p+2)2−cd‖bκ‖2. 2

The following shows that at the end of the execution of
Algorithm 3, the length of bκ and the Ri,κ’s are small. The
algorithm is correct in the sense that the size of the output
vector is bounded.

Theorem 3.9. Let θ = 2−p+8+ cd
2 κ3φ(κ) and η̄ = 1/2 +

2−p+1φ(κ). At the end of the execution of Algorithm 3, we
have:

‖bκ‖ ≤ 3κ max
i≤κ

Ri,i,

∀i < κ, |Ri,κ| ≤ ηRi,i + θ(‖bκ‖ + Rκ−1,κ−1).

Proof. Lemma 3.8 gives us that ‖b†
κ‖2 ≤ 2cd+1‖bκ‖2,

where b†
κ (resp. bκ) is the vector bκ at the beginning (resp.

at the end) of the last iteration of the loop made of Steps 1–
7. Using Theorem 3.7, we obtain:

‖bκ‖ ≤ 2κ max
i≤κ

Ri,i + 2−p+7κ3φ(κ)‖b†
κ‖

≤ 2κ max
i≤κ

Ri,i + 2−p+8+ cd
2 κ3φ(κ)‖b†

κ‖

≤ 3κ max
i≤κ

Ri,i.

For the second inequality, note that Lemma 3.6 implies:

|Ri,κ| ≤ ηRi,i + 2−p+7κ2φ(κ)(‖b†
κ‖ + Rκ−1,κ−1).

It only remains to use the inequality ‖b†
κ‖2 ≤ 2cd+1‖bκ‖2.

2

We now consider the cost of Algorithm 3. We start by
bounding the number of iterations of the main loop.

Lemma 3.10. The number of iterations of the loop made
of Steps 1–7 is:

O

„

1 +
1

d
log

‖bb
κ‖

‖be
κ‖

«

,

where bb
κ (resp. be

κ) is bκ at the beginning (resp. the end).

Proof. Let bℓ
κ be the vector bκ at the beginning of Step 2 of

the last iteration of the loop made of Steps 1–7. Lemma 3.8
implies that the number of loop iterations is bounded by 1+

2
cd−1

log
‖bb

κ‖

‖bℓ
κ‖

. If all the Xi’s of the last iteration are zero,

then be
κ = bℓ

κ. Otherwise, since Xi0 6= 0, Lemma 3.1 and
Corollary 2.4 give:

‖bℓ
κ‖ ≥ |Rℓ

i0,κ| ≥ |Rℓ

i0,κ| − ∆Rℓ
i0,κ

≥ 1

4
|Xi0 |Ri0,i0 − 2−pφ(i0)(‖bℓ

κ‖ + Ri0,i0)

≥ 1

8
Ri0,i0 .

Furthermore, using Lemma 3.6, we get (not-
ing a = (Re

1,κ, . . . , Re
i0,κ, 0, . . . , 0) and b =

(0, . . . , 0, Re
i0+1,κ, . . . , Re

κ,κ, 0, . . . , 0)):

‖be
κ‖ − ‖bℓ

κ‖ = ‖re
κ‖ − ‖rℓ

κ‖
≤ ‖a‖ + ‖b‖ − ‖b‖
≤

X

i≤i0

|Re
i,κ|

≤ (καi0 + θ)Ri0,i0 + θ‖bℓ
κ‖

≤ 9(καi0 + θ)‖bℓ
κ‖.

This gives that ‖be
κ‖ ≤ 10κακ‖bℓ

κ‖, which provides the
bound. 2

The result above leads us to the following complexity up-
per bound.

Theorem 3.11. Let (b1, . . . ,bd) ∈ Z
n×d be a valid input

to Algorithm 3. Let κ be the input index. Suppose the pre-

cision satisfies p > log2(2
cd
2

+9κ3φ(κ)α/θ) and p = 2O(d).
Then the execution finishes within

O

»„

d + log
‖bb

κ‖
‖be

κ‖

«

nM(d)

d
(d + log ‖B‖)

–

bit operations,

where ‖B‖ = maxi≤κ ‖bi‖ and bb
κ (resp. be

κ) is bκ at the
beginning of Step 1 (resp. Step 9).

Proof. The bit-cost of one iteration of Steps 4 and 5
is O(dM(d)) for handling the mantissas (thanks to the sec-
ond restriction on p) and O(d log(d + log ‖B‖)) for handling
the exponents (thanks to Corollary 2.4 and Lemmata 3.1
and 3.4). This implies that one iteration of the loop made of
Steps 3–5 costs O(d2M(d)+d2 log log ‖B‖). A similar bound
O(ndM(d)+nd log log ‖B‖) holds for one iteration of Step 2.
The computation of t at Step 6 is negligible compared to
the costs above. Theorem 3.9 implies that the update of bκ

at Step 6 can be performed within O(nM(d) log(d‖B‖)) bit
operations (note that though Xi can be a very large inte-
ger, it is stored on ≤ p = O(d) bits). The cost of Step 7
is also negligible compared to the costs above. Overall, the
bit-cost of one iteration of the loop consisting of Steps 1–7
is O(nM(d)(d+ log ‖B‖)). Lemma 3.10 provides the result.
2

4. AN LLL RELYING ON HOUSE-
HOLDER’S ALGORITHM

The H-LLL algorithm (Algorithm 4) follows the general
structure of LLL algorithms (see Algorithm 1). For the
size-reduction, it relies on Algorithm 3. The precision re-
quirement is a little stronger than in the previous section.
Asymptotically, for close to optimal parameters δ, η and θ
(i.e., δ ≈ 1, η ≈ 1/2 and θ ≈ 0), a sufficient precision
is p ≈ d.

Algorithm 4 The H-LLL algorithm.

Input: A matrix B ∈ Z
n×d of rank d and valid LLL pa-

rameters δ, η and θ, with θ < η − 1/2.
Input: ⋄(2−cd) (for an arbitrary c > 0) and a fp precision

p > p0 + 1 − log2(1 − δ) − log2(η − θ − 1/2) with p0 :=
log2(d

3φ(d)αd/θ) + 16 + cd/2.
Output: A (δ, η, θ)-LLL-reduced basis of the lattice

spanned by the columns of B.
1: Let δ be a fp number in (δ + 2−p+p0 , 1 − 2−p+p0).
2: Compute r1,v1, σ1 using Steps 3–9 of Algorithm 2.
3: κ := 2. While κ ≤ d, do
4: Call Algorithm 3 on B, r1, . . . , rκ−1,v1, . . . ,vκ−1 and

σ1, . . . , σκ−1.

5: s := ⋄(‖ ⋄ (bκ)‖2); s := ⋄(s − P

i≤κ−2 R
2
i,κ).

6: If ⋄(δ · ⋄(R2
κ−1,κ−1)) ≤ s, then κ := κ + 1.

7: Else swap bκ−1 and bκ; κ := max(κ − 1, 2).
8: Return B.

Before proceeding to the analysis of Algorithm 4, let us
explain how Step 5 is performed. We compute ⋄(‖ ⋄ (bκ)‖2)

sequentially; we compute the ⋄(R2
i,κ)’s; and finally we com-

pute s := ⋄(‖ ⋄ (bκ)‖2 −
P

i≤κ−2 R
2
i,κ) sequentially. Corol-

lary 2.4 and Theorem 3.9 provide the soundness of such a
computation.

Lemma 4.1. Assume that the first κ−1 columns of B are
LLL-reduced. Then at the end of Step 5, we have:
˛

˛s − (R2
κ,κ + R2

κ−1,κ)
˛

˛ ≤ 2−p+12κ3ακφ(κ)(R2
κ,κ +R2

κ−1,κ−1).

Proof. First of all, thanks to [4, Eq. (3.5)], we
have | ⋄ ‖ ⋄ (bκ)‖2 − ‖bκ‖2| ≤ n2−p+1‖bκ‖2. Also:

| ⋄ (R
2
i,κ) − R2

i,κ| ≤ 2−p+1R2
i,κ + 2|R2

i,κ − R2
i,κ|

≤ 2−p+1R2
i,κ + 2∆Ri,κ(|Ri,κ| + ∆Ri,κ).

Thanks to the LLL-reducedness of the first κ − 1 columns
of B, Corollary 2.4 and Theorem 3.9, we have (using θ ≤
α−κ):

|Ri,κ| ≤ 2(ακ−iRκ−1,κ−1 + α−κ‖bκ‖)
≤ 8κ(ακ−iRκ−1,κ−1 + Rκ,κ)

∆Ri,κ ≤ 2−pφ(i)(ακ−iRκ−1,κ−1 + ‖bκ‖)
≤ 2−p+2κφ(i)(ακ−iRκ−1,κ−1 + Rκ,κ).

As a consequence, we obtain the bound:

| ⋄ (R
2
i,κ) − R2

i,κ| ≤ 2−p+8κ2α2κ(R2
κ−1,κ−1 + R2

κ,κ)

+2−p+7κ2φ(i)(ακ−iRκ−1,κ−1 + Rκ,κ)2

≤ 2−p+9κ2ακφ(κ)(R2
κ−1,κ−1 + R2

κ,κ).

Finally, using [4, Eq. (3.5)], we get the bound:

|s − (R2
κ,κ + R2

κ−1,κ−1)| ≤ κ2−p+1(R2
κ,κ + R2

κ−1,κ−1)

+ 2| ⋄ ‖bκ‖2 − ‖bκ‖2| + 2
X

i≤κ−2

| ⋄ (R
2
i,κ) − R2

i,κ|,

which leads to the result. 2

Lemma 4.2. Assume that the first κ−1 columns of B are
LLL-reduced. Then at the end of Step 5, we have:

| ⋄ (δ̄ · ⋄(R̄2
κ−1,κ−1)) − δ̄R2

κ−1,κ−1| ≤ 2−p+3φ(κ)δ̄R2
κ−1,κ−1.

Lemmata 4.1 and 4.2 imply the soundness of the test of
Step 6.

Theorem 4.3. Let θ = 2−p+8+ cd
2 d3φ(d) and η̄ =

1/2 + 2−p+1φ(d). Assume that the first κ − 1 columns
of B are (δ, η, θ)-LLL-reduced. If the test of Step 6
succeeds then the first κ columns of B are (δ, η, θ)-
LLL-reduced. Otherwise δ′R2

κ−1,κ−1 > R2
κ,κ + R2

κ−1,κ with

δ′ = δ(1 + 2−p+14κ3φ(κ)ακ).

Proof. Suppose that the test succeeds. Corollary 2.4 and
Lemmata 4.1 and 4.2 imply:

(1 − 2−p+3φ(κ))δR2
κ−1,κ−1

≤ (1 + 2−p+12κ3ακφ(κ))(R2
κ,κ + R2

κ−1,κ−1).

By choice of δ, this implies that δR2
κ−1,κ−1 ≤ R2

κ−1,κ +R2
κ,κ.

Now, using Theorem 3.9, we know that:

|Rκ−1,κ| ≤ (η + θ)Rκ−1,κ−1 + θ‖bκ‖
≤ (η + θ(1 + 3κακ))Rκ−1,κ−1 + 3θκRκ,κ

≤ ηRκ−1,κ−1 + θRκ,κ.

As a consequence, we have Rκ−1,κ−1 ≤ αRκ,κ. By using
Theorem 3.9 again, we have:

|Ri,κ| ≤ ηRi,i + θ(‖bκ‖ + Rκ−1,κ−1)

≤ ηRi,i + θ(3κ max
j≤κ

(Rj,j) + αRκ,κ)

≤ ηRi,i + 4θκακRκ,κ,

which completes the proof of the first claim of the theorem.
Suppose now that the test fails. Corollary 2.4 and Lem-

mata 4.1 and 4.2 imply:

(1 + 2−p+3φ(κ))δR2
κ−1,κ−1

≥ (1 − 2−p+12κ3ακφ(κ))(R2
κ,κ + R2

κ−1,κ−1).

By definition of δ′, this implies that δ′R2
κ−1,κ−1 > R2

κ−1,κ +
R2

κ,κ. 2

We can now conclude our study of Algorithm 4.

Theorem 4.4. Algorithm 4 returns a (δ, η, θ)-LLL-
reduced basis (be

1, . . . ,b
e
d) of the lattice spanned by the input

basis (bb
1, . . . ,b

b
d) ∈ Z

n×d. Furthermore, the bit complexity
is

O

»„

d + log
Y db

i

de
i

+
1

d
log

Y ‖bb
i‖

‖be
i‖

«

nM(d)(d + log ‖B‖)
–

,

where ‖B‖ = max ‖bi‖ and db
i (resp. de

i) is the determi-
nant of the lattice spanned by the first i columns of the in-
put (resp. output) basis. The complexity bound above is
itself O(nd2M(d) log ‖B‖(d + log ‖B‖)).

Proof. Using the classical analysis of the LLL algorithm [7]
and Theorem 4.3, we know that the algorithm terminates

within O
“

d + log
Q

i≤d

db
i

de
i

”

iterations. A simple induction

using Theorem 4.3 proves that the output is indeed (δ, η, θ)-
LLL reduced. Furthermore, the classical analysis of LLL
yields that at any moment, the norms of the basis vectors
are below d‖B‖ (except within the calls to Algorithm 3).

Each call to Algorithm 3 that transforms b
(old)
κ into b

(new)
κ

costs

O

"

d + log
‖b(old)

κ ‖
‖b(new)

κ ‖

!

nM(d)

d
(d + log ‖B‖)

#

bit operations.

As a consequence, the total cost of Algorithm 4 is (using
the fact that the product over the loop iterations of

the ‖b
(old)
κ ‖

‖b
(new)
κ ‖

’s is exactly
Q

i

‖bb
i‖

‖be
i
‖
):

O

"

X

iterations

d + log
‖b(old)

κ ‖
‖b(new)

κ ‖

!

nM(d)

d
(d + log ‖B‖)

#

=O
h“

d + log
Q db

i

de
i

+ 1
d

log
Q ‖bb

i‖

‖be
i
‖

”

nM(d)(d + log ‖B‖)
i

.

Since
Q

‖bb
i‖ ≤ ‖B‖d and

Q

db
i ≤ ‖B‖d2

, that bound
immediately gives a O(nd2M(d) log ‖B‖(d+log ‖B‖)) com-
plexity upper bound. 2

5. CONCLUSION
The decision to use Householder’s transformations instead

of Cholesky’s factorization within LLL leads to modifica-
tions in the proof of correctness: the perturbations induced
on the approximate R-factor have a different structure than
in the L2 algorithm of [9]. These modifications may probably
be used for other forms or applications of the floating-point
reduction of lattices. For example the new approach may
be carried over to the case of linearly dependent input vec-
tors, and to the case of stronger reductions (such as the fp
Hermite-Korkine-Zolotarev reduction algorithm of [11]). An
important direction that deserves to be investigated would
be to try to further decrease the precision of the approxi-
mate computations. We showed that a precision essentially
equal to the problem dimension is sufficient. Can we do bet-
ter? It seems unnatural that a higher precision is required
in H-LLL than in its (incomplete) underlying size-reduction
algorithm. Finally, a more precise understanding of the nu-
merical behavior is required for various aspects, such as the
efficient implementation of H-LLL, which we are currently
investigating.

Acknowledgments. We thank the anonymous referees for
their helpful comments. Ivan Morel and Damien Stehlé were
partly funded by the LaRedA ANR project. Gilles Villard
was partly funded by the Gecko ANR project.

6. REFERENCES
[1] X.-W. Chang, D. Stehlé, and G. Villard. Perturbation

Analysis of the R-Factor of the QR Factorisation in
the Context of LLL-Reduction. Work in progress,
available at http://perso.ens-lyon.fr/damien.
stehle/QRPERTURB.html, 2009.

[2] H. Cohen. A Course in Computational Algebraic
Number Theory, 2nd edition. Springer, 1995.

[3] C. Hermite. Extraits de lettres de M. Hermite à M.
Jacobi sur différents objets de la théorie des nombres,
deuxième lettre. J. reine angew Math, 40:279–290,
1850.

[4] N. Higham. Accuracy and Stability of Numerical
Algorithms. SIAM, 2002.

[5] E. Kaltofen. On the complexity of finding short
vectors in integer lattices. In Proc. of EUROCAL’83,
volume 162 of LNCS, pages 236–244. Springer, 1983.

[6] H. Koy and C. P. Schnorr. Segment LLL-reduction of
lattice bases with floating-point orthogonalization. In
Proc. of CALC’01, volume 2146 of LNCS, pages
81–96. Springer, 2001.

[7] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring polynomials with rational coefficients. Math.
Ann, 261:515–534, 1982.

[8] L. Lovász. An Algorithmic Theory of Numbers, Graphs
and Convexity. SIAM, 1986. CBMS-NSF Regional
Conference Series in Applied Mathematics.

[9] P. Nguyen and D. Stehlé. Floating-point LLL
revisited. In Proc. of Eurocrypt 2005, volume 3494 of
LNCS, pages 215–233. Springer, 2005. Extended
version to appear in SIAM J. Comput., 2009.

[10] A. M. Odlyzko. The rise and fall of knapsack
cryptosystems. In Proc. of Cryptology and
Computational Number Theory, volume 42 of Proc. of
Symposia in Applied Mathematics, pages 75–88. AMS,
1989.

[11] X. Pujol and D. Stehlé. Rigorous and efficient short
lattice vectors enumeration. In Proc. of Asiacrypt’08,
volume 5350 of LNCS, pages 390–405. Springer, 2008.

[12] C. P. Schnorr. Progress on LLL and lattice reduction.
In Proc. of the LLL+25 conference. To appear in 2009.

[13] C. P. Schnorr. A more efficient algorithm for lattice
basis reduction. J. of Alg., 9(1):47–62, 1988.

[14] C. P. Schnorr. Fast LLL-type lattice reduction. Inf.
and Comp, 204:1–25, 2006.

[15] C. P. Schnorr and M. Euchner. Lattice basis
reduction: improved practical algorithms and solving
subset sum problems. Math. of Prog, 66:181–199, 1994.

[16] D. Stehlé. Floating-point LLL: theoretical and
practical aspects. In Proc. of the LLL+25 conference.
To appear in 2009.

[17] A. Storjohann. Faster Algorithms for Integer Lattice
Basis Reduction. Technical Report TR249,
ETH-Zurich, Dpt. Comp. Sc., 1996.

[18] G. Villard. Certification of the QR factor R, and of
lattice basis reducedness. In Proc. ISSAC ’07, pages
361–368. ACM Press, 2007.

