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Abstract. The Kannan-Fincke-Pohst enumeration algorithm for the
shortest and closest lattice vector problems is the keystone of all strong
lattice reduction algorithms and their implementations. In the context of
the fast developing lattice-based cryptography, the practical security es-
timates derive from floating-point implementations of these algorithms.
However, these implementations behave very unexpectedly and make
these security estimates debatable. Among others, numerical stability
issues seem to occur and raise doubts on what is actually computed.
We give here the first results on the numerical behavior of the floating-
point enumeration algorithm. They provide a theoretical and practical
framework for the use of floating-point numbers within strong reduction
algorithms, which could lead to more sensible hardness estimates.
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1 Introduction

A lattice L is a discrete subgroup of some R™. It can always represented by
a basis, i.e., some d < n linearly independent vectors by, ...,bs € R" such
that L = > Zb;. A given lattice has infinitely many bases as soon as d > 2.
One is most often interested in bases made of rather short/orthogonal vec-
tors, which are generically called reduced. They provide a more tractable
description of the lattice. Since a lattice is discrete, it contains a vector of
smallest non-zero Euclidean length: this length A is called the lattice min-
imum. The most famous problem related to lattices is the Shortest Vector
Problem (SVP), which aims at finding a lattice vector of length A from an
arbitrary basis. SVP is known to be NP-hard under randomized reduc-
tions |2]. Another popular lattice problem is the Closest Vector Problem
(CVP): given a lattice basis and a target vector in R™, find a lattice vec-
tor that is closest to the target. This non-homogeneous version of SVP is
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NP-hard [7]. Since these problems are costly to solve for large dimensions,
one is often satisfied with weaker variants. E.g., in 7v-SVP one asks for a
non-zero lattice vector no longer than v - A.

Lattice reduction algorithms range between two extremes. On one side,
the LLL algorithm [20] provides a basis with relatively poor properties, in
polynomial time. On the opposite, the Hermite-Korkine-Zolotarev (HKZ)
reduction provides an excellent basis but requires a huge computational
effort. Schnorr [31] was the first to devise hierarchies of algorithms rang-
ing from LLL to HKZ, depending on a parameter k. Schnorr’s algorithms
make use, in a LLL fashion, of HKZ reductions in projections of sublattices
of dimension O(k). When k increases, the cost increases as well, but the
quality of the bases improves. The recent hierarchies [9, 10] achieve better
trade-offs but follow the same general strategy. In practice, the Schnorr-
Euchner BKZ algorithm [32] seems to be the best, at least for small values
of k. The HKZ reduction uses the Kannan-Fincke-Pohst (KFP) enumer-
ation of short lattice vectors [19, 8]. KFP may be replaced by the proba-
bilistic algorithm of [4], but the latter seems slower in practice [28].

Lattices appeared for the first time in cryptology at the beginning
of the 80’s, when the renowned LLL algorithm [20] was used to break
knapsack cryptosystems [29]. For many years lattices were mostly used
as a cryptanalytic tool [18]. The landscape changed dramatically in the
mid-90’s with the invention of several lattice-based encryption schemes,
among which Ajtai-Dwork [3], NTRU [17] and GGH [13]. Their securities
provably /heuristically rely on the hardness of relaxed variants of SVP and
CVP. For example, in the GGH/NTRU framework, the hardness of recov-
ering the secret key from the public key is related to SVP and the hard-
ness of maliciously deciphering a message is related to CVP. A recent but
very active and promising trend consists in building other cryptographic
schemes whose securities provably reduce to the assumed worst-case hard-
ness of Poly(d)-SVP for special lattices (called ideal). This includes hash-
ing [23], signatures [22] and public-key identification [21]. Gentry, Peikert
and Vaikuntanathan [12]| introduced other elaborate schemes, including a
signature and an identity-based cryptosystem. We refer to [24] for more
details. Besides cryptology, lattice reduction and in particular KFP is
used in many areas, including number theory [6] and communications
theory [25,15], in which the present results may prove useful as well.

Despite the high-speed development of lattice-based cryptography, its
practical security remains to be assessed (see [11] for a first step in that
direction). Contrary to factorization and discrete logarithm in finite fields
and in elliptic curves, the practical limits for solving SVP and CVP and



their relaxed variants are essentially unknown, implying that the practi-
cality of the schemes above is debatable. It could be that the suggested key
sizes are below what they should, as what happened to be the case with
GGH [26]. They may also be too large and then unnecessarily sacrifice
efficiency. No significant computational project has ever been undertaken.
The main reason is that the algorithmic facet of lattice reduction remains
mysterious. In particular, the theoretically best algorithms [9, 10] seem to
remain slower than heuristic ones such as [32], whose practical behaviors
are themselves suspicious. Let us discuss NTL’s BKZ routine [33] which
implements [32] and is the only publicly available such implementation:
when the so-called block-size k is around 30, the number of internal calls
to SVP in dimension k seems to explode suddenly (although the corre-
sponding quantity decreases with & in the theoretical algorithms); when &
increases, BKZ seems to require more precision for the underlying floating-
point computations, although the considered bases should become more
orthogonal, which implies a better conditioning with respect to numerical
computations. The latter raises doubts on what is actually computed and
thus on the practical security estimates of lattice-based cryptography.

Classically, to obtain correctness guarantees, the lattices under study
should be in Q" and the KFP enumeration should rely on a rational
arithmetic. However, the rationals may have huge bit-sizes (though poly-
nomial in the bit-size of the input basis). The bit-size of the rationals
is a polynomial factor of the overall enumeration cost (between linear
and quadratic, depending on the integer arithmetic). Keeping a rational
arithmetic would decrease the efficiency of KFP significantly. In practice,
e.g., in NTL, these rational numbers are always replaced by small preci-
sion floating-point numbers. Finding a small lattice vector corresponds to
disclosing an integer linear combination of vectors whose coordinates are
small, i.e., for which any coordinate is a cancellation of integer multiples of
initial coordinates. However, floating-point computations are notoriously
inadequate when cancellations occur since it often implies huge losses of
precision (and thus a possibly dramatic growth of relative errors). More-
over, the precision is rather low (usually 53 bits), though the number of
operations performed may be exponential with the dimension. If the oper-
ations reuse the variables sequentially, then one may run out of precision
simply because of the accumulation of the errors. Finally, there is no ef-
ficient way to check the optimality of a solution but to re-run the whole
algorithm in rational arithmetic: by comparing the length of the output
vector with the lattice determinant, one can check that it looks reasonable,
but it could be that (much) better solutions have been missed.



In the present paper, we give the first analysis of the influence of
floating-point arithmetic within the KFP enumeration algorithm. More
precisely, we show that if it is called on an LLL-reduced basis of a lattice
made of integer vectors and uses floating-point arithmetic with a precision
that is £2(d) (the constant being explicit), then it finds the desired solu-
tion, i.e., a vector reaching the lattice minimum A. Moreover, if the lattice
is known only approximately (which may be the case for the projected
sublattices in BKZ-style algorithms), then it finds a close to optimal so-
lution. Finally, we also prove that the floating-point enumeration involves
essentially the same number of arithmetic operations as the rational one.
The results hold in a broad context: the technique can be adapted to fixed-
point arithmetic, a weak condition is required for the input basis (if the
input basis is not LLL-reduced, then the cost of the enumeration would
grow dramatically), and the input may not be known exactly. Further-
more, the worst-case precision may be provably and adaptively decreased
to a usually much smaller sufficient precision that can be computed ef-
ficiently from a given input basis. Double precision seems to suffice for
KFP for all computationally tractable dimensions.

For the result to be valid, KFP has to be slightly modified (essen-
tially, the initial upper bound has to be enlarged). The proof relies on a
subtle analysis of the floating-point variant with respect to the rational
enumeration: because of internal tests whose outcomes may differ due to
inaccuracies, the execution of the floating-point variant may not mimic at
all the ideal one. After working around that difficulty, the proof reduces
to standard error analysis. To obtain a low sufficient precision, we heavily
use the LLL-reducedness of the input basis.

Our result complements the Nguyen-Stehlé floating-point LLL [27].
By combining these two results, the use of floating-point arithmetic in all
practical lattice algorithms may be made rigorous. Providing tight condi-
tions leading to guarantees for the enumeration algorithm is likely to lead
to significantly faster algorithms. Since the possible troubles coming from
the use of floating-point arithmetic are better understood, one may work
around them in the cheapest valid way rather than using unnecessarily
large precisions. Like LLL [34], one may hope to design combinations of
reduction algorithms whose arithmetic handling is oblivious to the user,
that are guaranteed and as fast as possible. A good understanding of the
underlying numerical stability issues provides a firm ground to study other
questions. Furthermore, the knowledge of a small sufficient precision for
the enumeration algorithm is an invaluable ingredient for hardware-based
enumeration: in software, one should not use a precision cruder than the



processor double precision; in hardware, however, the smaller the pre-
cision the faster. Overall, the floating-point analysis of the enumeration
algorithm is a step towards intense cryptanalytic computations.

RoAD-MAP. In Section 2, we give the necessary background on lattices and
floating-point arithmetic. In Section 3, we precisely describe the algorithm
under scope and describe our results. We give elements of the proofs in
Section 4, the more technical details being postponed to the appendix of
the full version. In Section 5, we discuss the practicality of our results.

NoTATIONS. If € R, we denote by |x]| its closest integer (if there are
two possibilities, the even one is chosen). A variable Z is supposed to
approximate the corresponding z, and we define Az = |z — z|.
REMARKS. For simplicity, we will only consider SVP. The results can be
extended to CVP. Many variables occur in the text. This is due to the
combined technicalities of floating-point arithmetic and LLL. This also
comes from the will to provide explicit bounds, which is necessary to actu-
ally derive rigorous implementations. Here is a heuristic glossary for a first
reading: the LLL-parameters 6,7, «, p are essentially 1,1/2, \/m, V/3; the
variables C1,Co, ... are O(l); the variables € and € quantify inaccuracies
and are negligible, whereas K is close to 1.

2 Reminders on Lattices and Floating-Point Arithmetic

We give some quick reminders on floating-point arithmetic and lattices.
For more details, we respectively refer to [16] and [6].

FLOATING-POINT ARITHMETIC. A precision t floating-point number is
a triple (s,e,m) € {0,1} x Z x (ZnN[271,2" —1]). Tt represents the
real (—1)% - m - 2671 The unit in the last place is e = 271 If a € R,
we denote by ¢(a) the floating-point number that is closest to a (the one
with an even m if there are two solutions). We have |a — o(a)| < €/2 - |al.
If @ and b are two floating-point numbers, we define a ®b,a ©b and a @b
by ¢(a + b),o(a — b) and o(a - b). The double precision t = 53 is a com-
mon choice as @, © and ® are implemented at the processor level in most
computers. In practice, and for the KFP enumeration in particular, one
should use double precision as much as possible. However, asymptotically
with respect to the growing lattice dimension d, we will need ¢ = £2(d).

GRAM-SCHMIDT ORTHOGONALIZATION. Let bq,...,b; be linearly inde-
pendent vectors. We define their Gram-Schmidt orthogonalization by b} =
(bi,b7)

. . . 2
bi — > 5 Hi b with p;; = Terl® for i > j. We define r; = ||b]]|".



The p; ;’s and r;’s. are the Gram-Schmidt coefficients. The b}’s are pair-
wise orthogonal. If the b;’s are integral, then the p; ;’s are rational and
can be computed in polynomial time with the formula above.

LLL-REDUCTION. Let n € [1/2,1) and § € (n?,1). Consider a lattice ba-
sis by,...,bq and its corresponding b;’s and p; ;’s. The basis is said to
be (8,n)-LLL-reduced if for all i > j we have |u; ;| < n and §||b}_,|*> <
b + 1;,i—1bF_1]|*. This directly implies that the lengths of the b}’s can-
not decrease too fast: if a := (6 — n?)~ Y2 then a?r; > r;i_;. In this
paper, we will further assume that § > n? + (1 + n)~2. This assump-
tion is reasonable, since before starting an enumeration one should always
LLL-reduce the lattice with J close to 1 and 7 close to 1/2. Our analysis
can be adapted to the general case, but this complicates the exposure for
a useless situation. Lenstra, Lenstra and Lovasz [20] gave an algorithm
that computes an LLL-reduced basis from an arbitrary integral basis in
time O(d°nlog® B) where B is the maximum of the lengths of the in-
put vectors. Using (low precision) floating-point arithmetic for the Gram-
Schmidt computations, Nguyen and Stehlé [27] decreased that complexity
to O(d*n(d + log B)log B). Their algorithm requires > 1/2. They rely
on floating-point approximation to the Gram-Schmidt orthogonalization,
which is much cheaper to obtain than computing the exact one. As an
intermediate result, they show that if the input basis is LLL-reduced and
if the computations are based on the exact Gram matrix (the matrix of
the pairwise scalar products of the basis vectors), then this approximation
is accurate even with low precision (linear with respect to the dimension).

Theorem 1 ([27]). Let by,..., by € Z" be a (0,m)-LLL-reduced basis,
with n € [1/2,1) and 6 € (n*,1). Let u € (0,1/16) and p = (1+n+u)(6 —
n?)~Y2. Let t be such that Cyp**e < u where e = 271 and C; = 32d°.
Starting from the Gram matriz of the b;’s and using precision t floating-
point arithmetic, one can compute some 7;’s and ji; ;’s such that:

Vi > g, g — pigl < Cip¥e and Vi, |7 —ri| < Cip*e- .

3 Floating-Point Lattice Enumeration

The usual method to solve SVP and CVP relies on the KFP enumer-
ation [19,8]. We refer to [1] for a comprehensive survey. Here we will
consider the variant due to Schnorr and Euchner [32] since it is the fastest
and the one used in NTL. After describing the algorithm, we explain how
to use floating-point arithmetic and finally give our main results.



3.1 The Enumeration Algorithm

The KFP algorithm for SVP takes as input a lattice basis and returns a
shortest non-zero lattice vector. For this, it considers some A and finds
all solutions (z1,...,24) € Z% to the equation

d
E z;b;
i=1

If A > ||by]?, then the set of solutions is non-trivial and SVP is solved by
keeping the best one. Equation (1) is equivalent to

2
< A 1)

d d 2
Z xZ; + Z Hjilj T3 S A. (2)
i=1 j=i+1

We let ¢; = — Z;l:z 41 HMjx; and perform the change of variable y; :=

x; — ¢;. This corresponds to applying to @ the triangular matrix whose
diagonal coefficients are 1 and whose off-diagonal coefficients are the p; ;’s.
Any sequence (y;,...,yq) corresponds to a unique sequence (x;,...,xq).
Equation (2) becomes Zf-l:l y?r; < A, which implies that:

2
ygra < A,

2 2
Yg_1Td—1 < A—ygrd,

d
2 2
yir1 < A-— E YiTj-
Jj=2

KFP finds all y,’s satisfying the first equation, then all (y4_1,vq)’s
satisfying the second equation, etc. until it discloses all (y1,...,yq)’s sat-
isfying the last equation. Let ¢ < d. Suppose that y;11,...,yq are already
set. Then there is a finite number of possibilities for y; since y; belongs
to a bounded interval and is the fixed shift (by ¢;) of the integer vari-
able x;. The number of possibilities for y; is < 1 4+ 24/ A/r;. This shows
that the bigger the r;’s, the faster the enumeration. We will see that
big r;’s also help decreasing the required floating-point precision needed
for the computations. Overall, KFP consists in trying to build solution
vectors 2?21 x;b; to Equation (1) by successively looking at the projec-
tions orthogonally to the spans of (by,...,b;) for a decreasing i. For a
given choice of (z;11,...,24), the variable x; belongs to an interval cen-

tered in ¢;. Its length is \/%ﬁ“, where /; 41 := Zj>1‘3/32'7“j-



Schnorr and Euchner improved KFP as follows. Suppose (zi41,- .., Zq)
is set. Instead of looking at the possible z;’s in a straight increasing fash-
ion, they are chosen from the center of the interval to its borders: the first
value is |¢; |, then the integer that is second closest to ¢;, etc. This has the
effect of sorting the ¢;’s by increasing order, and thus of maximizing the
likelihood of quickly finding a solution to Equation (1). Once a solution
is found, the value of A may be decreased, which possibly cuts off many
branches of the execution tree. In Figure 1, we give a detailed description
of the enumeration algorithm using the Schnorr-Euchner zig-zag path.
The vector sol stores the non-zero vector x that is currently thought as
minimizing || Y, #:b;|. It remains 0 as long as no length below v/A has
been found. The Az;’s and A2z;’s are used to implement the zig-zag path.

Input: A bound A. Approximations fi; ;’s and 7;’s to the Gram-Schmidt
coefficients of a possibly unknown basis b1, ..., bq.

Output: A coordinate vector = € Z¢\ {0} such that 3¢ | 2:b; is

likely to reach the lattice minimum.

1. x:=(1,0,...,0); Az :=(1,0,...,0); A%z := (1,—1,...,—1); sol := 0.
2. ¢,,y:=0.

3. i:= 1. Repeat

4 Yi 1= |J,’7, —Ci|;€i = fi+1—|—yi27"7;.

5. If¢; < Aandi=1, then (sol, A) := update(sol, A, x, {1).

6. If¢; <Aandi>1, theni:=i—1and

7 Ci = — E?:'Hrl TjHjyi-

8 xi = |e|; Axs = 0; if ¢; < x; then A%z, =1 else A%z, = —1.

9. Elseif ¢; > A and i = d return sol and stop.

10. Elsei:=¢+ 1 and

11. AQJ?»; = —AQJH; Ax; = —Ax; + AQJJZ‘; T = x; + Az;.

Fig. 1. The Schnorr-Euchner variant of the KFP enumeration algorithm.

The algorithm of Figure 1 calls an update routine. In the ideal case,
i.e., with correct input Gram-Schmidt coefficients and exact computations,
we simply take update;(sol, A, xz,¢;) = (x,¢1). If we use floating-point
arithmetic, however, this strategy may lead us to cut off branches of the
tree that could contain the minimal non-zero length: if the computed
approximation to ¢; under-estimates it and if the lattice minimum is be-
tween both values and has not been reached yet, it will be missed. One can
avoid this pitfall when floating-point arithmetic is used but the lattice is
perfectly known, i.e., the genuine b;’s or the correct Gram-Schmidt quan-
tities are given. In that situation, it is useful to consider update, defined
as follows: update,(sol, A, x,¢1) = (x, A) when sol =0 or || Y z;b;|| <
| >, solib;|| (exactly), and updatey(sol, A, xz,¢1) = (sol, A) otherwise.



When using floating-point arithmetic, it is crucial to specify the order
in which the operations are performed. At Step 4, we will evaluate the
term y2r; as: 7 ® (7; ® ;). At Step 7, we will evaluate D imin1 Tiki
as (Ti+1 ® fli41,i) @ [(Tit2 ® flit2,:) B[ .. ® (¥a @ fia,i) - - -]]. Finally, notice
that the x;’s, Ax;’s, A%z;’s and sol;’s remain integers.

An iteration of the loop is uniquely determined by the values of ¢
and (z;,...,x4) at the beginning of the iteration. We say that the state
is o = (i, [4,...,2q4]). Let i < d and x;,...,z4 € Z. The floating-point
algorithm and the exact algorithm do not necessarily perform the same
iterations, and even if they do they may not be performed in the same
order. It is thus impossible to compare the values of the variables for a
given loop iteration. However, one may compare the values of the variables
for a given state of the loop. In both the exact and floating-point variants,
the values of the ¢;’s, y;’s and ¢;’s do not depend on the iteration, but only
on the state. Furthermore, these values are well-defined even if they are
not actually computed: they do not depend on the initial bound A, nor on
the existence of an iteration with the right state, nor in the order in which
the states are visited. Consider a variable of the algorithm. We use the
notation v to represent its value at a given state with exact computations
and v its value at the same state with floating-point computations.

3.2 Main Results

We consider a lattice basis by, ..., by that is (J,n)- LLL-reduced with n €
[1/2,1) and 172—1—@ <0< 1. Welet a = \/(;7 and p = (1+n)a. The
minimum of the lattice spanned by the b;’s is denoted by A. Below, when
using KFP, the basis may not be known. In that case, its Gram-Schmidt
coefficients or approximations thereof are known. The former situation
may arise if one knows only the Gram matrix of the basis. The latter is
typical of BKZ-style algorithms: one tries to reduce a large-dimensional
lattice basis by, ...,bg by enumerating short vectors of lattices spanned
by the projections of the vectors b;y1, ..., b;1x orthogonally to by,...,b;,
for some ¢ and k; usually, one only knows approximations to the Gram-
Schmidt coefficients of the projected k-dimensional basis.

Suppose we use floating-point arithmetic in the enumeration proce-
dure, as described above. We denote by € the unit in the last place and
we define K = 1+¢/2 ~ 1. We allow the input Gram-Schmidt coefficients
to be incorrect. For this purpose, we define:

_ Apti,j Ar
Kk = max | max , max .
i>7 € 1 T €




If the Gram-Schmidt coefficients are exactly known and then rounded, we
have k < 1. They can also be computed as mentioned in Theorem 1, in
which case we have x < C1p?*(1 4 u')?? for some small v/ > 0.

To simplify the theorems below, we introduce some notation. We de-
fine R = (1 + ke) - max; 7;: it bounds all the r;’s as well as the r; + Ar;’s.
We also define:

2 4 20¢(2 2C
CZZFH- +/<c+ o a2+ K+ 2)’
a—1 p—1 14+n—a
R K+d
€ =2=|(14+r)a® + (2C, + C3)p?| - ¢, Cy=C3 1+ /6(2—|—de).
1 — ¢

The following theorem shows that when some exact knowledge of the
lattice is provided then the floating-point enumeration solves SVP, if the
precision is £2(d) and the initial length upper bound is slightly increased in
order to take care of the inaccuracies. In particular, in the most usual case
where the 7;’s decrease, one can choose A = 7y - (14 (2d + C3p%)e), which
is only slightly larger than r;. If the r;’s do not decrease, they can still be
assumed of the same order of magnitude (up to a factor 20(@), thanks to
the LLL-reducedness of the input basis, and the a priori knowledge that
larger r;’s will not be used in vectors reaching the minimum.

Theorem 2. Consider the floating-point KFP algorithm described in Sub-
section 8.1. Suppose that either the b;’s are known or that the Gram-
Schmidt quantities are correct, and that the update, function is used. We
assume that Cap® - € < 0.01 and A > (14 2de) - \? + C3pe - R. Then the
returned coordinates sol satisfy || Y., solib;|| = A.

In the theorem above, we do not cut off branches of the computation
once a short vector has been found: we keep the initial bound A. It is
possible to decrease A each time a significantly shorter vector is found.
Suppose a vector of exact squared norm A’ < A has been found. Then
we can set A = min(A, A'(1+¢€”)), for a well chosen €” that can be made
explicit. This takes care of possible slight over-estimates of internal ¢;’s
which could erroneously lead to the removal of useful loop iterations. For
the sake of simplicity, we do not consider this variant here.

Within BKZ-style algorithms, one may only know approximations to
the Gram-Schmidt coefficients of the input basis, making Theorem 2 use-
less in such situations. Furthermore, due to the input uncertainty, one
may not be able to decide which is the shortest between two vectors of
close-by lengths: one cannot do better than finding a vector which is not
much longer than A. Of course, if there is a sufficient gap between A\ and



the length of any lattice vector different that does not reach the mini-
mum, then an optimal solution will be found. The theorem below shows
that finding a close to optimal vector is actually possible.

Theorem 3. Consider the floating-point KFP algorithm described in Sub-
section 3.1, with the update, function. Let v = || ), sol;b;|| be the norm
of the found solution. If A > 71 and € < 0.01, then:

|

A
A2 <42 < (14 4de) - N2 + Cymax (1, —> ple- R.

It should be noted that floating-point variants of BKZ cannot solve
their internal SVP instantiations exactly: the best they can do is to solve
(1 + €”)-SVP instantiations instead, for some small ¢”. However, with a
small enough €”, this does not change significantly the overall quality of
the output bases.

The two results above provide as good as could be expected correct-
ness guarantees to the floating-point enumeration. However, since the al-
gorithm is not the rational one, the complexity analyzes do not hold any-
more. The following theorem shows that the overhead of the floating-point
enumeration with respect to the rational one is small.

Theorem 4. Consider the floating-point KFP algorithm described in Sub-
section 3.1 with either of the update functions and either the knowledge of
the basis or the Gram-Schmidt coefficients or only approzrimations thereof.
Let v = ||Y_, sol;bi|| be the norm of the found solution. We suppose
that € < 0.01. Then the number of loop iterations is lower than the num-
ber of loop iterations of the rational algorithm given the genuine basis and

an input bound A" = (1 + de) - A + Cy max (1, ;il) ple- R.

As a consequence of Theorems 2 and 4, the cost of Kannan’s algo-
rithm [19] can be decreased from Poly(n,log B) - dse (1Fo(1) (see [14])
to (d% + Poly(n, log B)) - d°@: it suffices to use rationals everywhere

but in the enumerations which should be performed with precision ©(d).

4 Error Analysis of the Floating-Point Enumeration

We now turn to the proofs of Theorems 2, 3 and 4. We proceed by prov-
ing that the computed lengths /¢; of the projected vectors are accurate.
Lemma 1 means that /; cannot be much larger than ¢;, which suffices for
Theorem 3. For the other results, we need the converse: Lemma 2 means



that the true ¢; cannot be much larger than the computed one. The proofs
of Lemmata 1 and 2 are explained in Subsection 4.2.

As mentioned in Section 3, an ¢; computed by the floating-point algo-
rithm may not correspond to any ¢; computed by the rational one with the
same bound A, and vice-versa. To be rigorous, we need the following defini-
tions. For & € Z9, we let n(x) = || Z?Zl 2;b;||? and 7i(x) its approximation
as would be computed by the enumeration were the state (1, [z1,...,z4])
visited. We use the notations and hypotheses of Subsection 3.1.

Lemma 1. Suppose that Cop? - € < 0.01. Let = € Z4. If n(x) < rq, then:
i(x) < (14 2de) - n(x) + Cspe - R.

Lemma 2. Suppose that ¢ < 0.01. Let x € Z¢ and i < d. We consider
the state (i, [x;,...,xq]). Then

_ (K
l; < (1+de) - 4; + C3max 1,M ple- R.
?”1(1—6,)

4.1 Using Lemmata 1 and 2 to Prove the Theorems

Let us first prove Theorem 2 from Lemma 1. Let (z1,...,z4) be the co-
ordinates of a shortest vector. If the state (1,«) is considered by the
floating-point algorithm with A > (1 + 2de) - A2 + C3pe - R, then a short-
est vector will be found. Making sure that (1, ) is indeed considered is
the purpose of the following lemma. It relies on subtle properties of the
floating-point model, in particular that the rounding is a non-decreasing
function.

Lemma 3. If one uses the update; function within the enumeration, then
all coordinate vectors x such that n(x) < A will indeed be considered
during the execution.

Proof. Let x € Z% with a(x) < A. We show by induction on decreasing i
that (i, [z;,...,24]) is considered and that at this moment the test ¢; < A
is satisfied. Let ¢ < d. We consider the sequence (o1, ...,0;) of considered
states (i, [X, Zit1,...,2q]) with X € Z. It is non-empty if i = d, and it is
also non-empty if ¢ < d by induction hypothesis.

The sequence (£;(0¢)), is non-decreasing. The first integer X = z;(071)
is exactly |¢;]. The computation of x;(0;) from z;(0y—1) is exact, and
the distance between x;(0;) and ¢; is non-decreasing. Since the rounding
function is non-decreasing, the sequence (7;(0¢)), is also non-decreasing.

For the same reason, the sequence ({;(0¢)) , is non-decreasing.



Consider the value 0 of ¢; were it computed with (z;,...,24). We
have ¢ < n(x) < A. Since ¢;(07) > A, there must exist ¢ such that z;(o¢) =
x; and the test ¢; < A is satisfied for that state o;. O

We now prove Theorem 3. If we use update,, the bound A may de-
crease during the execution, to finally reach a value A.,4. The final output
would have been the same if we had started with A = A.,4. We consider
that it is the case, which implies that A is not modified during the exe-
cution. Let & € Z? such that n(x) = A\2. Lemma 1 implies that n(z) <
(1 + 2de) - A2 + C3pe - R. We must have A < (1 4 2de) - A2 4 C3pe - R
since otherwise A would have been decreased after « was found. Applying
Lemma 2 with sol and using the above bound on A provides the result.

For Theorem 4, consider a state (i, [x;,...,24]) with a successful test

{; < A. Lemma 2 gives ; < (14de)- A+ C3 max (1, fl(gfgf))) ple-R < A
Therefore, the exact algorithm with the bound A’ would have considered
this state and the corresponding test would have been successful as well.
Moreover, there are as many failed loop iterations with ¢ < d as successful

loop iterations with ¢ > 1. This completes the proof.

4.2 Proving Lemmata 1 and 2

The proofs of Lemmata 1 and 2 rely on standard techniques of floating-
point error analysis. We simultaneously bound the errors and the vari-
ables, which leads us to use an induction on the decreasing index ¢. Within
the induction step, we rely on three basic facts whose proofs are tedious
but straightforward. They are given in the appendix of the full version.

Lemma 4. Suppose that Cype < 0.01. Suppose we are at the end of
Step 4 of some loop iteration with state (i, [x;,...,xq]). If there exists a
constant v > 1 such that for any j > i we have y; < vod 1 then

Ac; < Coval(14+ 1) and Ay < yie/2 + KCovad(1 4+ 1)t e
Lemma 5. At Step 4 of the floating-point algorithm, we have:
(i @ 5i) © 7 — rayf | < REKZ[(k + Dyfe + (2y; + Ayi) Ay

Lemma 6. Suppose that Cyple < 0.01. Suppose we are at the end of
Step 4 of some loop iteration with state (i,[x;,...,xq]). If there exists a
constant v > 1, such that for any j > i we have y; < voi™t, then:

Al; < de-l; + Cgl/2pd6 ‘R and Al; < de-l; + 03V2pd6 - R.



We can now prove Lemma 1. Let & € Z% such that n(z) < r. Since the
basis is LLL-reduced, the y;’s corresponding to w satisfy y; < \/n(x)/r; <
r1/r; < oL The first part of Lemma 6 with v = 1 provides the result.

Finally, we prove Lemma 2. Let « € Z¢ and i < d. We show by induc-
tion on j decreasing from d to i that the bound on Ac; of Lemma 4 holds

7, (K +de)
r1(1—¢€)
will then follow from the second part of Lemma 6. Let j > . By induction,
we have vy, < va#~! for any k > j, so that the bounds of Lemma 4 hold.
It remains to see that y; < vod 1. Lemmata 5 and 6 provide:

and that we have y; < va/~!, with v = max (1, > Lemma, 2

riy? <0 < O+ Al < KU+ Al + (5 @ ) @ Fj — 93|
< KU+ delj + Csv”peR + RK? [(k + D)yFe + (2y; + Ay;) Ay;] -

We use Lemma 4 to bound Ay; in the equation above. This leads P(y;) <
0, where P is the degree-2 polynomial with coefficients:

Py = —{;(K + de) — C312Rpe — RK*(Cavple)?,
Py = —2RK*Cova®™ (1 +n)%e and Py =r; —2RK3(k+ 1)e.

The fact that ¢ < 0.01 implies that P» > 0 and thus that y; is below the
positive root of P. It can be checked that P(va/~!) > 0, which implies
that y; < va/~!. This completes the proof.

5 Practical Considerations

The algorithm described in Section 3 has been implemented in C++ and is
freely distributed within £p111-3.0 [5]. The code does not use the worst-
case bounds above but remains guaranteed, as explained below. We also
explain how our results may be used within BKZ-style algorithms.

5.1 Guaranteeing the Computations with Smaller Precision

The worst-case bounds given in Section 3 are very pessimistic for generic
instantiations. This is due to the facts that all |u;;|’s (resp. ri—1/r;’s)
are bounded by their worst-case value 1 (resp. o) and all floating-point
errors are considered to be always maximal and in the worst direction.
Although they might occur, cases where all these bounds are tight are
unlikely. In the worst-case analysis, we also use loose bounds to simplify
the technicalities, though they do not modify the terms that are exponen-
tial with d. For (d,7n) = (0.99,0.51), if the Gram-Schmidt coefficients are



correct up to their last bit (k < 1), the provably sufficient precision for
a d-dimensional enumeration is ~ 0.8 - d (when d grows to infinity). To
take advantage of the machine instructions, one is tempted to use double
precision, i.e., ¢ = 27°2. In that case, the enumeration is guaranteed up
to dimension = 45 (for an output relative error < 1%).

In practice, one should rather turn the worst-case error analysis into
an algorithm. One can use the values the actual Gram-Schmidt coeflicients
rather than general upper bounds. If they are known approximately, one
should take into consideration their intrinsic inaccuracies. The adaptive
precision computation uses O(d?) arithmetic operations: Lemmata 4 and 6
are applied O(d) times each and both perform O(d) operations. This com-
putation is thus dominated by the enumeration. The error computations
are themselves performed in floating-point arithmetic, but one should be
cautious with the rounding modes: since we try to upper bound a quantity,
the default rounding to nearest should be replaced by roundings towards
infinities and zero. In the code, we used MPFR [30] for that purpose.

The table below illustrates the above technique. Each entry corre-
sponds to 10 samples of the following experiment. A (d+ 1) x d matrix B
is sampled: for any 4, B[1, 1] is a random integer with 100-d bits, B[i+1, 1]
is 1 and the other entries are 0. The columns of the matrix B are then
(0.99,0.51)-LLL-reduced. Then the adaptive precision computation is per-
formed. The precision is computed so that the algorithm is guaranteed to
solve 1.01-SVP. One observes that double precision suffices for dimensions
up to 90, which is higher than what is currently handleable in practice.

Dimension d 20 30 40 50 60 70 80

Worst-case required precision (Theorem 3)| 33 41 49 57 66 74 82

Adaptively computed required precision
(worst-case over the samples)

2025 29 33 38 42 47

5.2 Enumerating within BKZ-style Algorithms

With the floating-point LLL of Nguyen and Stehlé [27] and the present
results, one may use floating-point arithmetic within BKZ-style algorithms
in a guaranteed way. However, it is not clear yet how to maximize the
efficiency while doing this. As a target, double precision should be used as
much as possible, since multi-precision arithmetic is significantly slower.

A first solution consists in performing all operations with the same
provably sufficient precision, provided by the bounds given in Section 3
after replacing x by the bounds of Theorem 1 and R by 2a?? -7y (the vec-
tors whose r;’s are > a2%r; cannot be used to create a vector of minimal



non-zero length). Though the precision remains O(d), it will be fairly large
and slow multi-precision arithmetic will be necessary. It can be checked
that the required precision can be decreased by a constant factor by notic-
ing that in Theorem 1 the errors on p; ; and r; depends on j.

Another possibility is to use a Gram-Schmidt orthogonalization with
very high precision and then use the adaptive precision estimate described
above. Double precision is likely to be sufficient for all reasonable values
of the hierarchy parameter k, making the computed approximations to
the Gram-Schmidt coefficients correct up to relative error ~ 2753. Since
the enumerations are likely to dominate the overall cost, it is worth using
multi-precision arithmetic to compute accurate Gram-Schmidt coefficients
in order to be allowed double precision within the enumerations.

If the Gram-Schmidt computations are not negligible with respect to
the enumerations, then one could try using double precision in all com-
putations. This may be done by relying with the following strategy:

— Run the floating-point LLL algorithm with double precision for the
Gram-Schmidt computations, with infinite loop detection (see [34]).

— If the double precision seemed to suffice (i.e., the execution termi-
nated without an infinite loop detection), compute a posteriori accu-
racy bounds as described by Villard in [35].

— Run the adaptive precision computation to see if double precision suf-
fices for the enumeration.

6 Concluding Remarks

We proved strong numerical properties of the KFP enumeration algorithm,
which gives a stronger insight about the use of floating-point arithmetic
within lattice reduction algorithms. To obtain a full hierarchy of reduction
algorithms ranging from LLL to HKZ that efficiently relies on floating-
point arithmetic, it only remains to see how to combine our new results
with those on floating-point LLL from [27]. It would also be interesting
to devise new techniques to decrease the required precision in order to be
able to use double precision as often as possible.

However, we answered only one of the two main troubles related to
BKZ-style algorithms: it is still unknown how to best use small dimen-
sional lattice enumeration within a large dimensional reduction. It would
be desirable to have an algorithm which is theoretically at least as good
as the best current one [10], that would beat BKZ in practice and whose
behavior would be perfectly understood. Once this will be done, there will
remain to mount massive computational projects to assess the limits of



current computers against lattice-based cryptography. It will then make
sense to run the enumeration on hardware. Our analysis extends to fixed-
point arithmetic, which is the natural arithmetical choice in hardware.
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Missing Proofs

Proof of Lemma 4 Let i < dand z;,...,xq € Z. Suppose that the state
of the current loop iteration is (i, [z;,. .., 24]), and that there exists v > 1
such that for any j > i we have y; < va?/~1. We proceed in three steps.
First we bound } _; |z;|. Then we bound Ac; and finally we will bound Ay;.

1. Bounding ) |xg|. For any j > i, let §; = ZZ:J-_H |zk| (in particular
S4 = 0). Let j > i. By hypothesis, we have y; < va?~!. This means
that [z; +> ) Tk j| < val~1. By using the triangle inequality and
the LLL-reducedness, we obtain:

o] < vl Y ol < vl 40
k>j

We can now bound S; for all j > i.

Sj = |zj1] + Sjp1 < ved + (1+10)Sj41

Sj d—j—1 _ [(L+m)a]
— < O
Va371+(1+17)a—|— + (1 +n)a] < =)
d d—j
g < vt mT?

p—1

2. Bounding Ac;. We recursively define ug =0 and u; = uj1 @ (241 ®
fijy1,q) for j € {i,...,d—1}. Let j > i. By using the fact that n+ ke <
1, we have:

ujl < K (2541 ® Byl + |ujal)
< K(K(n+ se)|zjpa| + [uj41])
< K2[zji| + Kluj]
< K zj| + K3 |jpal + ..o+ K97 2]
< K’S;
|25 ® Ry — xjpgal < |25 @ Bga — gl + 25 — pg,0)]
<l|xjfijile/2 + |zj|ke
< ] (1 + K)e
Overall, by using the fact that K¢ < 2, we can bound the quan-
tity ‘uj — Zz:jH T pig,i| by:

d

_ €

<lujpr— Y Teftkg| + |51 © Ly — vl + lujl5
k=j+2



(|zk @ fig; — Trfin) + up—1€/2)
Kd
<\xk\(’i +1) + 7Sk1> €

(lzg|(k + 1) + Sk—1) €

IN

(|zxl(k +2) + Sk) €

IN

M= It {= 1= I

(e(k+2) + (02 + K) +1)Sk) €

M=

<v

<(/<; +2)ak 1 4 n(k + 4)ad(1 + n)dk) 6

k=j+1 p—1

< Cyvat(1 4 n)t e,

with Cy = Zi_%—i—z%rf. Since ¢; = —u;, we have Ac¢; < Cguad(l—l—n)d*ie.
3. Bounding Ay;. We have y; = |x; — ¢;| and y; = |z; © ¢;|. Therefore:

€ €
Ayi < |a:l — EZ|§ + Ag; < |1'z — 61‘5 + K Ac;,

which completes the proof.
O

Proof of Lemma 5 By using the triangle inequality, we obtain the
following inequalities:

15i @ 5 — vi| < |5 © 5 — 3| + |57 — ¥

<gie/2+ 1y — v}l
<yle/2+ K|y} — |
< yle/2 4+ K(2y; + Ay) Ay

(@i @ §i) x 7o — i | = |(y7 + 0 @ G — y7) (ri + Ti = 73) — rag |
< Ry?re + R|y; @ gi — ;|
< R[y; (r +1/2)e + K (2y; + Ay;) Ay

(5 © ) @ 75 — riyi | < (5 @ §3) @ Fi — (U5 @ §i) X 7]



(5 © §i) x i — riy?|
< ryle/2 4+ K|(; @ §;) X 71 — riy)|
< REK®[(k + D)yie + (2y; + Ayi) Ay

O

Proof of Lemma 6 Let i < dand z;,...,xq € Z. Suppose that the state
of the current loop iteration is (i, [z;,. .., 24]), and that there exists v > 1
such that for any j > i we have y; < va? ! Let j > i. From Lemma 4,
we get:
Ay; < yje/2 + KCova®(1 +n)4 e
<ve(a?71)2 + KCya(1 4 n)?7e)
< Dyva’(1+ 1),
with D3 = 1/2 + KC5. Using the hypothesis on the precision, we obtain:
y; + Ay; < Kv(a? 71 40.01) < 1.01Kva? ™t
We combine these bounds with Lemma 5:
(7 @ 5s) @ 75 — ry?] < RK?[(k + 1)1r2a?U Ve
+(vad ™t 4 1.01Kva? " Dsva®(1 4 n)4 €]
< Dy?a®™(1 + 1) Re,
with Dy = K3[(k + 1) + 2.01D3]. We want two different upper bounds
on AY;.

Al; < 52‘% + K(Aliyr + (5 @ 5:) @ 7 — yiri])

d
€
<K'y (@5 + (75 ® §;) ® 75 —yf-ml)
j=i

d

< K1 Z (@g + Dy2a®i(1 + n)d_jRe)
j=i

< dlie + Do (1 + n)9Re,

. KeD,a ) ) .
with D5 = Ton_—a Note that in the last inequality we used the fact
n—a
that 1 +n > «. For the other inequality:

Al < iz + (Aliy + (U @ ) @ T3 — yimil)

€
2



d
<2 (@-% + Dyt (1 + )" Re)
j=i
< dlie + Ds*a’(1 + n)?Re.

Finally, we obtain:

Kd+3a

Dy = ———
> 1+n—«a

[+142.01(1/2+ KCy)] < ~(2+5+2C2) = Cs.

[0
1+n—
O



