
A New View on HJLS and PSLQ:

Sums and Projections of Lattices

Jingwei Chen Damien Stehlé Gilles Villard

April 23, 2013

Abstract

The HJLS and PSLQ algorithms are the de facto standards for discov-
ering non-trivial integer relations between a given tuple of real numbers.
In this work, we provide a new interpretation of these algorithms, in a
more general and powerful algebraic setup: we view them as special cases
of algorithms that compute the intersection between a lattice and a vector
subspace. Further, we extract from them the first algorithm for manipu-
lating finitely generated additive subgroups of a euclidean space, including
projections of lattices and finite sums of lattices. We adapt the analyses
of HJLS and PSLQ to derive correctness and convergence guarantees.
We also investigate another approach based on embedding the input in a
higher dimensional lattice and calling the LLL lattice reduction algorithm.

1 Introduction

A vector m ∈ Zn\{0} is called an integer relation for x ∈ Rn if x·mT = 0. The
HJLS algorithm [7, Sec. 3], proposed by H̊astad, Just, Lagarias and Schnorr
in 1986, was the first algorithm for discovering such a relation (or proving that
no small relation exists) that consumed a number of real arithmetic operations
polynomial in n and the bit-size of the relation bound. In 1992, Ferguson and
Bailey published the other de facto standard algorithm for this task, the PSLQ
algorithm [5] (see also [6] for a simplified analysis). We refer to the introduction
of [7], and to [6, Sec. 9] for a historical perspective on integer relation finding.
Our computational model will assume exact operations on real numbers. In
this model, Meichsner has shown in [10, Sec. 2.3.1] that PSLQ is essentially
equivalent to HJLS (see also [2, App. B, Th. 7] and the comments in Section 2).

Given as input x ∈ Rn, HJLS aims at finding a nonzero element in the
intersection between the integer lattice Λ = Zn and the (n − 1)-dimensional
vector subspace E = Span(x)⊥ ⊆ Rn. It proceeds as follows. (1) It first
projects the rows of the identity matrix (which forms a basis of Λ) onto E. This
leads to n vectors belonging to a vector space of dimension n − 1. The set of
all integer linear combinations of these n vectors may not be a lattice: in full
generality, it is only guaranteed to be a finitely generated additive subgroup, or

1

fgas for short, of Rn (fgas’s are studied in detail in Section 3). (2) It performs
unimodular operations (swaps and integral translations) on these n vectors, in
a fashion akin to (though different from) the LLL algorithm [8]. This aims
at removing the linear dependencies between the fgas generators. (3) It stops
computing with the fgas if it finds n− 1 vectors belonging to the same (n− 2)-
dimensional vector subspace and an n-th vector that is linearly independent with
those first n − 1 vectors. This n-th vector contains a component that cannot
be shortened any further using any linear combination of the previous vectors.
At this stage, the inverse of the unimodular transformation matrix contains a
non-trivial integer relation for x. The computationally expensive step of HJLS
is the second one, i.e., the manipulation of the fgas representation.

Our results. Our first contribution is to propose a new view on HJLS, and
hence PSLQ, in a more general algebraic setup. It (partially) solves a special
case of the following lattice and vector space intersection problem Intersect:
given as inputs a basis of a lattice Λ ⊆ Rm and a basis of the vector subspace E ⊆
Rm, the goal is to find a basis of the lattice Λ∩E (i.e., in the case of HJLS, the
lattice of all integer relations). The main step of HJLS for (partially) solving
(a particular case of) this problem, i.e., Step (2), is itself closely related to
the following structural problem on fgas’s. The topological closure S of any
fgas S ⊆ Rm is the orthogonal sum of a unique lattice component Λ and a
unique vector subspace component E, i.e., S = Λ©⊥E. The Decomp problem
takes as input an fgas S described by a generating set and returns bases of Λ
and E. We exhibit a duality relationship between the Intersect and Decomp

problems that was somewhat implicit in HJLS.
Apart from putting HJLS in a broader context, this new view leads to the

first algorithm, which we call Decomp HJLS, for decomposing fgas’s. Prior to
this work, only special cases were handled: Pohst’s MLLL algorithm [12] (see
also [7, Sec. 2]) enables the computation of a basis of a lattice given by linearly
dependent lattice vectors; and special cases of fgas’s, corresponding to integer
relations detection instances, were handled by HJLS and PSLQ. We describe
the Decomp HJLS algorithm in details, provide a correctness proof and analyze
its convergence by adapting similar analyzes from [6] (which are essentially the
same as in [7]). We show that it consumes a number of iterations (akin to LLL
swaps) that is O(r3 +r2 log X

λ1(Λ)
), where r is the rank of the input fgas, X is an

upper bound on the euclidean norms of the input generators and λ1(Λ) is the
minimum of the lattice component Λ. For an fgas S ⊆ Rm with n generators, an
iteration consumes O(nm2) arithmetic operations. Additionally, we prove that
the returned lattice basis is reduced, for a notion of reduction that is similar to
the LLL reduction.

Finally, we investigate a folklore strategy for solving problems similar to
Decomp. This approach can be traced back to the original LLL article [8, p. 525].
It consists in embedding the input fgas into a higher-dimensional lattice, and
calls the LLL algorithm. In order to ensure that the lattice component of
the fgas can be read from the LLL output, we modify the underlying inner
product by multiplying a sub-part of the LLL input basis by a very small weight.

2

More specifically, if we aim at decomposing the fgas spanned by the rows of
a matrix A ∈ Rn×m, the Decomp LLL algorithm will call LLL on the lattice
basis

(
c−1 · In|A

)
, where In denotes the n-dimensional identity matrix and c >

0. For a sufficiently large c, it is (heuristically) expected the lattice component
of the fgas will appear in the bottom right corner of the LLL output.

Notation. All our vectors are row vectors and are denoted in bold. If b is
a vector, then ‖b‖ denotes its euclidean norm. We let 〈b, c〉 denote the usual
inner product between two real vectors b and c sharing the same dimension.
If b ∈ Rn is a vector and E ⊆ Rn is a vector space, we let π(b, E) denote the
orthogonal projection of b onto E. Throughout this paper, we assume exact
computations on real numbers. The unit operations are addition, substraction,
multiplication, division, comparison of two real numbers, and the floor and
square root functions.

2 Reminders

We give some brief reminders on lattices, and on the HJLS and PSLQ algo-
rithms. For a comprehensive introduction to lattices, we refer the reader to [13].

LQ decomposition. Let A ∈ Rn×m be a matrix of rank r. It has a unique LQ
decomposition A = L ·Q, where the Q-factor Q ∈ Rr×m has orthonormal rows
(i.e., QQT = Ir), and the L-factor L ∈ Rn×r satisfies the following property:
there exist diagonal indices 1 ≤ k1 < . . . < kr ≤ n, such that li,j = 0 for
all i < kj , and lkj ,j > 0 for all j ≤ r (when n = r, the L-factor is lower-
triangular with positive diagonal coefficients). The LQ decomposition of A is
equivalent to the more classical QR decomposition of AT .

Definition 2.1. Let L = (li,j) ∈ Rn×r be a lower trapezoidal matrix with rank r
and diagonal indices k1 < . . . < kr. We say L is size-reduced if |li,j | ≤ 1

2

∣∣lkj ,j∣∣
holds for i > kj .

Given L, it is possible to find a unimodular matrix U ∈ GLn(Z) such that U ·
L is size-reduced. Computing U and updating U ·L can be achieved withinO(n3)
real arithmetic operations.

Lattices. A euclidean lattice Λ ⊆ Rm is a discrete (additive) subgroup of Rm.
A basis of Λ consists of n linearly independent vectors b1, · · · , bn ∈ Rm such that
Λ =

∑
i Zbi. We say that B = (bT1 , . . . , b

T
n)T ∈ Rn×m is a basis matrix of Λ.

The integer n is called the dimension of Λ. If n ≥ 2, then Λ has infinitely many
bases, that exactly consist in the rows of U · B where B is an arbitrary basis
matrix of Λ and U ranges over GLn(Z). The i-th successive minimum λi(Λ)
(for i ≤ n) is defined as the radius of the smallest ball that contains i linearly

independent vectors of Λ. The dual lattice Λ̂ of Λ is defined as Λ̂ = {x ∈
Span(Λ) : ∀b ∈ Λ, 〈b,x〉 ∈ Z}. If B is a basis matrix of Λ, then (BBT)−1B is a

basis of Λ̂, called the dual basis of B.

3

Weakly-reduced bases. Weak reduction is a weakening of the classical notion
of LLL reduction, which we recall in Appendix A. It is very similar to the semi-
reduction of [14]. Let B = (bT1 , · · · , bTn)T ∈ Rn×m be the basis matrix of a
lattice Λ, and L = (li,j) be its L-factor. We say the basis b1, · · · , bn is weakly-
reduced with parameters γ > 2/

√
3 and C ≥ 1 if L is size-reduced and satisfies

the (generalized) Schönhage condition lj,j ≤ C · γi · li,i for 1 ≤ j ≤ i ≤ n. Note
that a LLL-reduced basis is always weakly-reduced, with C = 1. If a lattice
basis is weakly-reduced, then

‖bi‖ ≤
√
nCγi · li,i,

(
√
nC2γ2i)−1 · λi(Λ) ≤ ‖bi‖ ≤

√
nC2γ2n · λi(Λ).

(2.1)

The proof is an adaptation of a proof of [8], and is given in Appendix B.

HJLS-PSLQ. We recall HJLS [7, Sec. 3] using the PSLQ setting [6]. We call the
resulting algorithm HJLS-PSLQ (Algorithm 1). Given x = (x1, · · · , xn) ∈ Rn,
HJLS-PSLQ either returns an integer relation for x, or gives a lower bound
on λ1(Λx), where Λx is the lattice of all integer relations for x, and λ1(Λx) is the
norm of any shortest nonzero vector in Λx. The updates of U and Q at Steps 1b,
2a, 2b and 2c are implemented so as to maintain the relationship ULx = LQ at
any stage of the execution. Note that storing and updating Q is not necessary
for the execution of the algorithm (and does not appear in [6]). It has been
added for easing explanations in Section 4.

Algorithm 1 (HJLS-PSLQ).

Input: x = (x1, · · · , xn) ∈ Rn with xi 6= 0 for i ≤ n, M > 0 and γ > 2/
√

3.
Output: Either return an integer relation for x, or claim that λ1(Λx) > M .

1. (a) Normalize x, i.e., set x := x/‖x‖; set U := In and Q = In−1.
(b) Compute the Q-factor (xT |Lx)T of (x|In)T ; set L := Lx; size-reduce L

and update U .
2. While ln−1,n−1 6= 0 and maxi li,i ≥ 1/M do

(a) Choose k such that γk · lk,k = maxj<n γ
j · lj,j ; swap the k-th and (k+1)-

th rows of L and update U ;
(b) Compute the LQ decomposition of L; replace L by its L-factor and

update Q.
(c) Size-reduce L and update U .

3. If ln−1,n−1 6= 0, return “λ1(Λx) > M”. Else return the last column of U−1.

For the proof of termination, it suffices to enforce the partial size-reduction
condition |lk+1,k| ≤ 1

2 lk,k before swapping (HJLS), instead of full size-reduction
(PSLQ). Along with a stronger size-reduction, PSLQ may have a slightly faster
termination for specific cases, due to a refined while loop test. PSLQ has been
proposed with the additional nullity test of (x · U−1)j for some j ≤ n, possibly
leading to the early output of the j-th column of U−1. Apart from the latter
test, if HJLS is implemented with full size-reduction then PSLQ is equivalent
to HJLS [10, Sec. 2.3.1] (see also [2, App. B, Th. 7]). Full size-reduction is

4

essentially irrelevant in the exact real number model. Indeed, HJLS works
correctly and consumes O(n3 + n2λ1(Λx)) iterations. The same bound has
been established for PSLQ. We note that without loss of generality HJLS has
been initially stated with γ =

√
2. Both the roles of the size-reduction and the

parameter γ may be important in a bit complexity model for keeping integer bit
sizes small [8, 7], or in a model based on approximate real number operations
for mastering the required number precision [6]. This is outside the scope of the
present paper.

3 The Decomp and Intersect problems

In this section, we provide efficient reductions in both directions between the
problem of computing the decomposition of an fgas (Decomp) and the problem
of computing the intersection of a lattice and a vector subspace (Intersect),
assuming exact computations over the reals.

3.1 Finitely generated additive subgroups of Rm

Given a1, · · · ,an ∈ Rm, the finitely generated additive subgroup (fgas for short)
spanned by the ai’s is the set of all integral linear combinations of the ai’s:

S =

n∑
i=1

Zai =

{
n∑
i=1

ziai : zi ∈ Z

}
⊆ Rm. (3.1)

Given an fgas S as in (3.1), the matrix A ∈ Rn×m whose i-th row is ai is
called a generating matrix of S. The rank of A is called the rank of the fgas. If
a matrix U ∈ GLn(Z), then U ·A is also a generating matrix of S.

When the vectors ai are linearly independent, then the set S is a lattice and
the ai’s form a basis of the lattice. If the ai’s are linearly dependent, but S can
be written as S =

∑d
i=1 Zbi for some linearly independent bi’s, then S is also a

lattice. In this case, the ai’s are not a basis of S and dim(S) < n.
The situation that we are mostly interested in the present work is when S

is not a lattice. The simplest example may be the fgas Z + αZ with α /∈ Q: it
contains non-zero elements that are arbitrarily close to 0, and thus cannot be a
lattice. More generally, an fgas can always be viewed as a finite sum of lattices.

Fgas’s can also be viewed as orthogonal projections of lattices onto vector
subspaces. Let Λ =

∑
i Zbi ⊆ Rm be a lattice and E ⊆ Rm be a vector subspace.

The orthogonal projection of Λ onto E, i.e., the set π(Λ,E) = {v1 ∈ E : ∃v2 ∈
E⊥,v1 + v2 ∈ Λ}, is an fgas of Rm: it is spanned by the projections of the bi’s.
Conversely, given an fgas S with generating matrix A ∈ Rn×m, let Λ ⊆ Rn+m
be the lattice generated by the rows of (In|A) and E = Span(In|0)⊥ ⊆ Rn+m.
Then S = π(Λ,E).

5

3.2 The Decomp and Intersect problems

Consider the topological closure S of an fgas S ⊆ Rm, i.e., the set of all limits
of converging sequences of S (which is hence a closed additive subgroup in Rm).
By [9, Th. 1.1.2] (see also [3, Chap. VII, Th. 2]), there exists a unique lattice Λ ⊆
Rm and a unique vector subspace E ⊆ Rm such that their direct sum is S, and
the vector space Span(Λ) spanned by Λ is orthogonal to E. We denote the latter
decomposition by S = Λ©⊥E. More explicitly, if rankS = dim(Span(S)) = r ≤
m, then there exist 0 ≤ d ≤ r, (bi)i≤d and (ei)i≤r−d in Rm such that:

• S =
∑
i≤d Zbi +

∑
i≤r−dRei;

• the r vectors bi (i ≤ d) and ei (i ≤ r − d) are linearly independent;

• for any i ≤ d and j ≤ r − d, we have 〈bi, ej〉 = 0.

Then (bi)i≤d and (ei)i≤r−d are bases of Λ and E, respectively. We call Λ
and E the lattice and vector space components of S, respectively, and define
the ΛE decomposition of S as (Λ,E). The Decomp problem is the associated
computational task.

Definition 3.1. The Decomp problem is as follows: Given as input a finite
generating set of an fgas S, the goal is to compute its ΛE decomposition, i.e.,
find bases for the lattice and vector space components Λ and E.

The following result, at the core of the correctness analysis of our decompo-
sition algorithm of Section 5, reduces Decomp to the task of obtaining an fgas
generating set that contains sufficiently many linear independencies.

Lemma 3.1. Let (ai)i≤n be a generating set of an fgas S with ΛE decomposition
S = Λ©⊥E. Define a′j as the projection of aj orthogonally to Span(ai)i≤n−k, for
n−k+1 ≤ j ≤ n and some k < n, and assume the a′j’s are linearly independent.
Then a′n−k+1, . . . ,a

′
n form a basis of a projection of Λ and E ⊆ Span(ai)i≤n−k.

Further, if k = dimΛ, then Λ =
∑
n−k+1≤i≤n Z · a′i and E = Span(ai)i≤n−k.

The proof derives from the definition of the ΛE decomposition. The vector
space component E is the largest vector subspace of Span(S) that is contained
in S. This characterisation of E implies that it is contained in Span(ai)i≤n−k.
Indeed, the projections a′j are linearly independent and lead to a discrete sub-
group that must be orthogonal to E. By unicity of the ΛE decomposition, the
vectors a′n−k+1, . . . ,a

′
n form a basis of a projection of the lattice component Λ.

We now introduce another computational problem, Intersect, which gen-
eralizes the integer relation finding problem.

Definition 3.2. The Intersect problem is as follows: Given as inputs a basis
of a lattice Λ and a basis of a vector subspace E, the goal is to find a basis of
the lattice Λ ∩ E.

Finding a non-zero integer relation corresponds to taking Λ = Zn and E =
Span(x)⊥, and asking for one vector in Λ ∩ E. In that case, Intersect aims

6

at finding a description of all integer relations for x. When E is arbitrary
but Λ remains Zn, Intersect corresponds to the task of finding all simultaneous
integer relations. These special cases are considered in [7].

3.3 Relationship between Decomp and Intersect

The Decomp and Intersect problems turn out to be closely related. To explain
this relationship, we need the concept of dual lattice of an fgas. The facts of
this subsection are adapted from basic techniques on lattices (see [4] for similar
results).

Definition 3.3. The dual lattice Ŝ of an fgas S is defined as

Ŝ = {x ∈ Span(S) : ∀b ∈ S, 〈x, b〉 ∈ Z} .

We could equivalently define Ŝ as {x ∈ Span(S) : ∀b ∈ S, 〈x, b〉 ∈ Z}.
Indeed, for all b ∈ S, there exists a converging sequence (bi)i in S such that

bi → b as i → ∞. Thus, for all x ∈ Ŝ, we have 〈x, b〉 = 〈x, limi bi〉 =
limi〈x, bi〉 ∈ Z. We will freely use both definitions.

Note further that if S is a lattice, then Ŝ is exactly the dual lattice of S.
Interestingly, Ŝ is always a lattice, even if S is not a lattice.

Lemma 3.2. Let S be an fgas and Λ its lattice component. Then Λ̂ = Ŝ.

Proof. Let S = Λ©⊥E be the ΛE decomposition of S. Recall that for any
x ∈ S, there exist unique xΛ ∈ Λ and xE ∈ E such that x = xΛ + xE and
〈xΛ,xE〉 = 0.

We first prove that Λ̂ ⊆ Ŝ. For all x̂ ∈ Λ̂ and all x ∈ S, we have

〈x̂,x〉 = 〈x̂,xΛ〉+ 〈x̂,xE〉 = 〈x̂,xΛ〉 ∈ Z,

where the second equality follows from the orthogonality between the vector
subspaces E and Span(Λ), and 〈x̂,xΛ〉 ∈ Z derives from the definition of Λ̂.

Further, for all x̂ ∈ Ŝ and all x ∈ Λ ⊆ S, it follows from the second definition
of Ŝ that 〈x̂,x〉 ∈ Z, i.e., we have x̂ ∈ Λ̂. This completes the proof.

From Lemma 3.2, we derive the following alternative definition of the lattice
component of an fgas.

Lemma 3.3. Let S be an fgas and Λ its lattice component. Then Λ =
̂̂S .

Let Λ ⊆ Rm be a lattice and E ⊆ Rm a vector subspace. If π(Λ̂, E) happens

to be a lattice, then it is exactly Λ̂ ∩ E (see, e.g., [9, Prop. 1.3.4]). However,

in general, the fgas π(Λ̂, E) may not be a lattice. Using Definition 3.3, we can
prove the following result, which plays a key role in the relationship between
Intersect and Decomp.

7

Lemma 3.4. For any lattice Λ ⊆ Rm and a vector subspace E ⊆ Rm, we have

Λ ∩ E =
̂
π(Λ̂, E).

Proof. Let b ∈ Λ ∩ E and y ∈ π(Λ̂, E). There exist b̂ ∈ Λ̂ and y′ ∈ E⊥ such

that b̂ = y + y′. Then

〈b,y〉 = 〈b, b̂〉 − 〈b,y′〉 = 〈b, b̂〉 ∈ Z.

Hence Λ ∩ E ⊆ ̂
π(Λ̂, E).

Now, let b ∈ ̂
π(Λ̂, E) . By definition, we have

b ∈ Span(π(Λ̂, E)) ⊆ E.

Moreover, for all b̂ ∈ Λ̂, using b̂ = π(b̂, E) + π(b̂, E⊥):

〈b, b̂〉 = 〈b, π(b̂, E)〉+ 〈b, π(b̂, E⊥)〉 = 〈b, π(b̂, E)〉 ∈ Z.

Hence b ∈ ̂̂Λ = Λ. We obtain that b ∈ Λ ∩ E, which completes the proof.

Reducing Decomp to Intersect. Suppose we are given a generating set
a1, · · · ,an ∈ Rm of an fgas S. Our goal is to find the ΛE decomposition
of S, using an oracle that solves Intersect. It suffices to find a basis of the

lattice component Λ, which, by Lemma 3.3, satisfies Λ =
̂̂S .

Recall that we can construct a lattice Λ′ and a vector space E such that (see
the end of Section 3.1)

S = π(Λ′, E).

From Lemma 3.4, the lattice component Λ of S is the dual lattice of Λ̂′ ∩ E.
This means we can get a basis of Λ̂ by calling the Intersect oracle on Λ̂′ and E,
and then computing the dual basis of the returned basis.

Reducing Intersect to Decomp. Assume we are given a basis (bi)i of a lattice
Λ ⊆ Rm and a basis (ei)i of a vector subspace E ⊆ Rm. We aim at computing
a basis of the lattice Λ ∩ E, using an oracle that solves Decomp.

We first compute the dual basis (b̂i)i of (bi)i. Then we compute the projec-

tions b̂′i = π(b̂i, E), for all i. Let S denote the fgas spanned by (b̂′i)i. We now
use the Decomp oracle on S to obtain a basis of the lattice component Λ′ of S.
Then, by Lemma 3.4, the dual basis of the oracle output is a basis of Λ ∩ E.

4 A new interpretation of HJLS-PSLQ

We explain the principle of HJLS-PSLQ described in Section 2, by using the
results of Section 3. At a high level, HJLS-PSLQ proceeds as in the Intersect

to Decomp reduction from Section 3. The algorithm in Section 2 halts as soon
as a relation is found. Hence it only partially solves Decomp, on the specific

8

input under scope, and, as a result, only partially solves Intersect. The full
decomposition will be studied in Section 5.

Step 1 revisited: Projection of Zn on Span(x)⊥. The reduction from

Intersect to Decomp starts by projecting Λ̂ onto E. In our case, we have Λ =
Λ̂ = Zn (the lattice under scope is self-dual) and E = Span(x)⊥. The start
of the reduction matches with the main component of Step 1, which is the
computation of the Q-factor Qx := (xT |Lx)T of (xT |In)T , considering x after
normalization. Using that QTx · Qx = In we now observe that Lx satisfies the
following equation (

x
In

)
=

(
1
xT Lx

)
·
(

x
LTx

)
.

By construction, the matrix Lx is lower trapezoidal. Indeed, since the i-th row
of Qx is orthogonal to the linear span of the first i− 1 rows, and as this linear
span contains the first i− 2 unit vectors, the first i− 2 coordinates of this i-th
row of Qx are zero. Hence the equation above provides the LQ decomposition

of
(
xT |In

)T
. It is worth noticing the unusual fact that Lx is involved in both the

L-factor and the Q-factor. Also, as a consequence of the equation above, we have
that the matrix πx = In−xTx = LxL

T
x corresponds to the orthogonal projection

that maps Rn to Span(x)⊥. Therefore the rows of Lx are the coordinate vectors
of the rows of πx with respect to the normalized orthogonal basis of Span(x)⊥

given by the n−1 rows of LTx . Overall, we obtain that (0|Lx) ·Qx is a generating
matrix of the fgas Sx = π(Zn,Span(x)⊥).

Step 2 revisited: A partial solution to Decomp. Since (0|Lx) · Qx is a
generating matrix of the fgas Sx, the while loop of HJLS-PSLQ only considers
this fgas (in fact, HJLS-PSLQ only works on Lx since its only requires U). In
Section 5, we will show that a generalization of the while loop may be used
to solve the Decomp problem. By Lemma 3.4, finding a basis of the lattice
component of Sx suffices to find all integer relations of x: indeed, the dual
basis is a basis of the integer relation lattice. However, when HJLS-PSLQ
terminates, we may not have the full lattice component Λ′ of Sx. If the loop
stops because ln−1,n−1 = 0, then we have found a projection to a 1-dimensional
subspace of a vector belonging to the lattice component. In this sense, Step 2 of
HJLS-PSLQ partially solves Decomp on input Sx. It gets the full solution only
when dim(Zn ∩ Span(x)⊥) = dim(Λ′) = 1.

Step 3 revisited: Getting back to Intersect by duality. Suppose HJLS-
PSLQ exits the while loop because ln−1,n−1 = 0. Because of the shape of L (see
Lemma 3.1), it has found a 1-dimensional projection of a non-zero basis vector
of Λ′, orthogonally to the first vectors of that basis of Λ′. This vector is:

b := (0|ln−1,n−1) · diag(1, Q) ·Qx.

Its dual, when considered as a basis, is

b̂ = b/‖b‖2 = (0|l−1n−1,n−1) · diag(1, Q) ·Qx.

9

As b̂ is a projection of a non-zero basis vector of Λ′, orthogonally to the first
vectors of that basis, we have that b̂ belongs to Λ̂′ = Zn ∩ Span(x)⊥. Because
of the specific shape of Qx, we obtain

b̂ = (0|l−1n−1,n−1) ·
(

1
Q

)
·
(

x
LTx

)
= (0|l−1n−1,n−1) ·

(
x

QLTx

)
.

Now, as ULx = LQ, we obtain that b̂ = (0|l−1n−1,n−1) ·(xT |U−1L)T = (0|1)U−T .
This explains why the relation is embedded in the inverse of the transformation
matrix. Note that this is somewhat unexpected, and derives from the uncommon
similarity between Lx and Qx.

A numerical example. Consider the input (1,
√

2, 2). After normalization, it

becomes x = (1√
7
,
√
2√
7
, 2√

7
). At the beginning, we have

Lx =

6√
42

0

−
√
2√
42

√
2√
3

− 2√
42

− 1√
3

 and Qx =

1√
7

√
2√
7

2√
7√

6√
42

−
√

2√
42

− 2√
42

0
√
2√
3

− 1√
3

 .

The matrix (0|Lx)·Qx is a generating matrix of the fgas Sx = π(Zn,Span(x)⊥).
After 5 loop iterations, HJLS-PSLQ terminates. At that stage, we obtain

L =

15−10

√
2√

35
0

− 5(−41+29
√
2)√

35(−3+2
√
2)

0

41
√
2−58√

35(−3+2
√
2)

1√
5

,

U =

−2 −3 −4

5 7 10

−1 −2 −3

, Q =

 −4+3
√
2√

30(3−2
√
2)

−
√
14√
15

√
14√
15

−24+17
√

2√
30(17−12

√
2)

.
Thanks to the shape of L, the ΛE decomposition Sx = Λ©⊥E can be derived
from (0|L). In this precise case, HJLS-PSLQ discloses the full lattice compo-

nent. Thanks to Lemma 3.4, we have Λ = Λ̂x, and hence dim(Λ) = dim(Λ̂x) =
dim(Λx) = 1 (as x contains two rational entries and one irrational entry). Using
the matrix factorisation above, we obtain

Λ = Z ·
(

0, 0,
1√
5

)
· diag (1, Q) ·Qx = Z ·

(
2

5
, 0,−1

5

)
and E = (0, 1, 0) · diag(1, Q) ·Qx. By Lemma 3.4, we obtain Z3 ∩ Span(x)⊥ =

Λ̂ = Z · (2, 0,−1). Note that we recovered the last column vector of U−1.

10

5 Solving Decomp à la HJLS

Let A ∈ Rn×m be a generating matrix of an fgas S and S = Λ©⊥E be the ΛE
decomposition of S with dim(Λ) = d. In this section, we present and analyze
an algorithm, named Decomp HJLS, for solving the Decomp problem.

Note that Decomp HJLS requires as input the dimension d of the lattice com-
ponent. One might ask whether there exists an algorithm, based on the unit
cost model over the reals, solving the problem without knowing d before. This
is actually not the case: In [1], Babai, Just and Meyer auf der Heide showed
that, in this model, it is not possible to decide whether there exists a relation
for given input x ∈ Rn. Computing the dimension of the lattice component of
an fgas would allow us to solve that decision problem.

5.1 The Decomp HJLS algorithm

Decomp HJLS, given as Algorithm 2, is a full fgas decomposition. It is derived,
thanks to the new algebraic view, from the Simultaneous Relations Algorithm
in [7, Sec. 5]. The latter is a generalization of the Small Integer Relation Al-
gorithm of Section 2 which contains, as we have seen, a partial decomposition
algorithm. We keep using the PSLQ setting and follow the lines of [11, Sec.
2.5]. In particular we adopt a slight change, with respect to [7, Sec. 5], in the
swapping strategy. (The index κ′ we select, hereafter at Step 2c of Algorithm 2,
may differ from κ + 1.) However, as for differences between HJLS and PSLQ
we have seen in Section 2, there is no impact on the asymptotic number of
iterations.

We introduce the next definition to describe different stages in the execution
of the algorithm, using the shape of the current L-factor L.

Definition 5.1. Let 0 ≤ ` ≤ r. If a lower trapezoidal matrix L ∈ Rn×r can be
written as

L =

MF
G N

 ,

with F ∈ R(n−r)×(r−`), G ∈ R`×(r−`), and bothM ∈ R(r−`)×(r−`) andN ∈ R`×`
are lower triangular matrices with positive diagonal coefficients, then we say
that L has shape Trap(`).

Decomp HJLS takes as input an fgas generating matrix. It also requires the
dimension of the lattice component (see the end of Section 3.2). Without loss
of generality, we may assume that the initial L-factor L(0) has shape Trap(0)
(this is provided by Step 1a). The objective of Decomp HJLS is to apply uni-
modular transformations (namely, size-reductions and swaps) to a current gen-
erating matrix L ·Q of the input fgas, in order to eventually obtain an L-factor
that has shape Trap(d), where d is the dimension of the lattice component.
These unimodular transformations are applied through successive loop iter-
ations (Step 2), that progressively modify the shape of the current L-factor
from Trap(0) to Trap(1), . . ., and eventually to Trap(d). When the latter event

11

occurs, the algorithm exits the while loop and moves on to Step 3: the lattice
component can now be extracted by taking the last d rows of L and cancelling
their first r − d columns, where r is the rank of L.

Algorithm 2 (Decomp HJLS).

Input: A generating matrix A = (aT1 , · · · ,aTn)T ∈ Rn×m of an fgas S with
maxi≤m ‖ai‖2 ≤ X; a positive integer d as the dimension of the lattice com-
ponent Λ of S; a parameter γ > 2/

√
3.

Output: A basis matrix of Λ.

1. (a) Compute r = rank(A). If d = r, then return a1, · · · ,ar. Else, using
row pivoting, ensure that the first r rows of A are linearly independent.

(b) Compute the LQ decomposition A = L0 ·Q0.
(c) Set L := L0 and size-reduce it; set Q := Q0 and ` := 0.

2. While lr−d+1,r−d+1 6= 0 do
(a) Choose κ such that γκ · lκ,κ = maxk≤r−` γ

k · lk,k.
(b) If κ < r − `, then swap the κ-th and the (κ+ 1)-th rows of L; compute

the LQ decomposition of L; replace L by its L-factor and update Q.
(c) Else swap the κ-th and κ′-th rows of L, where κ′ ≥ κ+ 1 is the largest

index such that |lκ′,κ| = maxκ+1≤k≤n−` |lk,κ|. If lκ,κ = 0, set ` := `+ 1.
(d) Size-reduce L.

3. Return
(
0d×(r−d)|(li,j)i∈[n−d+1,n],j∈[r−d+1,r]

)
·Q.

In the remainder of this section, we let L(t) = (l
(t)
i,j) denote the matrix L

at the beginning of the t-th loop iteration of Decomp HJLS. We also let `(t)
and κ(t) respectively denote the values of ` and κ at the end of Step 2a of the t-
th loop iteration. We let τ denote the total number of loop iterations and L(τ+1)

and Q(τ+1) respectively denote the values of L and Q at Step 3.

5.2 The correctness of Decomp HJLS

Note that if κ(t) = r − `(t) and l
(t)
κ′(t),r−`(t) = 0, then l

(t+1)
r−`,r−` = 0. This is

the only situation that transforms L from shapes Trap(`) to Trap(` + 1), i.e.,
that decrements (resp. increments) the dimension of the triangular matrix M
(resp. N) from Definition 5.1. Indeed, LQ decompositions, size-reductions and
swaps of consecutive vectors of indices κ < r− ` preserve the trapezoidal shape
of L.

The two lemmas below give insight on the execution of the algorithm. They
will be useful especially for proving that Decomp HJLS terminates, and bounding
the number of iterations. On the one hand, the maximum of the diagonal
coefficients of the M -part of the current L-factor does not increase during the
successive loop iterations (Lemma 5.1). On the other hand, because of the
existence of the lattice component, which is linearly independent from the vector
space component, these diagonal coefficients cannot decrease arbitrarily while
maintaining the dimension of M . As long as the lattice component has not been

12

fully discovered, this maximum must remain larger than the first minimum of
that lattice (Lemma 5.2).

Lemma 5.1. For any t ∈ [1, τ], we have maxi l
(t+1)
i,i ≤ maxi l

(t)
i,i , where i ranges

over [1, r − `(t+ 1)] and [1, r − `(t)] respectively.

The proof is standard. The only li,i’s that may change are those that cor-
respond to the swapped vectors, and the non-increase of the maximum of this
or these li,i’s originates from the choice of the swapping index. For the sake of
completeness, we give the proof in Appendix B.

Lemma 5.2. Let Λ be the lattice component of the input fgas, and d = dim(Λ) ≥
1. Then, for any t ∈ [1, τ], we have

λ1(Λ) ≤ max
i≤r−`(t)

l
(t)
i,i .

Proof. The matrix L(τ+1) has shape Trap(d), and(
0r−d, l

(τ+1)
n−d+1,r−d+1,0

d−1
)
·Q(τ+1)

belongs to Λ (by Lemma 3.1). As the matrix Q(τ+1) is orthogonal, it has

norm l
(τ+1)
n−d+1,r−d+1. We thus have λ1(Λ) ≤ l

(τ+1)
n−d+1,r−d+1. Now, as τ is the last

loop iteration, Step 2c must have been considered at that loop iteration, with a
swap between rows κ(τ) = r − d+ 1 and n− d+ 1 of L(τ). We thus obtain:

λ1(Λ) ≤ l(τ+1)
n−d+1,r−d+1 = l

(τ)
r−d+1,r−d+1

≤ max
i≤r−d+1

l
(τ)
i,i ≤ max

i≤r−`(t)
l
(t)
i,i .

The last inequality follows from Lemma 5.1.

We now prove the correctness of the Decomp HJLS algorithm, i.e., that it
returns a basis of the lattice component of the input fgas. We also prove that
the returned lattice basis is weakly-reduced (see Section 2), and hence that the
successive basis vectors are relatively short compared to the successive lattice
minima (by Equation (2.1)).

Theorem 5.3. If the Decomp HJLS algorithm terminates (which will follow from
Theorem 5.5), then it is correct: given a generating matrix of a rank r fgas S as
input and the dimension d of its lattice component, it returns a weakly-reduced
basis, with parameters γ and C = γr−d, of the lattice component of S.

Proof. At the end of the while loop in Decomp HJLS, the L-factor L(τ+1) has
shape Trap(d), where d = dim(Λ). As we only apply unimodular operations
to the row vectors, the fgas Zn · L(τ+1) ·Q(τ+1) matches the input fgas Zn · A.

Let Λ′ = Zd ·
(
0d×(r−d)|(l

(τ+1)
i,j)i∈[n−d+1,n],j∈[r−d+1,r]

)
·Q(τ+1) denote the output

of Decomp HJLS. By Lemma 3.1, the lattice Λ′ is exactly the lattice component Λ.

13

Let L′ ∈ Rd×d be the matrix corresponding to the bottom right d rows
and d columns of L. We now check that L′ is size-reduced and satisfies the
Schönhage conditions. Thanks to the size-reductions of Steps 1c and 2d, the
whole matrix L(τ+1) is size-reduced. It remains to show that l′j,j ≤ γr−d+i · l′i,i
for all 1 ≤ j < i ≤ d. For this purpose, we consider two moments ti < tj
during the execution of the algorithm: the ti-th (resp. tj-th) loop iteration is
the first one such that L(t) has shape Trap(d − i + 1) (resp. Trap(d − j + 1)).
By construction of ti and tj , we have:

l′i,i = l
(τ+1)
n−d+i,r−d+i = l

(ti)
n−d+i,r−d+i,

l′j,j = l
(τ+1)
n−d+j,r−d+j = l

(tj)
n−d+j,r−d+j .

As ti and tj are chosen minimal, Step 2c was considered at iterations ti− 1 and
tj−1. We thus have κ(ti−1) = r−d+i and κ(tj−1) = r−d+j. Thanks to the
choice of κ at Step 2a, we have (recall that `(ti−1) = d−i and `(tj−1) = d−j):

l′i,i = l
(ti)
n−d+i,r−d+i = γ−(r−d+i) · max

k≤r−d+i
γk · l(ti−1)k,k ,

l′j,j = l
(tj)
n−d+i,r−d+i = γ−(r−d+j) · max

k≤r−d+j
γk · l(tj−1)k,k .

Using Lemma 5.1 and the fact that ti < tj , we conclude that:

l′j,j ≤ max
k≤r−d+j

l
(tj−1)
k,k ≤ max

k≤r−d+i
l
(ti−1)
k,k

≤ max
k≤r−d+i

γk · l(ti−1)k,k = γr−d+i · l′i,i,

which completes the proof.

Integer relation algorithms may not have any a priori information on the set
of solutions. As mentioned previously, under the exact real arithmetic model, it
is impossible to decide whether there exists an integer relation for a given x ∈
Rn. Hence, as we have seen with HJLS-PSLQ, they have been designed for only
ruling out the existence of small relations. Similarly, in our more general context,
we can rule out the existence of some large invariants in the lattice component. If
the target dimension is not known in advance, then Decomp HJLS may not return
a basis of the lattice component. However, if the input integer d is smaller than
the dimension d′ of the lattice component Λ, then Decomp HJLS returns a d-
dimensional lattice that is a projection of Λ orthogonally to a sublattice of Λ
and one can prove that (see Appendix B):

λd′−d(Λ) ≤
√

2rγ2r · max
k≤r−d

l
(τ+1)
k,k , (5.1)

where τ is the total number of iterations of Decomp HJLS with integer input d.

14

5.3 Speed of convergence of Decomp HJLS

We adapt the convergence analyses from [7] to Decomp HJLS. We will use the
following notations. For each iteration t ≥ 1, we define

π
(t)
j :=

{
l
(t)
j,j if l

(t)
j,j 6= 0,

l
(t)
n−r+j,j if l

(t)
j,j = 0

and

Π(t) :=

r−1∏
i=1

i∏
j=1

max
(
π
(t)
j , γ−r−1 · λ1(Λ)

)
.

The following result allows us to quantify progress during the execution of the
algorithm: at every loop iteration, the potential function Π(t) decreases signifi-
cantly.

Lemma 5.4. Let β = 1/
√

1/γ2 + 1/4 > 1. Then for any loop iteration t ∈
[1, τ], we have Π(t) ≥ β · Π(t + 1). Further, we also have Π(1) ≤ X

r(r−1)
2

with X = maxi≤n ‖ai‖ and Π(τ + 1) ≥
(
γr+1

)− r(r−1)
2 · λ1(Λ)

r(r−1)
2 .

Proof. The proof of the first claim is similar to the proofs of [7, Th. 3.2] and [6,
Lem. 9], and is given in Appendix B. The upper bound on Π(1) follows from

γ−r−1 · λ1(Λ) ≤ λ1(Λ) ≤ max
i≤r

l
(1)
i,i ≤ max

i
‖ai‖ = X,

where the second inequality follows from Lemma 5.2 with t = 1. The last item

follows from max(π
(τ+1)
j , γ−r−1 · λ1(Λ)) ≥ γ−r−1 · λ1(Λ).

The following result directly follows from Lemma 5.4.

Theorem 5.5. The number of loop iterations consumed by Decomp HJLS is

O
(
r3 + r2 log X

λ1(Λ)

)
. The number of arithmetic operations consumed at each

loop iteration is O(nm2).

6 Using lattice reduction to solve Decomp

In this section, we provide elements of analysis for a folklore method to solve
problems akin to Decomp using lattice reduction, such as LLL.

Directly calling LLL (which we recall in Appendix A) on the input fgas
generating matrix does not work: it may launch an infinite loop and fail to
disclose the lattice component. For instance, consider

A =

 1 0√
2 0
x 2

 ,

where x ∈ R is arbitrary. LLL keeps swapping (and size-reducing) the first two
rows forever, and fails to disclose the lattice component Z · (0, 2). A crucial
point here (see the discussion in [7, Sec. 1-2]) is the fact that the swap strategy
is not global enough.

15

6.1 The Decomp LLL algorithm

In Decomp LLL, we lift the input fgas generating matrix A ∈ Rn×m to a lattice
basis Ac := (c−1In|A) ∈ Rn×(m+n), where c > 0 is a parameter. LLL will be
called on Ac. This creates a unimodular matrix U such that U · Ac is LLL-
reduced. The output matrix U ·Ac is of the shape (c−1U |U ·A), and hence the
right hand side U · A of the LLL output is a generating matrix for the input
fgas. The goal is to set c sufficiently large so that in Ac there exists a gap
between those vectors corresponding the lattice component and those vectors
corresponding the vector space component. Ideally, the first vectors of U · A
should be very small, because of the LLL-reduction of U ·Ac: for a large c, the
matrix U can get quite large to decrease the right hand side of Ac. Oppositely,
by linear independence, the vectors belonging to the lattice component of the
input fgas cannot be shortened arbitrarily. They will always lead to large vectors
in the lattice spanned by Ac, even for very large values of c. Overall, the key
point in Decomp LLL is the choice of the parameter c.

Algorithm 3 (Decomp LLL).

Input: A generating matrix A = (aT1 , · · · ,aTn)T ∈ Rn×m of an fgas S; the
dimension d of the lattice component Λ of S; a parameter c > 0.

Output: Hopefully, a basis of Λ.

1. Define Ac := (c−1 · In|A).
2. Call LLL on input Ac; let A′c denote the output basis.
3. Let πm(A′c) denote the submatrix of A′c consisting in the last m columns.

Compute the LQ decomposition of πm(A′c) = L · Q; define L′ :=(
0d×(r−d)|(li,j)i∈[n−d+1,n],j∈[r−d+1,r]

)
with r = rank(A); return L′ ·Q.

Theorem 6.1. Let c > 0, and let Λc denote the lattice spanned by the Ac
matrix of Step 1. If 2

n−1
2 ·λn−d(Λc) < λ1(Λ), then Algorithm 3 works correctly:

it outputs a basis of the lattice component of the input fgas. Further, for any

input A, there exists a threshold c0 > 0 such that 2
n−1
2 · λn−d(Λc) < λ1(Λ)

holds for any c > c0. Finally, Algorithm 3 consumes O(n2 log(cX)) LLL swaps,
where X = maxi ‖ai‖.

Proof. Since dim(Λ) = d, there exists a unimodular matrix U such that the
L-factor of UA has shape Trap(d) (see Definition 5.1) and the first n−d vectors
of UA have norms ≤ 2−nλ1(Λ). For example, we can use the while loop in
Decomp HJLS to generate such a unimodular matrix that makes the M-part
small enough (using the notation from Definition 5.1). Then choosing c >

2n · maxi≤n−d ‖ui‖
λ1(Λ)

implies λn−d(Λc) < 2
1−n
2 · λ1(Λ), where ui is the i-th row of

the matrix U .
Write A′c = (a′T1 , · · · ,a′Tn)T . Since the basis a′1, · · · ,a′n is LLL-reduced, it

follows that

∀i ≤ n− d : ‖a′i‖ ≤ 2(n−1)/2 · λi(Λc) ≤ 2(n−1)/2 · λn−d(Λc).

16

Hence the condition on c implies that ‖a′i‖ < λ1(Λ) for 1 ≤ i ≤ n−d. Let πm(a′i)
denote the vector in Rm consisting in keeping only the last m components of a′i.
Then for i ≤ n − d, it follows that πm(a′i) ∈ S and ‖πm(a′i)‖ < λ1(Λ). Thus
πm(a′i) ∈ E, where E is the vector space component of S = Λ©⊥E. Since
dim(Λ) = d, it follows from Lemma 3.1 that E = Spani≤n−d(πm(a′i)), and that
the output is exactly a basis of the lattice component Λ.

Recall that in the classical LLL analysis for integral inputs, the number of
iterations is at most O(n2 logK), where K is the maximum of the norms of the
input vectors. For Algorithm 3, we can map the matrix Ac to c · Ac, and then
the new vectors have norms less than cX. The result follows.

In practice, the parameter c may need to be arbitrary large. Consider the
fgas generated by the rows of

A =

 0 1
1/c0 1

3 0

whose lattice dimension is 1 when c0 is irrational. Its lattice component is
Z · (0, 1). If we choose 2 ≤ c ≤ c0 in Algorithm 3, then after LLL reduction, the
first two rows of the submatrix UA of (c−1U |UA) will be (1/c0, 0) and (0, 1).
In this case, Decomp LLL fails to disclose the lattice component, which means
that we should choose c > c0. Thus, when c0 tends to infinity, the required
parameter c will be arbitrary large, even for bounded input norms: Decomp LLL

may hide singularities when appending the scaled identity matrix.

7 Open problems

We restricted ourselves to describing and analyzing algorithms with exact real
arithmetic operations, and we did not focus on lowering the cost bounds. A
natural research direction is to analyze the numerical behavior of these algo-
rithms when using floating-point arithmetic and to bound their bit-complexities.
It has been experimentally observed (see, e.g., [5]) that the underlying QR-
factorisation algorithm and the choice of full size-reduction impact the numeri-
cal behavior. However, to the best of our knowledge, there exists no theoretical
study of those experimental observations, nor bit-complexity analysis.

An intriguing aspect of HJLS-PSLQ is that it solves (a variant of) Intersect
via a reduction to Decomp and (partially) solving Decomp. Designing a more
direct approach for Intersect is an interesting open problem.

Acknowledgments. We thank Daniel Dadush, Guillaume Hanrot and Grégoire
Lecerf for helpful discussions. We also thank the ISSAC anonymous reviewers
for helpful comments, and for pointing out the result of Babai et al [1] on the
impossibility of deciding whether there exists an integer relation among real
numbers. This work was partly supported by the ANR HPAC project, the
CAS-CNRS Joint Doctoral Promotion Programme, NKBRPC (2011CB302400)
and NSFC (11001040, 11171053). Part of this research was undertaken while the

17

first author was visiting École Normale Supérieure de Lyon, whose hospitality
is gratefully acknowledged.

References

[1] L. Babai, B. Just, and F. Meyer auf der Heide. On the limits of computa-
tions with the floor function. Inf. Comput., 78(2):99–107, 1988.

[2] P. Borwein. Computational Excursions in Analysis and Number Theory.
Springer, New York, 2002.

[3] N. Bourbaki. Elements of Mathematics: General Topology, Part II.
Addison-Wesley, Massachusetts, 1967. A translation of Éléments de
Mathématique : Topologie Générale, Hermann, Paris, 1966.

[4] D. Dadush and O. Regev. Lattices, convexity and algorithms: Dual lattices
and lattice membership problems, 2013. Notes of the second lecture of a
course taught at New York University. Available from http://cs.nyu.

edu/~dadush/.

[5] H. Ferguson and D. Bailey. A polynomial time, numerically stable integer
relation algorithm. Technical Report RNR-91-032, SRC-TR-92-066, NAS
Applied Research Branch, NASA Ames Research Center, July 1992.

[6] H. Ferguson, D. Bailey, and S. Arno. Analysis of PSLQ, an integer relation
finding algorithm. Math. Comput., 68(225):351–369, 1999.

[7] J. H̊astad, B. Just, J. Lagarias, and C. Schnorr. Polynomial time algo-
rithms for finding integer relations among real numbers. SIAM J. Com-
put., 18(5):859–881, 1989. Preliminary version: Proceedings of STACS’86,
pp. 105–118, 1986.

[8] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982.

[9] J. Martinet. Perfect Lattices in Euclidean Spaces. Springer, Berlin, 2003.

[10] A. Meichsner. Integer Relation Algorithms and the Recognition of Numer-
ical Constants. Master’s thesis, Simon Fraser University, 2001.

[11] A. Meichsner. The Integer Chebyshev Problem: Computational Explo-
rations. PhD thesis, Simon Fraser University, 2009.

[12] M. Pohst. A modification of the LLL reduction algorithm. J. Symb. Com-
put., 4(1):123–127, 1987.

[13] O. Regev. Lattices in Computer Science, 2004. Lecture notes of a course
taught at Tel Aviv University. Available from http://www.cims.nyu.edu/

~regev/.

18

http://cs.nyu.edu/~dadush/
http://cs.nyu.edu/~dadush/
http://www.cims.nyu.edu/~regev/
http://www.cims.nyu.edu/~regev/

[14] A. Schönhage. Factorization of univariate integer polynomials by Diophan-
tine approximation and an improved basis reduction algorithm. In Pro-
ceedings of ICALP, volume 172 of LNCS, pages 436–447. Springer, 1984.

A Additional Background

Let B = (bT1 , · · · , bTn)T ∈ Rn×m be the basis matrix of a lattice Λ, and L = (li,j)
be its L-factor. We say the basis b1, · · · , bn is LLL-reduced with parameter δ ∈
(1/4, 1) if L is size-reduced and satisfies the Lovász condition δ · l2i,i ≤ l2i+1,i+1 +

l2i+1,i for all i ≤ n. Let γ = 1/
√
δ2 − 1/4 > 2/

√
3. LLL-reduction of the bi’s

implies the following inequalities [8], for 1 ≤ j ≤ i ≤ n:

lj,j ≤ γi−j · li,i,
‖bj‖ ≤ γi−1 · li,i,

γ−i+1 · λi(Λ) ≤ ‖bi‖ ≤ γn−1 · λi(Λ).

(A.1)

The LLL algorithm. The LLL algorithm takes as input an arbitrary basis
matrix and returns a LLL-reduced basis matrix of the same lattice. The Lovász
Algorithm in [7, Sec. 2], and Pohst’s MLLL algorithm [12], compute a LLL-
reduced basis of a lattice from any (possibly linearly dependent) generating set
of the lattice. For convenience, we give the following high-level description of
the LLL algorithm.

Algorithm 4 (LLL).

Input: A basis (b1, · · · , bn) of a lattice Λ.
Output: An LLL-reduced basis of Λ.

1. k := 2.
2. While k ≤ n do

(a) Size-reduce bk (i.e., ensure that |lk,i| ≤ li,i/2 for all i < k).
(b) If the Lovász condition holds for k, then k := k + 1.
(c) (LLL swap) Else swap bk−1 and bk; set k := max{k − 1, 2}.

3. Return the current basis (b1, · · · , bd).

19

B Missing Proofs

Proof of Eq. (2.1). Since the basis b1, · · · , bn of Λ is weakly-reduced, we have

‖bi‖2 = l2i,i +
∑
j<i

l2i,j

≤ l2i,i +
∑
j<i

(
1

4
C2 · γ2i

)
l2i,i

=

(
1 +

i− 1

4
C2 · γ2i

)
l2i,i

≤ nC2γ2i · l2i,i.

(B.1)

Thus for 1 ≤ j ≤ i ≤ n, we have

‖bj‖2 ≤ nC2γ2j · l2j,j ≤ nC4γ2(i+j) · l2i,i. (B.2)

Then using l2i,i ≤ ‖bi‖2 we obtain

(
√
nC2γ2i)−1 · λi(Λ) ≤ ‖bi‖. (B.3)

Now, let c1, · · · , cm ∈ Λ be linearly independent. Write c1, · · · , cm as integral
linear combinations of b1, · · · , bn:

ci =
∑
k≤n

xk,ibk (with xk,i ∈ Z, 1 ≤ k ≤ n, 1 ≤ i ≤ m).

Let k(i) be the largest index k for which xk,i is non-zero. Without loss of
generality, we may assume that k(1) ≤ k(2) ≤ · · · ≤ k(m). Then i ≤ k(i)
(because c1, · · · , cm are linearly independent) and

‖ci‖2 ≥ l2k(i),k(i). (B.4)

From the definition of weak reduction, (B.2) and (B.4), we derive that

‖bi‖2 ≤ nC4γ2(k(i)+i) · l2k(i),k(i)
≤ nC4γ4n · l2k(i),k(i)
≤ nC4γ4n · ‖ci‖2.

Now suppose that c1, · · · , ci are linearly independent lattice vectors reaching
the i-th minimum of Λ (i.e., ‖cj‖ ≤ λi(Λ) for all j), then we get the second
equation in Eq. (2.1).

Proof of Lemma 5.1. We consider L(t) and L(t+1). If κ = r− `, then l
(t+1)
r−`,r−` ≤

1
2 l

(t)
r−`,r−` since L(t) is size-reduced, and l

(t+1)
j,j = l

(t)
j,j for 1 ≤ j < r − `. If

κ < r − `, then we only need to prove

max{l(t+1)
κ,κ , l

(t+1)
κ+1,κ+1} ≤ max{l(t)κ,κ, l

(t)
κ+1,κ+1} (B.5)

20

since the other diagonal elements remain. The swap condition in step 2a implies

that
∣∣∣l(t)κ+1,κ+1

∣∣∣ ≤ γ · l(t)κ+1,κ+1 ≤ l
(t)
κ,κ since γ > 2/

√
3. By the property of LQ

decomposition of a matrix, we have

l(t+1)
κ,κ =

√
(l

(t)
κ+1,κ)2 + (l

(t)
κ+1,κ+1)2,

l
(t+1)
κ+1,κ+1 = l(t)κ,κ · l

(t)
κ+1,κ+1/l

(t+1)
κ,κ .

(B.6)

Hence

s ,
l
(t+1)
κ,κ

l
(t)
κ,κ

≤
√

1

4
+

1

γ2
< 1, (B.7)

and
l
(t+1)
κ+1,κ+1

l
(t)
κ,κ

=
l
(t)
κ+1,κ+1

l
(t+1)
κ,κ

=
l
(t)
κ+1,κ+1√

(l
(t)
κ+1,κ)2 + (l

(t)
κ+1,κ+1)2

≤ 1.

This proves (B.5) and completes the proof.

Proof of Eq. (5.1). In this case, assume after τ iterations, the matrix L(τ+1)

has form Trap(d) when Decomp HJLS terminates with input d < d′. If we go on
running the algorithm until the d′-dimensional lattice component Λ is computed
after τ ′(> τ) iterations, then the bottom-right d × d submatrix of L(τ ′+1) will
be the same as that of L(τ+1). This submatrix is in fact a projection of Λ.

We assume that Decomp HJLS eventually outputs a basis b1, · · · , bd′ of Λ
and the L-factor of this basis is L′ = (l′i,j), corresponding to the bottom right d′

rows and d′ columns of L(τ ′+1). From Theorem 5.3, the output of Decomp HJLS

is weakly-reduced. Using Eq. (B.1), we obtain

λd′−d(Λ) ≤max{‖b1‖, · · · , ‖bd′−d‖}

≤ max
k≤d′−d

√
dCγi · l′k,k

≤
√
rC · γr · max

k≤d′−d
l′k,k.

From Step 2 in Decomp HJLS, for each k ≤ d′− d, there exists τ < τk ≤ τ ′ such

that l′k,k = l
(τk)
r−d′+k,r−d′+k. Using Lemma 5.1, we get

λd′−d(Λ) ≤
√
rCγr · max

k≤r−d
l
(τ)
k,k,

where C = γr−d
′
.

Proof of Lemma 5.4. To prove the first item, we consider two cases. When the
swap position κ = κ(t) is not the last non-zero diagonal element (i.e., we go

21

through Step 2b), we have

Π(t)

Π(t+ 1)
=

 max
(
l
(t)
κ,κ, γ

−r−1λ1(Λ)
)

max
(
l
(t+1)
κ,κ , γ−r−1λ1(Λ)

)
r−κ

·

max
(
l
(t)
κ+1,κ+1, γ

−r−1λ1(Λ)
)

max
(
l
(t+1)
κ+1,κ+1, γ

−r−1λ1(Λ)
)
r−κ−1

.

Set

x =
γ−r−1 · λ1(Λ)

l
(t)
κ,κ · s

and y =
γ−r−1 · λ1(Λ)

l
(t)
κ+1,κ+1

.

Recall 0 < s < 1 is defined in (B.7) by l
(t+1)
κ,κ = s · l(t)κ,κ. Then

Π(t)

Π(t+ 1)
=

max{ 1s , x}
max{1, x}

·
(

max{ 1s , x}
max{1, x}

· max{1, y}
max{ 1s , y}

)r−κ−1
.

From Eq. (B.7), we also have x ≤ y. Moreover, from Lemma 5.2, we have

λ1(Λ) ≤ max
i≤r−`(t)

l
(t)
i,i ≤ max

i≤r−`(t)
γi · l(t)i,i ≤ γ

r · l(t)κ,κ,

which gives x ≤ 1/(sγ). Thus β ≤ γ ≤ 1/(xs), where β = 1/
√

1/γ2 + 1/4.

Let f(x) = max{1/s,x}
max{1,x} . Then for 0 < s < 1, 0 < x < 1/s and x ≤ y, we have

f(x) ≥ f(y) > 0. Thus,

Π(t)

Π(t+ 1)
= f(x) ·

(
f(x)

f(y)

)r−κ−1
≥ f(x) =

max{1/s, x}
max{1, x}

=

{
1
s ≥ β if x ≤ 1,
1
xs ≥ γ ≥ β if x > 1.

When the swap position κ is exactly the row of the last non-zero diagonal
element, then the only change is

l(t+1)
κ,κ =

∣∣∣l(t)κ′,κ∣∣∣ ≤ 1

2
l(t)κ,κ,

so that we have

Π(t)

Π(t+ 1)
≥ max{1/s, x}

max{1/(2s), x}
=

{
2 ≥ β if 2xs ≤ 1,
1
xs ≥ β if 2xs > 1.

Overall, we obtain Π(t) ≥ β ·Π(t+ 1).
The upper bound on Π(1) follows from

γ−r−1 · λ1(Λ) ≤ λ1(Λ) ≤ max
i≤r

l
(1)
i,i ≤ max

i
‖ai‖ = X,

22

where the second inequality follows from Lemma 5.2 with t = 1. The last item

follows from max(π
(τ+1)
j , γ−r−1 · λ1(Λ)) ≥ γ−r−1 · λ1(Λ).

23

	1 Introduction
	2 Reminders
	3 The Decomp and Intersect problems
	3.1 Finitely generated additive subgroups of Rm
	3.2 The Decomp and Intersect problems
	3.3 Relationship between Decomp and Intersect

	4 A new interpretation of HJLS-PSLQ
	5 Solving Decomp à la HJLS
	5.1 The Decomp_HJLS algorithm
	5.2 The correctness of Decomp_HJLS
	5.3 Speed of convergence of Decomp_HJLS

	6 Using lattice reduction to solve Decomp
	6.1 The Decomp_LLL algorithm

	7 Open problems
	A Additional Background
	B Missing Proofs

