The Calculus of Concurrent Systems Labelled Transition System and Behavioural equivalence

Names (channels)
$$a, b, c, \dots$$
Processes $P ::= a.P \mid \overline{a}.P \mid P_1 \mid P_2 \mid P_1 + P_2 \mid \mathbf{0} \mid (\nu a)P \mid !a.P$
Actions $\mu ::= a \mid \overline{a} \mid \tau$

T-inp $\overline{a.P \stackrel{a}{\to} P}$ T-out $\overline{a.P \stackrel{\overline{a}}{\to} P}$ T-suml $\overline{P \stackrel{\mu}{\to} P'}$ T-sumr $\overline{Q \stackrel{\mu}{\to} Q'}$

T-com1 $\overline{P \stackrel{a}{\to} P' \quad Q \stackrel{\overline{a}}{\to} Q'}$ T-com2 $\overline{P \mid Q \mid P \mid Q \mid P' \mid Q'}$

T-parl $\overline{P \mid P \mid P' \mid Q}$ T-parr $\overline{Q \mid P \mid Q \mid P \mid Q'}$

T-res $\overline{Q \mid P \mid P \mid P' \mid Q}$ T-rep $\overline{Q \mid P \mid Q \mid P \mid Q'}$ T-rep $\overline{Q \mid P \mid Q \mid P \mid Q'}$

Definition: A relation \mathcal{R} between processes is a bisimulation if whenever $P\mathcal{R}Q$, we have the following:

- 1. if $P \xrightarrow{\mu} P'$, then there exists Q' such that $Q \xrightarrow{\mu} Q'$ and $P'\mathcal{R}Q'$, and
- 2. if $Q \xrightarrow{\mu} Q'$, then there exists P' such that $P \xrightarrow{\mu} P'$ and $P'\mathcal{R}Q'$.

Definition: Bisimilarity, written \sim , is a relation between processes defined as follows: we have $P \sim Q$ if there exists a relation \mathcal{R} such that

- 1. \mathcal{R} is a bisimulation, and
- 2. PRQ.