
PACE project
ANR 12IS02001

Deliverable D2013-123

December 2013

Introduction. We give below a presentation of the results obtained during the first year of PACE (january-
december 2013). This corresponds to the actual deliverable. Before that, we present some facts related to
the life of the project.

Nota: The project started officially on Jan. 1st, 2013. As a consequence, some of the works published
in 2013 do not acknowledge explicitly the PACE project. We mention nevertheless those that correspond to
contributions within the scope of PACE, marking them with F.

A description of the goals and organisation of the ANR PACE project (“beyond plain Processes: Analysis
techniques, Coinduction and Expressiveness”) can be found here. The website of the PACE project can be
found here.

Life of the project

0.1 Personnel

Funded by PACE.

• Thomas Given-Wilson is a new postdoc hired to work on PACE. He did his PhD with Barry Jay
and Daniele Gorla on the expressiveness of a concurrent functional programming language. In PACE
he will study the expressiveness of process calculi with respect to their capabilities to provide support
for controlling information flow and protecting privacy.

• Mingzhang Huang has been recently enrolled as a PhD candidate under the support of this project.

Contributing to PACE.

• Salim Perchy is a new PhD student hired in Nov, 2013 and funded by (7161- Labex DIGICOSME,
2013). He is co-supervised by Stefan Haar and Frank Valencia. He will be working on a calculus for
social networks; one of the subjects of PACE.

• Alberto Cappai, PhD Student Starting date: 1/1/2013 Topics: applicative bisimulation and compu-
tational indistinguishability Reference: Davide Sangiorgi and Ugo Dal Lago

• D. Hirschkoff and D. Pous are members of the ANR Project “PiCoq”. This project funds the post-
doctoral contract of Daniela Petrisan, who joined the Lyon group on November the first, 2013.
We expect the expertise of D. Petrisan on coalgebraic models of behavioural equivalences and process
calculi to be fruitful for the PACE project, throuhg interactions with F. Bonchi and D. Pous.

0.2 Visits, meetings

PACE kick-off meeting. A meeting of the researchers involved in PACE took place on april 22 and 23,
2013, in Bologna. See the web page presenting the scientific programme of the meeting. In additional to
scientific discussions, some time has been devoted to the organisational matters related to the organisation
of the project.

Yuxi Fu was granted a research fund (200,000 RMB) to support the joint collaboration between partners
of this project.

Visits between PACE partners

• Daniel Hirschkoff and Jean-Marie Madiot (ENS Lyon) visited BASICS (Shanghai) in november 2013
to work together with Fu Yuxi and Xu Xian on the behavioural equivalence (characterisation, proof
techniques, axiomatisation) of a π-calculus with preorders.

• Catuscia Palamidessi (INRIA Saclay) visited BASICS (Shanghai) in november 2013 to discuss questions
related to the PACE project (and, in particular, differential privacy).

Other visits and exchanges

• Frank Valencia (INRIA Saclay) visited PUJ, Colombia in July 2013 for two weeks. The purpose of the
visit was to present F. Valencia’s work and future direction on calculi for social networks. This visit
was financed by PACE.

• Frank Valencia (INRIA Saclay) will visit PUJ, Colombia in January 2014 for ten days. The purpose of
this visit is to continue the collaboration on the development of calculi for social networks. This visit
will be financed by PACE.

• Ugo Dal Lago (INRIA Sophia) visited Andy Pitts (in Cambridge) and Andy Gordon (at MSR Cam-
bridge) for a week (July 15th to July 23rd, 2013). They discussed about probabilistic applicative bisim-
imulation, biorthogonality in a probabilistic setting, probabilistic programming and machine learning.

• Filippo Bonchi (ENS Lyon) visited Braga (Universidade do Minho, Portugal) in September 2013, to
discuss coalgebraic presentations of behavioural equivalences.

• Jorge PEREZ from New University of Lisbon visited COMETE (INRIA Saclay) in Nov, 2013 for three
days. The purpose of the visit was to work on the development of a calculus for social networks. His
visit was partially funded by PACE.

• Jurriaan Rot from Leiden University visited F. Bonchi and D. Pous (Lyon), between dec. the 9th and
dec. the 13th, 2013, to work on coalgebraic presentations of bisimulations and up-to techniques.

Invited lectures Damien Pous presented some results on up-to techniques (tasks T1.1 and T3.1) at the
PSATTT workshop at LIX, École Polytechnique (november 2013) and at the Calco 13 conference (september
2013).

1 Task 1: Advanced Coinductive Techniques

The following papers present contributions to the topics of Task 1:

• Ugo Dal Lago and Paolo Parisen Toldin. An higher-order characterization of probabilistic polynomial
time. Information and Computation, 2013. to appear.

(T1.3)

• Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On Coinductive Equivalences for Higher-Order
Probabilistic Functional Programs. In POPL. ACM Press, 2014.

(T1.3)

• Ugo Dal Lago and Margherita Zorzi. Wave-style token machines and quantum lambda calculi. 2013.

(T1.4)

• D. Hirschkoff, J.-M. Madiot and D. Sangiorgi, Name-Passing Calculi: From Fusions to Preorders and
Types. LICS 2013: 378-387

(T1 & T2.1)

? Chatzikokolakis, Konstantinos; Palamidessi, Catuscia; Braun, Christelle, “Compositional Methods for
Information-Hiding”, Mathematical Structures in Computer Science, Cambridge University Press, To
appear

(T1.3)

? C. Olarte, C. Rueda, F. Valencia. Models and emerging trends of concurrent constraint programming.
Constraints Vol 18 (4), Pages 535-578.

(T1)

• Damien Pous. Coalgebraic Up-to Techniques. Invited talk at CALCO 2013. LNCS 8089

(T1.1)

? Filippo Bonchi, Fabio Zanasi, “Saturated Semantics for Coalgebraic Logic Programming” In Proc. of
CALCO, LNCS 8089, Springer 2013.

(T1)

• Xian Xu. On Context Bisimulation for Parameterized Higher-order Processes. Proceedings of the
6th Interaction and Concurrency Experience (ICE 2013), 2013. Electronic Proceedings in Theoretical
Computer Science 131: 37-51, 2013.

• Xian Xu, Qiang Yin and Huan Long. On the Expressiveness of Parameterization in Process-passing.
(post-proceedings of WS-FM2013 in LNCS are in preparation)

We now discuss the announced deliverables for Task 1 (Year 1) in the submission document for PACE:

• D1.1.1 A metatheory of bisimulation enhancements for pure Higher-Order pi-calculus with only process
passing

The works by Pous (CALCO’13) and Xu (ICE’13, WS-FM2013) represent contributions to this subject.
Moreover, current work on this specific delivrable is under way, and we expect it to be published during
Year 2 or Year 3.

• D1.1.2 Accounts of metric bisimulations using coalgebras

This topic has turned out to be more difficult than expected, and we have no contribution on this
subject yet. We shall continue studying metric bisimulations (mostly in Lyon).

• D1.1.3 A probabilistic bisimulation for untyped lambda-calculus along the lines of applicative bisimu-
lation

By contrast to the previous one, this topic has been quite fruitful. The paper by Dal Lago et al.
at POPL’14 is clearly a contribution on the subject. More broadly, we plan to deepen the study of
probabilistic computation, beyond the investigation of behavioural equivalence (this is the case, in
particular, for the two other papers coauthored by Dal Lago mentioned above).

• D1.1.4 Symbolic characterisations of strong bisimulation on a quantum CCS

The paper Symbolic bisimulation for quantum processes, by Yuan Feng, Yuxin Deng, and Mingsheng
Ying (to appear in ACM Transactions on Computational Logic), which is mentioned in Task 3 below,
is also a contribution to this deliverable. Work on quantum computation is also under way in the
Bologna site.

2 Task 2: Expressiveness

The following papers present contributions to the topics of Task 2:

? Gazeau, Ivan; Miller, Dale; Palamidessi, Catuscia, “Preserving differential privacy under finite-precision
semantics”, Proceedings of the 11th International Workshop on Quantitative Aspects of Programming
Languages and Systems. Luca Bortolussi and Herbert Wiklicky (eds.) LIPIcs, Open Publishing Asso-
ciation, 1-18 (2013)

(T2.3 & T3)

? Elsalamouny, Ehab; Chatzikokolakis, Konstantinos; Palamidessi, Catuscia, “A differentially private
mechanism of optimal utility for a region of priors”, Proc. of the ETAPS Conference on Principles of
Security and Trust. David Basin and John Mitchel (eds.), LNCS 7796. Springer, 41-62 (2013)

(T2.3)

• Chatzikokolakis, Konstantinos; Andrés, Miguel, E.; Bordenabe, Nicolás, E.; Palamidessi, Catuscia,
“Broadening the Scope of Differential Privacy Using Metrics”, Proc. of the Privacy Enhancing Tech-
nology Symposium. Emiliano De Cristofaro, Matthew Wright (eds.), Lecture Notes in Computer
Science 7981, Springer, 82-102 (2013)

(T2.3)

• Andrés, Miguel, E.; Bordenabe, Nicolás, E.; Chatzikokolakis, Konstantinos; Palamidessi, Catuscia,
“Geo-Indistinguishability: Differential Privacy for Location-Based Systems”, Proc. of the ACM Con-
ference on Computer Communication and Security. ACM Press 901-914 (2013)

(T2.3)

• Yuxi Fu. Checking Equality and Regularity for Normed BPA with Silent Moves. F.V. Fomin et al.
(Eds.): ICALP 2013, Part II, LNCS 7966, 244-255, 2013.

• Yuxi Fu. The Value-Passing Calculus. Theories of Programming and Formal Methods, LNCS 8051,
166-195, 2013.

• Yuxi Fu. Nondeterministic Structure of Computation. Mathematical Structures in Computer Science,
accepted for publication.

• Xiaojuan Cai, Mizuhito Ogawa. Well-Structured Pushdown Systems. In Proceedings of the 24th
International Conference on Concurrency Theory (CONCUR’13), LNCS 8052, 121-136, 2013.

• Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen. Nested Timed Automata. In Proceedings of
the 11th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’13),
LNCS 8053, 168-182, 2013.

• Mizuhito Ogawa and Xiaojuan Cai. On Reachability of Dense Timed Pushdown Automata. JAIST
technical report No. IS-RR-2013-005. 2013

Recent publications worth mentioning, outside of PACE The following papers, published in 2013,
present work that has been done before the beginning of the PACE project. We mention them here because
they correspond to PACE-relevant topics that we want to investigate further in the future.

• Maurizio Gabbrielli, Jacopo Mauro, and Maria Chiara Meo. The expressive power of CHR
with priorities. Inf. Comput., 228:62–82, 2013.

(T2)

• Ivan Lanese and Gianluigi Zavattaro. Decidability results for dynamic installation of com-
pensation handlers. In Proc. of COORDINATION, volume 7890 of Lecture Notes in Com-
puter Science, pages 136–150. Springer, 2013.

(T2)

• Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, Gianluigi Zavattaro: Component
Reconfiguration in the Presence of Conflicts. ICALP (2) 2013: 187-198

(T2)

We now discuss the announced deliverables for Task 2 (Year 1) in the submission document for PACE:

• D2.1.1 Extend Fu’s expressiveness framework to probabilistic processes and higher-order processes.
There should be several coincidence results relating the model independent equivalence to the concrete
equivalence.

We have not addressed probabilistic and higher-order computation within Fu’s framework yet. The
two papers by Fu (TPFM’13 and MSCS) present however advances in the study of this framework.

• D2.1.2 An implementation of Erlang into a more basic first-order process model.

This deliverable has not been treated yet. We hope to work on this translation in the next years.

• D2.1.3 A model-independent equivalence based on subbisimilarity for reasoning about inter-language
equivalences

This deliverable has not been treated yet. We hope to work on this translation in the next years.

• D2.1.4 Proof that hiding-free fragments of the spatial-epistemic language are not Turing complete.

The work on spatial-epistemic logics has progressed during the first year of PACE. We expect the
aforementioned results to be published in the future.

As appears above, some of the first year deliverables for Task 2 have not been treated yet. Task 2 is
about expressiveness. We would like to mention that expressiveness has been treated from a new perspective
in several works by PACE members in Year 1, by focusing on branching bisimilarity. Adopting the point
of view of branching bisimilarity (BB) makes it possible to revisit existing literature on weak bisimilarity,
yielding sometimes unexpected results, due to the elegance of BB. In some cases, BB may be preferable to
weak bisimilarity to check properties of systems. The results in Fu’s paper at ICALP’13 go in this direction,
and further studies, by members of the Shanghai group, are underway. We expect to obtain in the next
years expressiveness results about BB, as well as decidability results (and, possibly, decision methods in
some cases): the former belong to Task 2, while the latter belong to Task 3.

We can also remark that the group in Lyon has also been working on branching bisimilarity, and on
enhancements of it (Task 1), during the first year of PACE.

Although we did not predict the importance of branching bisimilarity in PACE when submitting the
project, we feel that this is a promising research subject, and that studying it fits well within the scientific
objectives of PACE.

3 Task 3: Analysis techniques

The following papers present contributions to the topics of Task 3:

• Filippo Bonchi, Georgiana Caltais, Damien Pous, Alexandra Silva. Brzozowski’s and Up-To Algorithms
for Must Testing. Invited talk. In Proc. APLAS 2013. LNCS 8089.

(T3.1)

? Damien Pous. Kleene Algebra with Tests and Coq Tools for while Programs. In Proc. ITP 2013,
LNCS 7998.

(T3.1)

• Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, Jan Rutten, “Generalizing determinization from
automata to coalgebras” In Logical Methods in Computer Science 9(1) (2013)

(T3.1)

• L. Pino, F. Bonchi, F. Valencia. Efficient Computation of Program Equivalence for Confluent Concur-
rent Constraint Programming. In Proceedings of 15th ACM International Symposium on Symposium
on Principles and Practice of Declarative Programming - PPDP 2013. Pages 263-274.

(T3)

• Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan. Real-Reward Testing for Proba-
bilistic Processes. Theoretical Computer Science. Elsevier, 2013. To appear.

• Yuan Feng, Yuxin Deng, and Mingsheng Ying. Symbolic bisimulation for quantum processes. ACM
Transactions on Computational Logic. 2013. To appear.

Recent publications worth mentioning, outside of PACE The following paper:

F. Bonchi and D. Pous. “Checking NFA equivalence with bisimulations up to congruence.”
in Proc. POPL’13, ACM.

presents results that have been obtained before the beginning of the PACE project, but that clearly belong
to the goals of PACE (T3.1). We expect that this work will lead to several offspins in the course of the
PACE project.
We now discuss the announced deliverables for Task 3 (Year 1) in the submission document for PACE:

• D3.1.1 Finite automata algorithms based on up-to techniques

The main contribution regarding this deliverable is the algorithm by Bonchi and Pous (to be published
in CACM Research Highlights). Further generalisations of usages of bisimulation enhancements in
reasoning about automata, have also been proposed (by the same authors and colleagues).

• D3.1.2 Basic algorithms for probabilistic bisimulation for untyped lambda-calculus

Forms of probabilistic computation are studied by PACE members. We do not have algorithms for
probabilistic bisimulation, but the papers mentioned above, as well as some papers presented in Task
1, testify of the progress made in this direction. We hope to come up with algorithms for probabilistic
bisimulation for untyped λ-calculus, and for other models that we study in PACE, in the next years.

Tasks and subtasks in the PACE project

Task 1: Advanced Coinductive Techniques

Task leader: Davide Sangiorgi / Deputy task leader: Xu Xian

T1.1: Up-to techniques

T1.2: From equivalences to metrics

T1.3: Probabilistic and quantum higher-order languages

T1.4: Quantum processes

Task 2: Expressiveness

Task leader: Fu Yuxi / Deputy task leader: Catuscia Palamidessi

T2.1: Absolute theory

T2.2: Expressiveness in social networks

T2.3: Applications to privacy, confidentiality and anonymity

Task 3: Analysis techniques

Task leader: Damien Pous / Deputy task leader: Deng Yuxin

T3.1: Algorithms relying on up-to techniques

T3.2: Up-to techniques in algorithms for metrics

T3.3: Algorithms for quantum bisimulations

T3.4: Minimization algorithms for symbolic bisimulation

On Coinductive Equivalences

for Higher-Order Probabilistic Functional Programs

Ugo Dal Lago Davide Sangiorgi Michele Alberti

Abstract

We study bisimulation and context equivalence in a probabilistic λ-calculus. The con-
tributions of this paper are threefold. Firstly we show a technique for proving congruence
of probabilistic applicative bisimilarity. While the technique follows Howe’s method, some
of the technicalities are quite different, relying on non-trivial “disentangling” properties for
sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer
than context equivalence, coincidence between the two relations is attained on pure λ-terms.
The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest
extensional equivalence on pure λ-terms under a lazy regime. Finally, we derive a coinductive
characterisation of context equivalence on the whole probabilistic language, via an extension
in which terms akin to distributions may appear in redex position. Another motivation for the
extension is that its operational semantics allows us to experiment with a different congruence
technique, namely that of logical bisimilarity.

1 Introduction

Probabilistic models are more and more pervasive. Not only are they a formidable tool when
dealing with uncertainty and incomplete information, but they sometimes are a necessity rather
than an option, like in computational cryptography (where, e.g., secure public key encryption
schemes need to be probabilistic [17]). A nice way to deal computationally with probabilistic models
is to allow probabilistic choice as a primitive when designing algorithms, this way switching from
usual, deterministic computation to a new paradigm, called probabilistic computation. Examples
of application areas in which probabilistic computation has proved to be useful include natural
language processing [31], robotics [48], computer vision [8], and machine learning [36].

This new form of computation, of course, needs to be available to programmers to be accessible.
And indeed, various probabilistic programming languages have been introduced in the last years,
spanning from abstract ones [24, 40, 35] to more concrete ones [37, 18], being inspired by various
programming paradigms like imperative, functional or even object oriented. A quite common
scheme consists in endowing any deterministic language with one or more primitives for probabilistic
choice, like binary probabilistic choice or primitives for distributions.

One class of languages that copes well with probabilistic computation are functional languages.
Indeed, viewing algorithms as functions allows a smooth integration of distributions into the
playground, itself nicely reflected at the level of types through monads [20, 40]. As a matter of fact,
many existing probabilistic programming languages [37, 18] are designed around the λ-calculus or
one of its incarnations, like Scheme. All these allows to write higher-order functions (i.e., programs
can take functions as inputs and produce them as outputs).

The focus of this paper are operational techniques for understanding and reasoning about pro-
gram equality in higher-order probabilistic languages. Checking computer programs for equivalence
is a crucial, but challenging, problem. Equivalence between two programs generally means that the
programs should behave “in the same manner” under any context [32]. Specifically, two λ-terms are
context equivalent if they have the same convergence behavior (i.e., they do or do not terminate)
in any possible context. Finding effective methods for context equivalence proofs is particularly
challenging in higher-order languages.

1

ar
X

iv
:1

31
1.

17
22

v1
 [

cs
.P

L
]

 7
 N

ov
 2

01
3

Bisimulation has emerged as a very powerful operational method for proving equivalence of
programs in various kinds of languages, due to the associated coinductive proof method. To be
useful, the behavioral relation resulting from bisimulation — bisimilarity — should be a congruence,
and should also be sound with respect to context equivalence. Bisimulation has been transplanted
onto higher-order languages by Abramsky [1]. This version of bisimulation, called applicative
bisimulation has received considerable attention [19, 38, 42, 27, 39, 28]. In short, two functions M
and N are applicative bisimilar when their applications MP and NP are applicative bisimilar for
any argument P .

Often, checking a given notion of bisimulation to be a congruence in higher-order languages
is nontrivial. In the case of applicative bisimilarity, congruence proofs usually rely on Howe’s
method [22]. Other forms of bisimulation have been proposed, such as environmental bisimulation
and logical bisimulation [44, 45, 25], with the goal of relieving the burden of the proof of congruence,
and of accommodating language extensions.

In this work, we consider the pure λ-calculus extended with a probabilistic choice operator.
Context equivalence of two terms means that they have the same probability of convergence in all
contexts. The objective of the paper is to understand context equivalence and bisimulation in this
paradigmatic probabilistic higher-order language, called Λ⊕.

The paper contains three main technical contributions. The first is a proof of congruence for
probabilistic applicative bisimilarity along the lines of Howe’s method. This technique consists in
defining, for every relation on terms R, its Howe’s lifting RH . The construction, essentially by
definition, ensures that the relation obtained by lifting bisimilarity is a congruence; the latter is then
proved to be itself a bisimulation, therefore coinciding with applicative bisimilarity. Definitionally,
probabilistic applicative bisimulation is obtained by setting up a labelled Markov chain on top of
λ-terms, then adapting to it the coinductive scheme introduced by Larsen and Skou in a first-order
setting [26]. In the proof of congruence, the construction (·)H closely reflects analogous constructions
for nondeterministic extensions of the λ-calculus. The novelties are in the technical details for
proving that the resulting relation is a bisimulation: in particular our proof of the so-called
Key Lemma — an essential ingredient in Howe’s method — relies on non-trivial “disentangling”
properties for sets of real numbers, these properties themselves proved by modeling the problem
as a flow network and then apply the Max-flow Min-cut Theorem. The congruence of applicative
bisimilarity yields soundness with respect to context equivalence as an easy corollary. Completeness,
however, fails: applicative bisimilarity is proved to be finer. A subtle aspect is also the late vs.
early formulation of bisimilarity; with a choice operator the two versions are semantically different;
our construction crucially relies on the late style.

In our second main technical contribution we show that the presence of higher-order functions
and probabilistic choice in contexts gives context equivalence and applicative bisimilarity maximal
discriminating power on pure λ-terms. We do so by proving that, on pure λ-terms, both context
equivalence and applicative bisimilarity coincide with the Levy-Longo tree equality, which equates
terms with the same Levy-Longo tree (briefly LLT). The LLT equality is generally accepted as the
finest extensional equivalence on pure λ-terms under a lazy regime. The result is in sharp contrast
with what happens under a nondeterministic interpretation of choice (or in the absence of choice),
where context equivalence is coarser than LLT equality.

Our third main contribution is a coinductive characterisation of probabilistic context equivalence
on the whole language Λ⊕ (as opposed to the subset of pure λ-terms). We obtain this result
by setting a bisimulation game on an extension of Λ⊕ in which weighted formal sums — terms
akin to distributions — may appear in redex position. Thinking of distributions as sets of terms,
the construction reminds us of the reduction of nondeterministic to deterministic automata. The
technical details are however quite different, because we are in a higher-order language and therefore

— once more — we are faced with the congruence problem for bisimulation, and because formal
sums may contain an infinite number of terms. For the proof of congruence of bisimulation
in this extended language, we have experimented the technique of logical bisimulation. In this
method (and in the related method of environmental bisimulation), the clauses of applicative
bisimulation are modified so to allow the standard congruence argument for bisimulations in first-
order languages, where the bisimulation method itself is exploited to establish that the closure of

2

the bisimilarity under contexts is again a bisimulation. Logical bisimilarities have two key elements.
First, bisimilar functions may be tested with bisimilar (rather than identical) arguments (more
precisely, the arguments should be in the context closure of the bisimulation; the use of contexts
is necessary for soundness). Secondly, the transition system should be small-step, deterministic
(or at least confluent), and the bisimulation game should also be played on internal moves. In
our probabilistic setting, the ordinary logical bisimulation game has to be modified substantially.
Formal sums represent possible evolutions of running terms, hence they should appear in redex
position only (allowing them anywhere would complicate matters considerably), also making the
resulting bisimulation proof technique more cumbersome). The obligation of redex position for
certain terms is in contrast with the basic schema of logical bisimulation, in which related terms
can be used as arguments to bisimilar functions and can therefore end up in arbitrary positions.
We solve this problem by moving to coupled logical bisimulations, where a bisimulation is formed
by a pair of relations, one on Λ⊕-terms, the other on terms extended with formal sums. The
bisimulation game is played on both relations, but only the first relation is used to assemble input
arguments for functions.

Another delicate point is the meaning of internal transitions for formal sums. In logical
bisimilarity the transition system should be small-step; and formal sums should evolve into values
in a finite number of steps, even if the number of terms composing the formal sum is infinite.
We satisfy these requirements by defining the transition system for extended terms on top of
that of Λ⊕-terms. The proof of congruence of coupled logical bisimilarity also exploits an “up-to
distribution” bisimulation proof technique.

In the paper we adopt call-by-name evaluation. The results on applicative bisimilarity can be
transported onto call-by-value; in contrast, transporting the other results is less clear, and we leave
it for future work. See Section 8 for more details. An extended version of this paper with more
details is available [9].

1.1 Further Related Work

Research on (higher-order) probabilistic functional languages have, so far, mainly focused on
either new programming constructs, or denotational semantics, or applications. The underlying
operational theory, which in the ordinary λ-calculus is known to be very rich, has remained so far
largely unexplored. In this section, we give some pointers to the relevant literature on probabilistic
λ-calculi, without any hope of being exhaustive.

Various probabilistic λ-calculi have been proposed, starting from the pioneering work by Saheb-
Djahromi [41], followed by more advanced studies by Jones and Plotkin [24]. Both these works are
mainly focused on the problem of giving a denotational semantics to higher-order probabilistic
computation, rather than on studying it from an operational point view. More recently, there
has been a revamp on this line of work, with the introduction of adequate (and sometimes also
fully-abstract) denotational models for probabilistic variations of PCF [11, 16]. There is also
another thread of research in which various languages derived from the λ-calculus are given types
in monadic style, allowing this way to nicely model concrete problems like Bayesian inference and
probability models arising in robotics [40, 35, 20]; these works however, do not attack the problem
of giving an operationally based theory of program equivalence.

Nondeterministic extensions of the λ-calculus have been analysed in typed calculi [3, 47, 27] as
well as in untyped calculi [23, 7, 33, 13]. The emphasis in all these works is mainly domain-theoretic.
Apart from [33], all cited authors closely follow the testing theory [12], in its modalities may or
must, separately or together. Ong’s approach [33] inherits both testing and bisimulation elements.

Our definition of applicative bisimulation follows Larsen and Skou’s scheme [26] for fully-
probabilistic systems. Many other forms of probabilistic bisimulation have been introduced in the
literature, but their greater complexity is usually due to the presence of both nondeterministic and
probabilistic behaviors, or to continuous probability distributions. See surveys such as [5, 34, 21].

Contextual characterisations of LLT equality include [6], in a λ-calculus with multiplicities
in which deadlock is observable, and [15], in a λ-calculus with choice, parallel composition, and
both call-by-name and call-by-value applications. The characterisation in [43] in a λ-calculus with

3

M ⇓ ∅ bt
V ⇓ {V } bv

M ⇓ D {P{N/x} ⇓ EP,N}λx.P∈S(D)

MN ⇓∑λx.P∈S(D) D(λx.P) · EP,N ba
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2 ·D + 1

2 · E
bs

Figure 1: Big-step call-by-name approximation semantics for Λ⊕.

non-deterministic operators, in contrast, is not contextual, as derived from a bisimulation that
includes a clause on internal moves so to observe branching structures in behaviours. See [14] for a
survey on observational characterisations of λ-calculus trees.

2 Preliminaries

2.1 A Pure, Untyped, Probabilistic Lambda Calculus

Let X = {x, y, . . .} be a denumerable set of variables. The set Λ⊕ of term expressions, or terms is
defined as follows:

M,N,L ::= x | λx.M | MN | M ⊕N,
where x ∈ X. The only non-standard operator in Λ⊕ is probabilistic choice: M ⊕ N is a term
which is meant to behave as either M or N , each with probability 1

2 . A more general construct
M ⊕p N where p is any (computable) real number from [0, 1], is derivable, given the universality
of the λ-calculus (see, e.g., [10]). The set of free variables of a term M is indicated as FV(M)
and is defined as usual. Given a finite set of variables x ⊆ X, Λ⊕(x) denotes the set of terms
whose free variables are among the ones in x. A term M is closed if FV(M) = ∅ or, equivalently,
if M ∈ Λ⊕(∅). The (capture-avoiding) substitution of N for the free occurrences of x in M is

denoted M{N/x}. We sometimes use the identity term I
def
= λx.x, the projector K

def
= λx.λy.x,

and the purely divergent term Ω
def
= (λx.xx)(λx.xx).

Terms are now given a call-by-name semantics following [10]. A term is a value if it is a closed
λ-abstraction. We call VΛ⊕ the set of all values. Values are ranged over by metavariables like
V,W,X. Closed terms evaluates not to a single value, but to a (partial) value distribution, that is,
a function D : VΛ⊕ → R[0,1] such that

∑
V ∈VΛ⊕

D(V) ≤ 1. The set of all value distributions is Pv.

Distributions do not necessarily sum to 1, so to model the possibility of (probabilistic) divergence.
Given a value distribution D , its support S(D) is the subset of VΛ⊕ whose elements are values to
which D attributes positive probability. Value distributions ordered pointwise form both a lower
semilattice and an ωCPO: limits of ω-chains always exist. Given a value distribution D , its sum∑

D is
∑
V ∈VΛ⊕

D(V).

The call-by-name semantics of a closed term M is a value distribution [[M]] defined in one of
the ways explained in [10]. We recall this now, though only briefly for lack of space. The first step
consists in defining a formal system deriving finite lower approximations to the semantics of M .
Big-step approximation semantics, as an example, derives judgments in the form M ⇓ D , where M
is a term and D is a value distribution of finite support (see Figure 1). Small-step approximation
semantics can be defined similarly, and derives judgments in the form M ⇒ D . Noticeably, big-step
and small-step can simulate each other, i.e. if M ⇓ D , then M ⇒ E where E ≥ D , and vice
versa [10]. In the second step, [[M]], called the semantics of M , is set as the least upper bound of
distributions obtained in either of the two ways:

[[M]]
def
= sup

M⇓D
D = sup

M⇒D
D .

Notice that the above is well-defined because for every M , the set of all distributions D such that
M ⇓ D is directed, and thus its least upper bound is a value distribution because of ω-completeness.

4

expone f n = (f n) (+) (expone f n+1)

exptwo f = (\x -> f x) (+) (exptwo (\x -> f (x+1)))

expthree k f n = foldp k n f (expthree (expone id k) f)

foldp 0 n f g = g n

foldp m n f g = (f n) (+) (foldp (m-1) (n+1) f g)

Figure 2: Three Higher-Order Functions

Example 2.1 Consider the term M
def
= I⊕ (K ⊕ Ω). We have M ⇓ D , where D(I) = 1

2 and D(V)
is 0 elsewhere, as well as M ⇓ ∅, where ∅ is the empty distribution. The distribution [[M]] assigns
1
2 to I and 1

4 to K.

The semantics of terms satisfies some useful equations, such as:

Lemma 2.2 [[(λx.M)N]] = [[M{N/x}]].

Lemma 2.3 [[M ⊕N]] = 1
2 [[M]] + 1

2 [[N]].

Proof. See [10] for detailed proofs. �

We are interested in context equivalence in this probabilistic setting. Typically, in a qualitative
scenario as the (non)deterministic one, terms are considered context equivalent if they both converge
or diverge. Here, we need to take into account quantitative information.

Definition 2.4 (Context Preorder and Equivalence) The expression M⇓p stands for
∑

[[M]] =
p, i.e., the term M converges with probability p. The context preorder ≤⊕ stipulates M≤⊕N if
C[M]⇓p implies C[N]⇓q with p ≤ q, for every closing context C. The equivalence induced by ≤⊕
is probabilistic context equivalence, denoted as '⊕.

Remark 2.5 (Types, Open Terms) The results in this paper are stated for an untyped language.
Adapting them to a simply-typed language is straightforward; we use integers, booleans and recursion
in examples. Moreover, while the results are often stated for closed terms only, they can be
generalized to open terms in the expected manner. In the paper, context equivalences and preorders
are defined on open terms; (bi)similarities are defined on closed terms and it is then intended that
they are extended to open terms by requiring the usual closure under substitutions.

Example 2.6 We give some basic examples of higher-order probabilistic programs, which we will
analyse using the coinductive techniques we introduce later in this paper. Consider the functions
expone, exptwo, and expthree from Figure 2. They are written in a Haskell-like language extended
with probabilistic choice, but can also be seen as terms in a (typed) probabilistic λ-calculus with
integers and recursion akin to Λ⊕. Term expone takes a function f and a natural number n in
input, then it proceeds by tossing a fair coin (captured here by the binary infix operator (+)) and,
depending on the outcome of the toss, either calls f on n, or recursively calls itself on f and n+1.
When fed with, e.g., the identity and the natural number 1, the program expone evaluates to the
geometric distribution assigning probability 1

2n to any positive natural number n. A similar effect
can be obtained by exptwo, which only takes f in input, then “modifying” it along the evaluation.
The function expthree is more complicated, at least apparently. To understand its behavior, one
should first look at the auxiliary function foldp. If m and n are two natural numbers and f and g

are two functions, foldp m n f g call-by-name reduces to the following expression:
(f n) (+) ((f n+1) (+) ... ((f n+m-1) (+) (g n+m))).

The term expthree works by forwarding its three arguments to foldp. The fourth argument is
a recursive call to expthree where, however, k is replaced by any number greater or equal to it,
chosen according to a geometric distribution. The functions above can all be expressed in Λ⊕,
using fixed-point combinators. As we will see soon, expone, exptwo, and expthree k are context
equivalent whenever k is a natural number.

5

2.2 Probabilistic Bisimulation

In this section we recall the definition and a few basic notions of bisimulation for labelled Markov
chains, following Larsen and Skou [26]. In Section 3 we will then adapt this form of bisimilarity to
the probabilistic λ-calculus Λ⊕ by combining it with Abramsky’s applicative bisimilarity.

Definition 2.7 A labelled Markov chain is a triple (S,L,P) such that:
• S is a countable set of states;
• L is set of labels;
• P is a transition probability matrix, i.e. a function

P : S × L × S → R[0,1]

such that the following normalization condition holds:

∀` ∈ L.∀s ∈ S.P(s, `,S) ≤ 1

where, as usual P(s, `,X) stands for
∑
t∈X P(s, `, t) whenever X ⊆ S.

If R is an equivalence relation on S, S/R denotes the quotient of S modulo R, i.e., the set of all
equivalence classes of S modulo R. Given any binary relation R, its reflexive and transitive closure
is denoted as R∗.

Definition 2.8 Given a labelled Markov chain (S,L,P), a probabilistic bisimulation is an equiv-
alence relation R on S such that (s, t) ∈ R implies that for every ` ∈ L and for every E ∈ S/R,
P(s, `, E) = P(t, `, E).

Note that a probabilistic bisimulation has to be, by definition, an equivalence relation. This means
that, in principle, we are not allowed to define probabilistic bisimilarity simply as the union of all
probabilistic bisimulations. As a matter of fact, given R, T two equivalence relations, R∪ T is not
necessarily an equivalence relation. The following is a standard way to overcome the problem:

Lemma 2.9 If {Ri}i∈I , is a collection of probabilistic bisimulations, then also their reflexive and
transitive closure (

⋃
i∈I Ri)∗ is a probabilistic bisimulation.

Proof. Let us fix T def
= (

⋃
i∈I Ri)∗. The fact that T is an equivalence relation can be proved as

follows:
• Reflexivity is easy: T is reflexive by definition.
• Symmetry is a consequence of symmetry of each of the relations in {Ri}i∈I : if s T t, then

there are n ≥ 0 states v0, . . . , vn such that v0 = s, vn = t and for every 1 ≤ i ≤ n there is j
such that vi−1 Rj vi. By the symmetry of each of the Rj , we easily get that vi Rj vi−1. As a
consequence, t T s.

• Transitivity is itself very easy: T is transitive by definition.
Now, please notice that for any i ∈ I, Ri ⊆

⋃
j∈I Rj ⊆ T . This means that any equivalence class

with respect to T is the union of equivalence classes with respect to Ri. Suppose that s T t. Then
there are n ≥ 0 states v0, . . . , vn such that v0 = s, vn = t and for every 1 ≤ i ≤ n there is j such
that vi−1 Rj vi. Now, if ` ∈ L and E ∈ S/T , we obtain

P(s, `, E) = P(v0, `, E) = . . . = P(vn, `, E) = P(t, `, E).

This concludes the proof. �

Lemma 2.9 allows us to define the largest probabilistic bisimulation, called probabilistic bisimilarity.

It is ∼def
=
⋃{R | R is a probabilistic bisimulation}. Indeed, by Lemma 2.9, (∼)∗ is a probabilistic

bisimulation too; we now claim that ∼ = (∼)∗. The inclusion ∼ ⊆ (∼)∗ is obvious. The other way
around, ∼⊇ (∼)∗, follows by (∼)∗ being a probabilistic bisimulation and hence included in the
union of them all, that is ∼.

6

In the notion of a probabilistic simulation, preorders play the role of equivalence relations:
given a labelled Markov chain (S,L,P), a probabilistic simulation is a preorder relation R on S
such that (s, t) ∈ R implies that for every ` ∈ L and for every X ⊆ S, P(s, `,X) ≤ P(t, `,R(X)),
where as usual R(X) stands for the R-closure of X, namely the set {y ∈ S | ∃x ∈ X. x R y}.
Lemma 2.9 can be adapted to probabilistic simulations:

Proposition 2.10 If {Ri}i∈I , is a collection of probabilistic simulations, then also their reflexive
and transitive closure (

⋃
i∈I Ri)∗ is a probabilistic simulation.

Proof. The fact that R def
= (

⋃
i∈I Ri)∗ is a preorder follows by construction. Then, for being a

probabilistic simulation R must satisfy the following property: (s, t) ∈ R implies that for every
` ∈ L and for every X ⊆ S, P(s, `,X) ≤ P(t, `,R(X)). Let (s, t) ∈ R. There are n ≥ 0 states
v1, . . . , vn and for every 2 ≤ i ≤ n there is ji such that

s = v1 Rj2 v2 . . . vn−1Rjnvn = t.

As a consequence, for every ` ∈ L and for every X ⊆ S, it holds that

P(v1, `,X) ≤ P(v2, `,Rj2(X)) ≤ P(v3, `,Rj3(Rj2(X))) ≤ · · · ≤ P(vn, `,Rjn(. . . (Rj2(Rj1(X)))))

Since, by definition,
Rjn(. . . (Rj2(Rj1(X)))) ⊆ R(X),

it follows that P(s, `,X) ≤ P(t, `,R(X)). This concludes the proof. �

As a consequence, we define similarity simply as . def
=
⋃{R | R is a probabilistic simulation}.

Any symmetric probabilistic simulation is a probabilistic bisimulation.

Lemma 2.11 If R is a symmetric probabilistic simulation, then R is a probabilistic bisimulation.

Proof. If R is a symmetric probabilistic simulation, by definition, it is also a preorder: that is,
it is a reflexive and transitive relation. Therefore, R is an equivalence relation. But for being a
probabilistic bisimulation R must also satisfy the property that sRt implies, for every ` ∈ L and
for every E ∈ S/R, P(s, `, E) = P(t, `, E). From the fact that R is a simulation, it follows that
if sRt, for every ` ∈ L and for every E ∈ S/R, P(s, `, E) ≤ P(t, `,R(E)). Since E ∈ S/R is an
R-equivalence class, it holds R(E) = E. Then, from the latter follows P(s, `, E) ≤ P(t, `, E). We get
the other way around by symmetric property of R, which implies that, for every label ` and for
every E ∈ S/R, P(t, `, E) ≤ P(s, `, E). Hence, P(s, `, E) = P(t, `, E) which completes the proof. �

Moreover, every probabilistic bisimulation, and its inverse, is a probabilistic simulation.

Lemma 2.12 If R is a probabilistic bisimulation, then R and Rop are probabilistic simulation.

Proof. Let us prove R probabilistic simulation first. Consider the set {Xi}i∈I of equivalence
subclasses module R contained in X. Formally, X =

⊎
i∈I Xi such that, for all i ∈ I, Xi ⊆ Ei with

Ei equivalence class modulo R. Please observe that, as a consequence, R(X) =
⊎
i∈I Ei. Thus, the

result easily follows, for every ` ∈ L and every X ⊆ S,

P(s, `,X) =
∑

i∈I
P(s, `,Xi)

≤
∑

i∈I
P(s, `, Ei)

=
∑

i∈I
P(t, `, Ei) = P(t, `,R(X)).

Finally, Rop is also a probabilistic simulation as a consequence of symmetric property of R and
the fact, just proved, that R is a probabilistic simulation. �

7

Contrary to the nondeterministic case, however, simulation equivalence coincides with bisimulation:

Proposition 2.13 ∼ coincides with . ∩ .op.

Proof. The fact that ∼ is a subset of . ∩ .op is a straightforward consequence of symmetry
property of ∼ and the fact that, by Lemma 2.12, every probabilistic bisimulation is also a
probabilistic simulation. Let us now prove that . ∩ .op is a subset of ∼, i.e., the former of being
a probabilistic bisimulation. Of course, . ∩ .op is an equivalence relation because . is a preorder.
Now, consider any equivalence class E modulo . ∩ .op . Define the following two sets of states

X
def
=. (E) and Y

def
= X−E. Observe that Y and E are disjoint set of states whose union is precisely

X. Moreover, notice that both X and Y are closed with respect to .:
• On the one hand, if s ∈. (X), then s ∈. (. (E)) =. (E) = X;
• On the other hand, if s ∈. (Y), then there is t ∈ X which is not in E such that t . s. But

then s is itself in X (see the previous point), but cannot be E, because otherwise we would have
s . t, meaning that s and t are in the same equivalence class modulo . ∩ .op , and thus t ∈ E,
a contradiction.

As a consequence, given any (s, t) ∈. ∩ .op and any ` ∈ L,

P(s, `,X) ≤ P(t, `,. (X)) = P(t, `,X),

P(t, `,X) ≤ P(s, `,. (X)) = P(s, `,X).

It follows P(s, `,X) = P(t, `,X) and, similarly, P(s, `, Y) = P(t, `, Y). But then,

P(s, `, E) = P(s, `,X)− P(s, `, Y)

= P(t, `,X)− P(t, `, Y) = P(t, `, E)

which is the thesis. �

For technical reasons that will become apparent soon, it is convenient to consider Markov chains in
which the state space is partitioned into disjoint sets, in such a way that comparing states coming
from different components is not possible. Remember that the disjoint union

⊎
i∈I Xi of a family

of sets {Xi}i∈I is defined as {(a, i) | i ∈ I ∧ a ∈ Xi}. If the set of states S of a labelled Markov
chain is a disjoint union

⊎
i∈I Xi, one wants that (bi)simulation relations only compare elements

coming from the same Xi, i.e. (a, i)R(b, j) implies i = j. In this case, we say that the underlying
labelled Markov chain is multisorted.

3 Probabilistic Applicative Bisimulation and Howe’s tech-
nique

In this section, notions of similarity and bisimilarity for Λ⊕ are introduced, in the spirit of
Abramsky’s work on applicative bisimulation [1]. Definitionally, this consists in seeing Λ⊕’s
operational semantics as a labelled Markov chain, then giving the Larsen and Skou’s notion of
(bi)simulation for it. States will be terms, while labels will be of two kinds: one can either evaluate
a term, obtaining (a distribution of) values, or apply a term to a value.

The resulting bisimulation (probabilistic applicative bisimulation) will be shown to be a
congruence, thus included in probabilistic context equivalence. This will be done by a non-trivial
generalization of Howe’s technique [22], which is a well-known methodology to get congruence
results in presence of higher-order functions, but which has not been applied to probabilistic calculi
so far.

Formalizing probabilistic applicative bisimulation requires some care. As usual, two values
λx.M and λx.N are defined to be bisimilar if for every L, M{L/x} and N{L/x} are themselves
bisimilar. But how if we rather want to compare two arbitrary closed terms M and N? The
simplest solution consists in following Larsen and Skou and stipulate that every equivalence class

8

of VΛ⊕ modulo bisimulation is attributed the same measure by both [[M]] and [[N]]. Values are
thus treated in two different ways (they are both terms and values), and this is the reason why
each of them corresponds to two states in the underlying Markov chain.

Definition 3.1 Λ⊕ can be seen as a multisorted labelled Markov chain (Λ⊕(∅)] VΛ⊕,Λ⊕(∅)]
{τ},P⊕) that we denote with Λ⊕. Labels are either closed terms, which model parameter passing,
or τ , that models evaluation. Please observe that the states of the labelled Markov chain we have
just defined are elements of the disjoint union Λ⊕(∅)] VΛ⊕. Two distinct states correspond to the
same value V , and to avoid ambiguities, we call the second one (i.e. the one coming from VΛ⊕) a
distinguished value. When we want to insist on the fact that a value λx.M is distinguished, we
indicate it with νx.M . We define the transition probability matrix P⊕ as follows:
• For every term M and for every distinguished value νx.N ,

P⊕(M, τ, νx.N)
def
= [[M]](νx.N);

• For every term M and for every distinguished value νx.N ,

P⊕(νx.N,M,N{M/x}) def
= 1;

• In all other cases, P⊕ returns 0.

Terms seen as states only interact with the environment by performing τ , while distinguished
values only take other closed terms as parameters.

Simulation and bisimulation relations can be defined for Λ⊕ as for any labelled Markov chain.
Even if, strictly speaking, these are binary relations on Λ⊕(∅)] VΛ⊕, we often see them just as
their restrictions to Λ⊕(∅). Formally, a probabilistic applicative bisimulation (a PAB) is simply
a probabilistic bisimulation on Λ⊕. This way one can define probabilistic applicative bisimilarity,
which is denoted ∼. Similarly for probabilistic applicative simulation (PAS) and probabilistic
applicative similarity, denoted ..

Remark 3.2 (Early vs. Late) Technically, the distinction between terms and values in Defini-
tion 3.1 means that our bisimulation is in late style. In bisimulations for value-passing concurrent
languages, “late” indicates the explicit manipulation of functions in the clause for input actions:
functions are chosen first, and only later, the input value received is taken into account [46].
Late-style is used in contraposition to early style, where the order of quantifiers is exchanged, so
that the choice of functions may depend on the specific input value received. In our setting, adopting

an early style would mean having transitions such as λx.M
N−→ M{N/x}, and then setting up a

probabilistic bisimulation on top of the resulting transition system. We leave for future work a
study of the comparison between the two styles. In this paper, we stick to the late style because
easier to deal with, especially under Howe’s technique. Previous works on applicative bisimulation
for nondeterministic functions also focus on the late approach [33, 38].

Remark 3.3 Defining applicative bisimulation in terms of multisorted labelled Markov chains
has the advantage of recasting the definition in a familiar framework; most importantly, this
formulation will be useful when dealing with Howe’s method. To spell out the explicit operational
details of the definition, a probabilistic applicative bisimulation can be seen as an equivalence
relation R ⊆ Λ⊕(∅)× Λ⊕(∅) such that whenever M R N :
1. [[M]](E ∩ VΛ⊕) = [[N]](E ∩ VΛ⊕), for any equivalence class E of R (that is, the probability of

reaching a value in E is the same for the two terms);
2. if M and N are values, say λx.P and λx.Q, then P{L/x} R Q{L/x}, for all L ∈ Λ⊕(∅).
The special treatment of values, in Clause 2., motivates the use of multisorted labelled Markov
chains in Definition 3.1.

As usual, one way to show that any two terms are bisimilar is to prove that one relation
containing the pair in question is a PAB. Terms with the same semantics are indistinguishable:

9

Lemma 3.4 The binary relation R = {(M,N) ∈ Λ⊕(∅) × Λ⊕(∅) s.t. [[M]] = [[N]]} ⊎ {(V, V) ∈
VΛ⊕ × VΛ⊕} is a PAB.

Proof. The fact R is an equivalence easily follows from reflexivity, symmetry and transitivity
of set-theoretic equality. R must satisfy the following property for closed terms: if MRN , then
for every E ∈ VΛ⊕/R, P⊕(M, τ, E) = P⊕(N, τ, E). Notice that if [[M]] = [[N]], then clearly
P⊕(M, τ, V) = P⊕(N, τ, V), for every V ∈ VΛ⊕. With the same hypothesis,

P⊕(M, τ, E) =
∑

V ∈E
P⊕(M, τ, V)

=
∑

V ∈E
P⊕(N, τ, V) = P⊕(N, τ, E).

Moreover, R must satisfy the following property for cloned values: if νx.MRνx.N , then for every
close term L and for every E ∈ Λ⊕(∅)/R, P⊕(νx.M,L, E) = P⊕(νx.N,L, E). Now, the hypothesis
[[νx.M]] = [[νx.N]] implies M = N . Then clearly P⊕(νx.M,L, P) = P⊕(νx.N,L, P) for every
P ∈ Λ⊕(∅). With the same hypothesis,

P⊕(νx.M,L, E) =
∑

P∈E
P⊕(νx.M,L, P)

=
∑

P∈E
P⊕(νx.N,L, P) = P⊕(νx.N,L, E).

This concludes the proof. �

Please notice that the previous result yield a nice consequence: for every M, N ∈ Λ⊕(∅),
(λx.M)N ∼M{N/x}. Indeed, Lemma 2.3 tells us that the latter terms have the same semantics.

Conversely, knowing that two terms M and N are (bi)similar means knowing quite a lot about
their convergence probability:

Lemma 3.5 (Adequacy of Bisimulation) If M ∼ N , then
∑

[[M]] =
∑

[[N]]. Moreover, if
M . N , then

∑
[[M]] ≤∑[[N]].

Proof.
∑

[[M]] =
∑

E∈VΛ⊕/∼
P⊕(M, τ, E)

=
∑

E∈VΛ⊕/∼
P⊕(N, τ, E) =

∑
[[N]].

And,

∑
[[M]] = P⊕(M, τ,VΛ⊕)

≤ P⊕(N, τ,. (VΛ⊕))

= P⊕(N, τ,VΛ⊕) =
∑

[[N]].

This concludes the proof. �

Example 3.6 Bisimilar terms do not necessarily have the same semantics. After all, this is one
reason for using bisimulation, and its proof method, as basis to prove fine-grained equalities among
functions. Let us consider the following terms:

M
def
= ((λx.(x⊕ x))⊕ (λx.x))⊕ Ω;

N
def
= Ω⊕ (λx.Ix);

10

Their semantics differ, as for every value V , we have:

[[M]](V) =

{
1
4 if V is λx.(x⊕ x) or λx.x;
0 otherwise;

[[N]](V) =

{
1
2 if V is λx.Ix;
0 otherwise.

Nonetheless, we can prove M ∼ N . Indeed, νx.(x ⊕ x) ∼ νx.x ∼ νx.Ix because, for every
L ∈ Λ⊕(∅), the three terms L, L⊕L and IL all have the same semantics, i.e., [[L]]. Now, consider
any equivalence class E of distinguished values modulo ∼. If E includes the three distinguished
values above, then

P⊕(M, τ, E) =
∑

V ∈E
[[M]](V) =

1

2
=
∑

V ∈E
[[N]](V) = P⊕(N, τ, E).

Otherwise, P⊕(M, τ, E) = 0 = P⊕(N, τ, E).

Let us prove the following technical result that, moreover, stipulate that bisimilar distinguished
values are bisimilar values.

Lemma 3.7 λx.M ∼ λx.N iff νx.M ∼ νx.N iff M{L/x} ∼ N{L/x}, for all L ∈ Λ⊕(∅).

Proof. The first double implication is obvious. For that matter, distinguished values are value
terms. Let us now detail the second double implication. (⇒) The fact that ∼ is a PAB implies, by
its definition, that for every L ∈ Λ⊕(∅) and every E ∈ Λ⊕(∅)/∼, P⊕(νx.M,L, E) = P⊕(νx.N,L, E).
Suppose then, by contradiction, that M{L/x} 6∼ N{L/x}, for some L ∈ Λ⊕(∅). The latter means
that, there exists F ∈ Λ⊕(∅)/∼ such that M{L/x} ∈ F and N{L/x} 6∈ F. According to its
definition, for all P ∈ Λ⊕(∅), P⊕(νx.M,L, P) = 1 iff P ≡ M{L/x}, and P⊕(νx.M,L, P) = 0
otherwise. Then, since M{L/x} ∈ F, we derive P⊕(νx.M,L, F) =

∑
P∈F P⊕(λx.M,L, P) ≥

P⊕(νx.M,L,M{L/x}) = 1, which implies
∑
P∈F P⊕(νx.M,L, P) = P⊕(νx.M,L, F) = 1. Although

νx.N is a distinguished value and the starting reasoning we have just made above still holds,
P⊕(νx.N,L, F) =

∑
P∈F P⊕(νx.N,L, P) = 0. We get the latter because there is no P ∈ F of the

form N{L/x} due to the hypothesis that N{L/x} 6∈ F.
From the hypothesis on the equivalence class F, i.e. P⊕(νx.M,L, F) = P⊕(νx.N,L, F), we

derive the absurd:

1 = P⊕(νx.M,L, F) = P⊕(νx.N,L, F) = 0.

(⇐) We need to prove that, for every L ∈ Λ⊕(∅) and every E ∈ Λ⊕(∅)/∼, P⊕(νx.M,L, E) =
P⊕(νx.N,L, E) supposing that M{L/x} ∼ N{L/x} holds. First of all, let us rewrite P⊕(νx.M,L, E)
and P⊕(νx.N,L, E) as

∑
P∈E P⊕(νx.M,L, P) and

∑
P∈E P⊕(νx.N,L, P) respectively. Then, from

the hypothesis and the same reasoning we have made for (⇒), for every E ∈ Λ⊕(∅)/∼:

∑

P∈E
P⊕(νx.M,L, P) =

{
1 if M{L/x} ∈ E;
0 otherwise

=

{
1 if N{L/x} ∈ E;
0 otherwise

=
∑

P∈E
P⊕(νx.N,L, P)

which proves the thesis. �

The same result holds for ..

3.1 Probabilistic Applicative Bisimulation is a Congruence

In this section, we prove that probabilistic applicative bisimulation is indeed a congruence, and
that its non-symmetric sibling is a precongruence. The overall structure of the proof is similar
to the one by Howe [22]. The main idea consists in defining a way to turn an arbitrary relation
R on (possibly open) terms to another one, RH , in such a way that, if R satisfies a few simple

11

conditions, then RH is a (pre)congruence including R. The key step, then, is to prove that RH is
indeed a (bi)simulation. In view of Proposition 2.13, considering similarity suffices here.

It is here convenient to work with generalizations of relations called Λ⊕-relations, i.e. sets
of triples in the form (x,M,N), where M,N ∈ Λ⊕(x). Thus if a relation has the pair (M,N)
with M,N ∈ Λ⊕(x), then the corresponding Λ⊕-relation will include (x,M,N). (Recall that
applicative (bi)similarity is extended to open terms by considering all closing substitutions.) Given
any Λ⊕-relation R, we write x `M R N if (x,M,N) ∈ R. A Λ⊕-relation R is said to be compatible
iff the four conditions below hold:
(Com1) ∀x ∈ PFIN(X), x ∈ x: x ` x R x,
(Com2) ∀x ∈ PFIN(X),∀x ∈ X− x,∀M,N ∈ Λ⊕(x ∪ {x}): x ∪ {x} `M R N ⇒ x ` λx.M R λx.N ,
(Com3) ∀x ∈ PFIN(X),∀M,N,L, P ∈ Λ⊕(x): x `M R N ∧ x ` L R P ⇒ x `ML R NP ,
(Com4) ∀x ∈ PFIN(X),∀M,N,L, P ∈ Λ⊕(x): x `M R N ∧ x ` L R P ⇒ x `M ⊕ L R N ⊕ P .
We will often use the following technical results to establish (Com3) and (Com4) under particular
hypothesis.

Lemma 3.8 Let us consider the properties
(Com3L) ∀x ∈ PFIN(X),∀M,N,L ∈ Λ⊕(x): x `M R N ⇒ x `ML R NL,
(Com3R) ∀x ∈ PFIN(X),∀M,N,L ∈ Λ⊕(x): x `M R N ⇒ x ` LM R LN .
If R is transitive, then (Com3L) and (Com3R) together imply (Com3).

Proof. Proving (Com3) means to show that the hypothesis x ` M R N and x ` L R P imply
x `ML R NP . Using (Com3L) on the first one, with L as steady term, it follows x `ML R NL.
Similarly, using (Com3R) on the second one, with N as steady term, it follows x ` NL R NP .
Then, we conclude by transitivity property of R. �

Lemma 3.9 Let us consider the properties
(Com4L) ∀x ∈ PFIN(X),∀M,N,L ∈ Λ⊕(x): x `M R N ⇒ x `M ⊕ L R N ⊕ L,
(Com4R) ∀x ∈ PFIN(X),∀M,N,L ∈ Λ⊕(x): x `M R N ⇒ x ` L⊕M R L⊕N .
If R is transitive, then (Com4L) and (Com4R) together imply (Com4).

Proof. Proving (Com4) means to show that the hypothesis x ` M R N and x ` L R P
imply x ` M ⊕ L R N ⊕ P . Using (Com4L) on the first one, with L as steady term, it follows
x ` M ⊕ L R N ⊕ L. Similarly, using (Com4R) on the second one, with N as steady term, it
follows x ` N ⊕ L R N ⊕ P . Then, we conclude by transitivity property of R. �

The notions of an equivalence relation and of a preorder can be straightforwardly generalized
to Λ⊕-relations, and any compatible Λ⊕-relation that is an equivalence relation (respectively, a
preorder) is said to be a congruence (respectively, a precongruence).

If bisimilarity is a congruence, then C[M] is bisimilar to C[N] whenever M ∼ N and C is a
context. In other words, terms can be replaced by equivalent ones in any context. This is a crucial
sanity-check any notion of equivalence is expected to pass.

It is well-known that proving bisimulation to be a congruence may be nontrivial when the under-
lying language contains higher-order functions. This is also the case here. Proving (Com1), (Com2)
and (Com4) just by inspecting the operational semantics of the involved terms is indeed possible,
but the method fails for (Com3), when the involved contexts contain applications. In particular,
proving (Com3) requires probabilistic applicative bisimilarity of being stable with respect to substi-
tution of bisimilar terms, hence not necessarily the same. In general, a Λ⊕-relation R is called
(term) substitutive if for all x ∈ PFIN(X), x ∈ X− x, M,N ∈ Λ⊕(x ∪ {x}) and L,P ∈ Λ⊕(x)

x ∪ {x} `M R N ∧ x ` L R P ⇒ x `M{L/x} R N{P/x}. (1)

Note that if R is also reflexive, then this implies

x ∪ {x} `M R N ∧ L ∈ Λ⊕(x)⇒ x `M{L/x} R N{L/x}. (2)

We say that R is closed under term-substitution if it satisfies (2). Because of the way the open
extension of ∼ and . are defined, they are closed under term-substitution.

12

x ` x RM

x ` x RH M
(How1)

x ∪ {x} `M RH L x ` λx.L R N x /∈ x
x ` λx.M RH N

(How2)

x `M RH P x ` N RH Q x ` PQ R L

x `MN RH L
(How3)

x `M RH P x ` N RH Q x ` P ⊕Q R L

x `M ⊕N RH L
(How4)

Figure 3: Howe’s Lifting for Λ⊕.

Unfortunately, directly prove . to enjoy such substitutivity property is hard. We will thus
proceed indirectly by defining, starting from ., a new relation .H , called the Howe’s lifting of .,
that has such property by construction and that can be proved equal to ..

Actually, the Howe’s lifting of any Λ⊕-relation R is the relation RH defined by the rules in
Figure 3. The reader familiar with Howe’s method should have a sense of déjà vu here: indeed, this
is precisely the same definition one finds in the realm of nondeterministic λ-calculi. The language
of terms, after all, is the same. This facilitates the first part of the proof. Indeed, one already
knows that if R is a preorder, then RH is compatible and includes R, since all these properties are
already known (see, e.g. [38]) and only depend on the shape of terms and not on their operational
semantics.

Lemma 3.10 If R is reflexive, then RH is compatible.

Proof. We need to prove that (Com1), (Com2), (Com3), and (Com4) hold for RH :
• Proving (Com1) means to show:

∀x ∈ PFIN(X), x ∈ x⇒ x ` x RH x.

Since R is reflexive, ∀x ∈ PFIN(X), x ∈ x ⇒ x ` x R x. Thus, by (How1), we conclude
x ` x RH x. Formally,

x ` x R x

x ` x RH x
(How1)

• Proving (Com2) means to show: ∀x ∈ PFIN(X), ∀x ∈ X− x, ∀M,N ∈ Λ⊕(x ∪ {x}),

x ∪ {x} `M RH N ⇒ x ` λx.M RH λx.N.

Since R is reflexive, we get x ` λx.N R λx.N . Moreover, we have x ∪ {x} ` M RH N by
hypothesis. Thus, by (How2), we conclude x ` λx.M RH λx.N holds. Formally,

x ∪ {x} `M RH N x ` λx.N R λx.N x /∈ x
x ` λx.M RH λx.N

(How2)

• Proving (Com3) means to show: ∀x ∈ PFIN(X), ∀M,N,L, P ∈ Λ⊕(x),

x `M RH N ∧ x ` L RH P ⇒ x `ML RH NP.

Since R is reflexive, we get x ` NP R NP . Moreover, we have x `M RH N and x ` L RH P
by hypothesis. Thus, by (How3), we conclude x `ML RH NP holds. Formally,

x `M RH N x ` L RH P x ` NP R NP

x `ML RH NP
(How3)

13

• Proving (Com4) means to show: ∀x ∈ PFIN(X), ∀M,N,L, P ∈ Λ⊕(x),

x `M RH N ∧ x ` L RH P ⇒ x `M ⊕ L RH N ⊕ P.

Since R is reflexive, we get x ` N ⊕ P R N ⊕ P . Moreover, we have x ` M RH N and
x ` L RH P by hypothesis. Thus, by (How4), we conclude x ` M ⊕ L RH N ⊕ P holds.
Formally,

x `M RH N x ` L RH P x ` N ⊕ P R N ⊕ P
x `M ⊕ L RH N ⊕ P

(How4)

This concludes the proof. �

Lemma 3.11 If R is transitive, then x `M RH N and x ` N R L imply x `M RH L.

Proof. We prove the statement by inspection on the last rule used in the derivation of x `M RH N ,
thus on the structure of M .
• If M is a variable, say x ∈ x, then x ` x RH N holds by hypothesis. The last rule used has

to be (How1). Thus, we get x ` x R N as additional hypothesis. By transitivity of R, from
x ` x R N and x ` N R L we deduce x ` x R L. We conclude by (How1) on the latter,
obtaining x ` x RH L, i.e. x `M RH L. Formally,

x ` x R N x ` N R L
x ` x R L

x ` x RH L
(How1)

• If M is a λ-abstraction, say λx.Q, then x ` λx.Q RH N holds by hypothesis. The last rule
used has to be (How2). Thus, we get x ∪ {x} ` Q RH P and x ` λx.P R N as additional
hypothesis. By transitivity of R, from x ` λx.P R N and x ` N R L we deduce x ` λx.P R L.
We conclude by (How2) on x ∪ {x} ` Q RH P and the latter, obtaining x ` λx.Q RH L, i.e.
x `M RH L. Formally,

x ∪ {x} ` Q RH P
x ` λx.P R N x ` N R L

x ` λx.P R L

x ` λx.Q RH L
(How2)

• If M is an application, say RS, then x ` RS RH N holds by hypothesis. The last rule used
has to be (How3). Thus, we get x ` R RH P , x ` S RH Q and x ` PQ R N as additional
hypothesis. By transitivity of R, from x ` PQ R N and x ` N R L we deduce x ` PQ R L.
We conclude by (How3) on x ` R RH P , x ` S RH Q and the latter, obtaining x ` RS RH L,
i.e. x `M RH L. Formally,

x ` R RH P x ` S RH Q

x ` PQ R N x ` N R L

x ` PQ R L

x ` RS RH L
(How3)

• If M is a probabilistic sum, say R⊕ S, then x ` R⊕ S RH N holds by hypothesis. The last
rule used has to be (How4). Thus, we get x ` R RH P , x ` S RH Q and x ` P ⊕Q R N as
additional hypothesis. By transitivity of R, from x ` P ⊕Q R N and x ` N R L we deduce
x ` P ⊕Q R L. We conclude by (How4) on x ` R RH P , x ` S RH Q and the latter, obtaining
x ` R⊕ S RH L, i.e. x `M RH L. Formally,

x ` R RH P x ` S RH Q

x ` P ⊕Q R N x ` N R L

x ` P ⊕Q R L

x ` R⊕ S RH L
(How4)

This concludes the proof. �

14

Lemma 3.12 If R is reflexive, then x `M R N implies x `M RH N .

Proof. We will prove it by inspection on the structure of M .
• If M is a variable, say x ∈ x, then x ` x R N holds by hypothesis. We conclude by (How1) on

the latter, obtaining x ` x RH N , i.e. x `M RH N . Formally,

x ` x R N

x ` x RH N
(How1)

• If M is a λ-abstraction, say λx.Q, then x ` λx.Q R N holds by hypothesis. Moreover, since
R reflexive implies RH compatible, RH is reflexive too. Then, from x ∪ {x} ` Q RH Q and
x ` λx.Q R N we conclude, by (How2), x ` λx.Q RH N , i.e. x `M RH N . Formally,

x ∪ {x} ` Q RH Q x ` λx.Q R N x /∈ x
x ` λx.Q RH N

(How2)

• If M is an application, say LP , then x ` LP R N holds by hypothesis. By reflexivity of R,
hence that of RH too, we get x ` L RH L and x ` P RH P . Then, from the latter and
x ` LP R N we conclude, by (How3), x ` LP RH N , i.e. x `M RH N . Formally,

x ` L RH L x ` P RH P x ` LP R N

x ` LP RH N
(How3)

• If M is a probabilistic sum, say L⊕P , then x ` L⊕P R N holds by hypothesis. By reflexivity
of R, hence that of RH too, we get x ` L RH L and x ` P RH P . Then, from the latter and
x ` L⊕ P R N we conclude, by (How4), x ` L⊕ P RH N , i.e. x `M RH N . Formally,

x ` L RH L x ` P RH P x ` L⊕ P R N

x ` L⊕ P RH N
(How4)

This concludes the proof. �

Moreover, if R is a preorder and closed under term-substitution, then its lifted relation RH is
substitutive. Then, reflexivity of R implies compatibility of RH by Lemma 3.10. It follows RH
reflexive too, hence closed under term-substitution.

Lemma 3.13 If R is reflexive, transitive and closed under term-substitution, then RH is (term)
substitutive and hence also closed under term-substitution.

Proof. We show that, for all x ∈ PFIN(X), x ∈ X− x, M, N ∈ Λ⊕(x ∪ {x}) and L, P ∈ Λ⊕(x),

x ∪ {x} `M RH N ∧ x ` L RH P ⇒ x `M{L/x} RH N{P/x}.

We prove the latter by induction on the derivation of x ∪ {x} `M RH N , thus on the structure of
M .
• If M is a variable, then either M = x or M ∈ x. In the latter case, suppose M = y. Then,

by hypothesis, x ∪ {x} ` y RH N holds and the only way to deduce it is by rule (How1) from
x ∪ {x} ` y R N . Hence, by the fact R is closed under term-substitution and P ∈ Λ⊕(x),
we obtain x ` y{P/x} R N{P/x} which is equivalent to x ` y R N{P/x}. Finally, by
Lemma 3.12, we conclude x ` y RH N{P/x} which is equivalent to x ` y{L/x} RH N{P/x},
i.e. x `M{L/x} RH N{P/x} holds. Otherwise, M = x and x∪{x} ` x RH N holds. The only
way to deduce the latter is by the rule (How1) from x ∪ {x} ` x R N . Hence, by the fact R
is closed under term-substitution and P ∈ Λ⊕(x), we obtain x ` x{P/x} R N{P/x} which is
equivalent to x ` P R N{P/x}. By Lemma 3.11, we deduce the following:

x ` L RH P x ` P R N{P/x}
x ` L RH N{P/x}

which is equivalent to x ` x{L/x} RH N{P/x}. Thus, x `M{L/x} RH N{P/x} holds.

15

• If M is a λ-abstraction, say λy.Q, then x ∪ {x} ` λy.Q RH N holds by hypothesis. The only
way to deduce the latter is by rule (How2) as follows:

x ∪ {x, y} ` Q RH R x ∪ {x} ` λy.R R N x, y /∈ x
x ∪ {x} ` λy.Q RH N

(How2)

Let us denote y = x ∪ {y}. Then, by induction hypothesis on y ∪ {x} ` Q RH R, we get
y ` Q{L/x} RH R{P/x}. Moreover, by the fact R is closed under term-substitution and
P ∈ Λ⊕(x), we obtain that x ` (λy.R){P/x} R N{P/x} holds, i.e. x ` λy.R{P/x} R N{P/x}.
By (How2), we deduce the following:

x ∪ {y} ` Q{L/x} RH R{P/x} x ` λy.R{P/x} R N{P/x} y /∈ x
x ` λy.Q{L/x} RH N{P/x}

(How2)

which is equivalent to x ` (λy.Q){L/x} RH N{P/x}. Thus, x `M{L/x} RH N{P/x} holds.
• If M is an application, say QR, then x ∪ {x} ` QR RH N holds by hypothesis. The only way

to deduce the latter is by rule (How3) as follows:

x ∪ {x} ` Q RH Q′ x ∪ {x} ` R RH R′ x ∪ {x} ` Q′R′ R N

x ∪ {x} ` QR RH N
(How3)

By induction hypothesis on x ∪ {x} ` Q RH Q′ and x ∪ {x} ` R RH R′, we get x `
Q{L/x} RH Q′{P/x} and x ` R{L/x} RH R′{P/x}. Moreover, by the fact R is closed under
term-substitution and P ∈ Λ⊕(x), we obtain that x ` (Q′R′){P/x} R N{P/x} holds, i.e.
x ` Q′{P/x}R′{P/x} R N{P/x}. By (How3), we deduce the following:

x ` Q{L/x} RH Q′{P/x} x ` R{L/x} RH R′{P/x} x ` Q′{P/x}R′{P/x} R N{P/x}
x ` Q{L/x}R{L/x} RH N{P/x}

(How3)

which is equivalent to x ` (QR){L/x} RH N{P/x}. Thus, x `M{L/x} RH N{P/x} holds.
• If M is a probabilistic sum, say Q⊕R, then x ∪ {x} ` Q⊕R RH N holds by hypothesis. The

only way to deduce the latter is by rule (How4) as follows:

x ∪ {x} ` Q RH Q′ x ∪ {x} ` R RH R′ x ∪ {x} ` Q′ ⊕R′ R N

x ∪ {x} ` Q⊕R RH N
(How4)

By induction hypothesis on x ∪ {x} ` Q RH Q′ and x ∪ {x} ` R RH R′, we get x `
Q{L/x} RH Q′{P/x} and x ` R{L/x} RH R′{P/x}. Moreover, by the fact R is closed
under term-substitution and P ∈ Λ⊕(x), we obtain that x ` (Q′ ⊕ R′){P/x} R N{P/x}, i.e.
x ` Q′{P/x} ⊕R′{P/x} R N{P/x}. By (How4), we conclude the following:

x ` Q{L/x} RH Q′{P/x} x ` R{L/x} RH R′{P/x} x ` Q′{P/x} ⊕R′{P/x} R N{P/x}
x ` Q{L/x} ⊕R{L/x} RH N{P/x}

(How4)

which is equivalent to x ` (Q⊕R){L/x} RH N{P/x}. Thus, x `M{L/x} RH N{P/x} holds.
This concludes the proof. �

Something is missing, however, before we can conclude that .H is a precongruence, namely
transitivity. We also follow Howe here building the transitive closure of a Λ⊕-relation R as the
relation R+ defined by the rules in Figure 4. Then, it is easy to prove R+ of being compatible and
closed under term-substitution if R is.

Lemma 3.14 If R is compatible, then so is R+.

Proof. We need to prove that (Com1), (Com2), (Com3), and (Com4) hold for R+:

16

x `M R N
x `M R+ N

(TC1)

x `M R+ N x ` N R+ L
x `M R+ L

(TC2)

Figure 4: Transitive Closure for Λ⊕.

• Proving (Com1) means to show:

∀x ∈ PFIN(X), x ∈ x⇒ x ` x R x.

Since R is compatible, therefore reflexive, x ` x R x holds. Hence x ` x R+ x follows by (TC1).
• Proving (Com2) means to show: ∀x ∈ PFIN(X), ∀x ∈ X− x, ∀M,N ∈ Λ⊕(x ∪ {x}),

x ∪ {x} `M R+ N ⇒ x ` λx.M R+ λx.N.

We prove it by induction on the derivation of x ∪ {x} ` M R+ N , looking at the last rule
used. The base case has (TC1) as last rule: thus, x ∪ {x} ` M R N holds. Then, since
R is compatible, it follows x ` λx.M R λx.N . We conclude applying (TC1) on the latter,
obtaining x ` λx.M R+ λx.N . Otherwise, if (TC2) is the last rule used, we get that, for
some L ∈ Λ⊕(x ∪ {x}), x ∪ {x} ` M R+ L and x ∪ {x} ` L R+ N hold. Then, by induction
hypothesis on both of them, we have x ` λx.M R+ λx.L and x ` λx.L R+ λx.N . We conclude
applying (TC2) on the latter two, obtaining x ` λx.M R+ λx.N .

• Proving (Com3) means to show: ∀x ∈ PFIN(X), ∀M,N,L, P ∈ Λ⊕(x),

x `M R+ N ∧ x ` L R+ P ⇒ x `ML R+ NP.

Firstly, we prove the following two characterizations:

∀M,N,L, P ∈ Λ⊕(x). x `M R+ N ∧ x ` L R P ⇒ x `ML R+ NP, (3)

∀M,N,L, P ∈ Λ⊕(x). x `M R N ∧ x ` L R+ P ⇒ x `ML R+ NP. (4)

In particular, we only prove (3) in details, since (4) is similarly provable. We prove (3) by
induction on the derivation x ` M R+ N , looking at the last rule used. The base case has
(TC1) as last rule: we get that x `M R N holds. Then, using R compatibility property and
x ` L R P , it follows x ` ML R NP . We conclude applying (TC1) on the latter, obtaining
x ` ML R+ NP . Otherwise, if (TC2) is the last rule used, we get that, for some Q ∈ Λ⊕,
x ` M R+ Q and x ` Q R+ N hold. Then, by induction hypothesis on x ` M R+ Q along
with x ` L R P , we have x ` ML R+ QP . Then, since R is compatible and so reflexive
too, x ` P R P holds. By induction hypothesis on x ` Q R+ N along with the latter, we
get x ` QP R+ NP . We conclude applying (TC2) on x ` ML R+ QP and x ` QP R+ NP ,
obtaining x `ML R+ NP .
Let us focus on the original (Com3) statement. We prove it by induction on the two derivations
x ` M R+ N and x ` L R+ P , which we name here as π and ρ respectively. Looking at
the last rules used, there are four possible cases as four are the combinations that permit to
conclude with π and ρ:
1. (TC1) for both π and ρ;
2. (TC1) for π and (TC2) for ρ;
3. (TC2) for π and (TC1) for ρ;
4. (TC2) for both π and ρ.
Observe now that the first three cases are addressed by (3) and (4). Hence, it remains to prove
the last case, where both derivations are concluded applying (TC2) rule. According to (TC2)
rule definition, we get two additional hypothesis from each derivation. In particular, for π, we
get that, for some Q ∈ Λ⊕(x), x ` M R+ Q and x ` Q R+ N hold. Similarly, for ρ, we get

17

that, for some R ∈ Λ⊕(x), x ` L R+ R and x ` R R+ P hold. Then, by a double induction
hypothesis, firstly on x ` M R+ Q, x ` L R+ R and secondly on x ` Q R+ N , x ` R R+ P ,
we get x ` ML R+ QR and x ` QR R+ NP respectively. We conclude applying (TC2) on
these latter, obtaining x `ML R+ NP .

• Proving (Com4) means to show: ∀x ∈ PFIN(X), ∀M,N,L, P ∈ Λ⊕(x),

x `M R+ N ∧ x ` L R+ P ⇒ x `M ⊕ L R+ N ⊕ P.
We do not detail the proof since it boils down to that of (Com3), where partial sums play the
role of applications.

This concludes the proof. �

Lemma 3.15 If R is closed under term-substitution, then so is R+.

Proof. We need to proveR+ of being closed under term-substitution: for all x ∈ PFIN(X), x ∈ X−x,
M,N ∈ Λ⊕(x ∪ {x}) and L,P ∈ Λ⊕(x),

x ∪ {x} `M R+ N ∧ L ∈ Λ⊕(x)⇒ x `M{L/x} R+ N{L/x}.
We prove the latter by induction on the derivation of x ∪ {x} `M R+ N , looking at the last rule
used. The base case has (TC1) as last rule: we get that x ∪ {x} `M R N holds. Then, since R is
closed under term-substitution, it follows x `M{L/x} R N{L/x}. We conclude applying (TC1) on
the latter, obtaining x `M{L/x} R+ N{L/x}. Otherwise, if (TC2) is the last rule used, we get that,
for some P ∈ Λ⊕(x ∪ {x}), x ∪ {x} `M R+ P and x ∪ {x} ` P R+ N hold. Then, by induction
hypothesis on both of them, we have x `M{L/x} R+ P{L/x} and x ` P{L/x} R+ N{L/x}. We
conclude applying (TC2) on the latter two, obtaining x `M{L/x} R+ N{L/x}. �

It is important to note that the transitive closure of an already Howe’s lifted relation is a
preorder if the starting relation is.

Lemma 3.16 If a Λ⊕-relation R is a preorder relation, then so is (RH)+.

Proof. We need to show (RH)+ of being reflexive and transitive. Of course, being a transitive
closure, (RH)+ is a a transitive relation. Moreover, since R is reflexive, by Lemma 3.10, RH is
reflexive too because compatible. Then, by Lemma 3.14, so is (RH)+. �

This is just the first half of the story: we also need to prove that (.H)+ is a simulation. As we
already know it is a preorder, the following lemma gives us the missing bit:

Lemma 3.17 (Key Lemma) If M .H N , then for every X ⊆ Λ⊕(x) it holds that [[M]](λx.X) ≤
[[N]](λx.(.H(X))).

The proof of this lemma is delicate and is discussed in the next section. From the lemma, using a
standard argument we derive the needed substitutivity results, and ultimately the most important
result of this section.

Theorem 3.18 . is a precongruence relation for Λ⊕-terms.

Proof. We prove the result by observing that (.H)+ is a precongruence and by showing that

.= (.H)+. First of all, Lemma 3.10 and Lemma 3.14 ensure that (.H)+ is compatible and

Lemma 3.16 tells us that (.H)+ is a preorder. As a consequence, (.H)+ is a precongruence.

Consider now the inclusion .⊆ (.H)+. By Lemma 3.12 and by definition of transitive closure

operator (·)+, it follows that .⊆ (.H) ⊆ (.H)+. We show the converse by proving that

(.H)+ is included in a relation R that is a call-by-name probabilistic applicative simulation,

therefore contained in the largest one. In particular, since (.H)+ is closed under term-substitution
(Lemma 3.13 and Lemma 3.15), it suffices to show the latter only on the closed version of terms

and cloned values. R acts like (.H)+ on terms, while given two cloned values νx.M and νx.N ,

(νx.M)R(νx.N) iff M(.H)+N . Since we already know that (.H)+ is a preorder (and thus R is
itself a preorder), all that remain to be checked are the following two points:

18

• If M(.H)+N , then for every X ⊆ Λ⊕(x) it holds that

P⊕(M, τ, νx.X) ≤ P⊕(N, τ,R(νx.X)). (5)

Let us proceed by induction on the structure of the proof of M(.H)+N :

• The base case has (TC1) as last rule: we get that ∅ `M .H N holds. Then, in particular
by Lemma 3.17,

P⊕(M, τ, νx.X) = [[M]](λx.X)

≤ [[N]](λx..H(X))

≤ [[N]](λx.(.H)+(X))

≤ [[N]](R(νx.X)) = P⊕(N, τ,R(νx.X)).

• If (TC2) is the last rule used, we obtain that, for some P ∈ Λ⊕(∅), ∅ ` M (.H)+ P and

∅ ` P (.H)+ N hold. Then, by induction hypothesis, we get

P⊕(M, τ,X) ≤ P⊕(P, τ,R(X)),

P⊕(P, τ,R(X)) ≤ P⊕(N, τ,R(R(X))).

But of course R(R(X)) ⊆ R(X), and as a consequence:

P⊕(M, τ,X) ≤ P⊕(N, τ,R(X))

and (5) is satisfied.

• If M(.H)+N , then for every L ∈ Λ⊕(∅) and for every X ⊆ Λ⊕(∅) it holds that

P⊕(νx.M,L,X) ≤ P⊕(νx.N,L,R(X)).

But if M(.H)+N , then M{L/x}(.H)+N{L/x}. This is means that whenever M{L/x} ∈ X,

N{L/x} ∈ .H(X) ⊆ (.H)+(X) and ultimately

P⊕(νx.M,L,X) = 1

= P⊕(νx.N,L, (.H)+(X))

= P⊕(νx.N,L,R(X)).

If M{L/x} /∈ X, on the other hand,

P⊕(νx.M,L,X) = 0 ≤ P⊕(νx.N,L,R(X)).

This concludes the proof. �

Corollary 3.19 ∼ is a congruence relation for Λ⊕-terms.

Proof. ∼ is an equivalence relation by definition, in particular a symmetric relation. Since
∼=. ∩ .op by Proposition 2.13, ∼ is also compatible as a consequence of Theorem 3.18. �

3.2 Proof of the Key Lemma

As we have already said, Lemma 3.17 is indeed a crucial step towards showing that probabilistic
applicative simulation is a precongruence. Proving the Key Lemma 3.17 turns out to be much
more difficult than for deterministic or nondeterministic cases. In particular, the case when M
is an application relies on another technical lemma we are now going to give, which itself can be
proved by tools from linear programming.

The combinatorial problem we will face while proving the Key Lemma can actually be decon-
textualized and understood independently. Suppose we have n = 3 non-disjoint sets X1, X2, X3

19

1
8

1
16

1
64

1
32

1
32

1
16

1
64

X2 X3

X1

(a)

1
32

1
64

1
64

1
32

1
32

0
0 1

64

1
8

1
64

1
32

1
32

Y1 Y2 Y3

(b)

Figure 5: Disentangling Sets

whose elements are labelled with real numbers. As an example, we could be in a situation like
the one in Figure 5(a) (where for the sake of simplicity only the labels are indicated). We fix

three real numbers p1
def
= 5

64 , p2
def
= 3

16 , p3
def
= 5

64 . It is routine to check that for every I ⊆ {1, 2, 3}
it holds that ∑

i∈I
pi ≤ ||

⋃

i∈I
Xi||,

where ||X|| is the sum of the labels of the elements of X. Let us observe that it is of course possible
to turn the three sets X1, X2, X3 into three disjoint sets Y1, Y2 and Y3 where each Yi contains
(copies of) the elements of Xi whose labels, however, are obtained by splitting the ones of the
original elements. Examples of those sets are in Figure 5(b): if you superpose the three sets, you
obtain the Venn diagram we started from. Quite remarkably, however, the examples from Figure 5
have an additional property, namely that for every i ∈ {1, 2, 3} it holds that pi ≤ ||Yi||. We now
show that finding sets satisfying the properties above is always possible, even when n is arbitrary.

Suppose p1, . . . , pn ∈ R[0,1], and suppose that for each I ⊆ {1, . . . , n} a real number rI ∈
R[0,1] is defined such that for every such I it holds that

∑
i∈I pi ≤

∑
J∩I 6=∅ rJ ≤ 1. Then

({pi}1≤i≤n, {rI}I⊆{1,...,n}) is said to be a probability assignment for {1, . . . , n}. Is it always possible
to “disentangle” probability assignments? The answer is positive.

The following is a formulation of Max-Flow-Min-Cut Theorem:

Theorem 3.20 (Max-Flow-Min-Cut) For any flow network, the value of the maximum flow is
equal to the capacity of the minimum cut.

Lemma 3.21 (Disentangling Probability Assignments) Let P
def
= ({pi}1≤i≤n, {rI}I⊆{1,...,n})

be a probability assignment. Then for every nonempty I ⊆ {1, . . . , n} and for every k ∈ I there is
sk,I ∈ R[0,1] such that the following conditions all hold:
1. for every I, it holds that

∑
k∈I sk,I ≤ 1;

2. for every k ∈ {1, . . . , n}, it holds that pk ≤
∑
k∈I sk,I · rI .

Proof. For every probability assignment P, let us define the flow network of P as the digraph

NP
def
= (VP, EP) where:

• VP def
= (P({1, . . . , n})−∅)∪ {s, t}, where s, t are a distinguished source and target, respectively;

20

• EP is composed by three kinds of edges:
• (s, {i}) for every i ∈ {1, . . . , n}, with an assigned capacity of pi;
• (I, I ∪ {i}), for every nonempty I ⊆ {1, . . . , n} and i 6∈ I, with an assigned capacity of 1;
• (I, t), for every nonempty I ⊆ {1, . . . , n}, with an assigned capacity of rI .

We prove the following two lemmas on NP which together entail the result.
• Lemma 3.22 If NP admits a flow summing to

∑
i∈{1,...,n} pi, then the sk,I exist for which

conditions 1. and 2. hold.
Proof. Let us fix p

def
=
∑
i∈{1,...,n} pi. The idea then is to start with a flow of value p in input

to the source s, which by hypothesis is admitted by NP and the maximum one can get, and
split it into portions going to singleton vertices {i}, for every i ∈ I, each of value pi. Afterwards,
for every other vertex I ⊆ {1, . . . , n}, values of flows on the incoming edges are summed up
and then distributed to the outgoing adges as one wishes, thanks to conservation property of
the flow. Formally, a flow f : Ep → R[0,1] is turned into a function f : Ep → (R[0,1])

n defined as
follows:
• For every i ∈ {1, . . . , n}, f (s,{i})

def
= (0, . . . , f(s,{i}), . . . , 0), where the only possibly nonnull

component is exactly the i-th;
• For every nonempty I ⊆ {1, . . . , n}, as soon as f has been defined on all ingoing edges of I,

we can define it on all its outgoing ones, by just splitting each component as we want. This
is possible, of course, because f is a flow and, as such, ingoing and outgoing values are the

same. More formally, let us fix f (∗,I)
def
=
∑
K⊆{1,...,n} f (K,I) and indicate with f (∗,I),k its

k-th component. Then, for every i 6∈ I, we set f (I,I∪{i})
def
= (q1,i · f (∗,I),1, . . . , qn,i · f (∗,I),n)

where, for every j ∈ {1, . . . , n}, qj,i ∈ R[0,1] are such that
∑
i 6∈I qj,i · f (∗,I),j = f (∗,I),j and∑n

j=1 qj,i · f (∗,I),j = f(I,I∪{i}). Of course, a similar definition can be given to f (I,t), for
every nonempty I ⊆ {1, . . . , n}.

Notice that, the way we have just defined f guarantees that the sum of all components of fe is
always equal to fe, for every e ∈ EP. Now, for every nonempty I ⊆ {1, . . . , n}, fix sk,I to be the
ratio qk of f (I,t); i.e., the k-th component of f (I,t) (or 0 if the first is itself 0). On the one hand,
for every nonempty I ⊆ {1, . . . , n}, ∑k∈I sk,I is obviously less or equal to 1, hence condition 1.

holds. On the other, each component of f is itself a flow, since it satisfies the capacity and
conservation constraints. Moreover, NP is structured in such a way that the k-th component of
f (I,t) is 0 whenever k 6∈ I. As a consequence, since f satisfies the capacity constraint, for every
k ∈ {1, . . . , n},

pk ≤
∑

k∈I
sk,I · f (I,t) ≤

∑

k∈I
sk,I · rI

and so condition 2. holds too. �
• Lemma 3.23 NP admits a flow summing to

∑
i∈I pi.

Proof. We prove the result by means of Theorem 3.20. In particular, we just prove that the

capacity of any cut must be at least p
def
=
∑
i∈{1,...,n} pi. A cut (S,A) is said to be degenerate if

there are I ⊆ {1, . . . , n} and i ∈ {1, . . . , n} such that I ∈ S and I ∪ {i} ∈ A. It is easy to verify
that every degenerate cut has capacity greater or equal to 1, thus greater or equal to p. As a
consequence, we can just concentrate on non-degenerate cuts and prove that all of them have

capacity at least p. Given two cuts C
def
= (S,A) and D

def
= (T,B), we say that C ≤ D iff S ≤ T .

Then, given I ⊆ {1, . . . , n}, we call I-cut any cut (S,A) such that
⋃
{i}∈S{i} = I. The canonical

I-cut is the unique I-cut CI
def
= (S,A) such that S = {s} ∪ {J ⊆ {1, . . . , n} | J ∩ I 6= ∅}. Please

observe that, by definition, CI is non-degenerate and that the capacity c(CI) of CI is at least
p, because the forward edges in CI (those connecting elements of S to those of A) are those
going from s to the singletons not in S, plus the edges going from any J ∈ S to t. The sum of
the capacities of such edges are greater or equal to p by hypothesis. We now need to prove the
following two lemmas.
• Lemma 3.24 For every non-degenerate I-cuts C,D such that C > D, there is a non-

degenerate I-cut E such that C ≥ E > D and c(E) ≥ c(D).

21

Proof. Let C
def
= (S,A) and D

def
= (T,B). Moreover, let J be any element of S\T . Then,

consider E
def
= (T ∪ {K ⊆ {1, . . . , n} | J ⊆ K}, B\{K ⊆ {1, . . . , n} |J ⊆ K}) and verify that

E is the cut we are looking for. Indeed, E is non-degenerate because it is obtained from D,
which is non-degenerate by hypothesis, by adding to it J and all its supersets. Of course,
E > D. Moreover, C ≥ E holds since J ∈ S and C is non-degenerate, which implies C
contains all supersets of J as well. It is also easy to check that c(E) ≥ c(D). In fact, in the
process of constructing E from D we do not lose any forward edges coming from s, since
J cannot be a singleton with C and D both I-cuts, or any other edge coming from some
element of T , since D is non-degenerate. �

• Lemma 3.25 For every non-degenerate I-cuts C,D such that C ≥ D, c(C) ≥ c(D).

Proof. Let C
def
= (S,A) and D

def
= (T,B). We prove the result by induction on the

n
def
= |S| − |T |. If n = 0, then C = D and the thesis follows. If n > 0, then C > D and, by

Lemma 3.24, there is a non-degenerate I-cut E such that C ≥ E > D and c(E) ≥ c(D). By
induction hypothesis on C and E, it follows that c(C) ≥ c(E). Thus, c(C) ≥ c(D). �

The two lemmas above permit to conclude. Indeed, for every non-degenerate cut D, there is
of course a I such that D is a I-cut (possibly with I as the empty set). Then, let us consider
the canonical CI . On the one hand, c(CI) ≥ p. On the other, since CI is non-degenerate,
c(D) ≥ c(CI) by Lemma 3.25. Hence, c(D) ≥ p. �

This concludes the main proof. �

In the coming proof of Lemma 3.17 we will widely, and often implicitly, use the following technical
Lemmas. We denote with νx. . (X) the set of distinguished values {νx.M | ∃N ∈ X.N .M}.

Lemma 3.26 For every X ⊆ Λ⊕(x), . (νx.X) = νx. . (X).

Proof.

νx.M ∈. (νx.X)⇔ ∃N ∈ X. νx.N . νx.M
⇔ ∃N ∈ X.N .M
⇔ νx.M ∈ νx. . (X).

This concludes the proof. �

Lemma 3.27 If M . N , then for every X ∈ Λ⊕(x), [[M]](λx.X) ≤ [[N]](λx. . (X)).

Proof. If M . N , then by definition [[M]](νx.X) ≤ [[N]](. (νx.X)). Therefore, by Lemma 3.26,
[[N]](. (νx.X)) ≤ [[N]](νx. . (X)). �

Remark 3.28 Throughout the following proof we will implicitly use a routine result stating that
M . N implies [[M]](λx.X) ≤ [[N]](λx..(X)), for every X ⊆ Λ⊕(x). The property needed by the
latter is precisely the reason why we have formulated Λ⊕ as a multisorted labelled Markov chain:
.(νx.X) consists of distinguished values only, and is nothing but νx..(X).

Proof. [of Lemma 3.17] This is equivalent to proving that if M .H N , then for every X ⊆ Λ⊕(x)

the following implication holds: if M ⇓ D , then D(λx.X) ≤ [[N]](λx.(.H(X))). This is an induction
on the structure of the proof of M ⇓ D .
• If D = ∅, then of course D(λx.X) = 0 ≤ [[N]](λx.Y) for every X,Y ⊆ Λ⊕(x).

• If M is a value λx.L and D(λx.L) = 1, then the proof of M .H N necessarily ends as follows:

{x} ` L .H P ∅ ` λx.P . N

∅ ` λx.L .H N

Let X be any subset of Λ⊕(x). Now, if L 6∈ X, then D(λx.X) = 0 and the inequality trivially

holds. If, on the contrary, L ∈ X, then P ∈ .H(X). Consider . (P), the set of terms that

22

are in relation with P via .. We have that for every Q ∈ . (P), both {x} ` L .H P and

{x} ` P . Q hold, and as a consequence {x} ` L .H Q does (this is a consequence of a

property of (·)H , see [9]). In other words, . (P) ⊆ .H(X). But then, by Lemma 3.27,

[[N]](λx..H(X)) ≥ [[N]](λx. . (P)) ≥ [[λx.P]](λx.P) = 1.

• If M is an application LP , then M ⇓ D is obtained as follows:

L ⇓ F {Q{P/x} ⇓HQ,P }Q,P
LP ⇓∑Q F (λx.Q) ·HQ,P

Moreover, the proof of ∅ `M .H N must end as follows:

∅ ` L .H R ∅ ` P .H S ∅ ` RS . N

∅ ` LP .H N

Now, since L ⇓ F and ∅ ` L .H R, by induction hypothesis we get that for every Y ⊆ Λ⊕(x)

it holds that F (λx.Y) ≤ [[R]](λx..H(Y)). Let us now take a look at the distribution

D =
∑

Q

F (λx.Q) ·HQ,P .

Since F is a finite distribution, the sum above is actually the sum of finitely many summands.
Let the support S(F) of F be {λx.Q1, . . . , λx.Qn}. It is now time to put the above into a form

that is amenable to treatment by Lemma 3.21. Let us consider the n sets .H(Q1), . . . ,.H(Qn);
to each term U in them we can associate the probability [[R]](λx.U). We are then in the scope
of Lemma 3.21, since by induction hypothesis we know that for every Y ⊆ Λ⊕(x),

F (λx.X) ≤ [[R]](λx..H(X)).

We can then conclude that for every

U ∈ .H({Q1, . . . , Qn}) =
⋃

1≤i≤n
.H(Qi)

there are n real numbers rU,R1 , . . . , rU,Rn such that:

[[R]](λx.U) ≥
∑

1≤i≤n
rU,Ri ∀U ∈

⋃

1≤i≤n
.H(Qi);

F (λx.Qi) ≤
∑

U∈.H(Qi)

rU,Ri ∀ 1 ≤ i ≤ n.

So, we can conclude that

D ≤
∑

1≤i≤n

 ∑

U∈.H(Qi)

rU,Ri

 ·HQi,P

=
∑

1≤i≤n

∑

U∈.H(Qi)

rU,Ri ·HQi,P .

Now, whenever Qi.HU and P.HS, we know that, by Lemma 3.13, Qi{P/x}.HU{S/x}. We
can then apply the inductive hypothesis to the n derivations of Qi{P/x} ⇓HQi,P , obtaining

23

that, for every X ⊆ Λ⊕(x),

D(λx.X) ≤
∑

1≤i≤n

∑

U∈.H (Qi)

rU,R
i · [[U{S/x}]](λx..H(X))

≤
∑

1≤i≤n

∑

U∈.H ({Q1,...,Qn})
rU,R
i · [[U{S/x}]](λx..H(X))

=
∑

U∈.H ({Q1,...,Qn})

∑

1≤i≤n

rU,R
i · [[U{S/x}]](λx..H(X))

=
∑

U∈.H ({Q1,...,Qn})

 ∑

1≤i≤n

rU,R
i

 · [[U{S/x}]](λx..H(X))

≤
∑

U∈.H ({Q1,...,Qn})
[[R]](λx.U) · [[U{S/x}]](λx..H(X))

≤
∑

U∈Λ⊕(x)

[[R]](λx.U) · [[U{S/x}]](λx..H(X))

= [[RS]](λx..H(X)) ≤ [[N]](λx. . ((.H)(X)))

≤ [[N]](λx..H(X)),

which is the thesis.
• If M is a probabilistic sum L⊕ P , then M ⇓ D is obtained as follows:

L ⇓ F P ⇓ G

L⊕ P ⇓ 1
2 ·F + 1

2 · G

Moreover, the proof of ∅ `M .H N must end as follows:

∅ ` L .H R ∅ ` P .H S ∅ ` R⊕ S . N

∅ ` L⊕ P .H N

Now:
• Since L ⇓ F and ∅ ` L .H R, by induction hypothesis we get that for every Y ⊆ Λ⊕(x) it

holds that F (λx.Y) ≤ [[R]](λx..H(Y));

• Similarly, since P ⇓ G and ∅ ` P .H S, by induction hypothesis we get that for every
Y ⊆ Λ⊕(x) it holds that G (λx.Y) ≤ [[S]](λx..H(Y)).

Let us now take a look at the distribution

D =
1

2
·F +

1

2
· G .

The idea then is to prove that, for every X ⊆ Λ⊕(x), it holds D(λx.X) ≤ [[R⊕ S]](λx..H(X)).

In fact, since [[R ⊕ S]](λx..H(X)) ≤ [[N]](λx..H(X)), the latter would imply the thesis

D(λx.X) ≤ [[N]](λx..H(X)). But by induction hypothesis and Lemma 2.3:

D(λx.X) =
1

2
·F (λx.X) +

1

2
· G (λx.X)

≤ 1

2
· [[R]](λx..H(X)) +

1

2
· [[S]](λx..H(X))

= [[R⊕ S]](λx..H(X)).

This concludes the proof. �

3.3 Context Equivalence

We now formally introduce probabilistic context equivalence and prove it to be coarser than
probabilistic applicative bisimilarity.

24

Definition 3.29 A Λ⊕-term context is a syntax tree with a unique “hole” [·], generated as follows:

C,D ∈ CΛ⊕ ::= [·] |λx.C |CM |MC |C ⊕M |M ⊕ C.

We denote with C[N] the Λ⊕-term that results from filling the hole with a Λ⊕-term N :

[·][N]
def
= N ;

(λx.C)[N]
def
= λx.C[N];

(CM)[N]
def
= C[N]M ;

(MC)[N]
def
= MC[N];

(C ⊕M)[N]
def
= C[N]⊕M ;

(M ⊕ C)[N]
def
= M ⊕ C[N].

We also write C[D] for the context resulting from replacing the occurrence of [·] in the syntax tree
C by the tree D.

We continue to keep track of free variables by sets x of variables and we inductively define
subsets CΛ⊕(x ; y) of contexts by the following rules:

[·] ∈ CΛ⊕(x ; x)
(Ctx1)

C ∈ CΛ⊕(x ; y ∪ {x}) x 6∈ y
λx.C ∈ CΛ⊕(x ; y)

(Ctx2)

C ∈ CΛ⊕(x ; y) M ∈ Λ⊕(y)

CM ∈ CΛ⊕(x ; y)
(Ctx3)

M ∈ Λ⊕(y) C ∈ CΛ⊕(x ; y)

MC ∈ CΛ⊕(x ; y)
(Ctx4)

C ∈ CΛ⊕(x ; y) M ∈ Λ⊕(y)

C ⊕M ∈ CΛ⊕(x ; y)
(Ctx5)

M ∈ Λ⊕(y) C ∈ CΛ⊕(x ; y)

M ⊕ C ∈ CΛ⊕(x ; y)
(Ctx6)

We use double indexing over x and y to indicate the sets of free variables before and after the
filling of the hole by a term. The two following properties explain this idea.

Lemma 3.30 If M ∈ Λ⊕(x) and C ∈ CΛ⊕(x ; y), then C[M] ∈ Λ⊕(y).

Proof. By induction on the derivation of C ∈ CΛ⊕(x ; y) from the rules (Ctx1)-(Ctx6). �

Lemma 3.31 If C ∈ CΛ⊕(x ; y) and D ∈ CΛ⊕(y ; y), then D[C] ∈ CΛ⊕(x ; y).

Proof. By induction on the derivation of D ∈ CΛ⊕(y ; y) from the rules (Ctx1)-(Ctx6). �

Let us recall here the definition of context preorder and equivalence.

Definition 3.32 The probabilistic context preorder with respect to call-by-name evaluation is the
Λ⊕-relation given by x `M ≤⊕ N iff ∀C ∈ CΛ⊕(x ; ∅), C[M]⇓p implies C[N]⇓q with p ≤ q. The
Λ⊕-relation of probabilistic context equivalence, denoted x `M '⊕ N , holds iff x `M ≤⊕ N and
x ` N ≤⊕ M do.

25

Lemma 3.33 The context preorder ≤⊕ is a precongruence relation.

Proof. Proving ≤⊕ being a precongruence relation means to prove it transitive and compatible. We
start by proving ≤⊕ being transitive, that is, for every x ∈ PFIN(X) and for every M, N, L ∈ Λ⊕(x),
x ` M ≤⊕ N and x ` N ≤⊕ L imply x ` M ≤⊕ L. By Definition 3.32, the latter boils down to
prove that, the following hypotheses
• For every C, C[M]⇓p implies C[N]⇓q, with p ≤ q;
• For every C, C[N]⇓p implies C[L]⇓q, with p ≤ q,
• D[M]⇓r

imply D[L]⇓s, with r ≤ s. We can easily apply the first hypothesis when C is just D, then
the second hypothesis (again with C equal to D), and get the thesis. We prove ≤⊕ of being a
compatible relation starting from (Com2) property because (Com1) is trivially valid. In particular,
we must show that, for every x ∈ PFIN(X), for every x ∈ X−{x} and for every M, N ∈ Λ⊕(x∪{x}),
if x ∪ {x} `M ≤⊕ N then x ` λx.M ≤⊕ λx.N . By Definition 3.32, the latter boils down to prove
that, the following hypotheses
• For every C, C[M]⇓p implies C[N]⇓q, with p ≤ q,
• D[λx.M]⇓r

imply D[λx.N]⇓s, with r ≤ s. Since D ∈ CΛ⊕(x ; ∅), let us consider the context λx.[·] ∈
CΛ⊕(x∪{x} ; x). Then, by Lemma 3.31, the context E of the form D[λx.[·]] is in CΛ⊕(x∪{x} ; ∅).
Please note that, by Definition 3.29, D[λx.M] = E[M] and, therefore, the second hypothesis can
be rewritten as E[M]⇓r. Thus, it follows that E[N]⇓s, with r ≤ s. Moreover, observe that E[N] is
nothing else than D[λx.N]. Since we have just proved ≤⊕ of being transitive, we prove (Com3)
property by showing that (Com3L) and (Com3R) hold. In fact, recall that by Lemma 3.8, the
latter two, together, imply the former. In particular, to prove (Com3L) we must show that, for
every x ∈ PFIN(X) and for every M, N, L ∈ Λ⊕(x), if x ` M ≤⊕ N then x ` ML ≤⊕ NL. By
Definition 3.32, the latter boils down to prove that, the following hypothesis
• For every C, C[M]⇓p implies C[N]⇓q, with p ≤ q,
• D[ML]⇓r

imply D[NL]⇓s, with r ≤ s. Since D ∈ CΛ⊕(x ; ∅), let us consider the context [·]L ∈ CΛ⊕(x ; x).
Then, by Lemma 3.31, the context E of the form D[[·]L] is in CΛ⊕(x ; ∅). Please note that, by
Definition 3.29, D[ML] = E[M] and, therefore, the second hypothesis can be rewritten as E[M]⇓r.
Thus, it follows that E[N]⇓s, with r ≤ s. Moreover, observe that E[N] is nothing else than
D[λx.N]. We do not detail the proof for (Com3R) that follows the reasoning made for (Com3L),
but considering E as the context D[L[·]]. Proving (Com4) follows the same pattern resulted for
(Com3). In fact, by Lemma 3.9, (Com4L) and (Com4R) together imply (Com4). We do not detail
the proofs since they proceed the reasoning made for (Com3L), considering the appropriate context
each time. This concludes the proof. �

Corollary 3.34 The context equivalence '⊕ is a congruence relation.

Proof. Straightforward consequence of the definition '⊕ = ≤⊕ ∩ ≤⊕op . �

Lemma 3.35 Let R be a compatible Λ⊕-relation. If x ` M R N and C ∈ CΛ⊕(x ; y), then
y ` C[M] R C[N].

Proof. By induction on the derivation of C ∈ CΛ⊕(x ; y):
• If C is due to (Ctx1) then C = [·]. Thus, C[M] = M , C[N] = N and the result trivially holds.
• If (Ctx2) is the last rule used, then C = λx.D, with D ∈ CΛ⊕(x ; y ∪ {x}). By induction

hypothesis, it holds that y ∪ {x} ` D[M] R D[N]. Since R is a compatible relation, it follows
y ` λx.D[M] R λx.D[N], that is y ` C[M] R C[N].

• If (Ctx3) is the last rule used, then C = DL, with D ∈ CΛ⊕(x ; y) and L ∈ Λ⊕(y). By induction
hypothesis, it holds that y ` D[M] R D[N]. Since R is a compatible relation, it follows
y ` D[M]L R D[N]L, which by definition means y ` (DL)[M] R (DL)[N]. Hence, the result
y ` C[M] R C[N] holds. The case of rule (Ctx4) holds by a similar reasoning.

26

• If (Ctx5) is the last rule used, then C = D ⊕ L, with D ∈ CΛ⊕(x ; y) and L ∈ Λ⊕(y). By
induction hypothesis, it holds that y ` D[M] R D[N]. Since R is a compatible relation, it
follows y ` D[M]⊕ L R D[N]⊕ L, which by definition means y ` (D ⊕ L)[M] R (D ⊕ L)[N].
Hence, the result y ` C[M] R C[N] holds. The case of rule (Ctx6) holds by a similar reasoning.

This concludes the proof. �

Lemma 3.36 If x `M ∼ N and C ∈ CΛ⊕(x ; y), then y ` C[M] ∼ C[N].

Proof. Since ∼=. ∩ .op by Proposition 2.13, x ` M ∼ N implies x ` M . N and
x ` N . M . Since, by Theorem 3.18, . is a precongruence hence a compatible relation,
y ` C[M] . C[N] and y ` C[N] . C[M] follow by Lemma 3.35, i.e. y ` C[M] ∼ C[N]. �

Theorem 3.37 For all x ∈ PFIN(X) and every M, N ∈ Λ⊕(x), x `M ∼ N implies x `M '⊕ N .

Proof. If x `M ∼ N , then for every C ∈ CΛ⊕(x ; ∅), ∅ ` C[M] ∼ C[N] follows by Lemma 3.36.
By Lemma 3.5, the latter implies

∑
[[C[M]]] = p =

∑
[[C[N]]]. This means in particular that

C[M]⇓p iff C[N]⇓p, which is equivalent to x `M '⊕ N by definition. �

The converse inclusion fails. A counterexample is described in the following.

Example 3.38 For M
def
= λx.L⊕P and N

def
= (λx.L)⊕(λx.P) (where L is λy.Ω and P is λy.λz.Ω),

we have M 6. N , hence M 6∼ N , but M'⊕N .

We prove that the above two terms are context equivalent by means of CIU-equivalence. This is
a relation that can be shown to coincide with context equivalence by a Context Lemma, itself
proved by the Howe’s technique. See Section 4 and Section 5 for supplementary details on the
above counterexample.

4 Context Free Context Equivalence

We present here a way of treating the problem of too concrete representations of contexts: right
now, we cannot basically work up-to α-equivalence classes of contexts. Let us dispense with
them entirely, and work instead with a coinductive characterization of the context preorder, and
equivalence, phrased in terms of Λ⊕-relations.

Definition 4.1 A Λ⊕-relation R is said to be adequate if, for every M, N ∈ Λ⊕(∅), ∅ `M R N
implies M⇓p and N⇓q, with p ≤ q.

Let us indicate with CA the collection of all compatible and adequate Λ⊕-relations and let

≤ca
⊕

def
=
⋃

CA. (6)

It turns out that the context preorder ≤⊕ is the largest Λ⊕-relation that is both compatible and
adequate, that is ≤⊕ = ≤ca

⊕ . Let us proceed towards a proof for the latter.

Lemma 4.2 For every R, T ∈ CA, R ◦ T ∈ CA.

Proof. We need to show that R ◦ T = {(M,N) | ∃L ∈ Λ⊕(x). x ` M R L ∧ x ` L T N} is a
compatible and adequate Λ⊕-relation. Obviously, R ◦ T is adequate: for every (M,N) ∈ R ◦ T ,
there exists a term L such that M⇓p ⇒ L⇓q ⇒ N⇓r, with p ≤ q ≤ r. Then, M⇓p ⇒ N⇓r, with

p ≤ r. Note that the identity relation ID
def
= {(M,M) |M ∈ Λ⊕(x)} is in R ◦ T . Then, R ◦ T is

reflexive and, in particular, satisfies compatibility property (Com1). Proving (Com2) means to
show that, if x ∪ {x} ` M (R ◦ T) N , then x ` λx.M (R ◦ T) λx.N . From the hypothesis, it
follows that there exists a term L such that x∪ {x} `M R L and x∪ {x} ` L T N . Since both R
and T are in CA, hence compatible, it holds x ` λx.M R λx.L and x ` λx.L T λx.N . The latter

27

together imply x ` λx.M (R◦ T) λx.N . Proving (Com3) means to show that, if x `M (R◦ T) N
and x ` Q (R ◦ T) R, then x `MQ (R ◦ T) NR. From the hypothesis, it follows that there exist
two terms L, P such that, on the one hand, x `M R L and x ` L T N , and on the other hand,
x ` Q R P and x ` P T R. Since both R and T are in CA, hence compatible, it holds:

x `M R L ∧ x ` Q R P ⇒ x `MQ R LP ;

x ` L T N ∧ x ` P T R⇒ x ` LP T NR.

The two together imply x `MQ (R ◦ T) NR.
Proceeding in the same fashion, one can easily prove property (Com4). �

Lemma 4.3 Λ⊕-relation ≤ca
⊕ is adequate.

Proof. It suffices to note that the property of being adequate is closed under taking unions of
relations. Indeed, if R, T are adequate relations, then it is easy to see that the union R∪T is: for
every couple (M,N) ∈ R ∪ T , either x `M R N or x `M T N . Either way, M⇓p ⇒ N⇓q, with
p ≤ q, implying R∪ T of being adequate. �

Lemma 4.4 Λ⊕-relation ≤ca
⊕ is a precongruence.

Proof. We need to show that ≤ca
⊕ is a transitive and compatible relation. By Lemma 4.2,

≤ca
⊕ ◦≤ca

⊕ ⊆ ≤ca
⊕ which implies ≤ca

⊕ of being transitive. Let us now prove that ≤ca
⊕ is also compatible.

Note that the identity relation ID = {(M,M) |M ∈ Λ⊕(x)} is in CA, which implies reflexivity
of ≤ca

⊕ and hence, in particular, it satisfies property (Com1). It is clear that property (Com2) is
closed under taking unions of relations, so that ≤ca

⊕ satisfies (Com2) too. The same is not true
for properties (Com3) and (Com4). By Lemma 3.8 (respectively, Lemma 3.9), for (Com3) (resp.,
(Com4)) it suffices to show that ≤ca

⊕ satisfies (Com3L) and (Com3R) (resp., (Com4L) and (Com4R)).
This is obvious: contrary to (Com3) (resp., (Com4)), these properties clearly are closed under
taking unions of relations.

This concludes the proof. �

Corollary 4.5 ≤ca
⊕ is the largest compatible and adequate Λ⊕-relation.

Proof. Straightforward consequence of Lemma 4.3 and Lemma 4.4. �

Lemma 4.6 Λ⊕-relations ≤⊕ and ≤ca
⊕ coincide.

Proof. By Definition 3.32, it is immediate that ≤⊕ is adequate. Moreover, by Lemma 3.33,
≤⊕ is a precongruence. Therefore ≤⊕ ∈ CA implying ≤⊕ ⊆ ≤ca

⊕ . Let us prove the converse.
Since, by Lemma 4.4, ≤ca

⊕ is a precongruence hence a compatible relation, it holds that, for every
M, N ∈ Λ⊕(x) and for every C ∈ CΛ⊕(x ; y), x `M ≤ca

⊕ N implies y ` C[M] ≤ca
⊕ C[N]. Therefore,

for every M, N ∈ Λ⊕(x) and for every C ∈ CΛ⊕(x ; ∅),

x `M ≤ca
⊕ N ⇒ ∅ ` C[M] ≤ca

⊕ C[N]

which implies, by the fact that ≤ca
⊕ is adequate,

C[M]⇓p ⇒ C[N]⇓q, with p ≤ q

that is, by Definition 3.32,

x `M ≤⊕ N.

This concludes the proof. �

28

5 CIU-Equivalence

CIU-equivalence is a simpler characterization of that kind of program equivalence we are interested
in, i.e., context equivalence. In fact, we will prove that the two notions coincide. While context
equivalence envisages a quantification over all contexts, CIU-equivalence relaxes such constraint to
a restricted class of contexts without affecting the associated notion of program equivalence. Such
a class of contexts is that of evaluation contexts. In particular, we use a different representation of
evaluation contexts, seeing them as a stack of evaluation frames.

Definition 5.1 The set of frame stacks is given by the following set of rules:

S,T ::= nil | [·]M :: S.

The set of free variables of a frame stack S can be easily defined as the union of the variables
occurring free in the terms embedded into it. Given a set of variables x, define FS(x) as the set
of frame stacks whose free variables are all from x. Given a frame stack S ∈ FS(x) and a term
M ∈ Λ⊕(x), we define the term ES(M) ∈ Λ⊕(x) as follows:

Enil(M)
def
= M ;

E[·]M ::S(N)
def
= ES(NM).

We now define a binary relation n between pairs of the form (S,M) and sequences of pairs in
the same form:

(S,MN) n ([·]N :: S,M);

(S,M ⊕N) n (S,M), (S, N);

([·]M :: S, λx.N) n (S, N{M/x}).

Finally, we define a formal system whose judgments are in the form (S,M) ↓pn and whose rules are
as follows:

(S,M) ↓0n
(empty)

(nil, V) ↓1n
(value)

(S,M) n (T1, N1), . . . , (Tn, Nn) (Ti, Ni) ↓pin
(S,M) ↓

1
n

∑n
i=1 pi

n

(term)

The expression C(S,M) stands for the real number supp∈R(S,M) ↓pn.

Lemma 5.2 For all closed frame stacks S ∈ FS(∅) and closed Λ⊕-terms M ∈ Λ⊕(∅), C(S,M) = p
iff ES(M)⇓p. In particular, M⇓p holds iff C(nil,M) = p.

Proof. First of all, we recall here that the work of Dal Lago and Zorzi [10] provides various
call-by-name inductive semantics, either big-steps or small-steps, which are all equivalent. Then,
the result can be deduced from the following properties:

1. For all S ∈ FS(∅), if (S,M) ↓pn then ∃D . ES(M)⇒IN D with
∑

D = p.

Proof. By induction on the derivation of (S,M) ↓pn, looking at the last rule used.

• (empty) rule used: (S,M) ↓0n. Then, consider the empty distribution D
def
= ∅ and observe

that ES(M)⇒IN D by sen rule.
• (value) rule used: (S,M) ↓1n implies S = nil and M of being a value, say V . Then,

consider the distribution D
def
= {V 1} and observe that Enil(V) = V ⇒IN D by svn rule.

Of course,
∑

D = 1 = p.

29

• (term) rule used: (S,M) ↓
1
n

∑n
i=1 pi

n obtained from (S,M) n (T1, N1), . . . , (Tn, Nn) and,
for every i ∈ {1, . . . , n}, (Ti, Ni) ↓pin . Then, by induction hypothesis, there exist E1, . . . ,En
such that ETi(Ni)⇒IN Ei with

∑
Ei = pi.

Let us now proceed by cases according to the structure of M .
• If M = λx.L, then S = [·]P :: T implying n = 1, T1 = T and N1 = L{P/x}.

Then, consider the distribution D
def
= E1 and observe that ES(M) = E[·]P ::T(λx.L) =

ET((λx.L)P) 7→n ET(L{P/x}) = ET1
(N1). Hence, ES(M) ⇒IN D by smn rule.

Moreover,
∑

D =
∑

E1 = p1 = 1
n

∑n
i=1 pi = p.

• If M = L ⊕ P , then n = 2, T1 = T2 = S, N1 = L and N2 = P . Then, con-

sider the distribution D
def
=
∑2
i=1

1
2Ei and observe that ES(M) = ES(L ⊕ P) 7→n

ES(L), ES(P) = ET1(N1), ET2(N2). Hence, ES(M) ⇒IN D by smn rule. Moreover,∑
D =

∑∑2
i=1

1
2Ei = 1

2

∑2
i=1

∑
Ei = 1

2

∑2
i=1 pi = p.

• If M = LP , then n = 1, T1 = [·]P :: S and N1 = L. Then, consider the distribution

D
def
= E1 and observe that E[·]P ::S(L) ⇒IN E1 implies ES(M) ⇒IN D . Moreover,∑
D =

∑
E1 = p1 = 1

n

∑n
i=1 pi = p.

This concludes the proof. �

2. For all D , if M ⇒IN D then ∃S, N. ES(N) = M and (S, N) ↓pn with
∑

D = p.

Proof. By induction on the derivation of M ⇒IN D , looking at the last rule used. (We
refer here to the inductive schema of inference rules gave in [10] for small-step call-by-name
semantics of Λ⊕.)

• sen rule used: M ⇒IN ∅. Then, for every S and every N such that ES(N) = M , (S, N) ↓0n
by (empty) rule. Of course,

∑
D = 0 = p.

• svn rule used: M is a value, say V , and D = {V 1} with V ⇒IN {V 1}. Then, consider

S
def
= nil and N

def
= V : by definition ES(N) = Enil(V) = V = M . By (value) rule,

(nil, V) ↓1n hence
∑

D = 1 = p.
• svn rule used: M ⇒IN

∑n
i=1

1
nEi from M 7→n Q1, . . . , Qn with, for every i ∈ {1, . . . , n},

Qi ⇒IN Ei. By induction hypothesis, for every i ∈ {1, . . . , n}, there exist Ti and Ni such
that ETi(Ni) = Qi and (Ti, Ni) ↓pin with

∑
Ei = pi.

Let us proceed by cases according to the structure of M .

• If M = (λx.L)P , then n = 1 and Q1 = L{P/x}. Hence, consider S
def
= [·]P :: nil and

N
def
= λx.L: by definition, ES(N) = E[·]P ::nil(λx.L) = Enil((λx.L)P) = (λx.L)P =

M . By (term) rule, (S, N) = ([·]P :: nil, λx.L) n (nil, L{P/x}) with, by induction
hypothesis result, (nil, L{P/x}) ↓p1n . The latter implies (S, N) ↓p1n . Moreover,

∑
D =∑∑n

i=1
1
nEi =

∑
E1 = p1 = p.

• If M = L ⊕ P , then n = 2, Q1 = L and Q2 = P . Hence, consider S
def
= nil

and N
def
= L ⊕ P : by definition, ES(N) = Enil(L ⊕ P) = L ⊕ P = M . By (term)

rule, (S, N) = (nil, L ⊕ P) n (nil, L), (nil, P) with, by induction hypothesis

result, (nil, L) ↓p1n and (nil, P) ↓p2n . The latter implies (S, N) ↓
1
2

∑2
i=1 pi

n . Moreover,∑
D =

∑∑n
i=1

1
nEi =

∑∑n
i=1

1
2Ei = 1

2

∑2
i=1

∑
Ei = 1

2

∑2
i=1 pi = p.

• If M = LP and L 7→n R1, . . . , Rn, then Qi = RiP for every i ∈ {1, . . . , n}. Hence,

consider S
def
= [·]P :: nil and N

def
= L: by definition, ES(N) = E[·]P ::nil(L) =

Enil(LP) = LP = M . By (term) rule, (S, N) = ([·]P :: nil, L) n ([·]P ::
nil, R1), . . . , ([·]P :: nil, Rn) with, by induction hypothesis result, ([·]P :: nil, Ri) ↓pin
for every i ∈ {1, . . . , n}. The latter implies (S, N) ↓

1
n

∑n
i=1 pi

n . Moreover,
∑

D =∑∑n
i=1

1
nEi = 1

n

∑n
i=1

∑
Ei = 1

n

∑n
i=1 pi = p.

This concludes the proof. �

30

Generally speaking, the two properties above prove the following double implication:

(S,M) ↓pn ⇐⇒ ES(M) ⇓IN D with
∑

D = p. (7)

Then,

p = C(S,M) = sup
q∈R

(S,M) ↓qn= sup
ES(M)⇓IND

∑
D

=
∑

sup
ES(M)⇓IND

D =
∑

[[ES(M)]] = ES(M)⇓p,

which concludes the proof. �

Given M,N ∈ Λ⊕(∅), we define M �CIU N iff for every S, C(S,M) ≤ C(S, N). This relation
can be extended to a relation on open terms in the usual way. Moreover, we stipulate M ∼=CIU N
iff both M �CIU N and N �CIU M .

Since �CIU is a preorder, proving it to be a precongruence boils down to show the following
implication:

M(�CIU)
H
N ⇒M �CIU N.

Indeed, the converse implication is a consequence of Lemma 3.12 and the obvious reflexivity of
�CIU relation. To do that, we extend Howe’s construction to frame stacks in a natural way:

nilRHnil
(Howstk1)

∅ `M RH N SRHT

([·]M :: S)RH([·]N :: T)
(Howstk2)

Lemma 5.3 For every x ∈ PFIN(X), it holds x ` (λx.M)N ∼=CIU M{N/x}.

Proof. We need to show that both x ` (λx.M)N �CIU M{N/x} and x ` M{N/x} �CIU

(λx.M)N hold. Since �CIU is defined on open terms by taking closing term-substitutions, it suffices
to show the result for close Λ⊕-terms only: (λx.M)N �CIU M{N/x} and M{N/x} �CIU (λx.M)N .

Let us start with (λx.M)N �CIU M{N/x} and prove that, for every close frame stack
S, C(S, (λx.M)N) ≤ C(S,M{N/x}). The latter is an obvious consequence of the fact that
(S, (λx.M)N) reduces to (S,M{N/x}). Let us look into the details distinguishing two cases:
• If S = nil, then (S, (λx.M)N) n ([·]N :: S, λx.M) n (S,M{N/x}) which implies that

C(S, (λx.M)N) = supp∈R(S, (λx.M)N) ↓pn= supp∈R(S,M{N/x}) ↓pn= C(S,M{N/x}).
• If S = [·]L :: T, then we can proceed similarly.

Similarly, to prove the converse, M{N/x} �CIU (λx.M)N , let us fix p as (S,M{N/x}) ↓pn and
distinguish two cases:
• If S = nil and p = 0, then (S, (λx.M)N) ↓0n holds too by (empty) rule. Otherwise,

(S,M) n ([·]N :: S, λx.M)

([·]N :: S, λx.M) n (S,M{N/x}) (S,M{N/x}) ↓pn
([·]N :: S, λx.M) ↓pn

(term)

(S, (λx.M)N) ↓pn
(term)

which implies C(S,M{N/x}) = supp∈R(S,M{N/x}) ↓pn= supp∈R(S, (λx.M)N) ↓pn= C(S, (λx.M)N).
• If S = [·]L :: T, then we can proceed similarly.

This concludes the proof. �

Lemma 5.4 For every S,T ∈ FS(∅) and M,N ∈ Λ⊕(∅), if S(�CIU)
H

T and M(�CIU)
H
N and

(S,M) ↓pn, then C(T, N) ≥ p.

Proof. We go by induction on the structure of the proof of (S,M) ↓pn, looking at the last rule
used.

31

• If (S,M) ↓0n, then trivially C(T, N) ≥ 0.

• If S = nil, M = λx.L and p = 1, then T = nil since S(�CIU)
H

T. From M(�CIU)
H
N , it

follows that there is P with x ` L (�CIU)
H
P and ∅ ` λx.P �CIU N . But the latter implies

that C(nil, N) ≥ 1, which is the thesis.
• Otherwise, (term) rule is used and suppose we are in the following situation

(S,M) n (U1, L1), . . . , (Un, Ln) (Ui, Li) ↓pin
(S,M) ↓

1
n

∑n
i=1 pi

n

(term)

Let us distinguish the following cases as in definition of n:

• If M = PQ, then n = 1, U1 = [·]Q :: S and L1 = P . From M(�CIU)
H
N it follows that

there are R,S with ∅ ` P (�CIU)
H
R, ∅ ` Q (�CIU)

H
S and ∅ ` RS �CIU N . But then we

can form the following:

∅ ` Q (�CIU)
H
S ∅ ` S (�CIU)

H
T

∅ ` U1 (�CIU)
H

[·]S :: T
(Howstk2)

and, by the induction hypothesis, conclude that C([·]S :: T, R) ≥ p. Now observe that

(T, RS) n ([·]S :: T, R),

and, as a consequence, C(T, RS) ≥ p, from which the thesis easily follows given that
∅ ` RS �CIU N .

• If M = P ⊕ Q, then n = 2, U1 = U2 = S and L1 = P , L2 = Q. From S(�CIU)
H

T, we

get that U1(�CIU)
H

T and U2(�CIU)
H

T. From M(�CIU)
H
N it follows that there are R,S

with ∅ ` P (�CIU)
H
R, ∅ ` Q (�CIU)

H
S and ∅ ` R ⊕ S �CIU N . Then, by a double

induction hypothesis, it follows C(T, R) ≥ p and C(T, S) ≥ p. The latter together imply
C(T, R⊕ S) ≥ p, from which the thesis easily follows given that ∅ ` R⊕ S �CIU N .

• If M = λx.P , then S = [·]Q :: U because the only case left. Hence n = 1, U1 = U and

L1 = P{Q/x}. From S(�CIU)
H

T, we get that T = [·]R :: V where ∅ ` Q (�CIU)
H
R and

U(�CIU)
H

V. From M(�CIU)
H
N , it follows that for some S, it holds that x ` P (�CIU)

H
S

and ∅ ` λx.S �CIU N . Now:

(T, λx.S) = ([·]R :: V, λx.S) n (V, S{R/x}). (8)

From x ` P (�CIU)
H
S and ∅ ` Q (�CIU)

H
R, by substitutivity of �CIU, follow that ∅ `

P{Q/x} (�CIU)
H
S{R/x} holds. By induction hypothesis, it follows that C(V, S{R/x}) ≥ p.

Then, from (8) and ∅ ` λx.S �CIU N , the thesis easily follows:

C(T, N) ≥ C(T, λx.S) = C(V, S{R/x}) ≥ p.

This concludes the proof. �

Theorem 5.5 For all x ∈ PFIN(X) and for all M, N ∈ Λ⊕(x), x `M �CIU N iff x `M ≤⊕ N .

Proof. (⇒) Since�CIU is defined on open terms by taking closing term-substitutions, by Lemma 3.13

both it and (�CIU)
H

are closed under term-substitution. Then, it suffices to show the result for
closed Λ⊕-terms: for all M, N ∈ Λ⊕(∅), if ∅ ` M �CIU N , then ∅ ` M ≤⊕ N . Since �CIU is

reflexive, by Lemma 3.10 follows that (�CIU)
H

is compatible, hence reflexive too. Taking T = S in

Lemma 5.4, we conclude that ∅ ` M (�CIU)
H
N implies ∅ ` M �CIU N . As we have remarked

before the lemma, the latter entails that (�CIU)
H

=�CIU which implies �CIU of being compatible.
Moreover, from Lemma 5.2 immediately follows that �CIU is also adequate. Thus, �CIU is contained

32

in the largest compatible adequate Λ⊕-relation, ≤ca
⊕ . From Lemma 4.6 follows that �CIU is actually

contained in ≤⊕. In particular, the latter means ∅ `M �CIU N implies ∅ `M ≤⊕ N .
(⇐) First of all, please observe that, since context preorder is compatible, if ∅ `M ≤⊕ N then,

for all S ∈ FS(∅), ∅ ` ES(M) ≤⊕ ES(N) by Lemma 3.35. Then, by adequacy property of ≤⊕ and
Lemma 5.2, the latter implies ∅ ` M �CIU N . Ultimately, it holds that ∅ ` M ≤⊕ N implies
∅ `M �CIU N . Let us take into account the general case of open terms. If x `M ≤⊕ N , then
by compatibility property of ≤⊕ it follows ∅ ` λx.M ≤⊕ λx.N and hence ∅ ` λx.M �CIU λx.N .
Then, from the fact that �CIU is compatible (as established in (⇒) part of this proof) and Lemma 5.3,

for every suitable L ⊆ Λ⊕(∅), it holds ∅ `M{L/x} �CIU N{L/x}, i.e. x `M �CIU N . �
Corollary 5.6 ∼=CIU coincides with '⊕.

Proof. Straightforward consequence of Theorem 5.5. �
Proposition 5.7 ≤⊕ and . do not coincide.

Proof. We will prove that M �CIU N but M 6. N , where

M
def
= λx.λy.x⊕ y;

N
def
= (λx.λy.x)⊕ (λx.λy.y).

M 6. N can be easily verified, so let us concentrate on M �CIU N , and prove that for every S,
C(S,M) ≤ C(S, N). Let us distinguish three cases:
• If S = nil, then (S,M) cannot be further reduced and (S, N) n (S, λx.λy.x), (S, λx.λy.y),

where the last two pairs cannot be reduced. As a consequence, C(S,M) = 0 = C(S, N).
• If S = [·]L :: T, then we can proceed similarly.
• If S = [·]L :: [·]P :: T, then observe that

(S,M) n ([·]P :: T, λy.L⊕ y) n (T, L⊕ P)

 n (T, L), (T, P);

(S, N) n (S, λx.λy.x), (S, λx.λy.y);

(S, λx.λy.x) n ([·]P :: T, λy.L) n (T, L);

(S, λx.λy.y) n ([·]P :: T, λy.y) n (T, P).

As a consequence,

C(S,M) =
1

2
C(T, L) +

1

2
C(T, P) = C(S, N).

This concludes the proof. �
Example 5.8 We consider again the programs from Example 2.6. Terms expone and exptwo

only differ because the former performs all probabilistic choices on natural numbers obtained by
applying a function to its argument, while in the latter choices are done at the functional level,
and the argument to those functions is provided only at a later stage. As a consequence, the two
terms are not applicative bisimilar, and the reason is akin to that for the inequality of the terms
in Example 3.38. In contrast, the bisimilarity between expone and expthree k, where k is any
natural number, intuitively holds because both expone and expthree k evaluate to a single term
when fed with a function, while they start evolving in a genuinely probabilistic way only after the
second argument is provided. At that point, the two functions evolve in very different ways, but
their semantics (in the sense of Section 2) is the same (cf., Lemma 3.4). As a bisimulation one
can use the equivalence generated by the relation

(⋃

k

{(expone, expthree k)}
)
∪ {(M,N) | [[M]] = [[N]]}

∪
(⋃

L

{(λn.B{L/f}, λn.C{L/f})}
)

33

using B and C for the body of expone and expthree respectively.

6 The Discriminating Power of Probabilistic Contexts

We show here that applicative bisimilarity and context equivalence collapse if the tested terms
are pure, deterministic, λ-terms. In other words, if the probabilistic choices are brought into the
terms only through the inputs supplied to the tested functions, applicative bisimilarity and context
equivalence yield exactly the same discriminating power. To show this, we prove that, on pure
λ-terms, both relations coincide with the Levy-Longo tree equality, which equates terms with the
same Levy-Longo tree (briefly LLT) [14].

LLT’s are the lazy variant of Böhm Trees (briefly BT), the most popular tree structure in
the λ-calculus. BT’s only correctly express the computational content of λ-terms in a strong
regime, while they fail to do so in the lazy one. For instance, the term λx.Ω and Ω, as both
unsolvable [4], have identical BT’s, but in a lazy regime we would always distinguish between them;
hence they have different LLT’s. LLT’s were introduced by Longo [30], developing an original
idea by Levy [29]. The Levy-Longo tree of M , LT (M), is coinductively constructed as follows:

LT (M)
def
= λx1. . . . xn.⊥ if M is an unsolvable of order n; LT (M)

def
= > if M is an unsolvable of

order∞; finally if M has principal head normal form λx1. . . . xn.yM1 . . .Mm, then LT (M) is a tree
with root λx1. . . . xn.y and with LT (M1), . . . , LT (Mm) as subtrees. Being defined coinductively,
LLT’s can of course be infinite. We write M =LL N iff LT (M) = LT (N).

Example 6.1 Let Ξ be an unsolvable of order ∞ such as Ξ
def
= (λx.λy.(xx))(λx.λy.(xx)), and

consider the terms

M
def
= λx.(x(λy.(xΞΩy))Ξ); N

def
= λx.(x(xΞΩ)Ξ).

These terms have been used to prove non-full-abstraction results in a canonical model for the
lazy λ-calculus by Abramsky and Ong [2]. For this, they show that in the model the convergence
test is definable (this operator, when it receives an argument, would return the identity function
if the supplied argument is convergent, and would diverge otherwise). The convergence test, ∇,
can distinguish between the two terms, as M∇ reduces to an abstraction, whereas N∇ diverges.
However, no pure λ-term can make the same distinction. The two terms also have different LL
trees:

LT (M) = λx.x

��@@
λy.x >
@@��

> ⊥ y

LT (N) = λx.x

��@@
x >
@@��

> ⊥

Although in Λ⊕, as in Λ, the convergence test operator is not definable, M and N can be separated
using probabilities by running them in a context C that would feed Ω⊕ λz.λu.z as argument; then
C[M]⇓ 1

2
whereas C[N]⇓ 1

4
.

Example 6.2 Abramsky’s canonical model is itself coarser than LLT equality. For instance, the

terms M
def
= λx.xx and N

def
= λx.(xλy.(xy)), have different LLT’s but are equal in Abramsky’s

model (and hence equal for context equivalence in Λ). They are separated by context equivalence in

Λ⊕, for instance using the context C
def
= [·](I ⊕ Ω), since C[M]⇓ 1

4
whereas C[N]⇓ 1

2
.

We already know that on full Λ⊕, applicative bisimilarity (∼) implies context equivalence ('⊕).
Hence, to prove that on pure λ-terms the two equivalences collapse to LLT equality (=LL), it
suffices to prove that, for those pure terms, '⊕ implies =LL, and that =LL implies ∼.

The first implication is obtained by a variation on the Böhm-out technique, a powerful method-
ology for separation results in the λ-calculus, often employed in proofs about local structure

34

characterisation theorems of λ-models. For this we exploit an inductive characterisation of LLT
equality via stratification approximants (Definition 6.5). The key Lemma 6.7 shows that any
difference on the trees of two λ-terms within level n can be observed by a suitable context of the
probabilistic λ-calculus.

We write]M as an abbreviation for the term Ω ⊕M . We denote by Qn, n > 0, the term
λx1. . . . λxn.xnx1x2 · · ·xn−1. This is usually called the Böhm permutator of degree n. Böhm
permutators play a key role in the Böhm-out technique. A variant of them, the]-permutators,
play a pivotal role in Lemma 6.7 below. A term M ∈ Λ⊕ is a]-permutator of degree n if either
M = Qn or there exists 0 ≤ r < n such that

M = λx1. . . . λxr.] λxr+1 · · ·λxn.xnx1 · · ·xn−1 .

Finally, a function f from the positive integers to λ-terms is a]-permutator function if, for all
n, f(n) is a]-permutator of degree n. Before giving the main technical lemma, it is useful some
auxiliary concepts. The definitions below rely on two notions of reduction: M −→p N means
that M call-by-name reduces to N in one step with probability p. (As a matter of fact, p can be
either 1 or 1

2 .) Then =⇒ is obtained by composing −→ zero or more times (and multiplying the
corresponding real numbers). If p = 1 (because, e.g., we are dealing with pure λ-terms) =⇒p can
be abbreviated just as =⇒. With a slight abuse of notation, we also denote with =⇒ the multi-step
lazy reduction relation of pure, open terms. The specialised form of probabilistic choice]M can
be thought of as a new syntactic construct. Thus Λ] is the set of pure λ-terms extended with the
] operator. As] is a derived operator, its operational rules are the expected ones:

]M −→ 1
2

Ω
]L]M −→ 1

2
M
]R

The restriction on =⇒ in which]R, but not]L, can be applied, is called V. In the following, we
need the following lemma:

Lemma 6.3 Let M,N,L, P be closed Λ] terms. Suppose
∑

[[M]] =
∑

[[N]], that M Vp L and
N Vp P . Then also

∑
[[L]] =

∑
[[P]].

Proof. Of course, p = 1
2n for some integer n ∈ N. Then

∑
[[L]] = 2n

∑
[[M]] = 2n

∑
[[N]] =

∑
[[P]].

�

The proof of the key Lemma 6.7 below makes essential use of a characterization of =LL by a
bisimulation-like form of relation:

Definition 6.4 (Open Bisimulation) A relation R on pure λ-terms is an open bisimulation if
M R N implies:
1. if M =⇒ λx.L, then N =⇒ λx.P and L R P ;
2. if M =⇒ xL1 · · ·Lm, then P1, . . . , Pm exist such that N =⇒ xP1 · · ·Pm and Li R Pi for every

1 ≤ i ≤ m;
and conversely on reductions from N . Open bisimilarity, written ∼O, is the union of all open
bisimulations.

Open bisimulation has the advantage of very easily providing a notion of approximation:

Definition 6.5 (Approximants of ∼O) We set:

• ∼O
0

def
= Λ× Λ;

• M ∼O
n+1 N when

1. if M =⇒ λx.L, then P exists such that N =⇒ λx.P and L ∼O
n P ;

2. if M =⇒ xL1 · · ·Lm, then P1, . . . , Pm exist such that N =⇒ xP1 · · ·Pm and Li ∼O
n Pi, for

each 1 ≤ i ≤ m;
and conversely on the reductions from N .

Please observe that:

35

Lemma 6.6 On pure λ-terms, the relations =LL, ∼O and (
⋂
n∈N ∼O

n) all coincide.

We are now ready to state and prove the key technical lemma:

Lemma 6.7 Suppose M 6∼O
n N for some n, and let {x1, . . . , xr} be the free variables in M,N . Then

there are integers mx1
, . . . ,mxr and k, and permutator functions fx1

, . . . , fxr such that, for all m >
k, there are closed terms Rm such that the following holds: if M{fx1(m+mx1)/x1} . . . {fxr (m+mxr)/xr}Rm⇓r
and N{fx1(m+mx1)/x1} . . . {fxr (m+mxr)/xr}Rm⇓s , then r 6= s.

Proof. The proof proceeds by induction on the least n such that M 6∼O
n N . For any term M , Mf

will stand for M{fx1(m+mx1)/x1} . . . {fxr (m+mxr)/xr} where x1 . . . xr are the free variables in
M . We also write Ωm for a sequence of m occurrences of Ω: so, e.g., MΩ3 is MΩΩΩ. Finally, for
any term M , we write M ⇑ to denote the fact that M does not converge.
• Basic case. M 6∼O

1 N . There are a few cases to consider (their symmetric ones are analo-
gous).
• The case where only one of the two terms diverges is easy.
• M =⇒ xM1 · · ·Mt and N =⇒ xN1 · · ·Ns with t < s. Take mx = s and fx(n) = Qn (the

Böhm permutator of degree n). The values of the other integers (k,my for y 6= x) and of

the other permutation functions are irrelevant. Set Rm
def
= Ωm. We have

MfΩm =⇒ Qm+sM
f
1 . . .M

f
t Ωm ⇓1

since t+m < s+m. We also have

NfΩm =⇒ Qm+sN
f
1 . . . N

f
s Ωm ⇑

since m > 0 and therefore an Ω term will be end up at the head of the term.
• M =⇒ xM1 · · ·Mt and N =⇒ yN1 · · ·Ns with x 6= y. Assume t ≤ s without loss of

generality. Take mx = s + 1, my = s, and fx(n) = fy(n) = Qn. The values of the other

integers and permutation functions are irrelevant. Set Rm
def
= Ωm. We have

MfΩm =⇒ Qm+s+1M
f
1 . . .M

f
t Ωm ⇓1

since m+ s+ 1 > t+m. We also have

NfΩm =⇒ Qm+sN
f
1 . . . N

f
s Ωm ⇑

since m > 0 and therefore an Ω term will be end up at the head of the term.
• M =⇒ λx.M ′ and N =⇒ yN , for some y and N . The values of the integers and permutator

functions are irrelevant. Set Rm
def
= ∅ (the empty sequence), and fy(n)

def
=]Qn. We have

Mf =⇒ λx.M ′f ⇓1, whereas

Nf =⇒]Qm+myN
f ⇓<1

• Inductive case: M 6∼O
n+1N . There are two cases to look at.

• M =⇒ xM1 · · ·Ms, N =⇒ xN1 · · ·Ns and for some i, Mi 6∼O
nNi. By induction, (for all

variables y) there are integers my, k and permutator functions fy, such that for all m > k

there are Sm and we have
∑

[[Mf
i Sm]] 6= ∑[[Nf

i Sm]]. Redefine k if necessary so to make sure

that k > s. Set Rm
def
= Ωm+mx−s−1(λx1 . . . xm+mx .xi)Sm. We have:

MfRm =⇒ fx(m+mx)Mf
1 . . .M

f
s Ωm+mx−s−1(λx1 . . . xm+mx .xi)Sm =⇒p M

f
i Sm

whereas

NfRm =⇒ fx(m+mx)Nf
1 . . . N

f
s Ωm+mx−s−1(λx1 . . . xm+mx .xi)Sm =⇒p N

f
i Sm

where p is 1
2 or 1 depending on whether fx contains] or not. In any case, in both

derivations, rule]L has not been used. By Lemma 6.3 and the inductive assumption∑
[[Mf

i Sm]] 6= ∑[[Nf
i Sm]] we derive that

∑
[[MfRm]] 6= ∑[[NfRm]] too.

36

• M =⇒ λx.M ′, N =⇒ λx.N ′ and M ′ 6∼O
nN
′. By induction, (for all variables y) there are

integers my, k and permutator functions fy, such that for all m > k there are Sm and we

have
∑

[[M ′fSm]] 6= ∑
[[N ′fSm]]. Set Rm

def
= fx(m + mx)Sm. Below for a term L, Lf−x is

defined as Lf except that variable x is left uninstantiated. We have:

MfRm =⇒ (λx.M ′
f−x

)fx(m+mx)Sm −→ (M ′
f−x{fx(m+mx)/x})Sm = M ′

f
Sm

whereas

NfRm =⇒ (λx.N ′
f−x

)fx(m+mx)Sm −→ (N ′
f−x{fx(m+mx)/x})Sm = N ′

f
Sm

Again, by Lemma 6.3 and the inductive hypothesis, we derive
∑

[[MfRm]] 6= ∑[[NfRm]].
This concludes the proof. �

The fact the Böhm-out technique actually works implies that the discriminating power of
probabilistic contexts is at least as strong as the one of LLT’s.

Corollary 6.8 For M,N ∈ Λ, M'⊕N implies M =LL N .

To show that LLT equality is included in probabilistic applicative bisimilarity, we proceed as follows.
First we define a refinement of the latter, essentially one in which we observe all probabilistic choices.
As a consequence, the underlying bisimulation game may ignore probabilities. The obtained notion
of equivalence is strictly finer than probabilistic applicative bisimilarity. The advantage of the
refinement is that both the inclusion of LLT equality in the refinement, and the inclusion of the
latter in probabilistic applicative bisimilarity turn out to be relatively easy to prove. A direct proof
of the inclusion of LLT equality in probabilistic applicative bisimilarity would have been harder,
as it would have required extending the notion of a Levy-Longo tree to Λ⊕, then reasoning on
substitution closures of such trees.

Definition 6.9 A relation R ⊆ Λ⊕(∅) × Λ⊕(∅) is a strict applicative bisimulation whenever
M R N implies
1. if M −→1 P , then N =⇒1 Q and P R Q;
2. if M −→ 1

2
P , then N =⇒ 1

2
Q and P R Q;

3. if M = λx.P , then N =⇒1 λx.Q and P{L/x} R Q{L/x} for all L ∈ Λ⊕(∅);
4. the converse of 1., 2. and 3..
Strict applicative bisimilarity is the union of all strict applicative bisimulations.

If two terms have the same LLT, then passing them the same argument M ∈ Λ⊕ produces exactly
the same choice structure: intuitively, whenever the first term finds (a copy of) M in head position,
also the second will find M .

Lemma 6.10 If M =LL N then M R N , for some strict applicative bisimulation R.

Terms which are strict applicative bisimilar cannot be distinguished by applicative bisimilarity
proper, since the requirements induced by the latter are less strict than the ones the former imposes:

Lemma 6.11 Strict applicative bisimilarity is included in applicative bisimilarity.

Since we now know that for pure, deterministic λ-terms, =LL is included in ∼ (by Lemma 6.10
and Lemma 6.11), that ∼ is included in '⊕ (by Theorem 3.37) and that the latter is included in
=LL (Corollary 6.8), we can conclude:

Corollary 6.12 The relations =LL, ∼, and '⊕ coincide in Λ.

37

7 Coupled Logical Bisimulation

In this section we derive a coinductive characterisation of probabilistic context equivalence on the
whole language Λ⊕ (as opposed to the subset of sum-free λ-terms as in Section 6). For this, we
need to manipulate formal weighted sums. Thus we work with an extension of Λ⊕ in which such
weighted sums may appear in redex position. An advantage of having formal sums is that the
transition system on the extended language can be small-step and deterministic — any closed term
that is not a value will have exactly one possible internal transition.

This will make it possible to pursue the logical bisimulation method, in which the congruence
of bisimilarity is proved using a standard induction argument over all contexts. The refinement
of the method handling probabilities, called coupled logical bisimulation, uses pairs of relations,
as we need to distinguish between ordinary terms and terms possibly containing formal sums.
Technically, in the proof of congruence we first prove a correspondence between the transition
system on extended terms and the original one for Λ⊕; we then derive a few up-to techniques for
coupled logical bisimulations that are needed in the following proofs; finally, we show that coupled
logical bisimulations are preserved by the closure of the first relation with any context, and the
closure of the second relation with any evaluation context.

We preferred to follow logical bisimulations rather then environmental bisimulations because the
former admit a simpler definition (in the latter, each pair of terms is enriched with an environment,
that is, an extra set of pairs of terms). Moreover it is unclear what environments should be when
one also considers formal sums. We leave this for future work.

Formal sums are a tool for representing the behaviour of running Λ⊕ terms. Thus, on terms
with formal sums, only the results for closed terms interest us. However, the characterization of
contextual equivalence in Λ⊕ as coupled logical bisimulation also holds on open terms.

7.1 Notation and Terminology

We write ΛFS
⊕ for the extension of Λ⊕ in which formal sums may appear in redex position. Terms

of ΛFS
⊕ are defined as follows (M,N being Λ⊕-terms):

E,F ::= EM | Σi∈I〈Mi, pi〉 | M ⊕N | λx.M.

In a formal sum Σi∈I〈Mi, pi〉, I is a countable (possibly empty) set of indices such that
∑
i∈I pi ≤ 1.

We use + for binary formal sums. Formal sums are ranged over by metavariables like H,K. When
each Mi is a value (i.e., an abstraction) then Σi∈I〈Mi, pi〉 is a (formally summed) value; such values
are ranged over by Z, Y,X. If H = Σi∈I〈Mi, pi〉 and K = Σj∈J〈Mj , pj〉 where I and J are disjoint,
then H ⊕K abbreviates Σr∈I∪J〈Mr,

pr
2 〉. Similarly, if for every j ∈ J Hj is Σi∈I〈Mi,j , pi,j〉, then

Σj〈Hj , pj〉 stands for Σ(i,j)〈Mi,j , pi,j · pj〉. For H = Σi〈Mi, pi〉 we write Σ(H) for the real number∑
i pi. If Z = Σi〈λx.Mi, pi〉, then Z •N stands for Σi〈Mi{N/x}, pi〉. The set of closed terms is

ΛFS
⊕ (∅).

Any partial value distribution D (in the sense of Section 2) can be seen as the formal sum
ΣV ∈VΛ⊕〈V,D(V)〉. Similarly, any formal sum H = Σi∈I〈Mi, pi〉 can be mapped to the distribution∑

i∈I pi · [[Mi]], that we indicate with [[H]].
Reduction between ΛFS

⊕ terms, written E F , is defined by the rules in Figure 6; these rules
are given on top of the operational semantics for Λ⊕ as defined in Section 2, which is invoked in the
premise of rule spc (if there is a i with Mi not a value). The reduction relation is deterministic
and strongly normalizing. We use for its reflexive and transitive closure. Lemma 7.1 shows the
agreement between the new reduction relation and the original one.

Lemma 7.1 For all M ∈ Λ⊕(∅) there is a value Z such that M Z and [[M]] = [[Z]].

Proof. One first show that for all E there is n such that E n Z. Then one reasons with a double
induction: an induction on n, and a transition induction, exploiting the determinism of . �

38

M ⊕N 〈M, 1
2 〉+ 〈N, 1

2 〉
ss

λx.M 〈λx.M, 1〉 sl
[[Mi]] = Di

Σi〈Mi, pi〉 Σi〈Di, pi〉
spc

ZM Z •M sp E F
EM FM

sa

Figure 6: Reduction Rules for ΛFS
⊕

7.2 Context Equivalence and Bisimulation

In ΛFS
⊕ certain terms (i.e., formal sums) may only appear in redex position; ordinary terms (i.e.,

terms in Λ⊕), by contrast, may appear in arbitrary position. When extending context equivalence
to ΛFS

⊕ we therefore have to distinguish these two cases. Moreover, as our main objective is the
characterisation of context equivalence in Λ⊕, we set a somewhat constrained context equivalence
in ΛFS

⊕ in which contexts may not contain formal sums (thus the ΛFS
⊕ contexts are the same as

the Λ⊕ contexts). We call these simple ΛFS
⊕ contexts, whereas we call general ΛFS

⊕ context an
unconstrained context, i.e., a ΛFS

⊕ term in which the hole [·] may appear in any places where a term
from Λ⊕ was expected — including within a formal sum. (Later we will see that allowing general
contexts does not affect the resulting context equivalence.) Terms possibly containing formal sums
are tested in evaluation contexts, i.e., contexts of the form [·]M . We write E�p if E Z and
Σ(Z) = p (recall that Z is unique, for a given E).

Definition 7.2 (Context Equivalence in ΛFS
⊕) Two Λ⊕-terms M and N are context equiva-

lent in ΛFS
⊕ , written M 'FS

⊕ N , if for all (closing) simple ΛFS
⊕ contexts C, we have C[M]�p iff

C[N]�p. Two ΛFS
⊕ -terms E and F are evaluation-context equivalent, written E uFS

⊕ F , if for all
(closing) ΛFS

⊕ evaluation contexts C, we have C[E]�p iff C[F]�p.

In virtue of Lemma 7.1, context equivalence in Λ⊕ coincides with context equivalence in ΛFS
⊕ .

We now introduce a bisimulation that yields a coinductive characterisation of context equivalence
(and also of evaluation-context equivalence). A coupled relation is a pair (V, E) where: V ⊆
Λ⊕(∅) × Λ⊕(∅), E ⊆ ΛFS

⊕ (∅) × ΛFS
⊕ (∅), and V ⊆ E . Intuitively, we place in V the pairs of terms

that should be preserved by all contexts, and in E those that should be preserved by evaluation
contexts. For a coupled relation R = (V, E) we write R1 for V and R2 for E . The union of coupled
relations is defined componentwise: e.g., if R and SS are coupled relations, then the coupled

relation R ∪ SS has (R ∪ SS)1
def
= R1 ∪ SS1 and (R ∪ SS)2

def
= R2 ∪ SS2. If V is a relation

on Λ⊕, then VC is the context closure of V in Λ⊕, i.e., the set of all (closed) terms of the form
(C[M], C[N]) where C is a multi-hole Λ⊕ context and M V N .

Definition 7.3 A coupled relation R is a coupled logical bisimulation if whenever E R2 F we
have:
1. if E D, then F G, where D R2 G;
2. if E is a formally summed value, then F Y with Σ(E) = Σ(Y), and for all M RC

1 N we
have (E •M) R2 (Y •N);

3. the converse of 1. and 2..
Coupled logical bisimilarity, ≈, is the union of all coupled logical bisimulations (hence ≈1 is the
union of the first component of all coupled logical bisimulations, and similarly for ≈2).

In a coupled bisimulation (R1,R2), the bisimulation game is only played on the pairs in R2.
However, the first relation R1 is relevant, as inputs for tested functions are built using R1 (Clause
2. of Definition 7.3). Actually, also the pairs in R1 are tested, because in any coupled relations it
must be R1 ⊆ R2. The values produced by the bisimulation game for coupled bisimulation on R2

are formal sums (not plain λ-terms), and this is why we do not require them to be in R1: formal

39

sums should only appear in redex position, but terms in R1 can be used as arguments to bisimilar
functions and can therefore end up in arbitrary positions.

We will see below another aspect of the relevance of R1: the proof technique of logical
bisimulation only allows us to prove substitutivity of the bisimilarity in arbitrary contexts for the
pairs of terms in R1. For pairs in R2 but not in R1 the proof technique only allows us to derive
preservation in evaluation contexts.

In the proof of congruence of coupled logical bisimilarity we will push “as many terms as
possible” into the first relation, i.e., the first relation will be as large as possible. However, in
proofs of bisimilarity for concrete terms, the first relation may be very small, possibly a singleton
or even empty. Then the bisimulation clauses become similar to those of applicative bisimulation
(as inputs of tested function are “almost” identical). Summing up, in coupled logical bisimulation
the use of two relations gives us more flexibility than in ordinary logical bisimulation: depending
on the needs, we can tune the size of the first relation. It is possible that some of the above aspects
of coupled logical bisimilarity be specific to call-by-name, and that the call-by-value version would
require non-trivial modifications.

Remark 7.4 In a coupled logical bisimulation, the first relation is used to construct the inputs for
the tested functions (the formally summed values produced in the bisimulation game for the second
relation). Therefore, such first relation may be thought of as a “global” environment— global because
it is the same for each pair of terms on which the bisimulation game is played. As a consequence,
coupled logical bisimulation remains quite different from environmental bisimulation [45], where
the “environment” for constructing inputs is local to each pair of tested terms. Coupled logical
bisimulation follows ordinary logical bisimulation [44], in which there is only one global environment;
in ordinary logical bisimulation, however, the global environment coincides with the set of tested
terms. The similarity with logical bisimulation is also revealed by non-monotonicity of the associated
functional (in contrast, the functional associated to environmental bisimulation is monotone); see
Remark 7.17.

As an example of use of coupled logical bisimulation, we revisit the counterexample 3.38 to the
completeness of applicative bisimilarity with respect to contextual equivalence.

Example 7.5 We consider the terms of Example 3.38 and show that they are in ≈1, hence
also in '⊕ (contextual equivalence of Λ⊕), by Corollary 7.12 and 'FS

⊕ = '⊕. Recall that the

terms are M
def
= λx.(L ⊕ P) and N

def
= (λx.L) ⊕ (λx.P) for L

def
= λz.Ω and P

def
= λy.λz.Ω.

We set R1 to contain only (M,N) (this is the pair that interests us), and R2 to contain the
pairs (M,N), (〈M, 1〉, 〈λx.L, 1

2 〉+ 〈λx.P, 1
2 〉), (〈L + P, 1〉, 〈L, 1

2 〉+ 〈P, 1
2 〉), and a set of pairs with

identical components, namely (〈L, 1
2 〉+〈P, 1

2 〉, 〈L, 1
2 〉+〈P, 1

2 〉), (〈Ω, 1
2 〉+〈λu.Ω, 1

2 〉, 〈Ω, 1
2 〉+〈λu.Ω, 1

2 〉),
(〈λu.Ω, 1

2 〉, 〈λu.Ω, 1
2 〉), (〈Ω, 1

2 〉, 〈Ω, 1
2 〉), (∅, ∅), where ∅ is the empty formal sum. Thus (R1,R2) is

a coupled logical bisimulation.

The main challenge towards the goal of relating coupled logical bisimilarity and context equivalence
is the substitutivity of bisimulation. We establish the latter exploiting some up-to techniques for
bisimulation. We only give the definitions of the techniques, omitting the statements about their
soundness. The first up-to technique allows us to drop the bisimulation game on silent actions:

Definition 7.6 (Big-Step Bisimulation) A coupled relation R is a big-step coupled logical
bisimulation if whenever E R2 F , the following holds: if E Z then F Y with Σ(Z) = Σ(Y),
and for all M RC

1 N we have (Z •M) R2 (Y •N).

Lemma 7.7 If R is a big-step coupled logical bisimulation, then R ⊆ SS for some coupled logical
bisimulation SS.

In the reduction , computation is performed at the level of formal sums; and this is reflected,
in coupled bisimulation, by the application of values to formal sums only. The following up-to
technique allows computation, and application of input values, also with ordinary terms. In the

40

definition, we extract a formal sum from a term E in ΛFS
⊕ using the function D(·) inductively as

follows:

D(EM)
def
= Σi〈MiM,pi〉 whenever D(E) = Σi〈Mi, pi〉;

D(M)
def
= 〈M, 1〉; D(H)

def
= H.

Definition 7.8 A coupled relation R is a bisimulation up-to formal sums if, whenever E R2 F ,
then either (one of the bisimulation clauses of Definition 7.3 applies), or (E,F ∈ Λ⊕ and one of
the following clauses applies):
1. E D with D(D) = 〈M, 1

2 〉+ 〈N, 1
2 〉, and F G with D(G) = 〈L, 1

2 〉+ 〈P, 1
2 〉, M R2 L, and

N R2 P ;
2. E = λx.M and F = λx.N , and for all P RC

1 Q we have M{P/x} R2 N{Q/x};
3. E = (λx.M)PM and F = (λx.N)QN , and M{P/x}M R2 N{Q/x}N .

According to Definition 7.8, in the bisimulation game for a coupled relation, given a pair (E,F) ∈ R2,
we can either choose to follow the bisimulation game in the original Definition 7.3; or, if E and F do
not contain formal sums, we can try one of the new clauses above. The advantage of the first new
clause is that it allows us to make a split on the derivatives of the original terms. The advantage of
the other two new clauses is that they allow us to directly handle the given λ-terms, without using
the operational rules of Figure 6 and therefore without introducing formal sums. To understand the

first clause, suppose E
def
= (M ⊕N)L and F

def
= P ⊕Q. We have E (〈M, 1

2 〉+ 〈N, 1
2 〉)L

def
= G with

D(G) = 〈ML, 1
2 〉+ 〈NL, 1

2 〉, and F 〈P, 1
2 〉+ 〈Q, 1

2 〉
def
= H, with D(H) = H, and it is sufficient

now to ensure (ML) R2 P , and (NL) R2 Q.

Lemma 7.9 If R is a bisimulation up-to formal sums, then R ⊆ SS for some coupled logical
bisimulation SS.

Proof. We show that the coupled relation SS, with SS1 = R1 and

SS2
def
= R2∪{(Σi〈Hi, pi〉,Σi〈Ki, pi〉) s.t. for each i, either Hi R2 Ki

or Hi = 〈Mi, 1〉,Ki = 〈Ni, 1〉 and Mi R2 Ni },

is a big-step bisimulation and then apply Lemma 7.7. The key point for this is to show that
whenever M R2 N , if M Z and N Y , then ZSS2Y .

For this, roughly, we reason on the tree whose nodes are the pairs of terms produced by the
up-to bisimulation game for R2 and with root a pair (M,N) in R2 (and with the proviso that a
node (E,F), if not a pair of values, and not a pair of Λ⊕-terms, has one only child, namely (Z, Y)
for Z, Y s.t. E Z and F Y).

Certain paths in the tree may be divergent; those that reach a leaf give the formal sums that
M and N produce. Thus, if M =⇒ Z and N =⇒ Y , then we can write Z = Σi〈Zi, pi〉 and
Y = Σi〈Yi, pi〉, for Zi, Yi, pi s.t. {(Zi, Yi, pi)} represent exactly the multiset of the leaves in the
tree together with the probability of the path reaching each leaf. �

Using the above proof technique, we can prove the necessary substitutivity property for bisimulation.
The use of up-to techniques, and the way bisimulation is defined (in particular the presence of a
clause for τ -steps and the possibility of using the pairs in the bisimulation itself to construct inputs
for functions), make it possible to use a standard argument by induction over contexts.

Lemma 7.10 If R is a bisimulation then the context closure SS with

SS1
def
= RC

1 ;

SS2
def
= R2 ∪ RC

1 ∪{(EM,FN) s.t. E R2 F and Mi RC
1 Ni};

is a bisimulation up-to formal sums.

41

Corollary 7.11 1. M ≈1 N implies C[M] ≈1 C[N], for all C

2. E ≈2 F implies C[E] ≈2 C[F], for all evaluation contexts C.

Using Lemma 7.10 we can prove the inclusion in context equivalence.

Corollary 7.12 If M ≈1 N then M 'FS
⊕ N . Moreover, if E ≈2 F then E uFS

⊕ F .

The converse of Corollary 7.12 is proved exploiting a few simple properties of uFS
⊕ (e.g., its

transitivity, the inclusion ⊆ uFS
⊕).

Lemma 7.13 E E′ implies E uFS
⊕ E′.

Proof. If E E′ then E ≈2 E
′ hence E uFS

⊕ E′. �

Lemma 7.14 Z uFS
⊕ Y implies Z •M uFS

⊕ Y •M for all M .

Proof. Follows from definition of uFS
⊕ , transitivity of uFS

⊕ , and Lemma 7.13. �

Lemma 7.15 If Mi 'FS
⊕ Ni for each i, then Σi〈Mi, pi〉 uFS

⊕ Σi〈Ni, pi〉

Proof. Suppose Σi〈Mi, pi〉M Z and Σi〈Ni, pi〉M Y . We have to show Σ(Z) = Σ(Y). We
have Z = Σi〈Zi, pi〉 for Zi with Mi

 Zi. Similarly Y = Σi〈Yi, pi〉 for Yi with Ni Ni. Then
the result follows from Σ(Zi) = Σ(Yi). �

Theorem 7.16 We have 'FS
⊕ ⊆ ≈1, and uFS

⊕ ⊆ ≈2.

Proof. We take the coupled relation R with

R1
def
= {(M,N) s.t. M 'FS

⊕ N}
R2

def
= {(E,F) s.t. E uFS

⊕ F}}

and show that R is a bisimulation.
For clause (1), one uses Lemma 7.13 and transitivity of uFS

⊕ . For clause (2), consider a term Z
with Z uFS

⊕ F . By definition of uFS
⊕ , F Y with Σ(Z) = Σ(Y). Take now arguments M 'FS

⊕ N

(which is sufficient, since 'FS
⊕

C⊆'FS
⊕). By Lemma 7.14, Z •M uFS

⊕ Y • N . By Lemma 7.15,
W •M uFS

⊕ Y •N . Hence also Z •M uFS
⊕ Y •N , and we have Z •M R2 Y •N . �

It also holds that coupled logical bisimilarity is preserved by the formal sum construct; i.e., Mi ≈1 Ni
for each i ∈ I implies Σi∈I〈Mi, pi〉 ≈2 Σi∈I〈Ni, pi〉. As a consequence, context equivalence defined
on general ΛFS

⊕ contexts is the same as that set on simple contexts (Definition 7.2).

Remark 7.17 The functional induced by coupled logical bisimulation is not monotone. For
instance, if V ⊆ W, then a pair of terms may satisfy the bisimulation clauses on (V, E), for some
E, but not on (W, E), because the input for functions may be taken from the larger relation W.
(Recall that coupled relations are pairs of relations. Hence operations on coupled relations, such as
union and inclusion, are defined component-wise.) However, Corollary 7.12 and Theorem 7.16 tell
us that there is indeed a largest bisimulation, namely the pair ('FS

⊕ ,uFS
⊕).

With logical (as well as environmental) bisimulations, up-to techniques are particularly important
to relieve the burden of proving concrete equalities. A powerful up-to technique in higher-order
languages is up-to contexts. We present a form of up-to contexts combined with the big-step version
of logical bisimilarity. Below, for a relation R on Λ⊕, we write RCFS for the closure of the relation
under general (closing) ΛFS

⊕ contexts.

Definition 7.18 A coupled relation R is a big-step coupled logical bisimulation up-to contexts if
whenever E R2 F , the following holds: if E Z then F Y with Σ(Z) = Σ(Y), and for all
M RC

1 N , we have (Z •M) RCFS
1 (Y •N).

42

For the soundness proof, we first derive the soundness of a small-step up-to context technique, whose
proof, in turn, is similar to that of Lemma 7.10 (the up-to-formal-sums technique of Definition 7.8
already allows some context manipulation; we need this technique for the proof of the up-to-contexts
technique).

Example 7.19 We have seen that the terms expone and exptwo of Example 2.6 are not applicative
bisimilar. We can show that they are context equivalent, by proving that they are coupled bisimilar.
We sketch a proof of this, in which we employ the up-to technique from Definition 7.18. We use the

coupled relation R in which R1
def
= {(expone, exptwo)}, and R2

def
= R1 ∪ {(AM , BN) | M RC

1 N}
where AM

def
= λn.((Mn) ⊕ (exponeM (n + 1))), and BN

def
= (λx.Nx) ⊕ (exptwo (λx.N(x + 1))).

This is a big-step coupled logical bisimulation up-to contexts. The interesting part is the matching
argument for the terms AM , BN ; upon receiving an argument m they yield the summed values
Σi〈M(m+ 1), pi〉 and Σi〈N(m+ 1), pi〉 (for some pi’s), and these are in RCFS

1 .

8 Beyond Call-by-Name Reduction

So far, we have studied the problem of giving sound (and sometime complete) coinductive methods
for program equivalence in a probabilistic λ-calculus endowed with call-by-name reduction. One
may wonder whether what we have obtained can be adapted to other notions of reduction, and in
particular to call-by-value reduction (e.g., the call-by-value operational semantics of Λ⊕ from [10]).

Since our construction of a labelled Markov chain for Λ⊕ is somehow independent on the
underlying operational semantics, defining a call-by-value probabilistic applicative bisimulation is
effortless. The proofs of congruence of the bisimilarity and its soundness in this paper can also be
transplanted to call-by-value. In defining Λ⊕ as a multisorted labelled Markov chain for the strict
regime, one should recall that functions are applied to values only.

Definition 8.1 Λ⊕ can be seen as a multisorted labelled Markov chain (Λ⊕(∅)] VΛ⊕,VΛ⊕]
{τ},P⊕) that we denote with Λ⊕v. Please observe that, contrary to how we gave Definition 3.1 for
call-by-name semantics, labels here are either values, which model parameter passing, or τ , that
models evaluation. We define the transition probability matrix P⊕ as follows:
• For every term M and for every distinguished value νx.N ,

P⊕(M, τ, νx.N)
def
= [[M]](νx.N);

• For every value V and for every distinguished value νx.N ,

P⊕(νx.N, V,N{V/x}) def
= 1;

• In all other cases, P⊕ returns 0.

Then, similarly to the call-by-name case, one can define both probabilistic applicative simulation
and bisimulation notions as probabilistic simulation and bisimulation on Λ⊕v. This way one
can define probabilistic applicative bisimilarity, which is denoted ∼v, and probabilistic applicative
similarity, denoted .v.

Proving that .v is a precongruence, follows the reasoning we have outlined for the lazy regime.
Of course, one must prove a Key Lemma first.

Lemma 8.2 If M .v
H N , then for every X ⊆ Λ⊕(x) it holds that [[M]](λx.X) ≤ [[N]](λx.(.v

H(X))).

As the statement, the proof is not particularly different from the one we have provided for
Lemma 3.17. The only delicate case is obviously that of application. This is due to its operational
semantics that, now, takes into account also the distribution of values the parameter reduces to.
Anyway, one can prove ∼v of implying context equivalence.

When we restrict our attention to pure λ-terms, as we do in Section 6, we are strongly relying
on call-by-name evaluation: LLT’s only reflect term equivalence in a call-by-name lazy regime. We

43

leave the task of generalizing the results to eager evaluation to future work, but we conjecture
that, in that setting, probabilistic choice alone does not give contexts the same discriminating
power as probabilistic bisimulation. Similarly we have not investigated the call-by-value version of
coupled logical bisimilarity, as our current proofs rely on the appearance of formal sums only in
redex position, a constraint that would probably have to be lifted for call-by-value.

9 A Comparison with Nondeterminism

Syntactically, Λ⊕ is identical to an eponymous language introduced by de’Liguoro and Piperno [13].
The semantics we present here, however, is quantitative, and this has of course a great impact on
context equivalence. While in a nondeterministic setting what one observes is the possibility of
converging (or of diverging, or both), terms with different convergence probabilities are considered
different in an essential way here. Actually, nondeterministic context equivalence and probabilistic
context equivalence are incomparable. As an example of terms that are context equivalent in
the must sense but not probabilistically, we can take I ⊕ (I ⊕ Ω) and I ⊕ Ω. Conversely, I is
probabilistically equivalent to any term M that reduces to I ⊕M (which can be defined using
fixed-point combinators), while I and M are not equivalent in the must sense, since the latter can
diverge (the divergence is irrelevant probabilistically because it has probability zero). May context
equivalence, in contrast, is coarser than probabilistic context equivalence.

Despite the differences, the two semantics have similarities. Analogously to what happens in
nondeterministic λ-calculi, applicative bisimulation and context equivalence do not coincide in the
probabilistic setting, at least if call-by-name is considered. The counterexamples to full abstraction
are much more complicated in call-by-value λ-calculi [27], and cannot be easily adapted to the
probabilistic setting.

10 Conclusions

This is the first paper in which bisimulation techniques for program equivalence are shown to be
applicable to probabilistic λ-calculi.

On the one hand, Abramsky’s idea of seeing interaction as application is shown to be amenable to
a probabilistic treatment, giving rise to a congruence relation that is sound for context equivalence.
Completeness, however, fails: the way probabilistic applicative bisimulation is defined allows one to
distinguish terms that are context equivalent, but which behave differently as for when choices and
interactions are performed. On the other, a notion of coupled logical bisimulation is introduced and
proved to precisely characterise context equivalence for Λ⊕. Along the way, applicative bisimilarity
is proved to coincide with context equivalence on pure λ-terms, yielding the Levy-Longo tree
equality.

The crucial difference between the two main bisimulations studied in the paper is not the
style (applicative vis-à-vis logical), but rather the fact that while applicative bisimulation insists
on relating only individual terms, coupled logical bisimulation is more flexible and allows us
to relate formal sums (which we may think as distributions). This also explains why we need
distinct reduction rules for the two bisimulations. See examples 3.38 and 7.5. While not complete,
applicative bisimulation, as it stands, is simpler to use than coupled logical bisimulation. Moreover
it is a natural form of bisimulation, and it should be interesting trying to transport the techniques
for handling it onto variants or extensions of the language.

Topics for future work abound — some have already been hinted at in earlier sections. Among
the most interesting ones, one can mention the transport of applicative bisimulation onto the
language ΛFS

⊕ . We conjecture that the resulting relation would coincide with coupled logical
bisimilarity and context equivalence, but going through Howe’s technique seems more difficult than
for Λ⊕, given the infinitary nature of formal sums and their confinement to redex positions.

Also interesting would be a more effective notion of equivalence: even if the two introduced
notions of bisimulation avoid universal quantifications over all possible contexts, they refer to an

44

essentially infinitary operational semantics in which the meaning of a term is obtained as the least
upper bound of all its finite approximations. Would it be possible to define bisimulation in terms
of approximations without getting too fine grained?

Bisimulations in the style of logical bisimulation (or environmental bisimulation) are known
to require up-to techniques in order to avoid tedious equality proofs on concrete terms. In the
paper we have introduced some up-to techniques for coupled logical bisimilarity, but additional
techniques would be useful. Up-to techniques could also be developed for applicative bisimilarity.

More in the long-run, we would like to develop sound operational techniques for so-called
computational indistinguishability, a key notion in modern cryptography. Computational indistin-
guishability is defined similarly to context equivalence; the context is however required to work
within appropriate resource bounds, while the two terms can have different observable behaviors
(although with negligible probability). We see this work as a very first step in this direction: com-
plexity bounds are not yet there, but probabilistic behaviour, an essential ingredient, is correctly
taken into account.

References

[1] S. Abramsky. The Lazy λ-Calculus. In D. Turner, editor, Research Topics in Functional
Programming, pages 65–117. Addison Wesley, 1990.

[2] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Inf.
Comput., 105(2):159–267, 1993.

[3] Egidio Astesiano and Gerardo Costa. Distributive semantics for nondeterministic typed
lambda-calculi. Theor. Comput. Sci., 32:121–156, 1984.

[4] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[5] Marco Bernardo, Rocco De Nicola, and Michele Loreti. A uniform framework for modeling
nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences.
Inf. Comput., 225:29–82, 2013.

[6] G. Boudol and C. Laneve. The discriminating power of the λ-calculus with multiplicities. Inf.
Comput., 126(1):83–102, 1996.

[7] Gérard Boudol. Lambda-calculi for (strict) parallel functions. Inf. Comput., 108(1):51–127,
1994.

[8] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object tracking. IEEE
Trans. on Pattern Analysis and Machine Intelligence,, 25(5):564–577, 2003.

[9] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
probabilistic higher-order functional programs (long version). Available at http://arxiv...,
2013.

[10] Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.

[11] Vincent Danos and Russell Harmer. Probabilistic game semantics. ACM Trans. Comput. Log.,
3(3):359–382, 2002.

[12] Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theor. Comput.
Sci., 34:83–133, 1984.

[13] Ugo de’Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Inf. Comput., 122(2):149–177, 1995.

45

[14] M. Dezani-Ciancaglini and E. Giovannetti. From bohm’s theorem to observational equivalences:
an informal account. Electr. Notes Theor. Comput. Sci., 50(2):83–116, 2001.

[15] M. Dezani-Ciancaglini, J. Tiuryn, and P. Urzyczyn. Discrimination by parallel observers: The
algorithm. Inf. Comput., 150(2):153–186, 1999.

[16] Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In LICS, pages 87–96, 2011.

[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[18] Noah D. Goodman. The principles and practice of probabilistic programming. In POPL,
pages 399–402, 2013.

[19] Andrew D. Gordon. Bisimilarity as a theory of functional programming. Electr. Notes Theor.
Comput. Sci., 1:232–252, 1995.

[20] Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgström, Guillaume Claret, Thore Graepel,
Aditya V. Nori, Sriram K. Rajamani, and Claudio V. Russo. A model-learner pattern for
bayesian reasoning. In POPL, pages 403–416, 2013.

[21] Matthew Hennessy. Exploring probabilistic bisimulations, part I. Formal Asp. Comput.,
24(4-6):749–768, 2012.

[22] Douglas J. Howe. Proving congruence of bisimulation in functional programming languages.
Inf. Comput., 124(2):103–112, 1996.

[23] Radha Jagadeesan and Prakash Panangaden. A domain-theoretic model for a higher-order
process calculus. In ICALP, pages 181–194, 1990.

[24] C. Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In LICS, pages
186–195, 1989.

[25] V. Koutavas, P.B̃. Levy, and E. Sumii. From applicative to environmental bisimulation. Electr.
Notes Theor. Comput. Sci., 276:215–235, 2011.

[26] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. Inf.
Comput., 94(1):1–28, 1991.

[27] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis,
University of Aarhus, 1998.

[28] Serguëı Lenglet, Alan Schmitt, and Jean-Bernard Stefani. Howe’s method for calculi with
passivation. In CONCUR, pages 448–462, 2009.

[29] Jean-Jacques Lévy. An algebraic interpretation of equality in some models of the lambda
calculus. In C. Böhm, editor, Lambda Calculus and Computer Science Theory, volume 37 of
LNCS, pages 147–165. Springer-Verlag, 1975.

[30] Giuseppe Longo. Set-theoretical models of lambda calculus: Theories, expansions and
isomorphisms. Ann. Pure Appl. Logic, 24:153–188, 1983.

[31] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural language
processing, volume 999. MIT Press, 1999.

[32] J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT, 1969.

[33] C.-H. Luke Ong. Non-determinism in a functional setting. In LICS, pages 275–286, 1993.

[34] Prakash Panangaden. Labelled Markov Processes. Imperial College Press, 2009.

46

[35] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based on
sampling functions. ACM Trans. Program. Lang. Syst., 31(1), 2008.

[36] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 1988.

[37] Avi Pfeffer. IBAL: A probabilistic rational programming language. In IJCAI, pages 733–740.
Morgan Kaufmann, 2001.

[38] A. M. Pitts. Howe’s method for higher-order languages. In D. Sangiorgi and J. Rutten, editors,
Advanced Topics in Bisimulation and Coinduction, pages 197–232. Cambridge University
Press, 2011.

[39] Andrew M. Pitts. Operationally-based theories of program equivalence. In Semantics and
Logics of Computation, pages 241–298. Cambridge University Press, 1997.

[40] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In POPL, pages 154–165, 2002.

[41] N. Saheb-Djahromi. Probabilistic LCF. In MFCS, volume 64 of LNCS, pages 442–451, 1978.

[42] David Sands. From SOS rules to proof principles: An operational metatheory for functional
languages. In POPL, pages 428–441, 1997.

[43] D. Sangiorgi. The lazy lambda calculus in a concurrency scenario. Inf. and Comp., 111(1):120–
153, 1994.

[44] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Logical bisimulations and functional
languages. In FSEN, volume 4767 of LNCS, pages 364–379, 2007.

[45] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Environmental bisimulations for
higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):5, 2011.

[46] Davide Sangiorgi and David Walker. The pi-Calculus – a theory of mobile processes. Cambridge
University Press, 2001.

[47] Kurt Sieber. Call-by-value and nondeterminism. In TLCA, volume 664 of LNCS, pages
376–390, 1993.

[48] Sebastian Thrun. Robotic mapping: A survey. Exploring artificial intelligence in the new
millennium, pages 1–35, 2002.

47

Wave-Style Token Machines and Quantum Lambda Calculi

Ugo Dal Lago∗ Margherita Zorzi†

Abstract

Particle-style token machines are a way to interpret proofs and programs, when the latter are
written following the principles of linear logic. In this paper, we show that token machines also
make sense when the programs at hand are those of a simple quantum λ-calculus. This, however,
requires generalizing the concept of a token machine to one in which more than one particle
travel around the term at the same time. The presence of multiple tokens is intimately related to
entanglement and allows to give a simple operational semantics to the calculus, coherently with
the principles of quantum computation.

1 Introduction

One of the strongest trends in computer science is the (relatively recent) interest in exploiting new
computing paradigms which go beyond the usual, classical one. Among these paradigms, quantum
computing plays an important role. In particular, the quantum paradigm is having a deep impact on the
notion of a computationally (in)tractable problem. In this respect, two of the most surprising results
are due to Peter Shor, who proved that prime factorization of integers and the discrete logarithm can
be efficiently solved (i.e. in polynomial time) by a quantum computer [20].

Even if quantum computing has catalyzed the interest of a quite large scientific community, several
theoretical aspects are still unexplored. As an example, the definition of a robust theoretical framework
for quantum programming is nowadays still a challenge. A number of (paradigmatic) calculi for
quantum computing have been introduced in the last ten years. Among them, some functional calculi,
typed and untyped, have been proposed [3, 5, 4, 18, 21], but we are still at a stage where it is not clear
whether one calculus could be considered canonical. Moreover, the meta-theory of most of these
formalisms lack the simplicity of the one of their “classical” siblings.

It is clear that linear logic and quantum computing are strongly related: since quantum data have
to undergo restrictions such as no-cloning and no-erasing, it is not surprising that in most of the
cited quantum calculi the use of resources is controlled. Linear logic therefore provides an ideal
framework where rooting quantum data treatment, but also offers another tool which has not been
widely exploited in the quantum setting: its mathematical model in terms of operator algebras, i.e. the
Geometry of Interaction (GoI in the following). Indeed, the latter provides a dynamical interpretation
and a semantic account of the cut-elimination procedure as a flow of information circulating into a
net structure. This idea can be formulated both as an algebra of bounded operators on a infinitely
dimensional Hilbert space [10] or as a token-based machine (a rewriting automata model with local
transition rules) [11, 14]. Both formulations seem to be promising in the quantum setting. On the one
hand, the Hilbert space on top of which the first formulation of GoI is given is precisely the canonical
∗Università di Bologna & INRIA
†Università di Verona

1

ar
X

iv
:1

30
7.

05
50

v3
 [

cs
.L

O
]

 1
3

N
ov

 2
01

3

state space of a quantum Turing machine (see for example [1]). On the other hand, the definition of
a token machine provides a mathematically simpler setting, which has already found a role in this
context [2, 12].

In this paper, we show that token machines are also a model of a linear quantum λ-calculus QΛ
defined along the lines of van Tonder’s λq [21]. This allows to give an operational semantics to QΛ
which renders the quantum nature of QΛ explicit: type derivations become quantum circuits built
on exactly the set of gates occurring in the underlying λ-term. This frees us from the burden of
having to define the operational semantics of quantum calculi in reduction style, which is known to
be technically challenging in a similar setting [21]. On the other hand, the power of β-style axioms is
retained in the form of an equational theory for which our operational semantics can be proved sound.

Technically, the design of our token machine for QΛ, called IAMQΛ is arguably more challenging
than the one of classical token machines. Indeed, the principles of quantum computing, and the so-
called entanglement in particular, force us to go towards wave-style machines, i.e., to machines where
more than one particle can travel inside the program at the same time. Moreover, the possibly many
tokens at hand are subject to synchronization points, each one corresponding to unitary operators of
arity greater than 1. This means that IAMQΛ, in principle, could suffer from deadlocks, let alone the
possibility of non-termination. We here prove that these pathological situations can not happen.

In Section 2, we recall the token machine for multiplicative linear logic. In Section 3 we propose
a gentle introduction to quantum computing. The calculus QΛ and its token machine IAMQΛ are
introduced in Section 4 and Section 5, respectively. Main results about IAMQΛ are in Section 6.
Sections 7 and 8 are respectively devoted to related works and conclusion/future plans.

2 Linear Logic and Token Machines

In this section, we give some ideas about the simplest token machine, namely the one for the propo-
sitional, multiplicative fragment of linear logic. This not only encourages the unfamiliar reader to
understand the basic concepts underlying this concrete approach to the geometry of interaction, but
will also be useful in the following, when proving basic results about quantum token machines. More
details can be found in [7, 11].

Let A = {α, β, . . .} be a countable set of propositional atoms. Formulas of Multiplicative Linear
Logic (MLL) are given by the following grammar:

A,B ::= α | α⊥ | A⊗B | A`B.

Linear negation can be extended to all formulas in the usual way:

(α⊥)⊥ = α;

A⊗B⊥ = A⊥ `B⊥;

A`B⊥ = A⊥ ⊗B⊥.

This way, A⊥⊥ is just A. The one-sided sequent calculus for MLL is very simple:

ax
` A,A⊥

` Γ, A ` ∆, A⊥
cut

` Γ,∆

` Γ, A ` ∆, B
⊗

` Γ,∆, A⊗B
` Γ, A,B

`
` Γ, A`B

The logic MLL enjoys cut-elimination: there is a terminating algorithm turning any MLL proofs into
a cut-free proof of the same conclusion.

2

Consider the following MLL proof ξ (where different occurrences of the same propositional
(co)atom have been numbered):

ax
` α⊥4 , α4

ax
` α⊥5 , α5

cut
` α⊥3 , α3

ax
` β⊥3 , β3 ⊗

` α⊥2 , β2, α2 ⊗ β⊥2 `
` α⊥1 ` β1, α1 ⊗ β⊥1

The token machine for ξ is a simple automaton whose internal state is nothing more than an occurrence
of a propositional (co)atom in ξ. This state evolves by “following” this occurrence, keeping in mind
that atoms go down, while coatoms go up. A run of the token machine of ξ is, as an example, the
following one:

α⊥1 7→ξ α
⊥
2 7→ξ α

⊥
3 7→ξ α

⊥
4 7→ξ α4 7→ξ α

⊥
5 7→ξ α5 7→ξ α3 7→ξ α2 7→ξ α1.

This tells us that the occurrences α⊥1 and α1 are somehow related. Similarly, one could find a run
relating β1 to β⊥1 . Remarkably, these correspondences survive cut-elimination.

All this can be formalized through the notion of a context, which is an MLL formula with a hole:

C ::= [·] | C⊗A | A⊗ C | C`A | A` C.

C[A] is the formula obtained by replacing the unique occurrence of [·] in C with A. If A = C[α]
(A = C[α⊥], respectively), we say that C is a positive (negative, respectively) context for A. If C is
positive (negative, respectively) for A, we sometime write it as PA (as NA, respectively). An atom
occurrence in an MLL proof ξ is a pair (A,C) where A is an occurrence of an MLL formula in ξ and
C is a context for it. Linear negation can be easily extended to contexts:

[·]⊥ = [·];
(C⊗B)⊥ = C⊥ `B⊥; (A⊗ C)⊥ = A⊥ ` C⊥;

(C`B)⊥ = C⊥ ⊗B⊥; (A` C)⊥ = A⊥ ⊗ C⊥.

Please observe that C is a negative context for A iff C⊥ is a positive context for A⊥. To every proof ξ
in MLL, we associate an automatonMξ which consists of:
• The finite set Sξ of states ofMξ, which are all the atom occurrences of ξ;
• a transition relation 7→ξ⊆ Sξ × Sξ, which is described by the rules in Figure 1.

An atom occurrence in ξ is said to be initial (respectively, final) iff it is in the form (A,NA) (respec-
tively, in the form (A,PA)), where A is one among the formulas among the conclusions of ξ. It is
easy to verify that:
• for every non-final occurrence O there is exactly one occurrence P such that O 7→ξ P ;
• for every non-initial occurrence O there is exactly one occurrence P such that P 7→ξ O.

As a consequence, every initial occurrence is put in correspondence with a final occurrence in a
bijective way — the number of occurrences in ξ is anyway finite, and cycles cannot be reached from
initial occurrences. It is this correspondence which is taken as the semantics of ξ, after being shown
to be invariant by cut-elimination.

One last observation is now in order. Suppose O1, . . . , On are all the initial occurrences for ξ.
Then, every occurrence in ξ is visited exactly once along one of the n maximal computations starting
in O1, . . . , On. This can be proved as follows:

3

ax
` A,A⊥ (A,NA) 7→ξ (A⊥,N⊥A)

(A⊥,NA⊥) 7→ξ (A, (NA⊥)⊥)

` Γ1, A ` ∆1, B ⊗
` Γ2,∆2, A⊗B

(A⊗B,NA ⊗B) 7→ξ (A,NA)
(A⊗B,A⊗ NB) 7→ξ (B,NB)
(A,PA) 7→ξ (A⊗B,PA ⊗B)
(B,PB) 7→ξ (A⊗B,A⊗ PB)

(Γ2,N) 7→ξ (Γ1,N)
(∆2,N) 7→ξ (∆1,N)
(Γ1,P) 7→ξ (Γ2,P)
(∆1,P) 7→ξ (∆2,P)

` Γ1, A,B `
` Γ2, A`B

(A`B,NA `B) 7→ξ (A,NA)
(A`B,A` NB) 7→ξ (B,NB)
(A,PA) 7→ξ (A`B,PA `B)
(B,PB) 7→ξ (A`B,A` PB)

(Γ2,N) 7→ξ (Γ1,N)
(Γ1,P) 7→ξ (Γ2,P)

` Γ1, A ` ∆1, A
⊥

cut
` Γ2,∆2

(A,PA) 7→ξ (A⊥, (PA)⊥)
(A⊥,PA⊥) 7→ξ (A, (PA⊥)⊥)

(Γ2,N) 7→ξ (Γ1,N)
(∆2,N) 7→ξ (∆1,N)
(Γ1,P) 7→ξ (Γ2,P)
(∆1,P) 7→ξ (∆2,P)

Figure 1: Defining Rules for 7→ξ

4

• First, prove the statement for any cut-free proof ξ, by induction on the structure of ξ;
• Then show that if ξ has the property and µ reduces to ξ by cut-elimination, µ has the property, too.

Incidentally, this shows that cylic 7→ξ is acyclic.

3 Quantum Computing in a Nutshell

Quantum computing principles are non-standard notions to the largest part of the “lambda commu-
nity”. The aim of this section is to provide to the non-expert reader an overview of quantum computing
basic concepts. This will guide her or him in understanding the “quantum content” of our calculus (in
particular, the meaning of unitary steps and the linear management of quantum data, see Section 4).
Moreover, notions like quantum entanglement, a peculiar feature of quantum data, offers some intu-
itions about how and why the choice of a wave-style token machine as operational model is the right
choice.

The simplest quantum system is a two-dimensional state space whose elements are called quantum
bits or qubits for short. The qubit is the most basic unit of quantum information. The most direct way
to represent a quantum bit is as a unitary vector in the 2-dimensional Hilbert space `2({0, 1}), which
is isomorphic to C2. We will denote with |0〉 and |1〉 the elements of the computational basis of
`2({0, 1}). The states |0〉 and |1〉 of a qubit correspond to the boolean constants 0 and 1, which are
the only possible values of a classical bit. A qubit, however, can assume other values, different from
|0〉 and |1〉. In fact, every linear combination |ψ〉 = α|0〉+β|1〉 where α, β ∈ C, and |α|2 + |β|2 = 1,
represents a possible qubit state. These states are said to be superposed, and the two values α and
β are called amplitudes. The amplitudes α and β univocally represent the qubit with respect to the
computational basis. Given a qubit |ψ〉 = α|0〉 + β|1〉, we commonly denote it by the vectorial
notation

ψ =

(
α
β

)
.

In particular, the vectorial representation of the elements of the computational basis |0〉 and |1〉 is the
following: (

1
0

) (
0
1

)

While we can determine the state of a classical bit, for a qubit we can not establish with the same
precision the values α and β: quantum mechanics says that a measurement of a qubit with state
α|0〉+ β|1〉 has the effect of changing the state to |0〉 with probability |α|2 and to |1〉 with probability
|β|2. For example, if |ψ〉 = 1√

2
|0〉 + 1√

2
|1〉, one can observe 0 or 1 with the same probability

| 1√
2
|2 = 1

2 . In this brief survey on quantum computing, we will not enter in the details about qubit
measurement, since the syntax of the calculus QΛ does not include an explicit measurement operator
(a constant whose — probabilistic — operational semantics mimics the observation of quantum data).
This choice is sound from a theoretical viewpoint, since it is possible to assume to have a unique,
final measurement, at the end of the computation. Notwithstanding, the measurement operator is
a useful programming tool in order to encode quantum algorithms and the extension of the syntax
with a measurement operator is one of our planned future works. For a complete overview about
measurement of qubits and relationships between different kind of measurement, see [16].

In order to define arbitrary set of quantum data, we need a generalization of the notion of qubit,
called quantum register or, more commonly, quantum state [21, 18, 17]. A quantum register can
be viewed as a system of n qubits and, mathematically, it is a normalized vector in the Hilbert space

5

`2({0, 1}n) ({0, 1}n is a compact notation to represent any binary sequence of length n). The standard
computational basis for `2({0, 1}n) is B = {|i〉 | i is a binary string of length n}.

Notation 1 We use the notation |b1 . . . bk〉 (bi ∈ {0, 1}) for |b1〉 ⊗ . . . ⊗ |bk〉, where ⊗ is the tensor
product (see below).

With a little abuse of language, we say that the number of quits n corresponds to the dimension of
the space. Notice that if the dimension is n, then the basis B contains 2n elements, and each quantum
states is a normalized linear combination of these elements:

α1|00 . . . 0〉︸ ︷︷ ︸
n

+ α2|00 . . . 1〉+ . . .+ α2n |11 . . . 1〉

Example 1 Let us consider a 2-level quantum system, i.e. a system of two qubits. Each 2-qubit quan-
tum register is a normalized vector in `2({0, 1}2) and the computational basis is {|00〉, |01〉, |10〉, |11〉}.
For example, 1√

2
|00〉 + 1√

4
|01〉 + 1√

8
|10〉 + 1√

8
|11〉 is a quantum register of two qubits and we can

represent it as

ψ =

1√
2

1√
4

1√
8

1√
8

 .

An Hilbert space of dimension n can be built from smaller Hilbert spaces by means of the tensor
product ⊗. If H1 is an Hilbert space of dimension k and H2 is an Hilbert space of dimension m,
H3 = H1 ⊗ H2 is an Hilbert space of dimension km (each element is a vector of km coordinates
obtained by “hooking” a vector in H2 to a vector in H1). In other words, an n-qubit quantum register
with n ≥ 2 can be viewed as a composite system. It is possible to combine two (or more) distinct
physical systems into a composite one. If the first system is in the state |φ1〉 (a vector in a Hilbert
Space H1) and the second system is in the state |φ2〉 (a vector in a Hilbert Space H1) , then the state
of the combined system is |φ1〉 ⊗ |φ2〉 (a vector in a Hilbert Space H1 ⊗H2) .
We will often omit the “⊗” symbol, and will write the joint state as |ψ1〉|ψ2〉 or as |ψ1ψ2〉.

Not all quantum states can be viewed as composite systems: this case occurs in presence of en-
tanglement phenomena (see below). Since normalized vectors of quantum data represent physical
systems, the (discrete) evolution of systems can be viewed as a suitable transformation on Hilbert
spaces. The evolution of a quantum register is linear and unitary. Giving an initial state |ψ1〉, for
each evolution to a state |ψ2〉, there exists a unitary operator U such that |ψ2〉 = U |ψ1〉. Informally,
“unitary” referred to an algebraic operator on a suitable space means that the normalization constraint
of the amplitudes (

∑
i |αi|2 = 1) is preserved during the transformation. Thus, a quantum physical

system, i.e. a normalized vector which represents our data, can be described in term of linear operators
and in a deterministic way. In quantum computing we refer to a unitary operator U acting on a n-
qubit quantum register as an n-qubit quantum gate. We can represent operators on the 2n-dimensional
Hilbert space `2({0, 1}n) with respect to the standard basis of C2n as 2n × 2n matrices, and it is pos-
sible to prove that to each unitary operator on a Hilbert Space it is possible to associate an algebraic
representation. Matrices which represent unitary operators enjoy some important property: for exam-
ple they are easily invertible (reversibility is one of the peculiar features of quantum computing). The
application of quantum gates to quantum registers represents the pure quantum computational step
and captures the internal evolution of quantum systems. The simplest quantum gates act on a single
qubit: they are operators on the space `2({0, 1}), represented in C2 by 2 × 2 complex matrices. For

6

example, the quantum gate X is the unitary operator which maps |0〉 to |1〉 and |1〉 to |0〉 and it is
represented by the matrix (

0 1
1 0

)

Being a linear operator, it maps a linear combination of inputs to the corresponding linear combination
of outputs, and so X maps the general qubit state α|0〉+ β|1〉 into the state α|1〉+ β|0〉 i.e

(
0 1
1 0

)(
α
β

)
=

(
β
α

)

An interesting unitary gate is the Hadamard gate denoted by H which acts on the computational basis
in the following way:

|0〉 7→ 1√
2

(|0〉+ |1〉) |1〉 7→ 1√
2

(|0〉 − |1〉)

The Hadamard gate, which therefore is given by the matrix

H =
1√
2

(
1 1
1 −1

)

is useful when we want to create a superposition starting from a classical state. It also holds that
H(H(|c〉)) = |c〉 for c = {0, 1}. 1-qubit quantum gates can be used in order to build gates acting
on n-qubit quantum states. If we have a 2-qubit quantum system, we can apply a 1-qubit quantum
gate only to one component of the system, and we implicitly apply the identity operator (the identity
matrix) to the other one. For example suppose we want to apply X to the first qubit. The 2-qubits
input |ψ1〉 ⊗ |ψ2〉 gets mapped to X|ψ1〉 ⊗ I|ψ2〉 = (X ⊗ I)|ψ1〉 ⊗ |ψ2〉.

The CNOT is one of the most important quantum operators. It is mathematically described by the
standard operator CNOT : `2({0, 1}2)→ `2({0, 1}2) defined by

CNOT|00〉 = |00〉
CNOT|01〉 = |01〉

CNOT|10〉 = |11〉
CNOT|11〉 = |10〉

Intuitively, cnot acts as follows: it takes two distinct quantum bits as inputs and complements the
target bit (the second one) if the control bit (the first one) is 1; otherwise it does not perform any
action. The control qubit is a “master” agent: its evolution in independent from the evolution of
the target bit (if the first input of the cnot is |φ〉 the output is the same); the target qubit is a “slave”
agent: its evolution is controlled by the value of the first qubit. In some sense, a communication
between the agents is required and the quantum circuit is a simple distributed system. By adopting
this perspective, controlled operators like cnot acts as “synchronization points” between token (ground
type occurrences) in our definition of quantum token machine: this is one of the main features of our
semantics (see Section 5).

Not all quantum states can be viewed as composite systems. In other words, if |ψ〉 is a state of
a tensor product space H1 ⊗H2, it is not generally true that there exists |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2

such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉. Instead, it is not always possible to decompose an n-qubit register as
the tensorial product of n qubits.

7

These non-decomposable registers are called entangled and enjoy properties that we cannot find in
any object of classical physics (and therefore in classical data). If n qubits are entangled, they behave
as if connected, independently of the real physical distance. The strength of quantum computation
is essentially based on the existence of entangled states (see, for example, the teleportation protocol
[16]).

Example 2 The 2-qubit states |ψ〉 = 1√
2
|00〉 + 1√

2
|11〉 and |ψ〉 = 1√

2
|01〉 + 1√

2
|10〉 are entangled.

The 2-qubit state |φ〉 = α|00〉 + β|01〉 is not entangled. Trivially, notice that it is possible to rewrite
it in the mathematically equivalent form φ = |0〉 ⊗ (α|0〉+ β|1〉).

A simple way to create an entangled state is to fed a CNOT gate with a target qubit |c〉 and a
particular control qubit, more precisely the output of the Hadamard gate applied to a base qubit,
therefore a superposition 1√

2
|0〉 + 1√

2
|1〉 or 1√

2
|0〉 − 1√

2
|1〉. This composition of quantum gates is

actually encoded by the terms defined in the Example 3.
We previously said that each n-ary unitary transformation (or composition of unitary transfor-

mations) can be represented by a suitable n × n matrix. From a computer science viewpoint, it is
common to reason about quantum states transformations in terms of quantum circuits. Through the
paper, we frequently say that “a lambda term encodes a quantum circuit”. What does this mean? What
is a quantum circuit? One more time, this is a long and complex subject and we refer to [16, 15] for
a complete and exhaustive explanation. Since quantum circuits are invoked in the proof of Sound-
ness Theorem 1, we give here some intuitions and a qualitative description (enough to understand the
Soundness proof) of quantum circuits. We have introduced qubits to store quantum information, in
analogy with the classical case. We have also introduced operations acting on them, i.e. quantum
gates, and we can think about quantum gates in analogy with gates in classical logic circuits.

A quantum circuit on n qubits implements an unitary operator on a Hilbert space of dimension
C2n . This can be views as a primitive collection of quantum gates, each implementing a unitary
operator on k (small) qubits.

It is useful to graphically represent quantum circuit in terms of sequential and parallel composition
of quantum gates and wires, as for boolean circuits (notwithstanding, in the quantum case the graphical
representation does not reflect the physical realization of the circuit).

For example, the following diagram represents the quantum circuit implemented by the term in
Example 3.

H

The calculus QΛ is purely linear (see Section 4). Each (well typed) lambda terms encode a quan-
tum transformation or, equivalently, a quantum circuit built on the set of (the constants representing)

8

quantum gates occurring in the lambda-term.

One of the primitive operations in information theory is the copy of a datum. When we deal
with quantum data as qubits, quantum information suffers from lack of accessibility in comparison
to classical one. In fact, a quantum bit can not be duplicated. This curious feature is well-know in
literature as no-cloning property: it does not allow to make a copy of an unknown quantum state (it
is only possible to duplicate “trivial” qubits, i.e. basis states |0〉 and |1〉). In other words, it is not
possible to build a quantum transformation/a quantum circuit able to maps an arbitrary quantum state
|ψ〉 into the state |ψ〉 ⊗ |ψ〉. No-cloning property is one of the main difference between classical and
quantum data and any paradigmatic quantum language has deal with to this fact. Notwithstanding,
even if no-cloning property made the design of quantum languages more challenging, quantum data
enjoy some properties (which have no classical counterpart) which can be exploited in the design of
quantum algorithms.

4 The Calculus QΛ

An essential property of quantum programs is that quantum data, i.e. quantum bits, should always
be uniquely referenced. This restriction follows from the well-known no-cloning and no-erasing
properties of quantum physics, which state that a quantum bit cannot be duplicated nor canceled [16].
Syntactically, one captures this restriction by means of linearity: if every abstraction λx.M is such
that there is exactly one free occurrence of x in M , then the substitution triggered by firing any redex
is neither copying nor cancelling and, as a consequence, coherent with the just stated principles.

In this Section, we introduce a quantum linear λ-calculus in the style of van Tonder’s λq [21] and
give an equational theory for it. This is the main object of study of this paper, and is the calculus for
which we will give a wave-style token machine in the coming sections.

4.1 The Language of Terms

Let us fix a finite set U of unitary operators, each on a finite-dimensional Hilbert space C2n , where
n can be arbitrary. To each such U ∈ U we associate a symbol U and call n the arity of U . The
syntactic categories of patterns, bits, constants and terms are defined by the following grammar:

π ::= x | 〈x, y〉; patterns
B ::= |0〉n | |1〉n; bits
C ::= B | U ; constants
M,N ::= x | C |M ⊗N |MN | λπ.M ; terms

where n ranges over N and x ranges over a denumerable, totally ordered set of variables V. We
always assume that the natural numbers occurring next to bits in any term M are pairwise distinct.
This condition, by the way, is preserved by substitution when the substituted variable occurs (free)
exactly once. Whenever this does not cause ambiguity, we elide labels and simply write |b〉 for a
bit. Notice that pairs can be formed via the binary operator ⊗. We will sometime write |b1b2 . . . bk〉
for |b1〉 ⊗ |b2〉 ⊗ . . . ⊗ |bk〉 (where b1, . . . , bn ∈ {0, 1}). In the following, capital letters such as
M , N , L, Q (possibly indexed), denote terms. We work modulo variable renaming; in other words,
terms are equivalence classes modulo α-conversion. Substitution up to α-equivalence is defined in
the usual way. Observe that the terms of QΛ are the ones of a λ-calculus with pairs (which are ac-
cessed by pattern-matching) endowed with constants for bits and unitary operators. We don’t consider
measurements here, and discuss the possibility of extending the language of terms in Section 8.

9

(av)
x : A ` x : A

(aq0)
· ` |0〉 : B

(aq1)
· ` |1〉 : B

(aU)
· ` U : Bn (Bn

Γ, x : A `M : B
(I1()

Γ ` λx.M : A(B

Γ, x : A, y : B `M : C
(I2()

Γ ` λ〈x, y〉.M : (A⊗B)(C

Γ `M : A(B ∆ ` N : A
(E()

Γ,∆ `MN : B

Γ `M : A ∆ ` N : B
(I⊗)

Γ,∆ `M ⊗N : A⊗B

Figure 2: Typing Rules

4.2 Judgements and Typing Rules

Since in QΛ all terms are assumed to be non-duplicable by default, we adopt a linear type-discipline.
Formally, the set of types is defined as

A ::= B | A(B | A⊗B,

where B is the ground type of qubits. We write Bn for the n-fold tensor product

B⊗ . . .⊗ B︸ ︷︷ ︸
n times

.

Judgements are defined from a linear notion of environment.
• A linear environment Γ is a (possibly empty) finite set of assignments in the form x : A. We

impose that in a linear environment, each variable x occurs at most once.
• If Γ and ∆ are two linear environments assigning types to distinct sets of variables, Γ,∆ is their

union.
• A judgement is an expression Γ ` M : A, where Γ is a linear environment, M is a term, and A is

a type in QΛ.
Typing rules are in Figure 2. Observe that contexts are treated multiplicatively and, as a consequence,
variables always appear exactly once in terms. In other words, a strictly linear type discipline is
enforced.

Example 3 Consider the following term:

MEPR = λ〈x, y〉.CNOT (Hx⊗ y).

MEPR encodes the quantum circuit which takes two input qubits and returns an entangled state (a
quantum state that cannot in general be expressed as the tensor product of single qubits). It can be
given the type B⊗ B(B⊗ B in the empty context. Indeed, here is a type derivation πEPR for it:

· ` CNOT : B⊗ B(B⊗ B

· ` H : B(B x : B ` x : B
(E()

x : B ` Hx : B y : B ` y : B
(I⊗)

x : B, y : B ` Hx⊗ y : B⊗ B
(E()

x : B, y : B ` CNOT (Hx⊗ y) : B⊗ B
(I2()

· `MEPR : B⊗ B(B⊗ B

10

MEPR and πEPR will be used as running examples in the rest of this paper, together with the following
type derivation ρEPR:

πEPR . · `MEPR : B⊗ B(B⊗ B

· ` |0〉1 : B · ` |1〉2 : B
(I⊗)

· ` |0〉1 ⊗ |1〉2 : B⊗ B
(E()

· `MEPR(|0〉1 ⊗ |1〉2) : B⊗ B

If π . Γ ` (λx.M)N : A, one can build a type derivation π⇓ with conclusion Γ ` M{x/N} : A
in a canonical way, by going through a constructive subsitution lemma. Similarly when π . Γ `
(λ〈x, y〉.M)(N ⊗ L) : A.

Lemma 1 If π . Γ, x1 : A1, . . . , xn : An ` M : B and for every 1 ≤ i ≤ n there is ρi . ∆i `
Ni : Ai, then there is a canonically defined derivation π{x1, . . . , xn/ρ1, . . . , ρn} of Γ,∆1, . . . ,∆n `
M{x1, . . . , xn/N1, . . . , Nn} : B.

Proof. Just proceed by the usual, simple induction on π. �

The notion of type derivation π of a term M and the related definition of π⇓, the type deriva-
tion of the reduct of M , will be generalized in the following section taking into account quantum
superposition.

4.3 An Equational Theory

The λ-calculus is usually endowed with notions of reduction or equality, both centered around the β-
rule, according to which a function λx.M applied to an argument N reduces to (or can be considered
equal to) the term M{N/x} obtained by replacing all free occurrences of x with N . A reduction
relation implicitly provides the underlying calculus with a notion of computation, while an equational
theory is more akin to a reasoning technique. Giving a reduction relation on QΛ terms directly,
however, is problematic. What happens when a n-ary unitary operator U is faced with an n-tuple of
qubits |b1 . . . bn〉? Superposition should somehow arise, but how can we capture it?

In this section, an equational theory for QΛ will be introduced. In the next sections, we will prove
that the semantics induced by token machines is sound with respect to it. The equational theory we
are going to introduce will be a binary relation on formal, weighted sums of type derivations for QΛ
terms.

Definition 1 (Superposed Type Derivation) A superposed type derivation of type (Γ, A) is a formal
sum

T =

n∑

i=1

κiπi

where for every 1 ≤ i ≤ n, κi ∈ C and it holds that πi.Γ `Mi : A. In this case, we write Γ ` T : A.
Superposed type derivations will be denoted by metavariables like T or S.

Please, notice that:
• If π . · ` U |b1 . . . bk〉, then π⇓ is a superposed type derivation in the form

∑
x∈Bk κxπx, where

Bk is the set of all binary strings of length k, πx is the trivial type derivation for |x〉, and κx is the
complex number corresponding to |x〉 in the vector U|b1 . . . bk〉.

11

Axioms

π . Γ ` (λ〈x, y〉.M)(N ⊗ L) : A
beta.pair

π ≈ π⇓

π . Γ ` (λx.M)N : A
beta

π ≈ π⇓
π . · ` U |b1 . . . bk〉 : Bk

quant
π ≈ π⇓

Context Closure

T ≈ S
l.a

T π ≈ Sπ
T ≈ S

r.a
πT ≈ πS

T ≈ S
in.λ

λx.T ≈ λx.S
T ≈ S

in.λ.pair
λ〈x, y〉.T ≈ λ〈x, y〉.S

T ≈ S
l.in.tens

T ⊗ π ≈ S ⊗ π
T ≈ S

r.in.tens
π ⊗ T ≈ π ⊗ S

T ≈ S
sum

αT + V ≈ αS + V

Reflexive, Symmetric and Transitive Closure

refl
T ≈ T

T ≈ S
sym

S ≈ T
T ≈ S S ≈ V

trans
T ≈ V

Figure 3: Equational Theory

• If π . Γ ` (λx.M)N : A, π⇓ is the type derivation with conclusion Γ ` M{x/N} : A built
in a canonical way, by going through a constructive subsitution lemma. Similarly when π . Γ `
(λ〈x, y〉.M)(N ⊗ L) : A.
• All the term constructs can be generalized to operators on superposed type derivations, with the

proviso that the types match. As an example if T =
∑

i αiπi where πi . Γ ` Mi : A (B and
ρ.∆ ` N : A, T ρ denotes the superposed type derivation S =

∑
i αiσi where σi .Γ,∆ `MiN :

B and each σi is obtained applying the rule (E() to πi and ρ.
A binary relation ≈ on superposed type derivations having the same type can be given by way of
the rules in Figure 3, where we tacitly assume that the involved superposed type derivations have the
appropriate type whenever needed. Notice that ≈ is by construction an equivalence relation. When
the underlying type derivation is clear from the context, we denote superposed derivations simply by
superposed terms. As an example, consider the term MEPR(|0〉1 ⊗ |1〉2) from Example 3 and the
corresponding type derivation ρEPR for it . It is convenient to be able to reason as follows, directly on
the former:

12

MEPR(|0〉 ⊗ |1〉) ≈ CNOT (H |0〉 ⊗ |1〉)

≈ 1√
2
CNOT (|0〉 ⊗ |1〉) +

1√
2
CNOT (|1〉 ⊗ |1〉)

≈ 1√
2
|0〉 ⊗ |1〉+

1√
2
CNOT (|1〉 ⊗ |1〉)

≈ 1√
2
|0〉 ⊗ |1〉+

1√
2
|1〉 ⊗ |0〉.

Please observe that the equational theory we have just defined can hardly be seen as an operational
semantics for QΛ. Although equations can of course be oriented, it is the very nature of a superposed
type derivation which is in principle problematic from the point of view of quantum computation:
what is the mathematical nature of a superposed type derivation? Is it an element of an Hilbert Space?
And if so, of which one? If we consider a simple language such as QΛ, the questions above may appear
overly rhetorical, but we claim they are not. For example, what would be the quantum meaning of
linear beta-reduction? If we want to design beta-reduction according to the principles of quantum
computation, it has to be, at least, easily reversible (unless measurement is implicit in it). Moving
towards more expressive languages, this non-trivial issue becomes more difficult and a number of
constraints have to be imposed (for example, superposition of terms can be allowed, but only between
“homogenous” terms, i.e. terms which have an identical skeleton [21]). This is the reason for which
promising calculi [21] fail to be canonical models for quantum programming languages. This issue
has been faced in literature without satisfactory answers, yielding a number of convincing arguments
in favor of the (implicit or explicit) classical control of quantum data [3, 18].

4.3.1 Equational Theory Derivations in Normal Form

Sometime it is quite useful to assume that a derivation for T ≈ S is in a peculiar form, defined by
giving an order on the rules in Figure 3. More specifically, define the following two sets of rules:

AX = {beta, beta.pair, quant};
CC = {l.a, r.a, in.λ, in.λ.pair, l.in.tens, r.in.tens}.

A derivation of T ≈ S is said to be in normal form (and we write T ∼ S) iff:
• either the derivation is obtained by applying rule refl;
• or any branch in the derivation consists in instances of rules from AX, possibly followed by in-

stances of rules in CC, possibly followed by instances of sum, possibly followed by instances of
sym, possibly followed by instances of trans.

In other words, a derivation of T ≈ S is in normal form iff rules are applied in a certain order. As an
example, we cannot apply transitivity or symmetry closure rules too early, i.e., before context closure
rules. One may wonder whether this restricts the class of provable equivalences. Infact it does not:

Proposition 1 T ≈ S iff T ∼ S.

Proof. If T ∼ S, then of course T ≈ S. The converce can be showed by induction on the height n of
a proof of T ≈ S , enriching the thesis by prescribing that the height of the obtained proof of T ≈ S
must be at most n:
• If T ≈ S is proved by rules in AX or by refl, then by definition T ∼ S.

13

• If T ≈ S is derived by rules in CC from a proof π, then:
• If the rules in π are all from AX and CC, then there is nothing to do.
• If the last rule in π is sum, then we can apply one of the following transformations, so as to be

able to apply the induction hypothesis:

V ≈ X
sum

αV +W ≈ αX +W
l.a

αVπ +Wπ ≈ αXπ +Wπ

=⇒

V ≈ X
l.a

Vπ ≈ Xπ
sum

αVπ +Wπ ≈ αXπ +Wπ

V ≈ X
sum

αV +W ≈ αX +W
r.a

απV + πW ≈ απX + πW

=⇒

V ≈ X
r.a

πV ≈ πX
sum

απV + πW ≈ απX + πW
V ≈ X

sum
αV +W ≈ αX +W

in.λ
αλx.V + λx.W ≈ αλx.X + λx.W

=⇒

V ≈ X
in.λ

λx.V ≈ λx.X
sum

αλx.V + λx.W ≈ αλx.X + λx.W
V ≈ X

sum
αV +W ≈ αX +W

in.λ.pair
αλ〈x, y〉.V + λ〈x, y〉.W ≈ αλ〈x, y〉.X + λ〈x, y〉.W

=⇒

V ≈ X
in.λ.pair

λ〈x, y〉.V ≈ λ〈x, y〉.X
sum

αλ〈x, y〉.V + λ〈x, y〉.W ≈ αλ〈x, y〉.X + λ〈x, y〉.W

V ≈ X
sum

αV +W ≈ αX +W
l.in.tens

αV ⊗ π +W ⊗ π ≈ αX ⊗ π +W ⊗ π

=⇒

V ≈ X
l.in.tens

V ⊗ π ≈ X ⊗ π
sum

αV ⊗ π +Wπ⊗ ≈ αX ⊗ π +W ⊗ π
V ≈ X

sum
αV +W ≈ αX +W

r.in.tens
απ ⊗ V + π ⊗W ≈ απ ⊗X + π ⊗W

=⇒

V ≈ X
r.in.tens

π ⊗ V ≈ π ⊗X
sum

απ ⊗ V + π ⊗W ≈ απ ⊗X + π ⊗W
• If the last rule in π is sym or trans, then we can easily apply similar transformations, so as to

be able to apply the induction hypothesis.
• If the last rule in π is refl, then we can derive T ≈ S by a single application of refl.

• If T ≈ S is derived by sum from a proof π, then:
• If the rules in π are all from AX or CC, or are sum, then there is nothing to do.
• If the last rule in π is sym, then we can apply the following transformation, so as to be able to

apply the induction hypothesis:

V ≈ X
sym

X ≈ V
sum

αX +W ≈ αV +W
=⇒

V ≈ X
sum

αV +W ≈ αX +W
sym

αX +W ≈ αV +W
• If the last rule in π is trans, then we can apply the following transformation, so as to be able to

apply the induction hypothesis

14

V ≈ X X ≈ Y
trans

V ≈ Y
sum

αV +W ≈ αY +W

=⇒

V ≈ X
sum

αV +W ≈ αX +W

X ≈ Y
sum

αX +W ≈ αY +W
trans

αX +W ≈ αY +W
• If the last rule in π is refl, then we can derive T ≈ S by a single application of refl.

• If T ≈ S is derived by sym from a proof π, then:
• If the rules in π are all from AX or CC, or are sum or sym, then there is nothing to do.
• If the last rule in π is trans, then we can apply the following transformation, so as to be able to

apply the induction hypothesis:

V ≈ X X ≈ Y
trans

V ≈ Y
sym

Y ≈ V
=⇒

X ≈ Y
sym

Y ≈ X
V ≈ X

sym
X ≈ V

trans
Y ≈ V

• If the last rule in π is refl, then we can derive T ≈ S by a single application of refl.
• If T ≈ S is derived by trans from two proofs of π and ρ, then if either π or ρ is derived by refl,

then the required proof is already in our hand. Otherwise, there is nothing to do.
This concludes the proof. �

5 A Token Machine for QΛ

In this section we describe an interpretation of QΛ type derivations in terms of a specific token ma-
chine called IAMQΛ.

With a slight abuse of notation, a permutation σ : {1, . . . , n} → {1, . . . , n} will be often applied
to sequences of length n with the obvious meaning: σ(a1, . . . , an) = aσ(1), . . . , aσ(n). Similarly,
such a permutation can be seen as the unique unitary operator on C2n which sends |b1 . . . bn〉 to∣∣bσ(1) . . . bσ(n)

〉
. Suppose given an operator U ∈ U of arity n ∈ N. Now, take a natural number

m ≥ n and n distinct natural numbers j1, . . . , jn, all of them smaller or equal to m. With Uj1,...,jn
m

(or simply with Uj1,...,jn) we indicate the operator of arity m which acts like U on the qubits indexed
with j1, . . . , jn and leave all the other qubits unchanged.

In the following, with a slight abuse of notation, occurrences of types in type derivations are
confused with types themselves. On the other hand, occurrences of types inside other types will
be defined quite precisely, as follows. Contexts (types with an hole) are denoted by metavariables
like C,D. A context C is said to be a context for a type A if C[B] = A. Negative contexts (i.e.,
contexts where the hole is in negative position) are denoted by metavariables like N,M . Positive
ones are denoted by metavariables like P,Q. An occurrence of B in the type derivation π is a pair
(A,C), where A is an occurrence of a type in π and C is a context for A. Sequences of occurrences
are indicated with metavariables like ϕ,ψ (possibly indexed). All sequences of occurrences we will
deal with do not contain duplicates. Type constructors(and ⊗ can be generalized to operators on
occurrences and sequences of occurrences, e.g. (A,C)(B is just (A(B,C (B).

Given (an occurrence of) a type A, all positive and negative occurrences of B inside A can be put

15

in sequences called P(A) and N (A) as follows (where · is sequence concatenation):

P(B) = (B, [·]);
N (B) = ε;

P(A⊗B) = (P(A)⊗B) · (A⊗ P(B));

N (A⊗B) = (N (A)⊗B) · (A⊗N (B));

P(A(B) = (N (A)(B) · (A(P(B));

N (A(B) = (P(A)(B) · (A(N (B)).

As an example, the positive occurrences in the type B (B ⊗ B should be the two rightmost ones.
And indeed:

P(B(B⊗ B) = (N (B)(B⊗ B) · (B(P(B⊗ B))

= ε · (B(P(B⊗ B)) = B(P(B⊗ B)

= (B((P(B)⊗ B)) · (B((B⊗ P(B)))

= (B,B(([·]⊗ B)), (B,B((B⊗ [·])).

For every type derivation π, B(π) is the sequence of all occurrences of B in π which are introduced
by the rules (aq0) and (aq1) (from Figure 2). Similarly, V(π) is the corresponding sequence of binary
digits, seen as a vector in C2|B(π)| . Both inB(π) and in V(π), the order is the one induced by the natural
number labeling the underlying bit in π. As an example, consider the following type derivation, and
call it π:

· ` |0〉2 : B1 · ` |1〉1 : B2
(I⊗)

· ` |0〉2 ⊗ |1〉1 : B3 ⊗ B4

There are four occurrences of B in it, and we have indexed it with the first four positive natural
numbers, just to be able to point at them without being forced to use the formal, context machinery.
Only two of them, namely the upper ones, are introduced by instances of the rules (aq0) and (aq1).
Moreover, the rightmost one serves to type a bit having an index (namely 1) greater than the one in
the other instance (namely 2). As a consequence, B(π) is the sequence B2,B1. The two instances
introduces bits 0 and 1; then V(π) = |1〉⊗ |0〉. As another example, one can easily compute B(πEPR)
and V(πEPR) (where πEPR is from Example 3), finding out that both are the empty sequence.

Finally, we are able to define, for every π, the abstract machine Aπ interpreting it:
• The states of Aπ form a set Sπ and are in the form (O1, . . . , On,Q) where:
• O1, . . . , On are occurrences of the type B in π;
• Q is a quantum register on n qubits, i.e. a normalized vector in C2n(see Section 3).

• The transition relation→π⊆ Sπ × Sπ is defined based on π, following Figure 4 and Figure 5. In
the latter, each of the 2n occurrences of B in the type of U is simply denoted through its index, and
for every 1 ≤ k ≤ m, ik is the position of Bk in the sequence (ϕ1,Bj1 , ϕ2, . . . , ϕm,Bjm , ϕm+1).

The number of positive (negative, respectively) occurrences of B in the conclusion of π is said to be
the output arity (the input arity, respectively) of π. Given a type derivation π, the relation→π enjoys
a strong form of confluence:

Proposition 2 (One-step Confluence of→π) Let S,R,T ∈ Sπ be such that S →π R and S →π T.
Then either R = T or there exists a state U such that R→π U and T→π U.

16

x : A1 ` x : A2

((ϕ, (A1, P), ψ),Q) →π ((ϕ, (A2, P), ψ),Q)

((ϕ, (A2, N), ψ),Q) →π ((ϕ, (A1, N), ψ),Q)

Γ1, x : A1 `M : B1

Γ2 ` λx.M : A2 (B2

((ϕ, (A1, N), ψ),Q)→π ((ϕ, (A2 (B2, N (B2), ψ),Q)

((ϕ, (A2 (B2, P (B2), ψ),Q)→π ((ϕ, (A1, P), ψ),Q)

((ϕ, (B1, P), ψ),Q)→π ((ϕ, (A2 (B2, A2 (P), ψ),Q)

((ϕ, (A2 (B2, A2 (N), ψ),Q)→π ((ϕ, (B1, N), ψ),Q)

((ϕ, (Γ2, P), ψ),Q)→π ((ϕ, (Γ1, P), ψ),Q)

((ϕ, (Γ1, N), ψ),Q)→π ((ϕ, (Γ2, N), ψ),Q)

Γ1, x : A1, y : B1 `M : C1

Γ2 ` λ〈x, y〉.M : (A2 ⊗B2)(C2

((ϕ, (A1, N), ψ),Q)→π ((ϕ, (A2 ⊗B2 (C2, N ⊗B2 (C2), ψ),Q)

((ϕ, (A2 ⊗B2 (C2, P ⊗B2 (C2), ψ),Q)→π ((ϕ, (A1, P), ψ),Q)

((ϕ, (B1, N), ψ),Q)→π ((ϕ, (A2 ⊗B2 (C2, A2 ⊗N (B2), ψ),Q)

((ϕ, (A2 ⊗B2 (C2, A2 ⊗ P (C2), ψ),Q)→π ((ϕ, (B1, P), ψ),Q)

((ϕ, (C1, P), ψ),Q)→π ((ϕ, (A2 ⊗B2 (C2, A2 ⊗B2 (P), ψ),Q)

((ϕ, (A2 ⊗B2 (C2, A2 ⊗B2 (N), ψ),Q)→π ((ϕ, (C1, N), ψ),Q)

((ϕ, (Γ2, P), ψ),Q)→π ((ϕ, (Γ1, P), ψ),Q)

((ϕ, (Γ1, N), ψ),Q)→π ((ϕ, (Γ2, N), ψ),Q)

Γ1 `M : A1 (B1 ∆1 ` N : A2

Γ2,∆2 `MN : B2

((ϕ, (A2, P), ψ),Q)→π ((ϕ, (A1 (B1, P (B1), ψ),Q)

((ϕ, (A1 (B1, N (B1), ψ),Q)→π ((ϕ, (A2, N), ψ),Q)

((ϕ, (A1 (B1, A1 (P), ψ),Q)→π ((ϕ, (B2, P), ψ),Q)

((ϕ, (B2, N), ψ),Q)→π ((ϕ, (A1 (B1, A(N), ψ),Q)

((ϕ, (Γ2, P), ψ),Q)→π ((ϕ, (Γ1, P), ψ),Q)

((ϕ, (Γ1, N), ψ),Q)→π ((ϕ, (Γ2, N), ψ),Q)

((ϕ, (∆2, P), ψ),Q)→π ((ϕ, (∆1, P), ψ),Q)

((ϕ, (∆1, N), ψ),Q)→π ((ϕ, (∆2, N), ψ),Q)

Γ1 `M : A1 ∆1 ` N : B1

(I⊗)
Γ2,∆2 `M ⊗N : A2 ⊗B2

((ϕ, (A2 ⊗B2, N ⊗B2), ψ),Q)→π ((ϕ, (A1, N), ψ),Q)

((ϕ, (A2 ⊗B2, A2 ⊗N), ψ),Q)→π ((ϕ, (B1, N), ψ),Q)

((ϕ, (A1, P), ψ),Q)→π ((ϕ, (A2 ⊗B2, P ⊗B2), ψ),Q)

((ϕ, (B1P), ψ),Q)→π ((ϕ, (A2 ⊗B2, A2 ⊗ P), ψ),Q)

((ϕ, (Γ1, N), ψ),Q)→π ((ϕ, (Γ2, N), ψ),Q)

((ϕ, (∆1, N), ψ),Q)→π ((ϕ, (∆2, N), ψ),Q)

((ϕ, (Γ2, P), ψ),Q)→π ((ϕ, (Γ1, P), ψ),Q)

((ϕ, (∆2, P), ψ),Q)→π ((ϕ, (∆1, P), ψ),Q)

Figure 4: Quantum GoI Machine — Classical Rules

· ` U : B1 ⊗ . . .⊗ Bm (Bm+1 ⊗ . . .⊗ B2m

((ϕ1,Bj1 , ϕ2, . . . , ϕm,Bjm , ϕm+1),Q)
→π

((ϕ1,Bj1+m, ϕ2, . . . , ϕm,Bjm+m, ϕm+1),Ui1,...,im (Q))

Figure 5: Quantum GoI Machine — Quantum Rules

17

Proof. By simply inspecting the various rules. Notice that there are no critical pairs in→π. �

Suppose, for the sake of simplicity, that π is a type derivation of · `M : A. An initial state for Q
is a state in the form (N (A) · B(π),Q ⊗ V(π)). Given a permutation σ on n elements, a final state
for Q and σ is one in the form (ϕ,Q), where ϕ = σ(P(A)).

Definition 2 Given a type derivation π, the partial function computed by π is [π] : C2n ⇀ C2m

(where n and m are the input and output arity of π) and is defined by stipulating that [π](Q) = R iff
any initial state for Q rewrites into a final state for S and σ, where S = σ−1(R).

Given a type derivation π, [π] is either always undefined or always defined. Indeed, the fact any
initial configuration (for, say, Q) rewrites to a final configuration or not does not depend on Q but
only on π:

Lemma 2 (Uniformity) For every type derivation π and for every occurrencesO1, . . . , On, P1, . . . , Pn,
there is a unitary operator U such that whenever (O1, . . . , On,Q)→π (P1, . . . , Pn,R) it holds that
R = U(Q).

Proof. Observe that for every O1, . . . , On, P1, . . . , Pn there is at most one of the rules defining→π

which can be applied. Moreover, notice that each rule acts uniformly on the underlying quantum
register. �

In the following section, we will prove that [π] is always a total function, and that it makes perfect
sense from a quantum point of view.

6 Main Properties of IAMQΛ

In this section, we will prove some crucial results about IAMQΛ. More specifically, we prove that
runs of this token machine are indeed finite and end in final states. We proceed by putting QΛ in
correspondence to MLL, thus inheriting the same kind of very elegant and powerful results enjoyed
by MLL token machines.

6.1 A Correspondence Between MLL and QΛ

Any type derivation π can be put in correspondence with some MLL proofs. We inductively define the
map (·)• from QΛ types to MLL formulas as follows:

(B)• = α;

(A(B)• = (A)•⊥ ` (B)•;

(A⊗B)• = (A)• ⊗ (B)•.

Given a judgment J = Γ `M : A and a natural number n ∈ N, the MLL sequent corresponding to J
and n is the following one:

` α⊥, . . . , α⊥︸ ︷︷ ︸
n times

, ((B1)•)⊥, . . . , ((Bm)•)⊥, (A)•,

where Γ = x1 : B1, . . . , xm : Bm. For every π, we define now a set of MLL proofs I (π). This
way, every type derivation π for J = Γ ` M : A such that n bits occur in M , is put in relation to

18

possibly many MLL proofs of the sequent corresponding to J and n. One among them is called the
canonical proof for π. The set I (π) and canonical proofs are defined by induction on the structure
of the underlying type derivation π:
• If π is the type derivation

(aq0)· ` |0〉 : B ,

then the only proof ξ in I (π) is an atomic axiom. Similarly if the only rule in π is (aq1). Please
notice that π contains one bit, and as a consequence ξ has the correct conclusion.
• If π is

(aU)
· ` U : Bn(Bn ,

then π is in correspondence to all of the n! possible cut-free proofs of the sequent

` ((α⊗ . . .⊗ α)⊥︸ ︷︷ ︸
n times

` (α⊗ . . .⊗ α)︸ ︷︷ ︸
n times

obtained by starting from n instances of an atomic axiom, gluing them together by the rule ⊗, and
finally choosing one of the n! possible permutations before applying n times rule`. The canonical
proof is the one corresponding to the identity permutation.
• If π is the type derivation

(av)
x : A ` x : A

then the only proof corresponding to π is the following

Ax
` (A)•⊥, (A)•

• If π is
ρ . Γ, x : A `M : B

(I1()
Γ ` λx.M : A(B

where Γ = x1 : A1, . . . , xm : Am. Then for all possible MLL proof µ ∈ I (ρ) of the MLL sequent

J = ` α⊥, . . . , α⊥︸ ︷︷ ︸
n times

, ((A1)•)⊥, . . . , ((Am)•)⊥, ((A)•)⊥, (B)•

the following MLL proof is in I (π):

µ . J
`

` α⊥, . . . , α⊥︸ ︷︷ ︸
n times

, ((A1)•)⊥, . . . , ((Am)•)⊥, (A)•⊥ ` (B)•

• If π is
ρ . Γ, x : A, y : B `M : C

(I2()
Γ ` λ〈x, y〉.M : (A⊗B)(C

where Γ = z1 : D1, . . . , zm : Dm, x : A, y : B, then for all possible MLL proofs µ ∈ I (ρ) of the
MLL sequent

J = ` α⊥, . . . , α⊥︸ ︷︷ ︸
n times

, ((D1)•)⊥, . . . , ((Dm)•)⊥, (A)•⊥, (B)•⊥, (C)•

19

the following MLL proof is in I (π):

µ . J
`

` α⊥, . . . , α⊥︸ ︷︷ ︸
n times

, ((D1)•)⊥, . . . , ((Dm)•)⊥, ((A)•⊥ ` (B)•⊥), (C)•

`
` α⊥, . . . , α⊥︸ ︷︷ ︸

n times

, ((D1)•)⊥, . . . , ((Dm)•)⊥, ((A)•⊥ ` (B)•⊥)` (C)•

• If π is
ρ . Γ `M : A(B σ .∆ ` N : A

(E()
Γ,∆ `MN : B

where Γ = x1 : A1, . . . , xm : Am and ∆ = y1 : B1, . . . , yk : Bk then for all possible MLL proofs
ξ ∈ I (ρ) and µ ∈ I (σ) of the MLL sequents

H = ` α⊥, . . . , α⊥︸ ︷︷ ︸
n1 times

, ((A1)•)⊥, . . . , ((Am)•)⊥, (A)•⊥ ` (B)•

G = ` α⊥, . . . , α⊥︸ ︷︷ ︸
n2 times

, ((B1)•)⊥, . . . , ((Bk)
•)⊥, (A)•

the following MLL proof is in I (π):

ξ . H

µ . G ` (B)•⊥, (B)•

` α⊥, . . . , α⊥︸ ︷︷ ︸
n2 times

, ((B1)•)⊥, . . . , ((Bk)
•)⊥, (A)• ⊗ (B)•⊥, (B)•

` α⊥, . . . , α⊥︸ ︷︷ ︸
n1 + n2 times

, ((A1)•)⊥, . . . , ((Am)•)⊥, ((B1)•)⊥, . . . , ((Bk)
•)⊥, (B)•

• If π is
ρ . Γ `M : A σ .∆ ` N : B

(I⊗)
Γ,∆ `M ⊗N : A⊗B

where Γ = x1 : A1, . . . , xm : Am and ∆ = y1 : B1, . . . , yk : Bk, then for all possible MLL proofs
ξ ∈ I (ρ) and µ ∈ I (σ) of the MLL sequents

H = ` α⊥, . . . , α⊥︸ ︷︷ ︸
n1 times

, ((A1)•)⊥, . . . , ((Am)•)⊥, (A)•

G = ` α⊥, . . . , α⊥︸ ︷︷ ︸
n2 times

, ((B1)•)⊥, . . . , ((Bk)
•)⊥, (B)•

π is in correspondence to the MLL proof

ξ1 . J1 ξ2 . J2 ⊗
` α⊥, . . . , α⊥︸ ︷︷ ︸
n1 + n2 times

, ((A1)•)⊥, . . . , ((Am)•)⊥, ((B1)•)⊥, . . . , ((Bk)
•)⊥, (A)•⊥ ⊗ (B)•⊥

20

Observe how I (π) is a singleton whenever π does not contain any unitary operator of arity (strictly)
greater than 1.

Given an MLL proof ξ, let us denote as Tξ the class of all finite sequences of atom occurrences in
ξ. The relation 7→ξ can be extended to a relation on Tξ by stipulating that

(O1, . . . , On−1, P,On+1, . . . , Om) 7→ξ (O1, . . . , On−1, R,On+1, . . . , Om)

whenever P 7→ξ R. As usual, 7→+
ξ is the transitive closure of 7→ξ.

Let us now consider a type derivation π in QΛ and its quantum token machine Aπ and any ξ ∈
I (π). States of Aπ can be mapped to Tξ by simply forgetting the underlying quantum register and
mapping any occurrence of π to the corresponding atom occurrence in ξ. This way one gets a map
Rπ,ξ(·) : Sπ → Tξ such that, given a state S = (O1, . . . , On,Q) in Sπ, |Rπ,ξ(S)| = n, number of
occurrences in S is the same as the length of Rπ,ξ(S). Each reduction step on the token machine Aπ
corresponds to at least one reduction step in the MLL machineMξ, where ξ ∈ I (π) is the canonical
proof:

Lemma 3 Let us consider a token machine Aπ and two states S,R ∈ Sπ. If S →π R and ξ ∈ I (π)
is canonical, then Rπ,ξ(S) 7→+

ξ Rπ,ξ(R).

Proof. This goes by induction on the structure of π. �

Any (possible) pathological situation on the quantum token machine, then, can be brought back to a
corresponding (absurd) pathological situation in the MLL token machine. This is the principle that
will guide us in the rest of this section.

6.2 Termination

The first property we want to be sure about is that every computation of any token machineAπ always
terminates. This is relatively simple to state and prove:

Proposition 3 (Termination) Given a quantum token machine Aπ, any sequence S →π R →π . . .
is finite.

Proof. Suppose, for the sake of contradiction, than there exists an infinite computation in Aπ. This
implies by Lemma 3 that there exists an infinite path in the token machineMξ where ξ is the canonical
MLL proof for π. Absurd. �

6.3 Progress

Progress (i.e. deadlock-freedom) is more difficult to prove than termination. Again, however, we use
in an essential way the correspondence between QΛ and MLL:

Proposition 4 (Progress) Suppose π is a type derivation in QΛ and S ∈ Sπ is initial. Moreover,
suppose that S→∗π R. Then either R is final or R→π T for some T ∈ Sπ.

Given a type derivation π, an argument occurrence is any negative occurrence (A,N) of B in a
(aU) axiom. We extend this definition to the corresponding atom occurrence when ξ ∈ I (π). A
result occurrence is defined similarly, but the occurrence has to be positive.

21

Proof. Let us consider a computation S1 →π . . . →π Sk on a quantum token machine Aπ. Suppose
that the state Sk is a deadlocked state, i.e. Sk is not a final state, and that there exists no Sm such
that Sk →π Sm. The fact Sk is a deadlocked state means that l ≥ 1 occurrences in Sk are argument
occurrences, since the latter are the only points of synchronization of the machine. Let us consider
any maximal sequence

Rπ,ξ(S1) 7→ξ . . . 7→ξ Rπ,ξ(Sk) 7→ξ Q1 7→ξ . . . 7→ξ Qn, (1)

where ξ ∈ I (π) is the canonical proof corresponding to π. Observe that in (1), all occurrences of
atoms in ξ are visited exactly once, including those corresponding to argument and result occurrences
from π. Notice, however, that the argument and result occurrences of the unitary operators affected
by Sk cannot have been visited along the subsequence Rπ,ξ(S1) 7→ξ . . . 7→ξ Rπ,ξ(Sk) (otherwise we
would visit the occurrences in Sk at least twice, which is not possible). Now, form a directed graph
whose nodes are the unitary constants U1, . . . , Uh which block Sk, plus a node F (representing the
conclusion of π), and whose edges are defined as follows:
• there is an edge from Ui to Uj iff along Q1 7→ξ . . . 7→ξ Qn one of the l independent computations

corresponding to a blocked occurrence in Sk is such that a result occurrence of Ui is followed by
an argument occurrence of Uj and the occurrences between them are neither argument nor result
occurrences.
• there is an edge from Ui to F iff along Q1 7→ξ . . . 7→ξ Qn one of the l traces is such that a result

occurrence of Ui is followed by a final occurrence of an atom and the occurrences between them
are neither argument nor result occurrences.

The thus obtained graph has the following properties:
• Every node Ui has at least one incoming edge, because otherwise the configuration Sk would not

be deadlocked.
• As a consequence, the graph must be cyclic, because otherwise we could topologically sort it

and get a node with no incoming edges (meaning that some of the Ui would not be blocked!).
Moreover, the cycle does not include F , because the latter only has incoming nodes.

From any cycle involving the Uj , one can induce the presence of a cycle in the token machineMµ

for some µ ∈ I (π). Indeed, such a µ can be formed by simply choosing, for each Uj , the “good”
permutation, namely the one linking the incoming edge and the outgoing edge which are part of the
cycle. This way, we have reached the absurd starting from the existence of a deadlocked computation.
�

The token machine Aπ can be built by following the structure of π. However, the fact this gives
rise to a well-behaved, unitary, function requires proving some properties of Aπ (i.e. termination
and progress) externally. One may wonder whether this could be avoided by taking a categorical
approach and apply the so-called Int-Construction [13] to the underlying category. This is not going
to work, however, because finite dimensional Hilbert spaces and unitary maps on them are not a traced
category. Of course, one could switch to linear maps, which indeed turn Hilbert spaces into a traced
category; one loses the strong link with quantum computation this way, however.

6.4 Discussion

The immediate consequence of the termination and progress results from Section 6 is that [π] is always
a total function. The way Aπ is defined ensures that [π] is obtained by feeding some of the input of a
unitary operator U with some bits (namely those occurring in π). U is itself obtained by composing
the unitary operators occurring in π, which can thus be seen as a program computing a quantum

22

circuit, which we call 〈π〉. Of course, [π] is nothing more than the function computed by 〈π〉. In a
way, then, token machines both show that QΛ is a true quantum calculus and can be seen as the right
operational semantics for it.

Example 4 Consider the term MEPR = λ〈x, y〉.CNOT (Hx⊗ y) and a type derivation π for it:

· ` CNOT : B⊗ B(B⊗ B

· ` H : B(B x : B ` x : B
(E()

x : B ` Hx : B y : B ` y : B
(I⊗)

x : B, y : B ` Hx⊗ y : B⊗ B
(E()

x : B, y : B ` CNOT (Hx⊗ y) : B⊗ B
(I2()

· `MEPR : B⊗ B(B⊗ B

Forgetting about terms and marking different occurrences of B with distinct indices, we obtain:

· ` B9 ⊗ B10 (B11 ⊗ B12

· `: B21 (B22 B23 ` B24
(E()

B17 ` B18 B19 ` B20
(I⊗)

B13,B14 ` B15 ⊗ B16
(E()

B5,B6 ` B7 ⊗ B8
(I2()

· ` B1 ⊗ B2 (B3 ⊗ B4

Now, consider the IAMQΛ computation:

(B1,B2,Q)→∗π (B5,B6,Q)→∗π (B13,B14,Q)

→π (B17,B19,Q)→∗π (B23,B20,Q)

→π (B24,B10,Q)→π (B21,B10,Q)

→π (B22,B10,H
1(Q))→π (B18,B10,H

1(Q))

→π (B15,B10,H
1(Q))→π (B9,B10,H

1(Q))

→π (B11,B12,CNOT1,2(H1(Q)))→∗π (B7,B8,CNOT1,2(H1(Q)))

→π (B3,B4,CNOT1,2(H1(Q))).

Notice that CNOT acts as a synchronization operator: the second token is stuck in the occurrence
B10 until the first token arrives as a control input of the CNOT and the corresponding reduction step
actually occurs.

6.5 Soundness

What is the relation between token machines and the equational theory on superposed type derivations
introduced in Section 4.3?

It is easy to extend the definition of [·] to superposed type derivations: if T =
∑n

i=1 αiπi then [T]
when fed with a vector x returns

∑n
i=1 αi[πi](x). In the rest of this section, we will prove that token

machines behave in accordance to the equational theory.
Suppose π is a type derivation for Γ, x1 : A1, . . . , xm : Am ` M : B and that, for every 1 ≤ i ≤

m there is a type derivation ρi for ∆i ` Ni : Ai. By induction on the structure of π, one can define
a type derivation π{ρ1, . . . , ρm/x1, . . . , xm} of Γ,∆1, . . . ,∆m `M{N1, . . . , Nm/x1, . . . , xm} : B
(see Lemma 1). Moreover, from π, ρ1, . . . , ρm we can form a machine Aρ1,...,ρmπ as follows:

23

• The states of Aρ1,...,ρmπ are in the form (O1, . . . , On,Q) where:
• O1, . . . , On are occurrences of the type B in π, ρ1, . . . , ρm;
• Q is a quantum register on n qubits;

• The transition function is itself obtained by taking the disjoint union of→π,→ρ1 , . . . ,→ρn , plus

• transitions of any positive occurrence of B in Ai (in the conclusion of ρi) to the corresponding
occurrence of B in Ai (this time in the conclusion of π);
• transitions of any negative occurrence of B in Ai (in the conclusione of π) to the corresponding

occurrence of B in Ai (in the conclusion of ρi).
• Initial and final states are defined in the natural way, taking into account occurrences of B in

Γ,∆1, . . . ,∆m, B, but not those in A1, . . . Am.
The just defined machine is equivalent to the one built from the derivation π{ρ1, . . . , ρn/x1, . . . , xm}.
This is stated by the following substitution lemma:

Lemma 4 Let π . Γ, x1 : A1, . . . , xm : An `M : B and for every 1 ≤ i ≤ m let ρi .∆i ` Ni : Ai.
Then the automaton Aπ{x1,...,xn/ρ1,...,ρn} is equivalent to Aρ1,...,ρnπ .

It is now possible to prove two key intermediate results towards soundness:

Lemma 5 Let π . Γ ` (λx.M)N : A. Then 〈π〉 = 〈π⇓〉.

Lemma 6 Let π . Γ ` (λ〈x, y〉.M)(N ⊗ L) : A. Then 〈π〉 = 〈π⇓〉.

In order to prove Soundness Theorem, we need to introduce the following technical tool:

Definition 3 (Superposed Quantum Circuits) A superposed quantum circuits of arity (n,m) (where
n ≤ m) is a formal sums in the form

n∑

i=1

αiCi

where αi ∈ C and Ci is a quantum circuit on m qubits of which n are assigned a bit.

As an example, a superposed quantum circuit of arity (2, 4) looks as follows:

α1 ·

∣∣b11
〉

C1

∣∣b12
〉

 + α2 ·

∣∣b21
〉

C2

∣∣b22
〉

Since every type derivation π computes a quantum circuit 〈π〉, every superposed type derivation T
can be seen as a superposed quantum circuit 〈T 〉. Moreover, the function [

∑n
i=1 αiCi] computed by a

superposed quantum circuit
∑n

i=1 αiCi can be defined similarly to what we have done for superposed
type derivations. Of course, [〈T 〉] = [T].

We now define the set of admissible circuit transformations.

Definition 4 (Admissible Transformations) Assume 〈T 〉 =
∑n

i=1 αiCi is a superposed quantum
circuit. The following transformation are called admissible:
1. One summand αCi is replaced by βCi + γCi, where α = β + γ;

24

2. One summand αCi where Ci has the following form

|b1〉 ... U

D
|bm〉

is replaced by a sum
∑

x∈Bm α · βx · Cx where Bm is the set of binary strings of length m, βx is
the coefficient of |x〉 in U|b1 . . . bm〉 and Cx is the following circuit:

|x1〉 ...

D
|xm〉

Admissible transformations can be applied in both directions. It is easy to prove that admissible
transformations, when applied to a superposed circuit 〈T 〉, leave the underlying function unchanged.
We are now ready to prove our soundness result:

Theorem 1 (Soundness) If T ≈ S, then [T] = [S].

Proof. Since [〈T 〉] = [T], it is sufficient, by Proposition 1, to show that, if T ∼ S, then 〈S〉 can
be obtained from 〈T 〉 by iteratively applying one or more admissible transformations. This is an
induction on the structure of a proof d of T ∼ S . Let be r the last rule applied in d, where we enrich
the thesis by stipluating that if the rules in d are all from AX ∪ CC, then T is a single type derivation
and that going from 〈T 〉 to 〈S〉 can be done by performing at most one admissible transformation of
the second kind. Some interesting cases:
• r is (beta.pair). The result follows by means of Lemma 5.
• r is (beta). The result follows by means of Lemma 6.
• r is (quant). Then d is simply

π . · ` U |b1 . . . bk〉 : Bk
quant

π ≈ U|b1 . . . bk〉

and 〈π〉 is simply the quantum circuit built on the unitary operator U , feeded with the input
|b1 . . . bk〉. We know that U|b1 . . . bk〉 is a superposed type derivation in the form S =

∑
x∈Bk αxπx,

where Bk is the set of all binary strings of length k and πx is the type derivation for |x〉 (k appli-
cations of the rule (I⊗) starting from the axioms for |b1〉 . . . |bk〉). Such a derivation can be seen
as the superposed quantum circuit of ariety (k, k) 〈S〉 =

∑
x∈Bk αx|x〉 (where the binary string

|x〉 can also seen as the trivial circuit that act on it as the identity) and the amplitudes αx are ex-
actly the coefficient of |x〉 in U |b1 . . . bk〉. 〈S〉 can be plainly obtained from 〈π〉 by means of the
admissible transformation of the second kind by replacing the only summand 1 · C with the sum∑

x∈Bk 1 · αx|x〉.
• r is a reflexive or a symmetric or a transitive closure. Trivial.
• r ∈ CC, then we know that T ∼ S is derived from V ∼ W , where V is a single type derivation

and 〈W〉 is obtained by applying either zero or one admissible transormations of the second kind

25

to 〈V〉. In other words, V is

|b1〉 ... U

D
|bm〉

while W is
∑

x∈Bm α · βx · Cx where Bm is the set of binary strings of length m, βx is the
coefficient of |x〉 in U |b1 . . . bm〉 and Cx is the following circuit:

|x1〉 ...

D
|xm〉

It is then clear that the effect of r to 〈V〉 consists in modifying D, because U cannot be affected.
Moreover, the same modification is perfomed by r uniformly on D in any Cx. We can then
conclude that there exists E such that T is

|b1〉 ... U

E
|bm〉

while S is

|x1〉 ...

E
|xm〉

This concludes the proof. �

7 Related Works

The role of GoI in quantum computing has already been explored in at least two works. In [12]
a geometry of interaction model for Selinger and Valiron’s quantum lambda calculus [18] is defined.
The model is formulated in particle-style. In [2] QMLL, an extension of MLL with quantum modalities
is studied. QMLL is sound and complete with respect to quantum circuits, and an interactive, particle-
style token machine is defined. The computational meaning of QMLL proofs is given by means of
the token machine: each cut-free QMLL proof corresponds to an unique quantum circuit. In both
cases, adopting a particle-style approach has a bad consequence: the “quantum” tensor product does
not coincide with the tensor product in the sense of linear logic. Here we show that adopting the
wave-style approach solves the problem.

Quantum extensions of game semantics are partially connected to our subject. In [8] a game
semantics for a simply-typed lambda calculus (similar to QΛ) is introduced. The language uses a
notion of extended variable, able to deal with tensor products. The game semantics is built around

26

classical game semantics where, however, quantum operations are the questions and measurements
are the answers. A soundness result for the semantics is given. A similar approach for a lambda
calculus with quantum stores (i.e. in which quantum data are referred through pointers) has been
explored in [9]. Again, two tensor products are needed, unless one wants to drop the possibility of
entangling qubits.

Purely linear quantum lambda-calculi (with measurements) can be given a fully abstract denota-
tionl semantics, like the one proposed by Selinger and Valiron [19]. In their work, closure (necessary
to interpret higher-order functions) is not obtained via traces and is not directly related in any way to
the geometry of interaction. Moreover, morphisms are just linear maps, and so the model is far from
being an quantum operational semantics like the IAMQΛ.

8 Conclusions

The definition of an elegant semantics is always a challenge in the case of quantum functional lan-
guages. This mainly holds for denotational models, but remains true also for operational, reduction-
style semantics. In this paper we introduce QΛ, a linear quantum calculus with explicit qubits, where
quantum circuits can be easily encoded. This simple calculus is a good framework to further investi-
gate the (deep) relationships between quantum computing and Girard’s Geometry of Interaction. We
describe IAMQΛ, an interactive abstract machine which provides a sound operational characterization
of any QΛ’s type derivation. QΛ quantum features force to move from the (usual) particle-style token
machine model to the wave-style one, where different tokens circulate around a net (a type derivation)
at the same time. Constants for n-ary unitary operators act as synchronization points: every token
trips independently since it arrives at a unitary operator constant. In this case, computation takes
place only if all input qubits occurrence has reached the unitary operator. IAMQΛ is a sound model:
critical behaviors potentially introduced by the synchronization mechanism, can not happen in IAMQΛ

computations. Our contribution can be summarized as follows:
• The IAMQΛ provides an elegant model for quantum programs written in QΛ: each type derivation

is interpreted as a quantum circuit built on the set of quantum gates occurring in the underlying
lambda-term;
• we show that also wave-style token machines are sound with respect to an operational theory of

superposed type derivations;
• we give evidence that wave-style provides an original account of the quantum data entanglement

phenomenon, since the notion of synchronization we implicitly define is strongly connected to
what happens to entangled data.

Our investigation is open to some possible future directions. A natural step will be to extend the
syntax of terms and type grammar with an exponential modality. The generalization of the wave-style
token machine to this more expressive language would be an interesting and technically challenging
subject. Something we see as relatively easy is an extension of this framework to a calculus with
measurements: token machines could cope with measurements by evolving probabilistically[6], while
adapting the equational theory would probably be nontrivial. Finally, giving a formal status to the
connection between wave-style and the presence of entanglement is a fascinating subject which we
definitely aim to investigate further.

References

[1] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411–1473,
1997.

27

[2] U. Dal Lago and C. Faggian. On multiplicative linear logic, modality and quantum circuits. In
QPL, volume 95 of Electron. Proc. Theor. Comput. Sci., pages 55–66, 2011.

[3] U. Dal Lago, A. Masini, and M. Zorzi. On a measurement-free quantum lambda calculus with
classical control. Math. Structures Comput. Sci., 19(2):297–335, 2009.

[4] U. Dal Lago, A. Masini, and M. Zorzi. Confluence results for a quantum lambda calculus with
measurements. Electron. Notes Theor. Comput. Sci., 270(2):251–261, 2011.

[5] U. Dal Lago, A. Masini, and M. Zorzi. Quantum implicit computational complexity. Theoret.
Comput. Sci., 411(2):377–409, 2011.

[6] U. Dal Lago and M. Zorzi. Probabilistic operational semantics for the lambda calculus. RAIRO
Theor. Inform. Appl., 46(03):413–450, 2012.

[7] V. Danos and L. Regnier. Reversible, irreversible and optimal lambda-machines. Theoret. Com-
put. Sci., 227:79–97, 1996.

[8] Y. Delbecque. Game semantics for quantum data. Electron. Notes Theor. Comput. Sci.,
270(1):41–57, 2011.

[9] Y. Delbecque and P. Panagaden. Game semantics for quantum stores. Electron. Notes Theor.
Comput. Sci., 218:153–170, 2008.

[10] J.-Y. Girard. Geometry of interaction I: Interpretation of system F. In Proc. of the Logic Collo-
quium ’88, pages 221–260, 1989.

[11] G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In POPL,
pages 15–26, 1992.

[12] I. Hasuo and N. Hoshino. Semantics of higher-order quantum computation via geometry of
interaction. In LICS, pages 237–246, 2011.

[13] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathematical Proceedings of
the Cambridge Philosophical Society, 119(3):447–468, 1996.

[14] I. Mackie. The geometry of interaction machine. In POPL, pages 198–208, 1995.

[15] M. Nakahara and T. Ohmi. Quantum Computing - From Linear Algebra to Physical Realizations.
CRC Press, 2008.

[16] M. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge Uni-
versity Press, 2000.

[17] H. Nishimura and M. Ozawa. Perfect computational equivalence between quantum turing ma-
chines and finitely generated uniform quantum circuit families. Quantum Inf. Process., 8(1):13–
24, 2009.

[18] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control.
Math. Structures Comput. Sci., 16(3):527–552, 2006.

[19] P. Selinger and B. Valiron. On a fully abstract model for a quantum linear functional language.
Electron. Notes Theor. Comput. Sci., 210:123–137, 2008.

28

[20] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[21] A. van Tonder. A lambda calculus for quantum computation. SIAM J. Comput., 33(5):1109–
1135, 2004.

29

A Higher-Order Characterization
of Probabilistic Polynomial Time

Ugo Dal Lago, Paolo Parisen Toldin
Dipartimento di Informatica, Università di Bologna

Équipe FOCUS, INRIA Sophia Antipolis
Mura Anteo Zamboni 7, 40127 Bologna, Italy

Abstract

We present RSLR, an implicit higher-order characterization of the class PP of those prob-
lems which can be decided in probabilistic polynomial time with error probability smaller
than 1/2. Analogously, a (less implicit) characterization of the class BPP can be obtained.
RSLR is an extension of Hofmann’s SLR with a probabilistic primitive, which enjoys basic
properties such as subject reduction and confluence. Polynomial time soundness of RSLR
is obtained by syntactical means, as opposed to the standard literature on SLR-derived
systems, which use semantics in an essential way.

Keywords: Implicit computational complexity, Probabilistic classes, Lambda calculus,
Linear types

1. Introduction

Implicit computational complexity (ICC) combines computational complexity, math-
ematical logic, and formal systems to give a machine independent account of complexity
phenomena. It has been successfully applied to the characterization of a variety of complex-
ity classes, especially in the sequential and parallel modes of computation (e.g., FP [4, 12],
PSPACE [13], LOGSPACE [11], NC [5]). Its techniques, however, may be applied also
to non-standard paradigms, like quantum computation [7] and concurrency [6]. Among
the many characterizations of the class FP of functions computable in polynomial time,
we can find Hofmann’s safe linear recursion [10] (SLR in the following), a higher-order
generalization of Bellantoni and Cook’s safe recursion [3] in which linearity plays a crucial
role.

Randomized computation is central to several areas of theoretical computer science,
including cryptography, analysis of computation dealing with uncertainty and incomplete
knowledge agent systems. In the context of computational complexity, probabilistic com-
plexity classes like BPP [9] are nowadays considered as very closely corresponding to the

Email address: {dallago,parisent}@cs.unibo.it (Ugo Dal Lago, Paolo Parisen Toldin)
This work has been supported by project ANR 12IS02001 PACE.

Preprint submitted to Information and computation November 15, 2013

informal notion of feasibility, since a solution to a problem in BPP can be computed in
polynomial time up to any given degree of precision: BPP is the set of problems which can
be solved by a probabilistic Turing machine working in polynomial time with a probability
of error bounded by a constant strictly smaller than 1/2.

Probabilistic polynomial time computations, seen as oracle computations, were showed
to be amenable to implicit techniques since the early days of ICC, by a relativization of
Bellantoni and Cook’s safe recursion [3]. They were then studied again in the context of
formal systems for security, where probabilistic polynomial time computation plays a major
role [14, 16]. These two systems are built on Hofmann’s work SLR [10], by adding a random
choice operator to the calculus. The system in [14], however, lacks higher-order recursion,
and in both papers the characterization of probabilistic classes is obtained by semantic
means. While this is fine for completeness, we think it is not completely satisfactory for
soundness — we know from the semantics that for any term of a suitable type its normal
form may be computed within the given bounds, but no notion of evaluation is given for
which computation time is guaranteed to be bounded.

In this paper we propose RSLR, another probabilistic variation on SLR, and we show
that it characterizes the class PP of those problems which can be solved in polynomial
time by a Turing machine with error probability smaller than 1

2
[9]. This is carried out

by proving that any term in the language can be reduced in polynomial time, but also
that any problems in PP can be represented in RSLR. A similar result, although in a less
implicit form, is proved for BPP. Unlike [14], RSLR has higher-order recursion. Unlike [14]
and [16], the bound on reduction time is obtained by syntactical means, giving an explicit
notion of reduction which realizes that bound.

1.1. Related Work
More than ten years ago, Mitchell, Mitchell, and Scedrov [14] introduced OSLR, a type

system that characterizes oracle polynomial time functionals. Even if inspired by SLR,
OSLR does not admit primitive recursion on higher-order types, but only on base types.
The main theorem shows that terms of type 2Nm → Nn → N define precisely the oracle
polynomial time functionals, which constitutes a class related but different from the ones
we are interested in here. Finally, inclusion in the polynomial time class is proved without
studying reduction from an operational viewpoint, but only via semantics: it is not clear
for which notion of evaluation, computation time is guaranteed to be bounded.

Recently, Zhang’s [16] introduced a further system (called CSLR) which builds on OSLR
and allows higher-order recursion. The main interest of the paper are applications to the
verification of security protocols. It is stated that CSLR defines exactly those functions
that can be computed by probabilistic Turing machines in polynomial time, via a suitable
variation of Hofmann’s techniques as modified by Mitchell et al. This is again a purely
semantic proof, whose details are missing in [16].

Finally, both works are derived from Hofmann’s one, and as a consequence they both
have potential problems with subject reduction. Indeed, as Hofmann showed in his work [10],
subject reduction does not hold in SLR, and hence is problematic in both OSLR and CSLR.

2

1.2. RSLR: An Informal Account
Our system is called RSLR, which stands for Random Safe Linear Recursion. RSLR

can be thought of as the system obtained by endowing SLR with a new primitive for
random binary choice. Some restrictions have to be made to SLR if one wants to be able
to prove polynomial time soundness operationally. And what one obtains at the end is
indeed quite similar to (a probabilistic variation of) Bellantoni, Niggl and Schwichtenberg
calculus RA [2, 15]. Actually, the main difference between RSLR and SLR has to do with
linearity: keeping the size of reducts under control during normalization is very difficult
in presence of higher-order duplication. For this reason, the two function spaces A → B
and A (B of SLR collapse to just one in RSLR, and arguments of a higher-order type
can never be duplicated. This constraint allows us to avoid an exponential blowup in the
size of terms and results in a reasonably simple system for which polytime soundness can
be proved explicitly, by studying the combinatorics of reduction. Another consequence of
the just described modification is Subject Reduction, which can be easily proved in our
system, contrarily to what happens in SLR [10].

1.3. On the Difficulty of Probabilistic ICC
Differently from most well-known complexity classes such as P, NP and LOGSPACE,

interesting probabilistic complexity classes, like BPP and ZPP [9], are semantic. A se-
mantic class is a complexity class defined on top of a class of algorithms which cannot be
easily enumerated: a probabilistic polynomial time Turing machine does not necessarily
solve a problem in BPP nor in ZPP. For most semantic classes, including BPP and
ZPP, the existence of complete problems and the possibility to prove hierarchy theorems
are both open question. Indeed, researchers in the area have proved the existence of such
results for other probabilistic classes, but not for those we are interested in [8].

Now, having a “truly implicit” system I for a complexity class C means that we have
a way to enumerate programs solving all problems in C (for every problem there is at
least one program that solves it). The presence of complete problems, in other words, is
deeply linked to the possibility of characterizing the class in the spirit of ICC. In our case
the “semantic information” in BPP and ZPP, i.e., the error probability, seems to be an
information that is impossible to capture by way of (recursively enumerable) syntactical
restrictions. We need to execute the program on infinitely many inputs in order to check
if the error probability is within bounds or not.

2. The Syntax and Basic Properties of RSLR

RSLR is a fairly standard Curry-style λ-calculus with constants for the natural numbers,
branching and recursion. Its type system, on the other hand, is based on ideas coming
from linear logic (variables of certain types can appear at most once in terms) and on a
distinction between modal and non modal variables.

Let us introduce the category of types first:

3

Definition 2.1 (Types). The types of RSLR are generated by the following grammar:

A ::= N | �A→ A | �A→ A.

Types different from N are denoted with metavariables like H or G. N is the only base
type.

There are two function spaces in RSLR. Terms which can be typed with �A → B are
such that the result (of type B) can be computed in constant time, independently on the
size of the argument (of type A). On the other hand, computing the result of functions in
�A→ B requires polynomial time in the size of their argument.

A notion of subtyping is used in RSLR to capture the intuition above by stipulating that
the type �A→ B is a subtype of �A→ B. Subtyping is best formulated by introducing
aspects:

Definition 2.2 (Aspects). An aspect is either � or �: the first is the modal aspect, while
the second is the non-modal one. Aspects are partially ordered by the binary relation
{(�,�), (�,�), (�,�)}, noted <:.

Defining subtyping, then, merely consists in generalizing <: to a partial order on types
in which only structurally identical types can be compared. Subtyping rules are in Figure 1.
Please observe that (S-Sub) is contravariant in the aspect a.

(S-Refl)
A <: A

A <: B B <: C (S-Trans)
A <: C

B <: A C <: D b <: a (S-Sub)
aA→ C <: bB → D

Figure 1: Subtyping Rules.

RSLR’s terms are those of an applied λ-calculus with primitive recursion and branching,
in the style of Gödel’s T:

Definition 2.3 (Terms). Terms and constants are defined as follows:

t ::= x | c | ts | λx : aA.t | caseA t zero s even r odd q | recursionA t s r;
c ::= n | S0 | S1 | P | rand.

Here, x ranges over a denumerable set of variables and n ranges over the natural numbers
seen as constants of base type. Every constant c has its naturally defined type, that
we indicate with type(c). Formally, type(n) = N for every n, type(rand) = N, while

4

type(S0) = type(S1) = type(P) = �N→ N. The size |t| of any term t can be easily defined
by induction on t (where, by convention, we stipulate that log2(0) = 0):

|x| = 1;

|n| = blog2(n)c+ 1;

|S0| = |S1| = |P| = |rand| = 1;

|ts| = |t|+ |s|;
|λx : aA.t| = |t|+ 1;

|caseA t zero s even r odd q| = |t|+ |s|+ |r|+ |q|+ 1;

|recursionA t s r| = |t|+ |s|+ |r|+ 1.

Notice that the size of n is exactly the length of the number n in binary representation. Size
of 5, as an example, is blog2(5)c+ 1 = 3, while 0 only requires one binary digit to be rep-
resented, and its size is thus 1. As usual, terms are considered modulo α-conversion. Free
(occurrences of) variables and capture-avoiding substitution can be defined in a standard
way.

Definition 2.4 (Explicit term). A term is said to be explicit if it does not contain any
instance of recursion.

The main peculiarity of RSLR with respect to similar calculi is the presence of an
operator for probabilistic, binary choice, called rand, which evolves to either 0 or 1 with
probability 1

2
. Although the calculus is in Curry-style, variables are explicitly assigned a

type and an aspect in abstractions. This is for technical reasons that will become apparent
soon.
Note 2.5. The presence of terms which can (probabilistically) evolve in different ways makes
it harder to define a confluent notion of reduction for RSLR. To see why, consider a term
like t = (λx : �N.(t⊕xx))rand, where t⊕ is a term computing ⊕ on natural numbers seen
as booleans (0 stands for “false” and everything else stands for “true”):

t⊕ = λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕;

s⊕ = λy : �N.caseN y zero 0 even 1 odd 1;

r⊕ = λy : �N.caseN y zero 1 even 0 odd 0.

If we evaluate t in a call-by-value fashion, rand will be fired before being passed to t⊕ and,
as a consequence, the latter will be fed with two identical natural numbers, returning 0 with
probability 1. If, on the other hand, rand is passed unevaluated to t⊕, the four possible
combinations on the truth table for ⊕ will appear with equal probabilities and the outcome
will be 0 or 1 with probability 1

2
. In other words, we need to somehow restrict our notion

of reduction if we want it to be consistent, i.e. confluent. For the just explained reasons,
arguments are passed to functions following a mixed scheme in RSLR: arguments of base
type are evaluated before being passed to functions, while arguments of an higher-order
type are passed to functions possibly unevaluated, in a call-by-name fashion. This way,

5

higher-order terms cannot be duplicated and this guarantees that if a term is duplicated,
then it has no rand inside. The counterexample above, as a consequence, no longer works.

Let’s first of all define the one-step reduction relation:

Definition 2.6 (Reduction). The one-step reduction relation → is a binary relation be-
tween terms and sequences of terms. It is defined by the rules in Figure 2, which can be
applied in any contexts except in the second and third argument of a recursion. Notice
how the last but one rule is defined: in some cases, we allow to swap some arguments.
Finally, we say that a term t is in normal form if t cannot appear as the left-hand side of
a pair in →. NF is the set of terms in normal form.

caseA 0 zero t even s odd r → t;

caseA (2 · (n+ 1)) zero t even s odd r → s;

caseA (2 · n+ 1) zero t even s odd r → r;

recursionA 0 g f → g;

recursionA (n+ 1) g f → f(n+ 1)(recursionA b
n+ 1

2
c g f);

S0n→ 2 · n;

S1n→ 2 · n+ 1;

Pn→ bn
2
c;

(λx : aN.t)n→ t[x/n];

(λx : aH.t)s→ t[x/s];

(λx : aA.t)sr → (λx : aA.tr)s;

rand→ 0, 1.

Figure 2: One-step Reduction Rules.

Informally, t→ s1, . . . , sn means that t can evolve in one-step to each of s1, . . . , sn with
the same probability 1

n
. As a matter of fact, n can be either 1 or 2.

A multistep reduction relation will not be defined by simply taking the transitive and
reflective closure of→, since a term can reduce in multiple steps to many terms with differ-
ent probabilities. Multistep reduction puts in relation a term t to a probability distribution
on terms Dt such that Dt(s) > 0 only if s is a normal form to which t reduces. Of course, if
t is itself a normal form, Dt is well defined, since the only normal form to which t reduces is
t itself, so Dt(t) = 1. But what happens when t is not in normal form? Is Dt a well-defined
concept? Let us start by formally defining :

6

Definition 2.7 (Multistep Reduction). A probability distribution D should be understood
here as a function from NF to [0, 1] such that

∑
t∈NF D(t) = 1. The binary relation

between terms and probability distributions is defined by the rules in Figure 3. It is
Dirac distribution on t ∈ NF , namely the function returning 1 on t and 0 on any other
normal form. A finite distribution on terms D can be denoted as {tα1

1 , . . . , t
αn
n } where

D(s) =
∑

ti=s
αi (observe that the terms t1, . . . , tn are not necessarily distinct).

t→ t1, . . . , tn ti Di

t
∑n

i=1
1
n
Di

t ∈ NF
t It

Figure 3: Multistep Reduction: Inference Rules

In Section 2.2, we will prove that for every t there is at most one D such that t D .
For the sake of clarifying how multistep reduction works, let us consider an example. Let
ifzA t then s else r be syntactic sugar for caseA t zero s even r odd r. Now, consider
the term

t = ifzN (rand) then (ifzN (rand) then 1 else 2) else 2.

The following one-step reduction can be derived from the last rule in Figure 2, applying it
in a proper context:

t→ ifzN 0 then (ifzN (rand) then 1 else 2) else 2,

ifzN 1 then (ifzN (rand) then 1 else 2) else 2.

Obviously, ifzN 1 then (ifzN (rand) then 1 else 2) else 2→ 2 (remember that the ifz
construct is nothing more than syntactic sugar for a case). Let us examine the first of the
two terms t reduces to. It one-step reduces to s = ifzN (rand) then 1 else 2, and it is
quite easy to realize that:

s→ (ifzN 0 then 1 else 2), (ifzN 1 then 1 else 2),

again by applying the last rule in Figure 2. Finally,

ifzN 0 then 1 else 2→ 1;

ifzN 1 then 1 else 2→ 2.

Let us derive appropriate multi-step judgments. Of course, 1 I1 and 2 I2. As a
consequence, ifzN 0 then 1 else 2 I1 and ifzN 1 then 1 else 2 I2. s one-step
reduces to the two terms we have just considered, so s 1

2
I1 + 1

2
I2. Now, t one-step

reduces to either s or 2 and, as a consequence,

t 1

2

(
1

2
I1 +

1

2
I2

)
+

1

2
I2 =

1

4
I1 +

3

4
I2.

7

We are finally able to present the type system. Preliminary to that is the definition of
a proper notion of a context.

Definition 2.8 (Contexts). A context Γ is a finite set of assignments of types and aspects
to variables, i.e., of expressions in the form x : aA. As usual, we require contexts not to
contain assignments of distinct types and aspects to the same variable. The union of two
disjoint contexts Γ and ∆ is denoted as Γ,∆. In doing so, we implicitly assume that the
variables in Γ and ∆ are pairwise distinct. The expression Γ; ∆ denotes the union Γ,∆,
but is only defined when all types appearing in Γ are base types. As an example, it is
perfectly legitimate to write x : aN; y : bN, while the following is an ill-defined expression:

x : a(bN→ N); y : cN,

the problem being the first assignment, which appears on the left of “;” but which assigns
the higher-order type bN → N (and the aspect a) to x. This notation is particularly
helpful when giving typing rules. With the expression Γ <: a we mean that any aspect b
appearing in Γ is such that b <: a.

Typing rules are in Figure 4.

x : aA ∈ Γ (T-Var-Aff)
Γ ` x : A

Γ ` t : A A <: B (T-Sub)
Γ ` t : B

Γ, x : aA ` t : B
(T-Arr-I)

Γ ` λx : aA.t : aA→ B
(T-Const-Aff)

Γ ` c : type(c)

Γ; ∆1 ` t : N

Γ; ∆2 ` s : A

Γ; ∆3 ` r : A

Γ; ∆4 ` q : A A is 2-free
(T-Case)

Γ; ∆1,∆2,∆3,∆4 ` caseA t zero s even r odd q : A

Γ1; ∆1 ` t : N

Γ1,Γ2; ∆2 ` s : A

Γ1,Γ2;` r : �N→ �A→ A

Γ1,∆1 <: �
A is 2-free

(T-Rec)
Γ1,Γ2; ∆1,∆2 ` recursionA t s r : A

Γ; ∆1 ` t : aA→ B Γ; ∆2 ` s : A Γ,∆2 <: a
(T-Arr-E)

Γ; ∆1,∆2 ` (ts) : B

Figure 4: Typing Rules

Note 2.9. Observe how rules with more than one premise are designed in such a way as to
guarantee that whenever Γ ` t : A can be derived and x : aH is in Γ, then x can appear

8

free at most once in t. If y : aN is in Γ, on the other hand, then y can appear free in t
an arbitrary number of times. This can be proved by induction on the structure of any
derivation for Γ ` t : A.

Definition 2.10. A first-order term of arity k is a closed, well-typed, term of type a1N→
a2N→ . . . akN→ N for some a1, . . . , ak.

Example 2.1. Let’s see some examples, namely two terms that we are able to type in our
system, and one that is not possible to type. As we will see in Chapter 4.1 we are able to
type addition and multiplication. Addition gives in output a number (recall that we are
in unary notation) such that the resulting length is the sum of the input lengths.

add =λx : �N.λy : �N.
recursionN x y (λx : �N.λy : �N.S1y) : �N→ �N→ N

We are also able to define multiplication. The operator is, as usual, defined by iterating
addition:

mult =λx : �N.λy : �N.
recursionN (Px) y (λx : �N.λz : �N.addyz) : �N→ �N→ N.

Now that we have multiplication, why not iterate it and get an exponential? As it will be
clear from the next example, the restriction on the aspect of the iterated function save us
from having an exponential growth. Are we able to type the following term?

λh : �N.recursionN h (11) (λx : �N.λy : �N.mult(y, y))

The answer is negative: the operator mult requires an input of aspect �, while the iterated
function necessarily has type �N→ �N→ N.

2.1. Subject Reduction
The first property we are going to prove about RSLR is preservation of types under

reduction, the so-called Subject Reduction Theorem. The proof of it is going to be very
standard and, as usual, amounts to proving substitution lemmas. Preliminary to that is a
technical lemma saying that weakening is derivable (since the type system is affine):

Lemma 2.1 (Weakening Lemma). If Γ ` t : A, then Γ, x : bB ` t : A whenever x does not
appear in Γ.

Proof. By induction on the structure of the typing derivation for t.
• If last rule is (T-Var-Aff) or (T-Const-Aff), we are allowed to add whatever we
want to the context.

• If last rule is (T-Sub) or (T-Arr-I), the thesis is proved by applying the induction
hypothesis to the premise.

9

• Suppose that the last rule was:

Γ; ∆1 ` u : N

Γ; ∆2 ` s : A

Γ; ∆3 ` r : A

Γ; ∆4 ` q : A A is 2-free
(T-Case)

Γ; ∆1,∆2,∆3,∆4 ` caseA u zero s even r odd q : A

If B = N we can easily proceed by applying the induction hypothesis to every premises
and add x to Γ. Otherwise, we can proceed by applying induction hypothesis to just
one premise.

• Suppose that the last rule is:

Γ1; ∆1 ` q : N

Γ1,Γ2; ∆2 ` s : A

Γ1,Γ2;` r : �N→ �A→ A

Γ1,∆1 <: �
A is �-free

(T-Rec)
Γ1,Γ2; ∆1,∆2 ` recursionA q s r : A

Suppose that B = N. We have the following cases:
• If b = �, we can do it by applying induction hypothesis to all the premises and add
x in Γ1.

• If b = � we apply induction hypothesis on Γ1,Γ2; ∆2 ` s : A and on Γ1,Γ2;` r :
�N→ �A→ A.

Otherwise we apply induction hypothesis on Γ1; ∆1 ` q : N or on Γ1,Γ2; ∆2 ` s : A and
we are done.

This concludes the proof.

Two substitution lemmas are needed in RSLR. The first one applies when the variable
to be substituted has a non-modal type:

Lemma 2.2 (�-Substitution Lemma). Let Γ; ∆ ` t : A. Then
1. if Γ = x : �N,Θ, then Θ; ∆ ` t[x/n] : A for every n;
2. if ∆ = x : �H,Θ and Γ; Ξ ` s : H, then Γ; Θ,Ξ ` t[x/s] : A.

Proof. By induction on a type derivation of t. Some interesting cases:
• If the last rule is (T-Rec), our derivation will have the following shape:

Γ2; ∆4 ` q : N

Γ2,Γ3; ∆5 ` s : B

Γ2,Γ3;` r : �N→ �B → B

Γ2,∆4 <: �
B is �-free

(T-Rec)
Γ2,Γ3; ∆4,∆5 ` recursionB q s r : B

By definition, x : �A cannot appear in Γ2; ∆4. If it appears in ∆5 we can simply apply
induction hypothesis and prove the thesis. We will focus on the most interesting case:
it appears in Γ3 and so A = N. In that case, by the induction hypothesis applied to
(type derivations for) s and r, we obtain that:

Γ2,Γ4; ∆5 ` s[x/n] : B;

Γ2,Γ4; ` r[x/n] : �N→ �B → B;

where Γ3 = Γ4, x : �N.

10

• If the last rule is (T-Arr-E),

Γ; ∆4 ` t : aC → B Γ; ∆5 ` s : C Γ,∆5 <: a
(T-Arr-E)

Γ,∆4,∆5 ` (ts) : B

If x : A is in Γ then we apply induction hypothesis on both branches, otherwise it is
either in ∆4 or in ∆5 and we apply induction hypothesis on the corresponding branch.
We arrive to the thesis by applying (T-Arr-E) at the end.

This concludes the proof.

Substituting a variable of a modal type requires an additional hypothesis on the term
being substituted:

Lemma 2.3 (�-Substitution Lemma). Let Γ; ∆ ` t : A. Then
1. if Γ = x : �N,Θ, then Θ; ∆ ` t[x/n] : A for every n;
2. if ∆ = x : �H,Θ and Γ; Ξ ` s : H where Γ,Ξ <: �, then Γ; Θ,Ξ ` t[x/s] : A.

Proof. By induction on the structure of a type derivation for t. Some cases:
• If last rule is (T-Rec), our derivation will have the following shape:

Γ2; ∆4 ` q : N

Γ2,Γ3; ∆5 ` s : B

Γ2,Γ3;` r : �N→ �B → B

Γ2,∆4 <: �
B is �-free

(T-Rec)
Γ2,Γ3; ∆4,∆5 ` recursionB q s r : B

By definition x : �A can appear in Γ1; ∆4. If so, by applying induction hypothesis we
can derive easily the proof. In the other cases, we can proceed as in Lemma 2.2. We
will focus on the most interesting case, where x : �A appears in Γ2 and so A = N.
In that case, by the induction hypothesis applied to (type derivations for) s and r, we
obtain that:

Γ4,Γ3; ∆5 ` s[x/n] : B

Γ4,Γ3; ` r[x/n] : �N→ �B → B

where Γ2 = Γ4, x : �N.
• If last rule is (T-Arr-E),

Γ; ∆4 ` t : aC → B Γ; ∆5 ` s : C Γ,∆5 <: a
(T-Arr-E)

Γ,∆4,∆5 ` (ts) : B

If x : A is in Γ then we apply induction hypothesis on both branches, otherwise it is
either in ∆4 or in ∆5 and we apply induction hypothesis on the relative branch. We
prove our thesis by applying (T-Arr-E) at the end.

This concludes the proof.

Substitution lemmas are necessary ingredients when proving Subject Reduction. In
particular, they allow to prove that types are preserved along β-reduction steps, the other
reduction steps being very easy. We get:

11

Theorem 2.4 (Subject Reduction). Suppose that Γ ` t : A. If t→ t1 . . . tj, then for every
i ∈ {1, . . . , j}, it holds that Γ ` ti : A.

Proof. By induction on the structure of a derivation for t. Some interesting cases:
• If last rule is (T-Case).

Γ; ∆1 ` s : N

Γ; ∆2 ` r : A

Γ; ∆3 ` q : A

Γ; ∆4 ` u : A A is 2-free
(T-Case)

Γ; ∆1,∆2,∆3,∆4 ` caseA s zero r even q odd u : A

Our final term could reduce in two ways. Either we do β-reduction on s, r, q or u, or we
choose one of branches in the case. In all the cases, the proof is trivial.

• If last rule is (T-Rec).

ρ : Γ1; ∆1 ` s : N

µ : Γ1,Γ2; ∆2 ` r : A

ν : Γ1,Γ2;` q : �N→ �A→ A

Γ1,∆1 <: �
A is �-free

(T-Rec)
Γ1,Γ2; ∆1,∆2 ` recursionA s r q : A

Our term could reduce in three ways. We could evaluate s (trivial), we could be in the
case where s = 0 (trivial) and the other case is where we unroll the recursion (so, where
s is a value n ≥ 1). We are going to focus on this last option. The term rewrites to
qn(recursionτ bn2 c r q). We could define the following derivations π and σ:

(T-Const-Aff)
Γ1; ∆1 ` bn2 c : N

ν : Γ1,Γ2;` q : �N→ �A→ A µ : Γ1,Γ2; ∆2 ` r : A
(T-Rec)

Γ1,Γ2; ∆1,∆2 ` recursionτ bn2 c r q : A

ν : ∅; Γ1,Γ2 ` q : �N→ �A→ A
(T-Const-Aff)∅; ∅ ` n : N (T-ARR-E)∅; Γ1,Γ2 ` qn : �A→ A

By gluing the two derivation with the rule (T-Arr-E) we obtain:

σ : Γ1,Γ2;` qn : �A→ A

π : Γ1,Γ2; ∆1,∆2 ` recursionτ bn2 c r q : A
(T-Arr-E)

Γ1,Γ2,Γ3; ∆1,∆2 ` qn(recursionτ bn2 c r q) : A

Notice that in the derivation ν we put Γ1,Γ2 on the left side of “;” and also on the right
side. Recall Definition 2.8.

• If last rule was (T-Sub) we have the following derivation:

Γ ` s : A A <: B (T-Sub)
Γ ` s : B

If s reduces to r we can apply induction hypothesis on the premises and having the
following derivation:

Γ ` r : A A <: B (T-Sub)
Γ ` r : B

12

• If last rule was (T-Arr-E), we could have different cases.
• Cases where on the left part of our application we have Si, P is trivial.
• Let’s focus on the case where on the left part we find a λ-abstraction. We will only
consider the case where we apply the substitution. The other cases are trivial. We
could have two possibilities:
• First of all, we can be in the following situation:

Γ; ∆1 ` λx : �A.r : aC → B Γ; ∆2 ` s : C Γ,∆2 <: a
(T-Arr-E)

Γ,∆1,∆2 ` (λx : �A.r)s : B

where C <: A and a <: �. We have that (λx : �A.r)s rewrites to r[x/s]. By
looking at rules in Figure 4 we can deduce that Γ; ∆1 ` λx : �A.r : aC → B
derives from Γ;x : �A,∆1 ` r : D (with D <: B). For the reason that C <: A
we can apply (T-Sub) rule to Γ; ∆2 ` s : C and obtain Γ; ∆2 ` s : A By applying
Lemma 2.2, we get to

Γ,∆1,∆2 ` r[x/s] : D

from which the thesis follows by applying (T-Sub).
• But we can even be in the following situation:

Γ; ∆1 ` λx : �A.r : �C → B Γ; ∆2 ` s : C Γ,∆2 <: �
(T-Arr-E)

Γ,∆1,∆2 ` (λx : �A.r)s : B

where C <: A. We have that (λx : �A.r)s rewrites in r[x/s]. We behave as in
the previous point, by applying Lemma 2.3, and we are done.

• Another interesting case of application is where we perform a so-called “swap”.
(λx : aA.q)sr rewrites in (λx : aA.qr)s. From a typing derivation with conclusion
Γ,∆1,∆2,∆3 ` (λx : aA.q)sr : C we can easily extract derivations for the following:

Γ; ∆1, x : aA ` q : bD → E

Γ; ∆3 ` r : B

Γ; ∆2 ` s : F

where B <: D, E <: C and A <: F and Γ,∆3 <: b and Γ,∆2 <: a.

Γ,∆3 <: b

Γ; ∆3 ` r : B

Γ; ∆1, x : aA ` q : bD → E
(T-Arr-E)

Γ; ∆1,∆3, x : aA ` qr : E
(T-Arr-I)

Γ; ∆1,∆3,` λx : aA.qr : aA→ E
(T-Sub)

Γ; ∆1,∆3,` λx : aA.qr : aF → C

Γ,∆2 <: a

Γ; ∆2 ` s : F
(T-Arr-E)

Γ,∆1,∆2,∆3 ` (λx : aA.qr)s : C

• All the other cases can be brought back to cases that we have considered.
This concludes the proof.

13

Example 2.2. The following example has been proposed by Hofmann [10]. Let f be a
variable of type �N → N. The function h = λg : �(�N → N).λx : �N.(f(gx)) gets
type �(�N → N) → �N → N. Thus the function (λv : �(�N → N).hv)S1 takes type
�N → N. Let’s now fire a β step, by passing the argument S1 to the function h and
we obtain the following term: λx : �N.(f(S1x)) It’s easy to check that the type has not
changed.

2.2. Confluence
In view of the peculiar notion of reduction given in Definition 2.6, let us go back

to the counterexample to confluence given in the Introduction. The term t = (λx :
�N.(t⊕xx))rand cannot be reduced to t⊕ rand rand anymore, because only numerals can
be passed to functions as arguments of base types. The only possibility is reducing t to
the sequence

(λx : �N.(t⊕xx))0, (λx : �N.(t⊕xx))1.

Both terms in the sequence can be further reduced to 0. In other words, t {01}.
More generally, the phenomenon of non-convergence of final distributions can no longer

happen in RSLR. Technically, this is due to the impossibility of duplicating “probabilistic”
terms, i.e., terms containing occurrences of rand. In the above example, and in similar
cases, we have to evaluate the argument before firing the β-redex — it is therefore not
possible to obtain two different distributions. RSLR can also handle correctly the case
where rand is within an argument t of higher-order type: the only non-normal terms
which can be duplicated are the arguments to a recursion, in which reduction cannot take
place by definition.

Confluence of our system is proved by first showing a strong form of confluence for the
single step arrow →, then transferring it to the multistep arrow . Showing confluence
for → turns out to be slightly more complicated than expected and is thus split into three
separate lemmas.

Lemma 2.5 (Diamond Property, Part I). Let t be a well-typed term; if t → v and t → z
(where v and z distinct), then exactly one of the following holds:
• ∃e such that v → e and z → e;
• v → z;
• z → v.

Proof. By induction on the structure of the typing derivation for the term t. Some inter-
esting cases:
• If last rule is T-Case, our derivation will have the following shape:

Γ; ∆1 ` s : N

Γ; ∆2 ` r : A

Γ; ∆3 ` q : A

Γ; ∆4 ` u : A A is 2-free
(T-Case)

Γ; ∆1,∆2,∆3,∆4 ` caseA s zero r even q odd u : A

We could have reduced one among s, r, q, u or a combination of them. In the first case
we prove by applying induction hypothesis and in the latter case we can easily find e

14

such that v → e and z → e: it is the term obtained by applying both reductions. Last
case is where from one part we reduce the case, selecting a branch and from the other
part we reduce one of the subterms. As can be easily seen, we can find a common
confluent term.

• If last rule is T-Rec, our derivation will have the following shape:

Γ2; ∆4 ` q : N

Γ2,Γ3; ∆5 ` s : B

Γ2,Γ3;` r : �N→ �B → B

Γ2; ∆4 <: �
B is �-free

(T-Rec)
Γ2,Γ3; ∆4,∆5 ` recursionB q s r : B

By definition, we can have reduction only in q or, if q is a value, we can reduce the
recursion by unrolling it. In both cases the proof is trivial.

• If last rule is T-Arr-E, our term could have different shapes but the only interesting
cases are the following ones. The other cases can be easily brought back to cases that
we have already considered.
• Our derivation will end in the following way:

Γ; ∆1 ` λx : aA.r : bC → B Γ; ∆2 ` s : C Γ,∆2 <: b
(T-Arr-E)

Γ,∆1,∆2 ` (λx : aA.r)s : B

where C <: A and b <: a. We have that (λx : aA.r)s rewrites to r[x/s]; if A = N then
s is a value. If we reduce only in s or only in r we can easily prove our thesis by the
induction hypothesis. The interesting cases are when we perform the substitution on
one hand and on the other hand we make a reduction step on one of the two possible
terms s or r. Suppose (λx : aA.r)s→ r[x/s] and (λx : aA.r)s→ (λx : aA.r)f , where
s→ f . Let e be r[x/f]. We have that (λx : aA.r)f → e and r[x/s]→ e. Indeed if A
is N, s is a value, no reduction could be made on s. Otherwise, there is at most one
occurrence of s in r[x/s] and by executing one reduction step we are able to reach e.
Suppose (λx : aA.r)s → r[x/s] and (λx : aA.r)s → (λx : aA.g)s, where r → g. As
we have shown in the previous case, we are able to find the required terms.

• The other interesting case is when we perform the so called “swap”. (λx : aA.q)sr
rewrites in (λx : aA.qr)s. If the reduction steps are made only in q or s or r, by
applying induction hypothesis we have the thesis. In all the other cases, where we
perform one step on subterms and we perform, on the other hand, the swap, it’s easy
to find a confluent term e.

This concludes the proof.

Lemma 2.6 (Diamond Property, Part II). Let t be a well typed term in RSLR; if t→ v1, v2

and t→ z then one of the following sentence is valid:
• ∃e1, e2 s.t. v1 → e1 and v2 → e2 and z → e1, e2

• ∀i.vi → z
• z → v1, v2

Proof. By induction on the structure of a typing derivation for the term t.

15

• t cannot be a constant or a variable. Indeed if t is rand, t reduces in 0, 1 and this
contradict our hypothesis.

• If last rule is T-Sub or T-Arr-I, the thesis is easily proved by applying induction
hypothesis.

• If last rule is T-Case, our derivation will have the following shape:
Γ; ∆1 ` s : N

Γ; ∆2 ` r : A

Γ; ∆3 ` q : A

Γ; ∆4 ` u : A A is 2-free
(T-Case)

Γ; ∆1,∆2,∆3,∆4 ` caseA s zero r even q odd u : A

If we perform the two reductions on the same subterm we could be in the following case
(all the other cases are similar). For example, if t reduces to caseA s1 zero r even q odd u
and caseA s2 zero r even q odd u and also to t→ caseA s zero r even q odd f , it is
easy to check that the two required terms are e1 = caseA s1 zero r even q odd f and
e2 = caseA s2 zero r even q odd f . Another possible case is where on one hand we
perform a reduction by selecting a branch and on the other case we make a reduction
on one branch. As example, t→ q and r → r1, r2. This case is trivial.

• If last rule was T-Rec, our derivation will have the following shape:
Γ2; ∆4 ` q : N

Γ2,Γ3; ∆5 ` s : B

Γ2,Γ3;` r : �N→ �B → B

Γ2; ∆4 <: �
B is �-free

(T-Rec)
Γ2,Γ3; ∆4,∆5 ` recursionB q s r : B

By definition, we can have reduction only in q. By applying induction hypothesis the
thesis is proved.

• If last rule was T-Arr-E. Our term could have different shapes but the only interesting
cases are the following ones. The other cases can be easily brought back to cases that
we have considered.
• Our derivation will end in the following way:

Γ; ∆1 ` λx : aA.r : bC → B Γ; ∆2 ` s : C Γ,∆2 <: b
(T-Arr-E)

Γ,∆1,∆2 ` (λx : aA.r)s : B

where C <: A and b <: a. We have that (λx : aA.r)s rewrites in r[x/s]; if A = N
then s is a value, otherwise we are able to make the substitution whenever we want.
If we reduce only in s or only in r we can easily prove our thesis by applying induction
hypothesis. The interesting cases are when we perform the substitution on one hand
and on the other hand we make a reduction step on one of the two possible terms s or
r. Suppose (λx : aA.r)s → r[x/s] and (λx : aA.r)s → (λx : aA.r)s1, (λx : aA.r)s2,
where s→ s1, s2. Let e1 be r[x/s1] and e2 be r[x/s2]. We have that (λx : aA.r)s1 →
e1, (λx : aA.r)s2 → e2 and r[x/s]→ e1, e2. Indeed if A is N then s is a value (because
we are making substitutions) and we cannot have the reductions on s, otherwise
there is at least one occurrence of s in r[x/s] and by performing one reduction step
on the subterm s we are able to have e1, e2. Suppose (λx : aA.r)s → r[x/s] and
(λx : aA.r)s → (λx : aA.r1)s, (λx : aA.r2)s, where r → r1, r2. This, again, can be
easily managed.

16

• The other interesting case is when we perform the so called “swap”. (λx : aA.q)sr
rewrites to (λx : aA.qr)s. If the reduction steps are made only on q or s or r, applying
induction hypothesis suffices. In all the other cases, where we perform one step on
subterms and we perform, on the other hand, the swap, it’s easy to find the required
term e.

This concludes the proof.

Lemma 2.7 (Diamond Property, Part III). Let t be a well typed term in RSLR; if t→ v1, v2

and t→ z1, z2 (v1, v2 and z1, z2 different) then ∃e1, e2, e3, e4 s.t. v1 → e1, e2 and v2 → e3, e4

and z1 → e1, e3 and z2 → e2, e4.

Proof. By induction on the structure of a typing derivation for t. Some interesting cases:

• If last rule was (T-Case) our derivation has the following shape:

Γ; ∆1 ` s : N

Γ; ∆2 ` r : A

Γ; ∆3 ` q : A

Γ; ∆4 ` u : A A is 2-free
(T-Case)

Γ; ∆1,∆2,∆3,∆4 ` caseA s zero r even q odd u : A

Also this case is easy to prove. Indeed if the reduction steps are made only on single sub-
terms: s or r or q or u we can prove by using induction hypothesis. Otherwise we are in
the case where one reduction step is made on some subterm and the other is made consid-
ering a different subterm. Suppose s→ s1, s2 and q → q1, q2. We could have two possible
reduction. One is t → caseA s1 zero r even q odd u, caseA s2 zero r even q odd u
and the other is t → caseA s zero r even q1 odd u, caseA s zero r even q2 odd u. It
is easy to find the common confluent terms: are the ones in which we have performed
both s→ s1, s2 and q → q1, q2.

• If last rule was (T-Rec) our derivation will have the following shape:

Γ2; ∆4 ` q : N

Γ2,Γ3; ∆5 ` s : B

Γ2,Γ3;` r : �N→ �B → B

Γ2; ∆4 <: �
B is �-free

(T-Rec)
Γ2,Γ3; ∆4,∆5 ` recursionB q s r : B

By definition, we can have reduction only in q. By applying induction hypothesis the
thesis is proved.

• If last rule was (T-Arr-E). Our term could have different shapes but all of them
are trivial or can be easily brought back to cases that we have considered. Also the
case where we consider the so called “swap” and the usual application with a lambda
abstraction are not interesting in this lemma. Indeed, we cannot consider the “swap”
or the substitution case because the reduction relation gives only one term on the right
side of the arrow →.

This concludes the proof.

It is definitely not trivial to prove confluence for . For this purpose we will prove our
statement on a different definition of multistep arrow. This new definition is laxer than the

17

standard one. Being able to prove our theorems for multistep arrow allows us to conclude
that these theorems hold also for .

Definition 2.11. The binary relation ⇒ is a set of pairs whose first component is a term
and whose second component is a distribution on not-necessarily-normal terms, namely a
function D : Λ → [0, 1] such that

∑
t∈Λ D(t) = 1. As usual, It is the distribution that

maps term t to 1 and any other term to 0. It is easy to check that if t D then t ⇒ D
(but not vice-versa). Formally, rules for ⇒ are in Figure 5.

t→ t1, . . . , tn ti ⇒ Di

t⇒ ∑n
i=1

1
n
Di

t⇒ It

Figure 5: Generalized Multistep Reduction: Inference Rules

In any formal system, the height ||π|| of a any derivation π is just the height of the
derivation, seen as a tree (where by convention leaves have null height). Write t n⇒ D if
the height ||π|| of the derivation π : t ⇒ D is bounded by n. We can generalize n⇒ to a
ternary relation on distributions by the rules in Figure 6. When D

n⇒ E for some n, we
simply write D ⇒ E .

D
n⇒ {tα1

1 , . . . , t
αk
k } ti

m⇒ Ei

D
n+m⇒ ∑k

i=1 αi · Ei
D

n⇒ D

Figure 6: Generalized Multistep Reduction on Distributions: Inference Rules

Lemma 2.8. If D
n⇒ E and m ≥ n, then D

m⇒ E .

Proof. A simple induction on the structure of the proof that D
n⇒ E .

Lemma 2.9. If D
n⇒ E and E

m⇒P, then D
n+m⇒ P.

Proof. By induction on the structure of the proof that E
m⇒P:

• If E = P, then D
n⇒ E = P by hypothesis and, by Lemma 2.8, D

n+m⇒ P;
• If the last inference step in the proof of E

m⇒P looks as follows

E
x⇒ {tα1

1 , . . . , t
αk
k } ti

y⇒ Li

E
x+y⇒ ∑k

i=1 αi ·Li

18

then we can apply the inductive hypothesis and conclude that D
n+x⇒ {tα1

1 , . . . , t
αk
k },

from which one easily gets the thesis (since m = x+ y):

D
n+x⇒ {tα1

1 , . . . , t
αk
k } ti

y⇒ Li

E
n+x+y⇒ ∑k

i=1 αi ·Li

.

This concludes the proof.

Lemma 2.10. D
0⇒ E , then D = E .

Proof. By an easy induction on the structure of a proof that D
0⇒ E .

Lemma 2.11. If D
n+1⇒ E , then there is P such that D

1⇒P
n⇒ E .

Proof. An induction on the structure of a proof that D
n+1⇒ E :

• If D = E , then of course D
1⇒ D

n⇒ D = E .
• If the last inference step in the proof of D

n+1⇒ E looks as follows

D
x⇒ {tα1

1 , . . . , t
αk
k } ti

y⇒ Li

D
x+y⇒ ∑k

i=1 αi ·Li = E

and x ≥ 1, then there is z such that x = z+ 1. We can apply the induction hypothesis,
obtaining a distribution J such that D

1⇒ J
z⇒ {tα1

1 , . . . , t
αk
k }. Moreover, we can

easily prove that J
z+y⇒ ∑k

i=1 αi ·Li:

J
z⇒ {tα1

1 , . . . , t
αk
k } ti

y⇒ Li

J
z+y⇒ ∑k

i=1 αi ·Li

• If the last inference step in the proof of D
n+1⇒ E looks as follows

D
x⇒ {tα1

1 , . . . , t
αk
k } ti

y⇒ Li

D
x+y⇒ ∑k

i=1 αi ·Li = E

and x = 0, then by Lemma 2.8 we can conclude that D = {tα1
1 , . . . , t

αk
k }. For every

1 ≤ i ≤ n there is a sequence si,1, . . . , si,mi such that:
• either mi = 1, ti = si,1 and Li = {t1i };
• or ti → si,1, . . . , si,mi , for every 1 ≤ j ≤ mi there is J i

j such that si,j
z⇒J i

j , where
y = z + 1 and Li =

∑mi
j=1

1
mi
·J i

j .
The required distribution P, then, is just

{s
α1
m1
1,1 , . . . , s

α1
m1
1,m1

, . . . , s
αk
mk
k,1 , . . . , s

αk
mk
k,mk
}.

The fact D
1⇒P

n⇒ E can be easily derived, since

E =
k∑

i=1

αi ·Li =
k∑

i=1

αi ·
mi∑

j=1

1

mi

·J i
j =

k∑

i=1

mi∑

j=1

αi
mi

·J i
j .

19

This concludes the proof.

Lemma 2.12. If D
1⇒ E and D

1⇒P, then there is L such that E
1⇒ L and P

1⇒ L .

Proof. By induction on the structure of the proofs that D
1⇒ E and D

1⇒ P. The only
interesting case is the one in which E =

∑n
i=1 αi ·Li and P =

∑m
j=1 βj ·Jj:

D = {tα1
1 , . . . , t

αn
n };

D = {sβ1

1 , . . . , s
βm
m };

∀i ∈ {1, . . . , n}.ti 1⇒ Li;

∀j ∈ {1, . . . ,m}.sj 1⇒Jj.

Without losing generality, we can assume that n = m, ti = si and αi = βi. Moreover, E
can be written as follows

{r
α1
m1
1,1 , . . . , r

α1
m1
1,m1

, . . . , r
αn
mn
n,1 , . . . , r

αn
mn
n,mn},

where either mi = 1 and ri,1 = ti or ti → ri,1, . . . , ri,mi . Similarly for P. By exploiting
Lemma 2.5, Lemma 2.6 and Lemma 2.7, the distribution L can be easily defined.

Theorem 2.13. If D ⇒ E and D ⇒P, then there is L such that E ⇒ L and P ⇒ L .

Proof. We will actually prove a strengthening of the theorem above, namely the following:
If D

n⇒ E1 and D
m⇒ E2, then there is P such that E1

m⇒ P and E2
n⇒ P. This goes

by a very simple induction, whose only interesting case is the one where n,m ≥ 1. In
that case, Lemma 2.11 guarantees that there are L1,L2 such that D

1⇒ L1
n⇒ E1 and

D
1⇒ L2

m⇒ E2. By Lemma 2.12, one can build a distribution J such that L1
1⇒ J1

and L2
1⇒J2. By the induction hypothesis (applied twice) one obtains K1,K2 such that

J
n⇒ K1, E1

1⇒ K1, J
m⇒ K2, E2

1⇒ K2. Finally, another application of the induction
hypothesis gives us a distribution P such that K1

m⇒ P and K2
n⇒ P. Lemma 2.9 is

now enough to get the thesis. Summing up, the structure of the proof is the classic one:

D
1

y�

1

�%
L1

1

�%

n

z�

L2

1

y�

m

�$
E1

1

�$

J
m

�%

n

y�

E2

1

z�
K1

m

�%

K2

n

y�
E

20

Corollary 2.14 (Multistep Confluence). If t D and t E then D = E .

Proof. An easy consequence of Theorem 2.13: if t D and t E , then {t1} ⇒ D and
{t1} ⇒ E . As a consequence, D ⇒ P and E ⇒ P, but D = P = E , because all the
terms to which D and E attribute a nonnull probability are normal forms.

Example 2.3. Consider again the term t = (λx : �N.(t⊕xx))rand, where t⊕ is a term
computing ⊕ on natural numbers seen as booleans (0 stands for “false” and everything else
stands for “true”):

t⊕ = λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕;

s⊕ = λy : �N.caseN y zero 0 even 1 odd 1;

r⊕ = λy : �N.caseN y zero 1 even 0 odd 0.

In order to simplify reading, let us define:

f = (t⊕xx);

g0 = (case�N→N 0 zero s⊕ even r⊕ odd r⊕);

g1 = (case�N→N 1 zero s⊕ even r⊕ odd r⊕);

h0 = caseN 0 zero 0 even 1 odd 1;

h1 = caseN 1 zero 1 even 0 odd 0.

We can now give the following derivation tree:

(λx : �N.f)rand→ (λx : �N.f)0, (λx : �N.f)1 π : (λx : �N.f)0 {01} ρ : (λx : �N.f)1 {01}
(λx : �N.(t⊕xx))rand {01}

where π and ρ are as follows:

π :

(λx : �N.f)0→ t⊕00

t⊕0 0→ g00

g00→ s⊕0

s⊕0→ h0

h0 → 0 0 {01}
h0 {01}

s⊕0 {01}
g00 {01}

(λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕)0 0 {01}
(λx : �N.f)0 {01}

ρ :

(λx : �N.f)1→ t⊕11

t⊕1 1→ g11

g11→ r⊕1

r⊕1→ h1

h1 → 0 0 {01}
h1 {01}

r⊕1 {01}
g11 {01}

(λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕)1 1 {01}
(λx : �N.f)1 {01}

21

3. Probabilistic Polytime Soundness

The most difficult (and interesting!) result about RSLR is definitely polytime soundness:
every (instance of) a first-order term can be reduced to a numeral in a polynomial number
of steps by a probabilistic Turing machine. Polytime soundness can be proved, following [2],
by showing that:
• Any explicit term of base type can be reduced to its normal form with very low time
complexity;

• Any term (non necessarily of base type) can be put in explicit form in polynomial time.
By gluing these two results together, we obtain what we need, namely an effective and effi-
cient procedure to compute the normal forms of terms. Formally, two notions of evaluation
for terms correspond to the two steps defined above:
• On the one hand, we need a ternary relation ⇓nf between closed terms of type N,
probabilities and numerals. Intuitively, t ⇓αnf n holds when t is explicit and rewrites to
n with probability α. The inference rules for ⇓nf are defined in Figure 7;

• On the other hand, we need a ternary relation ⇓rf between terms of non modal type,
probabilities and terms. We can derive t ⇓αrf s only if t can be transformed into s with
probability α consistently with the reduction relation. The inference rules for ⇓rf are in
Figure 8.

n ⇓1
nf n rand ⇓1/2

nf 0 rand ⇓1/2
nf 1

t ⇓αnf n
S0t ⇓αnf 2 · n

t ⇓αnf n
S1t ⇓αnf 2 · n+ 1

t ⇓αnf n
Pt ⇓αnf bn2 c

t ⇓αnf 0 su ⇓βnf n
(caseA t zero s even r odd q)u ⇓αβnf n

t ⇓αnf 2n ru ⇓βnf m n ≥ 1

(caseA t zero s even r odd q)u ⇓αβnf m
t ⇓αnf 2n+ 1 qu ⇓βnf m

(caseA t zero s even r odd q)u ⇓αβnf m
s ⇓αnf n (t[x/n])r ⇓βnf m

(λx : aN.t)sr ⇓αβnf m
(t[x/s])r ⇓βnf n

(λx : aH.t)sr ⇓βnf n

Figure 7: The Relation ⇓nf : Inference Rules

Moreover, a third ternary relation ⇓ between closed terms of type N, probabilities and
numerals can be defined by the rule below:

t ⇓αrf s s ⇓βnf n
t ⇓αβ n

22

c ⇓1
rf c

t ⇓αrf v
S0t ⇓αrf S0v

t ⇓αrf v
S1t ⇓αrf S1v

t ⇓αrf v
Pt ⇓αrf Pv

t ⇓αrf v
s ⇓βrf z

r ⇓γrf e
q ⇓δrf f ∀ui ∈ u, ui ⇓εirf gi

(caseA t zero s even r odd q)u ⇓αβγδ
∏
i εi

rf (caseA v zero z even e odd f)g

t ⇓αrf v
v ⇓βnf n

n > 0

∀qi ∈ q, qi ⇓δirf fi
s ⇓γrf z

rb n
20 c ⇓γ0

rf r0 . . . rb n
2|n|−1 c ⇓

γ|n|−1

rf r|n|−1

(recursionA t s r)q ⇓
αβγ(

∏
j γj)(

∏
i δi)

rf r0(. . . (r(|n|−1)z) . . .)f

t ⇓αrf v
v ⇓βnf 0

s ⇓γrf z
∀qi ∈ q, qi ⇓δirf fi

(recursionA t s r)q ⇓αβγ(
∏
i δi)

rf zf

s ⇓αrf z
z ⇓γnf n (t[x/n])r ⇓βrf u

(λx : �N.t)sr ⇓αγβrf u

s ⇓αrf z
z ⇓γnf n tr ⇓βrf u

(λx : �N.t)sr ⇓αγβrf (λx : �N.u)n

(t[x/s])r ⇓βrf u
(λx : aH.t)sr ⇓βrf u

t ⇓βrf u
λx : aA.t ⇓βrf λx : aA.u

tj ⇓αjrf sj
xt ⇓

∏
i αi

rf xs

Figure 8: The Relation ⇓rf : Inference Rules

23

A peculiarity of the just introduced relations with respect to similar ones is the following:
whenever a statement in the form t ⇓αnf s is an immediate premise of another statement
r ⇓βnf q, then t needs to be structurally smaller than r, provided all numerals are assumed
to have the same internal structure. A similar but weaker statement holds for ⇓rf . This
relies on the peculiarities of RSLR, and in particular on the fact that variables of higher-
order types can appear free at most once in terms, and that terms of base type cannot
be passed to functions without having been completely evaluated. In other words, the
just described operational semantics is structural in a very strong sense, and this allows to
prove properties about it by induction on the structure of terms, as we will experience in
a moment.

Before starting to study the combinatorial properties of ⇓rf and ⇓nf , it is necessary to
show that, at least, ⇓ is adequate as a way to evaluate lambda terms. In the following, the
size |π| of any derivation π (for any formal system) is simply the number of distinct rule
occurrences in π.

Theorem 3.1 (Adequacy). For every term t such that ` t : N, the following two conditions
are equivalent:

1. There are j distinct derivations π1 : t ⇓α1 n1, . . . , πj : t ⇓αj nj such that
∑j

i=1 αi = 1;
2. t D , where for every m, D(m) =

∑
ni=m

αi.

Proof. Implication 1. ⇒ 2. can be proved by an induction on
∑j

k=1 |πk|, appropriately
enriching the thesis with similar statements for ⇓rf and ⇓nf . About the converse, just
observe that, some derivations like the ones required in Condition 1. need to exist. On
⇓nf , this can be formally proved by induction on |t|w, where | · |w is defined as follows:
|x|w = 1, |ts|w = |t|w + |s|w, |λx : aA.t|w = |t|w + 1, |caseA t zero s even r odd q|w =
|t|w + |s|w + |r|w + |q|w + 1, |recursionA t s r|w = |t|w + |s|w + |r|w + 1, |n|w = 1, |S0|w =
|S1|w = |P|w = |rand|w = 1. On ⇓rf , the same can be proved by induction on a lexicographic
order taking into account the recursion depth of t and |t|w. Thanks to multistep confluence,
we can conclude.

It’s now time to analyse how big derivations for ⇓nf and ⇓rf can be with respect to the
size of the underlying term. Let us start with ⇓nf and prove that, since it can only be
applied to explicit terms, the sizes of derivations must be very small:

Proposition 3.2. Suppose that ` t : N, where t is explicit. Then for every π : t ⇓αnf m it
holds that:

1. |π| ≤ |t|;
2. If s ∈ π, then |s| ≤ 2 · |t|2.

Proof. Given any term t, |t|w and |t|n are defined, respectively, as the size of t where every
numeral counts for 1 and the maximum size of the numerals that occur in t. For a formal
definition of |·|w, see the proof of Theorem 3.1. On the other hand, |·|n is defined as follows:
|x|n = 1, |ts|n = max{|t|n, |s|n}, |λx : aA.t|n = |t|n, |caseA t zero s even r odd q|n =
max{|t|n, |s|n, |r|n, |q|n}, |recursionA t s r|n = max{|t|n, |s|n, |r|n}, |n|n = blog2(n)c + 1,

24

and |S0|n = |S1|n = |P|n = |rand|n = 1. It holds that |t| ≤ |t|w · |t|n. It can be proved by
structural induction on term t. We prove the following strengthening of the statements
above by induction on |t|w:

1. |π| ≤ |t|w;
2. If s ∈ π, then |s|w ≤ |t|w and |s|n ≤ |t|n + |t|w;

First we prove that this is indeed a strengthening of the thesis. From the first case of the
strengthening, we can deduce the first case of the main thesis. Notice indeed that |t|w ≤ |t|.
Regarding the latter point, notice that |s| ≤ |s|w · |s|n ≤ |t|w ·(|t|n+ |t|w) ≤ |t|2 + |t| ≤ 2 · |t|2.
Some interesting cases:
• Suppose t is rand. We could have two derivations:

rand ⇓1/2
nf 0 rand ⇓1/2

nf 1

The thesis is easily proved.
• Suppose t is Sis. Depending on Si we could have two different derivations:

ρ : s ⇓αnf n
S0s ⇓αnf 2 · n

ρ : s ⇓αnf n
S1s ⇓αnf 2 · n+ 1

Suppose we are in the case where Si = S0. Then, for every r ∈ π,

|π| = |ρ|+ 1 ≤ |s|w + 1 = |t|w;

|r|w ≤ |s|w ≤ |t|w;

|r|n ≤ |s|n + |s|w + 1 = |s|n + |t|w = |t|n + |t|w.

The case where Si = S1 is proved in the same way.
• Suppose t is Ps.

ρ : s ⇓αnf 0

Ps ⇓αnf 0

ρ : s ⇓αnf n n ≥ 1

Ps ⇓αnf bn2 c
We focus on case where n > 1, the other case is similar. For every r ∈ π we have

|π| = |ρ|+ 1 ≤ |s|w + 1 = |t|w;

|r|w ≤ |s|w ≤ |t|w;

|r|n ≤ |s|n + |s|w + 1 = |s|n + |t|w = |t|n + |t|w.

• Suppose t is n.

n ⇓1
nf n

By knowing |π| = 1, |n|w = 1 and |n|n = |n|, the proof is trivial.
• Suppose that t is (λy : aN.s)rq. All derivations π for t are in the following form:

ρ : r ⇓αnf o µ : (s[y/o])q ⇓βnf m
t ⇓αβnf m

25

Then, for every u ∈ π,

|π| ≤ |ρ|+ |µ|+ 1 ≤ |r|w + |s[y/o]q|w + 1

= |r|w + |sq|w + 1 ≤ |t|w;

|u|n ≤ max{|r|n + |r|w, |s[y/o]q|n + |s[y/o]q|w}
= max{|r|n + |r|w, |s[y/o]q|n + |sq|w}
= max{|r|n + |r|w,max{|sq|n, |o|}+ |sq|w}
= max{|r|n + |r|w, |sq|n + |sq|w, |o|+ |sq|w}
≤ max{|r|n + |r|w, |sq|n + |sq|w, |r|n + |r|w + |sq|w}
≤ max{|r|n, |sq|n}+ |r|w + |sq|w
≤ max{|r|n, |sq|n}+ |t|w
= |t|n + |t|w;

|u|w ≤ max{|r|w, |s[y/o]q|w, |t|w}
= max{|r|w, |sq|w, |t|w} ≤ |t|w.

If u ∈ π, then either u ∈ ρ or u ∈ µ or simply u = t. This, together with the induction
hypothesis, implies |u|w ≤ max{|r|w, |s[y/o]q|w, |t|w}. Notice that |sq|w = |s[y/o]q|n
holds because any occurrence of y in s counts for 1, but also o itself counts for 1 (see
the definition of | · |w above). More generally, duplication of numerals for a variable in
t does not make |t|w bigger.

• Suppose t is (λy : aH.s)rq. Without loosing generality we can say that it derives from
the following derivation:

ρ : (s[y/r])q ⇓βnf n
(λy : aH.s)rq ⇓βnf n

For the reason that y has type H we can be sure that it appears at most once in s. So,
|s[y/r]| ≤ |sr| and, moreover, |s[y/r]q|w ≤ |srq|w and |s[y/r]q|n ≤ |srq|n. We have, for
all u ∈ ρ:

|π| = |ρ|+ 1 ≤ |s[y/r]q|w + 1 ≤ |t|w;

|u|w ≤ |s[y/r]q|w ≤ |srq|w ≤ |t|w;

|u|n ≤ |s[y/r]q|n + |s[y/r]q|w ≤ |srq|n + |srq|w ≤ |t|n + |t|w;

and this means that the same inequalities hold for every u ∈ π.
• Suppose t is caseA s zero r even q odd u. We could have three possible derivations:

ρ : s ⇓αnf 0 µ : rv ⇓βnf n
(caseA s zero r even q odd u)v ⇓αβnf n

ρ : s ⇓αnf 2n µ : qv ⇓βnf m n ≥ 1

(caseA s zero r even q odd u)v ⇓αβnf m

26

ρ : s ⇓αnf 2n+ 1 µ : uv ⇓βnf m
(caseA s zero r even q odd u)v ⇓αβnf m

we will focus on the case where the value of s is odd. All the other cases are similar.
For all z ∈ π we have:

|π| ≤ |ρ|+ |µ|+ 1

≤ |s|w + |uv|w + 1 ≤ |t|w;

|z|w ≤ |s|w + |r|w + |q|w + |uv|w ≤ |t|w;

|z|n = max {|s|n + |s|w, |uv|n + |uv|w, |r|n, |q|n}
≤ max {|s|n, |uv|n|r|n, |q|n}+ |s|w + |uv|w
≤ |t|w + |t|n.

This concludes the proof.

As opposed to ⇓nf , ⇓rf unrolls instances of primitive recursion, and thus cannot have
the very simple combinatorial behaviour of ⇓nf . Fortunately, however, everything stays
under control:

Proposition 3.3. Suppose that x1 : �N, . . . , xi : �N ` t : A, where A is �-free type. Then
there are polynomials pt and qt such that for every n1, . . . , ni and for every π : t[x/n] ⇓αrf s
it holds that:

1. |π| ≤ pt(
∑

i |ni|);
2. If s ∈ π, then |s| ≤ qt(

∑
i |ni|).

Proof. The following strengthening of the result can be proved by induction on the struc-
ture of a type derivation µ for t: if x1 : �N, . . . , xi : �N, y1 : �A1, . . . , yj : �Aj ` t : A,
where A is positively �-free and A1, . . . , Aj are negatively �-free. Then there are poly-
nomials pt and qt such that for every n1, . . . , ni and for every π : t[x/n] ⇓αrf s it holds
that:

1. |π| ≤ pt(
∑

i |ni|);
2. If s ∈ π, then |s| ≤ qt(

∑
i |ni|).

In defining positively and negatively �-free types, let us proceed by induction on types:

• N is both positively and negatively �-free;
• �A → B is not positively �-free, and is negatively �-free whenever A is positively
�-free and B is negatively �-free;

• C = �A → B is positively �-free if A is negatively and B is positively �-free. C is
negatively �-free if A is positively �-free and B is negatively �-free.

Please observe that if A is positively �-free and B <: A, then B is positively �-free.
Conversely, if A is negatively �-free and A <: B, then B is negatively �-free. This can be
easily proved by induction on the structure of A. We are ready to start the proof, now.
Let us consider some cases, depending on the shape of µ

27

• If the only typing rule in µ is (T-Const-Aff), then t = c, pt(x) = 1 and qt(x) = 1.
The thesis is proved.

• If the last rule was (T-Var-Aff), then t = x, pt(x) = 1 and qt(x) = x. The thesis is
proved

• If the last rule was (T-Arr-I), then t = λx : �A.s. Notice that the aspect is � because
the type of our term has to be positively �-free. So, we have the following derivation:

ρ : s[x/n] ⇓βrf v
λx : aA.s[x/n] ⇓βrf λx : aA.v

If the type of t is positively �-free, then also the type of s is positively �-free. We can
apply induction hypothesis. Define pt and qt as:

pt(x) = ps(x) + 1;

qt(x) = qs(x) + 1.

Indeed, we have:
|π| = |ρ|+ 1 ≤ ps(

∑

i

|ni|) + 1.

• If last rule was (T-Sub) then we have a typing derivation that ends in the following
way:

Γ ` t : A A <: B
Γ ` t : B

we can apply induction hypothesis on t : A because if B is positively �-free, then also
A will be positively �-free. Define pt:B(x) = pt:A(x) and qt:B(x) = qt:A(x).

• If the last rule was (T-Case), suppose t = (caseA s zero r even q odd u). The
constraints on the typing rule (T-Case) ensure us that the induction hypothesis can
be applied to s, r, q, u. The definition of ⇓rf tells us that any derivation of t[x/n] must
have the following shape:

ρ : s[x/n] ⇓αrf z
µ : r[x/n] ⇓βrf e

ν : q[x/n] ⇓γrf f
σ : u[x/n] ⇓δrf g

t[x/n] ⇓αβγδrf (caseA z zero e even f odd g)

Let us now define pt and qt as follows:

pt(x) = ps(x) + pr(x) + pq(x) + pu(x) + 1;

qt(x) = qs(x) + qr(x) + qq(x) + qu(x) + 1.

We have:

|π| ≤ |ρ|+ |µ|+ |ν|+ |σ|+ 1

≤ ps(
∑

i

|ni|) + pr(
∑

i

|ni|) + pq(
∑

i

|ni|) + pu(
∑

i

|ni|) + 1

= pt(
∑

i

|ni|).

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qz(
∑

i |ni|).

28

• If the last rule was (T-Rec),m We consider the most interesting case, where the first
term computes to a value greater than 0. Suppose t = (recursionA s r q). By looking
at the typing rule (figure 4) for (T-Rec) we are sure to be able to apply induction
hypothesis on s, r, q. Definition of ⇓rf ensure also that any derivation for t[x/n] must
have the following shape:

ρ : s[x/n] ⇓αrf z µ : z[x/n] ⇓βnf n
ν : r[x/n] ⇓γrf e

%0 : qy[x, y/n, b n
20 c] ⇓γ0

rf q0
. . .

%|n|−1 : qy[x, y/n, b n
2|n|−1 c] ⇓

γ|n|−1

rf q|n|−1

(recursionA s r q)[x/n] ⇓αβγ(
∏
j γj)

rf q0(. . . (q(|n|−1)e) . . .)

Notice that we are able to apply ⇓nf on term z because, by definition, s has only free
variables of type �N (see figure 4). So, we are sure that z is a closed term of type N
and we are able to apply the ⇓nf algorithm. Let define pt and qt as follows:

pt(x) = ps(x) + 2 · qs(x) + pr(x) + 2 · qs(x)2 · pq(x+ 2 · qs(x)2) + 1;

qt(x) = qs(x) + qr(x) + 2 · qs(x)2 + qq(x+ 2 · qs(x)2).

Notice that |z| is bounded by qs(x). Notice that by applying theorem 3.2 on µ (z has
no free variables) we have that every v ∈ µ is such thatv ≤ 2 · |z|2. We have:

|π| ≤ |ρ|+ |µ|+ |ν|+
∑

i

(|%i|) + 1

≤ ps(
∑

i

|ni|) + 2 · |z|+ pr(
∑

i

|ni|) + |n| · pqy(
∑

i

|ni|+ |n|) + 1

≤ ps(
∑

i

|ni|) + 2 · qs(
∑

i

|ni|) + pr(
∑

i

|ni|)+

+ 2 · qs(
∑

i

|ni|)2 · pqy(
∑

i

|ni|+ 2 · qs(
∑

i

|ni|)2) + 1.

Similarly, for every w ∈ π:

|w| ≤ qs(
∑

i

|ni|) + 2 · qs(
∑

i

|ni|)2 + qr(
∑

i

|ni|) + qqy(
∑

i

|ni|+ |n|)

≤ qs(
∑

i

|ni|) + 2 · qz(
∑

i

|ni|)2 + qr(
∑

i

|ni|) + qqy(
∑

i

|ni|+ 2 · qs(
∑

i

|ni|)2).

• In this and the following cases the last rule is (T-Arr-E). Let’s first consider t = xs.
In this case, obviously, the free variable x has type �Ai (1 ≤ i ≤ j). By definition x is
negatively �-free. This means that every term in s has a type that is positively �-free.
By knowing that the type of x is negatively �-free, we conclude that the type of our

29

term t is �-free (because is both negatively and positively �-free at the same time).
Definition of ⇓rf ensures us that the derivation will have the following shape:

ρi : sj[x/n] ⇓αjrf rj
xs[x/n] ⇓

∏
i αi

rf xr

We define pt and qt as:

pt(x) =
∑

j

psj(x) + 1;

qt(x) =
∑

j

qsj(x) + 1.

Indeed we have
|π| ≤

∑

j

|ρj|+ 1 ≤
∑

j

{psj(
∑

i

|ni|)}+ 1.

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qz(
∑

i |ni|).
• If t = S0s, then s have type N in the context Γ. The derivation π has the following
form

ρ : s[x/n] ⇓αrf z
S0s[x/n] ⇓αrf S0z

Define pt(x) = ps(x) + 1 and qt(x) = qs(x) + 1. One can easily check that, by induction
hypothesis

|π| ≤ |ρ|+ 1 ≤ ps(
∑

i

|ni|) + 1 = pt(
∑

i

|ni|).

Analogously, if r ∈ π then

|s| ≤ qs(
∑

i

|ni|) + 1 ≤ qt(
∑

i

|ni|).

• If t = S1s or t = Ps, then we can proceed exactly as in the previous case.
• Cases where we have on the left side a case or a recursion with some arguments are
trivial, since they can be brought back to cases that we have considered.

• If t is (λx : �N.s)rq, then we have the following derivation:

ρ : r[x/n] ⇓αrf e
µ : e[x/n] ⇓γnf n ν : (s[x/n])q[x/n] ⇓βrf v

(λx : �N.s)rq[x/n] ⇓αγβrf v

By hypothesis t is positively �-free and so also r (whose type is N) and sq are positively
�-free. So, we are sure that we are able to use induction hypothesis. Let pt and qt be:

pt(x) = pr(x) + 2 · qr(x) + psq(x+ 2 · qr(x)2) + 1;

qt(x) = qsq(x+ 2 · qr(x)2) + qr(x) + 2 · qr(x)2 + 1.

30

We have:

|π| = |ρ|+ |µ|+ |ν|+ 1

≤ pr(
∑

i

|ni|) + 2 · |e|+ psq(
∑

i

|ni|+ |n|) + 1

≤ pr(
∑

i

|ni|) + 2 · qr(
∑

i

|ni|) + psq(
∑

i

|ni|+ 2 · qr(
∑

i

|ni|)2) + 1.

By construction, remember that s has no free variables of type �N. By Theorem 3.2
(z has no free variables) we have v ∈ µ is such that |v| ≤ 2 · |e|2. By applying induction
hypothesis we have that every v ∈ ρ is such that |v| ≤ qr(

∑
i |ni|), every v ∈ ν is such

that

|v| ≤ qsq(
∑

i

|ni|+ |n|) ≤ qsq(
∑

i

|ni|+ 2 · |e|2)

≤ qsq(
∑

i

|ni|+ 2 · qr(
∑

i

|ni|)2).

We can prove the second point of our thesis by setting qt(
∑

i |ni|) as qsq(
∑

i |ni| + 2 ·
qr(
∑

i |ni|)2) + qr(
∑

i |ni|) + 2 · qr(
∑

i |ni|)2 + 1.
• If t is (λx : �N.s)rq, then we have the following derivation:

ρ : r[x/n] ⇓αrf e
µ : e[x/n] ⇓γnf n ν : sq[x/n] ⇓βrf u

(λx : �N.s)rq[x/n] ⇓αγβrf (λx : �N.u)n

By hypothesis we have t that is positively �-free. So, also r and e (whose type is N)
and sq are positively �-free. We define pt and qt as:

pt(x) = pr(x) + 2 · qr(x) + psq(x) + 1;

qt(x) = qr(x) + 2 · qr(x)2 + qsq(x) + 1.

We have:

|π| = |ρ|+ |µ|+ |ν|+ 1

≤ pr(
∑

i

|ni|) + 2 · qr(
∑

i

|ni|) + psq(
∑

i

|ni|) + 1.

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qt(
∑

i |ni|).
• If t is (λx : aH.s)rq, then we have the following derivation:

ρ : (s[x/r])q[x/n] ⇓βrf v
(λx : aH.s)rq[x/n] ⇓βrf v

31

By hypothesis we have t that is positively �-free. So, also sq is positively �-free. r has
an higher-order type H and so we are sure that |(s[x/r])q| < |(λx : aH.s)rq|. Define pt
and qt as:

pt(x) = p(s[x/r])q(x) + 1;

qt(x) = q(s[x/r])q(x) + 1.

By applying induction hypothesis we have:

|π| = |ρ|+ 1 ≤ p(s[x/r])q(
∑

i

|ni|) + 1.

By induction, we are able to prove the second point of our thesis.
This concludes the proof.

Following the definition of ⇓, it is quite easy to obtain, given a first order term t, of
arity k, a probabilistic Turing machine that, when receiving on input (an encoding of)
n1 . . . nk, produces in output m with probability equal to D(m), where D is the (unique!)
distribution such that t D . Indeed, ⇓rf and ⇓nf are designed as algorithms. Moreover,
the obtained Turing machine works in polynomial time, due to propositions 3.2 and 3.3.
Formally:

Theorem 3.4 (Soundness). Suppose t is a first order term of arity k. Then there is a
probabilistic Turing machineMt running in polynomial time such thatMt on input n1 . . . nk
returns m with probability exactly D(m), where D is a probability distribution such that
tn1 . . . nk D .

Proof. By propositions 3.2 and 3.3.

4. Probabilistic Polytime Completeness

In the previous section, we proved that the behaviour of any RSLR first-order term
can be somehow simulated by a probabilistic polytime Turing machine. What about the
converse? In this section, we prove that any probabilistic polynomial time Turing machine
(PPTM in the following) can be encoded in RSLR. PPTMs are here seen as one-tape
Turing machines which are capable at any step during the computation of “tossing a fair
coin”, and proceeding in two different ways depending on the outcome of the tossing.

To facilitate the encoding, we extend our system with pairs. All the proofs in previous
sections remain valid. Types are extended by the following production:

A ::= A⊗ A;

Terms now contain two binary constructs 〈t, s〉 and letA t be 〈x, y〉 in r

Γ; ∆1 ` t : A Γ; ∆2 ` s : B

Γ; ∆1,∆2 ` 〈t, s〉 : A⊗B

32

Γ; ∆1 ` t : A⊗B Γ;x : aA, y : aB,∆2 ` s : C Γ,∆1 <: a

Γ; ∆1,∆2 ` letC t be 〈x, y〉 in s : C

We will never make use of the let construct, except through projections, which can be
easily defined and which have the expected types:

Γ ` t : A⊗B
Γ ` π1(t) : A

Γ ` t : A⊗B
Γ ` π2(t) : B

As syntactic sugar, we will use 〈t1 . . . , ti〉 (where i ≥ 1) for the term

〈t1, 〈t2, . . . 〈ti−1, ti〉 . . .〉〉.
For every n ≥ 1 and every 1 ≤ i ≤ n, we can easily build a term πni which extracts the
i-th component from tuples of n elements: this can be done by composing π1(·) and π2(·).
With a slight abuse on notation, we sometime write πi for πni .

4.1. Unary Natural Numbers and Polynomials
Natural numbers are represented in binary in RSLR. In other words, the basic operations

allowed on them are S0, S1 and P, which correspond to appending a binary digit to the
right of the number (seen as a binary string) or stripping the rightmost such digit. This is
even clearer if we consider the length |n| of a numeral n, which is only logarithmic in n.

Sometimes, however, it is more convenient to work in unary notation. Given a natural
number i, its unary encoding is simply the numeral that, written in binary notation, is 1i.
Given a natural number i we will refer to its unary encoding i. The type in which unary
natural numbers will be written, is just N, but for reasons of clarity we will use the symbol
U instead.

From any numeral n, we can extract the unary encoding of its length:

encode = λt : �N.recursionU t 0 (λx : �U.λy : �U.S1y) : �N→ U

Predecessor and successor functions are simply P and S1. We need to show how to express
polynomials, and in order to do so we define the operators add : �U → �U → U and
mult : �U→ �U→ U. We define add as

add =λx : �U.λy : �U.
recursionU x y (λx : �U.λy : �U.S1y) : �U→ �U→ U.

Similarly, we define mult as

mult =λx : �U.λy : �U.
recursionU (Px) y (λx : �U.λz : �U.addyz) : �U→ �U→ U.

The following is quite easy:

Lemma 4.1. Every polynomial of one variable with natural coefficients can be encoded as
a term of type �U→ U.

Proof. Simply, turn add into a term of type �U → �U → U by way of subtyping and
then compose add and mult has much as needed to encode the polynomial at hand.

33

4.2. Finite Sets
Any finite, linearly ordered set F = (|F |,vF) can be naturally encoded as an “initial

segment” of N: if |F | = {a0, . . . , ai} where ai vF aj whenever i ≤ j, then ai is encoded
simply by the natural number whose binary representation is 10i. For reasons of clarity, we
will denote N as FF . We can do some case analysis on an element of FF by the combinator

switchFA : �FF → �A→ . . .→ �A︸ ︷︷ ︸
i times

→ �A→ A,

where A is a �-free type and i is the cardinality of |F |. The term above can be defined by
induction on i:
• If i = 0, then it is simply λx : �FF .λy : �A.y.
• If i ≥ 1, then it is the following:

λx : �FF .λy0 : �A. . . . λyi : �A.
caseA x zero(λh : �A.h)

even (λh : �A.switchEA(Px)y1 . . . yih)

odd (λh : �A.y0)

where E is the subset of F of those elements with strictly positive indices.

4.3. Strings
Suppose Σ = {a0, . . . , ai} is a finite alphabet. Elements of Σ can be encoded following

the just described scheme, but how about strings in Σ∗? We can proceed somehow similarly:
the string aj1 . . . ajk can be encoded as the natural number

10j110j2 . . . 10jk .

Whenever we want to emphasize that a natural number is used as a string, we write SΣ

instead of N. It is easy to build a term appendΣ : �(SΣ ⊗ FΣ) → SΣ which appends the
second argument to the first argument. Similarly, one can define a term tailΣ : �SΣ →
SΣ ⊗ FΣ which strips off the rightmost character a from the argument string and returns
a together with the rest of the string; if the string is empty, a0 is returned, by convention.

We also define a function NtoSΣ : �N→ SΣ that takes a natural number and produce
in output an encoding of the corresponding string in Σ∗ (where i0 and i1 are the indices of
0 and 1 in Σ):

NtoSΣ = λx : �N.recursionSΣ
x 1

λx : �N.λy : �S.
caseN x zero appendΣ〈y, i0〉

even appendΣ〈y, i1〉
odd appendΣ〈y, i1〉 : �N→ S.

Similarly, one can write a term StoNΣ : �SΣ → N.

34

4.4. Probabilistic Turing Machines
Let M be a probabilistic Turing machine M = (Q, q0, F,Σ,t, δ), where Q is the finite

set of states of the machine; q0 is the initial state; F is the set of final states of M ; Σ is the
finite alphabet of the tape; t ∈ Σ is the symbol for empty string; δ ⊆ (Q×Σ)×(Q×Σ×{←
, ↓,→}) is the transition function of M . For each pair (q, s) ∈ Q×Σ, there are exactly two
triples (r1, t1, d1) and (r2, t2, d2) such that ((q, s), (r1, t1, d1)) ∈ δ and ((q, s), (r2, t2, d2)) ∈ δ.
Configurations of M can be encoded as follows:

〈tleft , t, tright , s〉 : SΣ ⊗ FΣ ⊗ SΣ ⊗ FQ,

where tleft represents the left part of the main tape, t is the symbol read from the head of
M , tright the right part of the main tape; s is the state of our Turing Machine. Let CM be
a shortcut for SΣ ⊗ FΣ ⊗ SΣ ⊗ FQ. Let tC be the term encoding the configuration C.

Suppose that M on input x runs in time bounded by a polynomial p : N → N. Then
we can proceed as follows:
• encode the polynomial p by using function encode, add,mult, dec so that at the end we
will have a function p : �N→ U;

• write a term δ : �CM → CM which mimicks δ;
• write a term initM : �SΣ → CM which returns the initial configuration for M corre-
sponding to the input string.

The term tM of type �N→ N which has exactly the same behavior as M is the following:

λx : �N.StoNΣ(recursionCM (p x) (initM (NtoSΣ(x))) (λy : �N.λz : �CM .δ z)).

We then get a faithful encoding of PPTM into RSLR, which will be useful in the forthcoming
section:

Theorem 4.2. Suppose M is a probabilistic Turing machine running in polynomial time
such that for every n, Dn is the distribution of possible results obtained by running M on
input n. Then there is a first order term tM such that for every n, tn evaluates to Dn.

Proof. Proving that tM does what it is supposed to do can be done as follows:
• First of all, one can show that p n evaluates to Im, where m is the unary encoding of
the length of p(n);

• Similarly, one can show that initM correctly computes an initial configuration for M
when fed with an input string;

• Finally, δ can be showed to evaluate to {t
1
2
D, t

1
2
E} whenever fed with tC and whenever C

is a configuration which evolves in one step to D and E.
We elide the proof here, since all the steps above are quite simple anyway.

5. Relations with Complexity Classes

The last two sections established a precise correspondence between RSLR and proba-
bilistic polynomial time Turing machines. But how about probabilistic complexity classes,

35

like BPP or PP? They are defined on top of probabilistic Turing machines, imposing
constraints on the probability of error: in the case of PP, the error probability can be
anywhere near 1

2
, but not equal to it, while in BPP it can be non-negligibly smaller than

1
2
. There are two ways RSLR can be put in correspondence with probabilistic complexity

classes, and these are explained in the following two sections.

5.1. Leaving the Error Probability Explicit
Of course, one possibility consists in leaving bounds on the error probability explicit in

the very definition of what an RSLR term represents:

Definition 5.1 (Recognising a Language with Error ε). A first-order term t of arity 1
recognizes a language L ⊆ N with probability less than ε if, and only if, both:
• x ∈ L and tx D implies D(0) > 1− ε;
• x /∈ L and tx D implies

∑
s>0 D(s) > 1− ε.

So, 0 encodes an accepting state of tx and s > 0 encodes a reject state of tx. Theo-
rem 3.4, together with Theorem 4.2 allows us to conclude that:

Theorem 5.1 (1
2
-Completeness for PP). The set of languages which can be recognized

with error ε in RSLR for some 0 < ε ≤ 1/2 equals PP.

But, interestingly, we can go beyond and capture a more interesting complexity class:

Theorem 5.2 (1
2
-Completeness for BPP). The set of languages which can be recognized

with error ε in RSLR for some 0 < ε < 1/2 equals BPP.

Observe how ε can be even equal to 1
2
in Theorem 5.1, while it cannot in Theorem 5.2.

This is the main difference between PP and BPP: in the first class, the error probability
can very fast approach 1

2
when the size of the input grows, while in the second it cannot.

The notion of recognizing a language with an error ε allows to capture complexity
classes in RSLR, but it has an obvious drawback: the error probability remains explicit
and external to the system; in other words, RSLR does not characterize one complexity
class but many, depending on the allowed values for ε. Moreover, given an RSLR term t
and an error ε, determining whether t recognizes any function with error ε is undecidable.
As a consequence, theorems 5.1 and 5.2 do not suggest an enumeration of all languages in
either PP or BPP. This in contrast to what happens with other ICC systems, e.g. SLR, in
which all terms (of certain types) compute a function in FP (and, viceversa, all functions
in FP are computed this way). As we have already mentioned in the Introduction, this
discrepancy between FP and BPP has a name: the former is a syntactic class, while the
latter is a semantic class (see [1]).

5.2. Getting Rid of the Error Probability
One may wonder whether a more implicit notion of representation can be somehow

introduced, and which complexity class corresponds to RSLR this way. One possibility is
taking representability by majority:

36

Definition 5.2 (Representability-by-Majority). Let t be a first-order term of arity 1. Then
t is said to represent-by-majority a language L ⊆ N iff:

1. If n ∈ L and tn D , then D(0) ≥∑m>0 D(m);
2. If n /∈ L and tn D , then

∑
m>0 D(m) > D(0).

There is a striking difference between Definition 5.2 and Definition 5.1: the latter is
asymmetric, while the first is symmetric.

Please observe that any RSLR first order term t represents-by-majority a language,
namely the language defined from t by Definition 5.2. It is well known that PP can be
defined by majority itself [1], stipulating that the error probability should be at most 1

2

when handling strings in the language and strictly smaller than 1
2
when handling strings

not in the language. As a consequence:

Theorem 5.3 (Completeness-by-Majority for PP). The set of languages which can be
represented-by-majority in RSLR equals PP.

In other words, RSLR can indeed be considered as a tool to enumerate all functions in
a complexity class, namely PP. It comes with no surprise, since the latter is a syntactic
class.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity — A Modern Approach.
Cambridge University Press, 2009.

[2] S.J. Bellantoni, K.H. Niggl, and H. Schwichtenberg. Higher type recursion, ramifica-
tion and polynomial time. Annals of Pure and Applied Logic, 104(1-3):17–30, 2000.

[3] Stephen Bellantoni. Predicative recursion and the polytime hierarchy. In P. Clote and
J.B. Remmel, editors, Feasible Mathematics II, pages 15–29. Birkhauser, 1995.

[4] Stephen Bellantoni and Stephen A. Cook. A new recursion-theoretic characterization
of the polytime functions. Computational Complexity, 2:97–110, 1992.

[5] Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, and Isabel Oitavem. Recur-
sion schemata for NC k. In Michael Kaminski and Simone Martini, editors, Computer
Science Logic, 22nd International Workshop, Proceedings, volume 5213 of LNCS, pages
49–63, 2008.

[6] Ugo Dal Lago, Simone Martini, and Davide Sangiorgi. Light logics and higher-order
processes. In Sibylle B. Fröschle and Frank D. Valencia, editors, 17th International
Workshop on Expressiveness in Concurrency, Proceedings, volume 41 of EPTCS, 2010.

[7] Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. Quantum implicit computational
complexity. Theoretical Computer Science, 411(2):377–409, 2010.

37

[8] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic poly-
nomial time. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 316–324, Washington, DC, USA, 2004. IEEE Computer
Society.

[9] John Gill. Computational complexity of probabilistic turing machines. SIAM J.
Comput., 6(4):675–695, 1977.

[10] Martin Hofmann. A mixed modal/linear lambda calculus with applications to
Bellantoni-Cook safe recursion. In Mogens Nielsen and Wolfgang Thomas, editors,
Computer Science Logic, 11th International Workshop, Proceedings, volume 1414 of
LNCS, pages 275–294, 1997.

[11] Neil D. Jones. LOGSPACE and PTIME characterized by programming languages.
Theoretical Computer Science, 228:151–174, 1999.

[12] Daniel Leivant. Stratified functional programs and computational complexity. In
Principles of Programming Languages, 20th International Symposium, Proceedings,
pages 325–333. ACM, 1993.

[13] Daniel Leivant and Jean-Yves Marion. Ramified recurrence and computational com-
plexity II: Substitution and poly-space. In Leszek Pacholski and Jerzy Tiuryn, edi-
tors, Computer Science Logic, 9th International Workshop, Proceedings, volume 933
of LNCS, pages 486–500. 1995.

[14] John C. Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization
of bounded oracle computation and probabilistic polynomial time. In Foundations
of Computer Science, 39th Annual Symposium, Proceedings, pages 725–733. IEEE
Computer Society, 1998.

[15] Helmut Schwichtenberg and Steven Bellantoni. Feasible computation with higher
types. In Proof and System-Reliability, pages 399–415. Kluwer Academic Publisher,
2001.

[16] Yu Zhang. The computational SLR: a logic for reasoning about computational indis-
tinguishability. Mathematical Structures in Computer Science, 20(5):951–975, 2010.

38

Name-passing calculi:
from fusions to preorders and types

Daniel Hirschkoff, Jean-Marie Madiot
ENS Lyon, U. de Lyon, CNRS, INRIA, UCBL
{daniel.hirschkoff, jeanmarie.madiot}@ens-lyon.fr

Davide Sangiorgi
University of Bologna and INRIA

davide.sangiorgi@cs.unibo.it

Abstract—The fusion calculi are a simplification of the pi-
calculus in which input and output are symmetric and restriction
is the only binder. We highlight a major difference between
these calculi and the pi-calculus from the point of view of
types, proving some impossibility results for subtyping in fusion
calculi. We propose a modification of fusion calculi in which
the name equivalences produced by fusions are replaced by
name preorders, and with a distinction between positive and
negative occurrences of names. The resulting calculus allows us
to import subtype systems, and related results, from the pi-
calculus. We examine the consequences of the modification on
behavioural equivalence (e.g., context-free characterisations of
barbed congruence) and expressiveness (e.g., full abstraction of
the embedding of the asynchronous pi-calculus).

Index Terms—process calculus; fusions; types; subtyping;

I. INTRODUCTION

The π-calculus is the paradigmatical name-passing calculus,
that is, a calculus where names (a synonym for “channels”)
may be passed around. Key aspects for the success of the π-
calculus are the minimality of its syntax and its expressiveness.
Expressiveness comes at a price: often, desirable behavioural
properties, or algebraic laws, fail. The reason is that, when
employing π-calculus to describe a system, one normally
follows a discipline that governs how names can be used. The
discipline can be made explicit by means of types. Types bring
in other benefits, notably the possibility of statically detecting
many programming errors. Types are indeed a fundamental
aspect of the π-calculus theory, and one of the most important
differences between name-passing calculi and process calculi
such as CCS in which names may not be passed.

One of the basic elements in type systems for name-passing
calculi is the possibility of separating the capabilities for
actions associated to a name, e.g., the capability of using a
name in input or in output. The control of capabilities has
behavioural consequences because it allows one to express
constraints on the use of names. For a simple example,
consider a process P that implements two distinct services
A and B, accessible using channels a and b that must be
communicated to clients of the services. We assume here only
two clients, that receive the channels via c1 and c2:

P
def
= (νa, b)

(
c1〈a, b〉. c2〈a, b〉. (A | B)

)
(1)

We expect that outputs at a or b from the clients are eventually
received and processed by the appropriate service. But this
is not necessarily the case: a malign client can disrupt the

expected protocol by simply offering an input at a or b and
then throwing away the values received, or forwarding the
values to the wrong service. These misbehaviours are ruled
out by a capability type system imposing that the clients
only obtain the output capability on the names a and b
when receiving them from c1 and c2. The typing rules are
straightforward, and mimic those for the typing of references
in imperative languages with subtyping.

Capabilities [1] are at the basis of more complex type
systems, with a finer control on names. For instance, type
systems imposing constraints on successive usages of the
names like usage-based type systems and deadlock-detection
systems, session types, and so on [2], [3], [4].

Capabilities are closely related to subtyping. In the exam-
ple (1), P creates names a and b, and possesses both the input
and the output capabilities on them; it however transmits to
the clients only a subset of the capabilities (namely the output
capability alone). The subset relation on capabilities gives rise
to a subtype relation on types. All forms of subtyping for π-
calculus or related calculi in the literature require a discipline
on capabilities. Subtyping can also be used to recover well-
known forms of subtyping in other computational paradigms,
e.g., functional languages or object-oriented languages, when
an encoding of terms into processes is enhanced with an
encoding of types [5].

An interesting family of variants of the π-calculus are —
what we call here — the fusion calculi: Fusion [6], Update [7],
Explicit Fusions [8], Chi [9], Solos [10]. Their beauty is the
simplification achieved, with binding removed from the input
construct. Thus input prefixing becomes symmetric to output
prefixing, and restriction remains as the only binder. The effect
of a synchronisation between an output ab.P and an input
ac.Q is to fuse the two object names b and c, which are
now interchangeable. Thus communications produce, step-by-
step, an equivalence relation on names. Different fusion-like
calculi differ in the way the name equivalence is handled. The
operational theories of these calculi have been widely studied,
e.g. [6], [11], [12], [13], [14].

As for the π-calculus (sometimes abbreviated as π in the
sequel), however, the expressiveness of fusion calculi makes
desirable behavioural properties fail. The same examples for
the π-calculus can be used. For instance, the problems of
misbehaving clients of the services of (1) remain. Actually, in
fusion calculi additional problems arise; for example a client

receiving the two channels a and b along ci could fuse them
using an input ci〈n, n〉.R. Now a and b are indistinguishable,
and an emission on one of them can reach any of the two
services (and if a definition of a service is recursive, a recursive
call could be redirected towards the other service).

In the paper we study the addition of types to fusion calculi;
more generally, to single-binder calculi, where input is not
binding (in fusion calculi, in addition, reductions fuse names).
We begin by highlighting a striking difference between π-
calculus and fusion calculi, proving some impossibility results
for subtyping (and hence for general capability-based type
systems, implicitly or explicitly involving subtyping). In the
statement of the results, we assume a few basic properties of
type systems for name-passing calculi, such as strengthening,
weakening and type soundness, and the validity of the ordinary
typing rules for the base operators of parallel composition
and restriction. These results do not rule out completely the
possibility of having subtyping or capabilities in fusion calculi,
because of the few basic assumptions we make. They do
show, however, that such type systems would have to be more
complex than those for ordinary name-passing calculi such as
the π-calculus, or require modifications or constraints in the
syntax of the calculi.

Intuitively, the impossibility results arise because at the
heart of the operational semantics for fusion calculi is an
equivalence relation on names, generated through name fu-
sions. In contrast, subtyping and capability systems are built
on a preorder relation (be it subtyping, or set inclusion among
subsets of capabilities). The equivalence on names forces one
to have an equivalence also on types, instead of a preorder.

We propose a solution whose crux is the replacement of
the equivalence on names by a preorder, and a distinction on
occurrences of names, between ‘positive’ and ‘negative’. In
the resulting single-binder calculus, πP (‘π with Preorder’),
reductions generate a preorder. The basic reduction rule is

ca.P | cb.Q −→ P | Q | a/b .

The particle a/b, called an arc, sets a to be above b in the name
preorder. Such a process may redirect a prefix at b (which
represents a ‘positive’ occurrence of b) to become a prefix at
a. We show that the I/O (input/output) capability systems of
the π-calculus can be reused in πP, following a generalisation
of the typing rules of the π-calculus that takes into account
the negative and positive occurrences of names. A better
understanding of type systems with subtyping in name-passing
calculi is a by-product of this study. For instance, the study
suggests that it is essential for subtyping that substitutions
produced by communications (in πP, the substitutions pro-
duced by arcs) only affect the positive occurrences of names.

The modification also brings in behavioural differences. For
instance, both in the π-calculus and in πP, a process that
creates a new name a has the guarantee that a will remain
different from all other known names, even if a is communi-
cated to other processes (only the creator of a can break this,
by using a in negative position). This is not true in fusion
calculi, where the emission of a may produce fusions between

a and other names. To demonstrate the proximity with the π-
calculus we show that the embedding of the asynchronous
π-calculus into πP is fully abstract (full abstraction of the
encoding of the π-calculus into fusion calculi fails). We also
exhibit an encoding of Explicit Fusions into πP, where fusions
become bi-directional arcs.

We present two possible semantics for πP that differ on
the moment arcs enable substitutions. In the eager semantics,
arcs may freely act on prefixes; in the by-need semantics,
arcs act on prefixes only when interactions occur. We provide
a characterisation of the reference contextual behavioural
equivalence (barbed congruence) as a context-free labelled
bisimilarity for the by-need semantics. We also compare and
contrast the semantics, both between them and with semantics
based on name fusion.

A property of certain fusion calculi (Fusion, Explicit Fusion)
is a semantic duality induced by the symmetry between input
and output prefixes. In πP, the syntax still allows us to
swap inputs and outputs, but in general the original and final
processes have incomparable behaviours.

We conclude by examining the following syntactic con-
straint in single-binder calculi: each name, say b, may occur
at most once in negative position (this corresponds to input
object, as in ab.P , or to the source of an arc, as in a/b). Under
this constraint, the two semantics for πP, eager and by-need,
coincide. In fusion calculi, the constraint allows us to import
the π-calculus type systems. The constraint is however rather
strong, and, in fusion calculi, breaks the semantic duality
between inputs and outputs.

In summary, πP, while being syntactically similar to fusion
calculi, remains fairly close to the π-calculus (type systems,
management of names).

Further related work: Central to πP is the preorder on
names, that breaks the symmetry of name equivalence in
fusion-like calculi. Another important ingredient for the theory
of πP is the distinction between negative and positive occur-
rences of a name. In Update [7] and (asymmetric versions of)
Chi [9], reductions produce ordinary substitutions on names.
In practice, however, substitutions are not much different from
fusions: a substitution {a/b} fuses a with b and makes a the
representative of the equivalence class. Still, substitutions are
directed, and in this sense Update and Chi look closer to πP
than the other fusion calculi. For instance Update and Chi,
like πP, lack the duality property on computations. Update
was refined to the Fusion calculus [6] because of difficulties
in the extension with polyadicity. Another major difference
for Update and Chi with respect to πP is that in the former
calculi substitutions replace all occurrences of names, whereas
πP takes into account the distinction between positive and
negative occurrences.

The question of controlling the fusion of private names has
been addressed in [15], in the U-calculus. This calculus makes
no distinction between input and output, and relies on two
forms of binding to achieve a better control of scope extrusion,
thus leading to a sensible behavioural theory that encompasses
fusions and π. Thus the calculus is not single-binder. It is

unclear how capability types could be defined in it, as it does
not have primitive constructs for input and output.

Paper outline: Section II gives some background. In
Section III, we present some impossibility results on type
systems for fusion-like calculi. Section IV introduces πP and
its type system. The behavioural theory of πP is explored
in Section V, and we give some expressiveness results in
Section VI. Section VII studies a syntactical restriction that
can be applied to πP and fusions, and we discuss future work
in Section VIII.

II. BACKGROUND ON NAME-PASSING CALCULI

In this section we group terminology and notation that
are common to all the calculi discussed in the paper. For
simplicity of presentation, all calculi in the paper are finite.
The addition of operators like replication for writing infinite
behaviours goes as expected. The results in the paper would
not be affected.

We informally call name-passing the calculi in the π-
calculus tradition, which have the usual constructs of par-
allel composition and restriction, and in which computation
is interaction between input and output constructs. Names
identify the pairs of matching inputs/outputs, and the values
transmitted may themselves be names. Restriction is a binder
for the names; in some cases the input may be a binder too.
Examples of these calculi are the π-calculus, the asynchronous
π-calculus, the Join calculus, the Distributed π-calculus, the
Fusion calculus, and so on. Binders support the usual alpha-
conversion mechanism, and give rise to the usual definitions
of free and bound names.

Convention 1. To simplify the presentation, throughout the
paper, in all statements (including rules), we assume that the
bound names of the entities in the statements are different
from each other and different from the free names (Barendregt
convention on names). Similarly, we say that a name is fresh
or fresh for a process, if the name does not appear in the
entities of the statements or in the process. �

We use a, b, . . . to range over names. In a free input ab.P ,
bound input a(b).P , output ab.P , we call a the subject of the
prefix, and b the object. We sometimes abbreviate prefixes as
a.P and a.P when the object carried is not important. We
omit trailing 0, for instance writing ab in place of ab.0. We
write P{a/b} for the result of applying the substitution of b
with a in P .

When restriction is the only binder (hence the input con-
struct is not binding), we say that the calculus has a single
binder. If in addition interaction involves fusion between
names, so that we have (=⇒ stands for an arbitrary number
of reduction steps, and in the right-hand side P and Q can be
omitted if they are 0)

(νc) (ab.P | ac.Q | R) =⇒ (P | Q | R){b/c} , (2)

we say that the calculus has name-fusions, or, more briefly,
has fusions. (We are not requiring that (2) is among the rules
of the operational semantics of the calculus, just that (2) holds.

The shape of (2) has been chosen so to capture the existing
calculi; the presence of R allows us to capture also the Solos
calculus.) All single-binder calculi in the literature (Update [7],
Chi [9], Fusion [6], Explicit Fusion calculus [11], Solos [10])
have fusions. In Section IV we will introduce a single-binder
calculus without fusions.

In all calculi in the paper, (reduction-closed) barbed con-
gruence will be our reference behavioural equivalence. Its
definition only requires a reduction relation, −→, and a notion
of barb on names, ↓a. Intuitively, a barb at a holds for a process
if that process can accept an offer of interaction at a from
its environment. We omit the definition, which is standard.
We write 'L for (strong) reduction-closed barbed congruence
in a calculus L. Informally, 'L is the largest relation that
is context-closed, barb-preserving, and reduction-closed. Its
weak version, written uL, replaces the relation −→L with
its reflexive and transitive closure =⇒L, and the barbs ↓La
with the weak barbs ⇓La , where ⇓La is the composition of the
relations =⇒L and ↓La (i.e., the barb is visible after some
internal actions). See [23] for more details.

III. TYPING AND SUBTYPING WITH FUSIONS

We consider typed versions of languages with fusions. We
show that in such languages it is impossible to have a non-
trivial subtyping, assuming a few simple and standard typing
properties of name-passing calculi.

We use T,U to range over types, and Γ to range over type
environments, i.e., partial functions from names to types. We
write dom(Γ) for the set of names on which Γ is defined.
In name-passing calculi, a type system assigns a type to each
name. Typing judgements are of the form Γ ` P (process P
respects the type assignments in Γ), and Γ ` a : T (name a
can be assigned type T in Γ).1 The following are the standard
typing rules for parallel composition and restriction:

Γ ` P1 Γ ` P2

Γ ` P1 | P2

Γ, x : T ` P
Γ ` (νx : T) P

(3)

The first rule says that any two processes typed in the same
type environment can be composed in parallel. The second
rule handles name restriction.2

In name-passing calculi, the basic type construct is the
channel (or connection) type] T . This is the type of a name
that may carry, in an input or an output, values of type T .
Consequently, we also assume that the following rule for
prefixes ab.P and ab.P is admissible.

Γ(a) =] T Γ(b) = T Γ ` P
Γ ` α.P

α ∈ {ab, ab} (4)

(Prefixes may not have a continuation, in which case P would
be missing from the rule.) In the rule, the type of the subject

1We consider in this paper basic type systems and basic properties for them;
more sophisticated type systems exist where processes have a type too, e.g.,
behavioural type systems.

2In resource-sensitive type systems, i.e., those for linearity [16] and
receptiveness [5], where one counts certain occurrences of the names, the
rule for parallel composition has to be modified. As mentioned earlier, in this
paper we stick to basic type systems, ignoring resource consumption.

and of the object of the prefix are compatible. Again, these
need not be the typing rules for prefixes; we are just assuming
that the rules are valid in the type system. The standard rule
for prefix would have, as hypotheses,

Γ ` a :] T Γ ` b : T .

These imply, but are not equivalent to, the hypotheses in (4),
for instance in presence of subtyping.

Fundamental properties of type systems are:
• Subject Reduction (or Type Soundness): if Γ ` P and
P → P ′, then Γ ` P ′;

• Weakening: if Γ ` P and a is fresh, then Γ, a : T ` P ;
• Strengthening: whenever Γ, a : T ` P and a is fresh for
P , then Γ ` P ;

• Closure under injective substitutions: if Γ, a : T ` P and
b is fresh, then Γ, b : T ` P{b/a}.

Definition 2. A typed calculus with single binder is plain if it
satisfies Subject Reduction, Weakening, Strengthening, Closure
under injective substitutions, and the typing rules (3) and (4)
are admissible.

If the type system admits subtyping, then another funda-
mental property is narrowing, which authorises, in a typing
environment, the specialisation of types:
• (Narrowing): if Γ, a : T ` P and U ≤ T then also

Γ, a : U ` P .
When narrowing holds, we say that the calculus supports
narrowing.

A typed calculus has trivial subtyping if, whenever T ≤
U , we have Γ, a : T ` P iff Γ, a : U ` P . When this is
not the case (i.e., there are T,U with T ≤ U , and T,U are
not interchangeable in all typing judgements) we say that the
calculus has meaningful subtyping.

Under the assumptions of Definition 2, a calculus with
fusions may only have trivial subtyping.

Theorem 3. A typed calculus with fusions that is plain and
supports narrowing has trivial subtyping.

In the proof, given in [23], we assume a meaningful subtyp-
ing and use it to derive a contradiction from type soundness
and the other hypotheses.

One may wonder whether, in Theorem 3, more limited
forms of narrowing, or a narrowing in the opposite direction,
would permit some meaningful subtyping. Narrowing is in-
teresting when it allows us to modify the type of the values
exchanged along a name, that is, the type of the object of a
prefix. (In process calculi, communication is the analogous of
application for functional languages, and changing the type of
an object is similar to changing the type of a function or of its
argument.) In other words, disallowing narrowing on objects
would make subtyping useless. We show that any form of
narrowing, on one prefix object, would force subtyping to be
trivial.

Theorem 4. Suppose a typed calculus with fusions is plain
and there is at least one prefix α with object b, different from

the subject, and there are two types S and T such that S ≤ T
and one of the following forms of narrowing holds for all Γ:

1) whenever Γ, b : T ` α.0, we also have Γ, b : S ` α.0;
2) whenever Γ, b : S ` α.0, we also have Γ, b : T ` α.0.

Then S and T are interchangeable in all typing judgements.

As a consequence, authorising one of the above forms of
narrowing for all S and T such that S ≤ T implies that
the calculus has trivial subtyping. The proof of Theorem 4
is similar to that of Theorem 3.

Remark 5. Theorems 3 and 4 both apply to all fusion
calculi: Fusion, Explicit Fusions, Update, Chi, Solos (where
the continuation P is 0). �

Another consequence of Theorems 3 and 4 is that it is
impossible, in plain calculi with fusions, to have an I/O type
system; more generally, it is impossible to have any capability-
based type system that supports meaningful subtyping.

Actually, to apply the theorems, it is not even necessary
for the capability type system to have an explicit notion
of subtyping. For Theorem 3, it is sufficient to have sets
of capabilities with a non-trivial ordering under inclusion,
meaning that we can find two capability types T and U such
that whenever Γ, a : U ` P holds then also Γ, a : T ` P
holds, but not the converse (e.g., T provides more capabilities
than U). We could then impose a subtype relation ≤ on
types, as the least preorder satisfying T ≤ U . Theorem 3
then tells us that type soundness and the other properties of
Definition 2 would require also U ≤ T to hold, i.e., T and U
are interchangeable in all typing judgements. In other words,
the difference between the capabilities in T and U has no
consequence on typing. Similarly, to apply Theorem 4 it is
sufficient to find two capability types T and U and a single
prefix in whose typing U can replace T .

IV. A CALCULUS WITH NAME PREORDERS

A. Preorders, positive and negative occurrences

We now refine the fusion calculi by replacing the equiva-
lence relation on names generated through communication by
a preorder, yielding πP (‘π with Preorder’). As the preorder on
types given by subtyping allows promotions between related
types, so the preorder on names of πP allows promotions
between related names. Precisely, if a is below a name b in the
preorder, then a prefix at a may be promoted to a prefix at b
and then interact with another prefix at b. Thus an input av.P
may interact with an output bw.Q; and, if also c is below b,
then av.P may as well interact with an output cz.R.

The ordering on names is introduced by means of the arc
construct, a/b, that declares the source b to be below the target
a. The remaining operators are as for fusion calculi (i.e., those
of the π-calculus with bound input replaced by free input).

P ::= 0 | P | P | ab.P | ab.P | νaP | a/b .

The semantics of the calculus is given in the reduction style.
Structural congruence, ≡, is defined as the usual congruence
produced by the monoidal rules for parallel composition and

the rules for commuting and extruding restriction (see [23] for
a complete definition). We explain the effect of reduction by
means of contexts, rather than separate rules for each operator.
Contexts allow us a more succinct presentation, and a simpler
comparison with an alternative semantics (Section V). An
active context is one in which the hole may reduce. Thus
the only difference with respect to ordinary contexts is that
the hole may not occur underneath a prefix. We use C to
range over (ordinary) contexts, and E for active contexts. The
rules for reduction are as follows (the subscript in −→ea, for
“eager”, will distinguish this from the alternative semantics in
Section V-A):

R-SCON :
P ≡ E[Q] Q −→ea Q

′ E[Q′] ≡ P ′
P −→ea P ′

R-INTER : ab.P | ac.Q −→ea P | Q | b/c

R-SUBOUT : a/b | bc.Q −→ea a/b | ac.Q

R-SUBINP : a/b | bc.Q −→ea a/b | ac.Q
Rule R-INTER shows that communication generates an arc.

Rules R-SUBOUT and R-SUBINP show that arcs only act on
the subject of prefixes; moreover, they only act on unguarded
prefixes (i.e., prefixes that are not underneath another prefix).
The rules also show that arcs are persistent processes. Acting
only on prefix subjects, arcs can be thought of as particles
that “redirect prefixes”: an arc a/b redirects a prefix at b
towards a higher name a. (Arcs remind us of special π-calculus
processes, called forwarders or wires [17], which under certain
hypotheses allow one to model substitutions; as for arcs, so
the effect of forwarders is to replace the subject of prefixes.)

We write =⇒ea for the reflexive and transitive closure of
−→ea. Here are some examples of reduction.

ac.ca.e.P | ad.de.a.Q
R-INTER −→ea ca.e.P | de.a.Q | c/d

R-SUBINP −→ea ca.e.P | ce.a.Q | c/d
R-INTER −→ea e.P | a.Q | c/d | a/e

R-SUBINP −→ea a.P | a.Q | c/d | a/e
R-INTER −→ea P | Q | c/d | a/e

Reductions can produce multiple arcs that act on the same
name. This may be used to represent certain forms of choice,
as in the following processes:

(νh, k) (bu. cu.u | bh.h.P | ck. k.Q)
=⇒ea (νh, k) (u | h/u | k/u | h.P | k.Q) .

Both arcs may act on u, and are therefore in competition with
each other. The outcome of the competition determines which
process between P and Q is activated. For instance, reduction
may continue as follows:

R-SUBOUT −→ea (νh, k) (k | h/u | k/u | h.P | k.Q)
R-INTER −→ea (νh, k) (h/u | k/u | h.P | Q) .

Definition 6 (Positive and negative occurrences). In an input
ab.P and an arc a/b, the name b has a negative occurrence.
All other occurrences of names in input, output and arcs are
positive occurrences.

An occurrence in a restriction (νa) is neither negative nor
positive, intuitively because restriction acts only as a binder,
and does not stand for an usage of the name (in particular, it
does not take part in a substitution).

Negative occurrences are particularly important, as by prop-
erly tuning them, different usages of names may be obtained.
For instance, a name with zero negative occurrence is a
constant (i.e., it is a channel, and may not be substituted);
and a name that has a single negative occurrence is like a
π-calculus name bound by an input (see Section VI-B).

The number of negative occurrences of a name is invariant
under reduction.

Lemma 7. If P −→ea P ′ then for each b, the number of
negative occurrences of b in P and P ′ is the same.

B. Types
We now show that the I/O capability type system and its

subtyping can be transplanted from π to πP. In all typed calculi
in the paper, binding occurrences of names are annotated with
their type — we are not concerned with type inference.

In the typing rules for I/O-types in the (monadic) π-
calculus [1], two additional types are introduced: o T , the type
of a name that can be used only in output and that carries
values of type T ; and i T , the type of a name that can be
used only in input and that carries values of type T . The
subtyping rules stipulate that i is covariant, o is contravariant,
and] is invariant. Subtyping is brought up into the typing rules
through the subsumption rule. The most important typing rules
are those for input and output prefixes; for input we have:

T-INPBOUND :
Γ ` a : i T Γ, b : T ` P

Γ ` a(b : T).P

The π-calculus supports narrowing, and this is essential in the
proof of subject reduction.

The type system for πP is presented in Table I. With respect
to the π-calculus, only the rule for input needs an adjustment,
as πP uses free, rather than bound, input. The idea in rule T-
INPFREE of πP is however the same as in rule T-INPBOUND
of π: we look up the type of the object of the prefix, say T ,
and we require i T as the type for the subject of the prefix.
To understand the typing of an arc a/b, recall that such an arc
allows one to replace b with a. Rule T-ARC essentially checks
that a has at least as many capabilities as b, in line with the
intuition for subtyping in capability type systems.

Common to all premises of T-INPBOUND, T-INPFREE
and T-ARC is the look-up of the type of names that occur
negatively (the source of an arc and the object of an input
prefix): the type that appears for b in the hypothesis is precisely
the type found in the conclusion (within the process or in Γ).
In contrast, the types for positive occurrences may be different
(e.g., because of subsumption Γ ` a : i T may hold even if
Γ(a) 6= i T). We cannot type inputs like outputs: consider

T-INPFREE2-WRONG :
Γ ` a : i T Γ ` b : T

Γ ` ab
Rule T-INPFREE2-WRONG would accept, for instance, an
input ab in an environment Γ where a : i i 1 and b :] 1. By

Types (1 is the unit type): T ::= i T | o T |] T | 1
Subtyping rules:

] T ≤ i T] T ≤ o T

S ≤ T
i S ≤ i T

S ≤ T
o T ≤ o S T ≤ T

S ≤ T T ≤ U
S ≤ U

Typing rules:

TV-NAME

Γ, a : T ` a : T

SUBSUMPTION
Γ ` a : S S ≤ T

Γ ` a : T

T-RES
Γ, a : T ` P

Γ ` νaP

T-PAR
Γ ` P Γ ` Q

Γ ` P | Q
T-NIL

Γ ` 0

T-OUT
Γ ` a : o T Γ ` b : T Γ ` P

Γ ` ab.P

T-INPFREE
Γ ` a : i Γ(b) Γ ` P

Γ ` ab.P

T-ARC
Γ ` a : Γ(b)

Γ ` a/b

TABLE I
THE TYPE SYSTEM OF πP

subtyping and subsumption, we could then derive Γ ` b : i 1 .
In contrast, rule T-INPFREE, following the input rule of the π-
calculus, makes sure that the object of the input does not have
too many capabilities with respect to what is expected in the
type of the subject of the input. This constraint is necessary
for subject reduction. As a counterexample, assuming rule T-
INPFREE2-WRONG, we would have a :] i 1, b :] 1, c : i 1 `
P , for P def

= ab | ac | b. However, P −→ea c/b | b −→ea c/b | c,
and the final derivative is not typable under Γ (as Γ only
authorises inputs at c).

In πP, the direction of the narrowing is determined by the
negative or positive occurrences of a name.

Theorem 8 (Polarised narrowing). Let T1 and T2 be two types
such that T1 ≤ T2.

1) If a occurs only positively in P , then Γ, a : T2 ` P
implies Γ, a : T1 ` P .

2) If a occurs only negatively in P , then Γ, a : T1 ` P
implies Γ, a : T2 ` P .

3) If a occurs both positively and negatively in P , then it
is in general unsound to replace, in a typing Γ ` P , the
type of a in Γ with a subtype or supertype.

Theorem 8 (specialised to prefixes) does not contradict
Theorem 4, because in πP, reduction does not satisfy (2) (from
Section II). Our system enjoys subject reduction:

Theorem 9. If Γ ` P and P −→ea P
′ then also Γ ` P ′.

Remark 10. Theorem 8 may be seen as a refinement of
the standard narrowing result for name-passing calculi. In
the π-calculus, for instance, a free name only has positive
occurrences. Hence the usual narrowing corresponds to The-
orem 8(1). And in an input a(b : T).P , the binder for b
represents a negative occurrence, so that if b is free in P then
b has both positive and negative occurrences, which means
that the type T may not be modified, as by Theorem 8(3). In
contrast, Theorem 8(2) is vacuous in π, as a name b with only
negative occurrences is found in an input a(b : T).P where b

is not free in P .
In general, in a name-passing calculus, if a name has only

positive occurrences, then its type (be it declared in the typing
environment, or in the binding occurrence of that name within
the process) may be replaced by a subtype, and conversely for
names with only negative occurrences, whereas the type of
names with both positive and negative occurrences may not
be changed. Defining rules that distinguish between negative
and positive occurrences in name-passing calculi is beyond the
scope of this paper. A rule of thumb however seems that if the
occurrence of a name generates a substitution acting on that
name (i.e., a replacement of the name), then the occurrence
is negative; if it does not, then it is positive. Thus in a fusion
a = b of the Explicit Fusion calculus, the occurrences of a
and b are both positive and negative, as a fusion may produce
a substitution a/b or a substitution b/a (which, incidentally,
gives another explanation of the impossibility of narrowing in
presence of an explicit fusion construct). �

Remark 11. For the Subject Reduction theorem for πP it is
critical that an arc a/b only acts on positive occurrences of
b. Provided this is respected, the theorem remains valid under
different behaviours for arcs (e.g., simultaneously replacing all
positive occurrences of b, not only at top-level). �

V. BEHAVIOURS

A. An alternative semantics

The operational semantics given to πP in Section IV allows
arcs to act locally, at any time. The effect of an arc is irre-
versible: the application of an arc a/b to a prefix at b commits
that prefix to interact along a name that is greater than, or equal
to, a in the preorder among names. A commitment may disable
certain interactions, even block a prefix for ever. Consider, e.g.,

(νa, c) (bv.P | cw.Q | a/b | c/b) (5)

There is a competition between the two arcs; if the first wins,
the process is deadlocked:

−→ea (νa, c) (av.P | cw.Q | a/b | c/b)

since a and c are unrelated in the preorder.
We consider here an alternative semantics, in which the

action of arcs is not a commitment: arcs come about only
when interaction occurs. For this reason we call the new
semantics by-need (arcs act only when ‘needed’), whereas
we call eager the previous semantics (arcs act regardless of
matching prefixes). In this semantics, as in the π-calculus, an
interaction involves both a synchronisation and a substitution;
however unlike in the π-calculus where the substitution is
propagated to the whole term, here substitution only replaces
the subject of the interacting prefixes.

The formalisation of the new semantics makes use of the
partial order on names induced by arcs. In a process, an arc
is active if it is unguarded, i.e., it is not underneath a prefix.
We write preor(P) for the preorder on names produced by
the active arcs in P (i.e., the least preorder ≤ that includes
b ≤ a for each active arc a/b in P). Similarly, preor(C) is
the preorder produced by the active arcs of the context C.
Note that this definition relies on the Barendregt convention
on names (Convention 1), as it is purely syntactic, i.e., if P and
P ′ are alpha convertible then preor(P) and preor(P ′) may
be different. A definition that does not rely on the convention
is given in [23].

We write P . a g b if {a, b} has an upper bound in the
preorder preor(P), that is, there is a name that is above both
a and b; in this case we also say that a and b are joinable.
Similarly we write C . a g b for contexts. For instance, we
have νu(u/a | u/b | Q) . a g b, and νv(vt | (νw)(w/v | a/w |
[·]) . ag v. We have P . ag b iff P ′ . ag b if P and P ′ are
alpha convertible and a and b occur free in P .

Example 12. A process Mfg = (νc)(c/f | c/g) acts like a
mediator: it joins names f and g (we have Mfg . f g g).
Mediators remind us of equators in the π-calculus, or of
fusions in the Explicit Fusion calculus, but lack the transitivity
property (e.g., Mfg |Mgh . f g h does not hold).

Definition 13 (By-need reduction). The by-need reduction
relation, P −→bn P

′, is defined by the following rules, where
≡ is as in the eager semantics:

BN-SCON :
P ≡ E[Q] Q −→bn Q

′ E[Q′] ≡ P ′
P −→bn P ′

BN-RED :
E . ag b

E[ac.P | bd.Q] −→bn E[P | d/c | Q]

Relation =⇒bn is the reflexive transitive closure of −→bn.

While the eager semantics has simpler rules, the by-need
semantics avoids ‘too early commitments’ on prefixes. For
instance, the only immediate reduction of the process in (5) is

−→bn (νa, c) (P | w/v | Q | a/b | c/b)

where prefixes bv.P and cw.Q interact because their subjects
are joinable in the preorder generated by the two arcs.

Lemma 14 (Eager and by-need). P −→bn P ′ (by-need
semantics) implies P =⇒ea P

′ (eager semantics).

Corollary 15. Theorem 9 holds for the by-need semantics.

B. Behavioural equivalence

We contrast barbed congruence in πP under the two se-
mantics we have given, eager and by-need. We have already
defined reduction relations, we only need to define barbs.
This requires some care, as the interaction of a process with
its environment may be mediated by arcs. For this, and to
have a uniform definition of barbs under the eager and by-
need semantics, we follow the definition of success in testing
equivalence [18], using a special signal ω that we assume may
not appear in processes: thus for any name a, the barb ↓a
holds for a process P if there is a prefix α with subject a
such that P | α.ω reduces in one step to a process in which ω
is unguarded (i.e., the offer of the environment of an action at
a may be accepted by P). Weak barbs and barbed congruence
are then defined in the standard way, as outlined in Section II.
We write 'ea and uea (resp. 'bn and ubn) for the strong and
weak versions of eager (resp. by-need) barbed congruence.

The eager and by-need semantics of πP yield incomparable
equivalences. The two following laws are valid in the by-need
case, and fail in the eager case:

(νa)a/c = 0 a | a = a. a .

To see the failure of the first law in the eager semantics, con-
sider a context C def

= [·] | (νb)(b/c) | c | c.w; then C[(νa)(a/c)]
can lose the possibility of emitting at w, by reducing in two
steps to (νa)(a/c | a) | (νb)(b/c | b.w), because of a commit-
ment determined by arcs; this cannot happen for C[0]. There
are no early commitments in the by-need semantics, for which
the two processes are hence equal.

Similarly, in the eager semantics, it is possible to put a | a
in a context where two arcs rewrite each a prefix differently,
while one can only rewrite the topmost prefix in a. a. This
scenario cannot be played in the by-need semantics.

On the other hand, the following law is valid for strong (and
weak) eager equivalence, but fails to hold in the by-need case:

(νabu)(a/u | b/u | u | a.w) = (νv)(v | v. τ .w | v.0) .

(τ .w stands for νc(c | c.w)). The intuition is that concurrent
substitutions are used on the left-hand side to implement
internal choice. As a consequence of the law (νa)a/c = 0,
in the by-need case, process b/u can be disregarded on the
left, so that the process on the left must do the output on w.

We have introduced πP with the eager semantics for rea-
sons of simplicity, but we find the by-need semantics more
compelling. Below, unless otherwise stated, we work under
by-need, though we also indicate what we know under eager.

C. Context-free characterisations of barbed congruence

When it comes to proving behavioural equalities, the def-
inition of barbed congruence is troublesome, as it involves
a heavy quantification on contexts. One therefore looks for
context-free coinductive characterisations, as labelled bisim-
ilarities that take into account not only reductions within a
process, but also the potential interactions between the process
and its environment (e.g., input and output actions). We present
such characterisation for the by-need equivalence; currently we
do not have one for the eager.

As actions for the by-need labelled bisimilarity, we use,
besides τ -actions, only free input and free output:

µ ::= τ | ab | ab .

In by-need, labelled transitions are written P
µ−→bn P ′.

Internal transitions have already been defined, in the reduction
semantics, thus we can take relation τ−→bn to coincide with
the reduction relation −→bn. Input and output transitions are
defined by these rules:

BN-INP :
E . ag b E does not bind b and d

E[ac.P]
bd−→bn E[d/c | P]

BN-OUT :
E . ag b E does not bind b and d

E[ac.P]
bd−→bn E[c/d | P]

The purpose of the two rules is to define the input and output
transitions, with labels as simple as possible, with which to
derive a labelled bisimilarity. The two rules are not supposed to
be composed together to derive τ -actions (which are computed
from the rules of reduction). We leave the definition of a pure
SOS semantics, which avoids the structural manipulations of
structural congruence, for future work.

To understand rules BN-INP and BN-OUT, suppose the
environment is offering an action at b. Since a and b are
joinable, there is a name, say e, that is above both a and b in
the preorder; hence the prefix at a in the process and the prefix
at b in the environment can be transformed into prefixes at e,
and can interact. The need for the preorder explains why we
found it convenient to express actions via active contexts. In
the action, the use of a free object d allows us to ignore name
extrusion and thus simplifies the bisimulation checks. As an
example of BN-OUT, we have (similar observations can be
made for BN-INP):

(νu)
(
u/b | (νa, c)(u/a | ac.P)

)
bd−→bn (νu)

(
u/b | (νa, c)(u/a | c/d | P)

)
.

Here the process can interact with the environment at b (and
hence perform a transition where b is the subject), because a
and b are joinable. Name c is not extruded; instead the arc c/d
redirects interactions on d to c.

The labelled bisimulation requires, besides the invariance
for actions, invariance under the addition of arcs; moreover a
check is made on the visible effects of arcs. In the clause for
actions, no extrusion or binding on names is involved; further,
it is sufficient that the objects of the actions are fresh names.

Definition 16 (Bisimulation). A by-need bisimulation R is a
set of pairs (P,Q) s.t. PRQ implies:

1) P | a/b R Q | a/b, for each name a, b (invariance under
arcs);

2) if a and b appear free in P , then P . a g b implies
Q . ag b;

3) if P
µ−→bn P ′, then Q

µ−→bn Q′ and P ′RQ′ (where
the object part of µ is fresh);

4) the converse of clauses (2) and (3).
Bisimilarity, written ∼bn, is the largest bisimulation.

We now present some examples and laws that are proved
using the coinductive proof method of labelled bisimilarity.
All equalities and inequalities also hold under the eager
semantics, though for some equalities only in the weak case
(e.g., Lemma 19).

Any input and output of πP can be transformed into a bound
prefix, by introducing a new restricted name:

Lemma 17. We have ax.P ∼bn (νx′)ax′. (x′/x | P) and
by.Q ∼bn (νy′)by′. (y/y′ | Q), for fresh x′ and y′.

If these laws are applied to all inputs and outputs of a
process P , then the result is a process P ′ that is behaviourally
the same as P , and in which all names exchanged in an
interaction are fresh. Thus P ′ reminds us of a variant of π
that achieves symmetry between input and output constructs,
namely πI , the π-calculus with internal mobility [19].

Lemma 18. We have (νb, c)ac. ab.0 6∼bn (νc)ac. ac.0, and
(νb, c)ac. ab.0 ∼bn (νc)ac. ac.0.

These laws show a difference between input and output in
behavioural equalities. The reason for the inequality is that
the first process can produce two transitions with objects e, f
yielding P def

= νc (c/f | c/e), and then P . eg f .

Lemma 19 (Substitution and polarities).
1) If name a has only positive occurrences in P , then

(νa)(P | b/a) ∼bn P{b/a};
2) if name a has only negative occurrences in P , then

(νa)(P | a/b) ∼bn P{b/a};
3) (νa)(P | b/a | a/b) ∼bn P{b/a}.
For the comparison between labelled bisimilarity and barbed

congruence, the most delicate part is the proof of congruence
for bisimilarity. This is due to the shape of visible transitions,
where an arc is introduced and the object part is always a fresh
name, and to the use of ≡ in the definition of transitions. The
proof can be found in [23].

Theorem 20. Bisimilarity is a congruence.

Theorem 21 (Characterisation of barbed congruence). In πP,
relations ∼bn and 'bn coincide.

Hence all the laws stated above for ∼bn hold for 'bn.

VI. EXPRESSIVENESS OF πP

We compare πP with a few other calculi, both as examples
of the use of the calculus and as a test for its expressiveness.

When useful, we work in a polyadic version of πP; the addition
of polyadicity goes as for other name-passing calculi in the
literature. All results in this section use the by-need semantics;
we do not know their status under the eager semantics.

A. Explicit Fusions

Bi-directional arcs, e.g., a/b | b/a, work as name fusions (cf,
Lemma 19(3)). We thus can encode calculi based on name
fusion into πP. As an example, we consider the Explicit Fusion
calculus [8]. Its syntax extends the Fusion calculus with a
fusion construct a = b. The encoding is defined as follows
for prefixes and explicit fusions, the other constructs being
encoded homomorphically:

[[a〈v〉.P]] = (νw)a〈v, w〉.wv. [[P]]
[[ax.Q]] = (νy)a〈x, y〉. y〈x〉. [[Q]]
[[a = b]] = a/b | b/a

In Explicit Fusions, an interaction introduces a name fusion.
In the πP encoding, this is mimicked in two steps so to be able
to produce bidirectional arcs. The second step is the reverse
of the original interaction, and is realised by means of an
extra private name. We have operational correspondence for
the encoding (we do not know whether it is is fully abstract).

Theorem 22. Let P , Q be processes of the Explicit Fusion
calculus, and −→EF the reduction relation in the calculus.

1) If P ≡ Q then [[P]] 'bn [[Q]];
2) if P −→EF P

′ then [[P]] −→bn ubn [[P ′]];
3) conversely, if [[P]] −→bn Q, then Q ubn [[P ′]] for some

P ′ such that P −→EF P
′.

A similar result holds for the Fusion calculus, though for
Explicit Fusions the statement is simpler because in the latter
calculus a restriction is not necessary for fusions to act.

B. π-calculus

The embedding of the π-calculus into a fusion calculus is
defined by translating the bound input construct as follows:

[[a(x).P]] = (νx) ax. [[P]]

(the other constructs being translated homomorphically). The
same encoding can be used for πP.

The encoding of π-calculus into Fusions is not fully abstract
for barbed congruence. For instance, in the π-calculus, a
new channel is guaranteed to remain different from all other
existing channels. Thus in a process νa (ba. (a.P | c.Q)), the
two prefixes a.P and c.Q may never interact with each other,
in any context, even if a is exported. This property does not
hold in the Fusion calculus, as a recipient of the newly created
name a could equate it with any other name (e.g., using the
context bc.0 | [·]).

We do not know whether the encoding of the full π-calculus
into πP is fully abstract. However, at least the encoding is fully
abstract on the asynchronous subset (where no continuation is
allowed after the output prefix).

Theorem 23. Suppose P,Q are processes from the asyn-
chronous π-calculus, Aπ. Then P 'Aπ Q iff [[P]] 'bn [[Q]].

In the theorem, 'Aπ could be replaced by 'π (barbed
congruence in the full π-calculus). Note that 'Aπ is the stan-
dard barbed congruence, as opposed to asynchronous barbed
congruence, where output barbs are visible but input barbs are
not. We believe the theorem also holds under asynchronous
barbed congruence.

For the proof of the theorem, we first establish results of
operational correspondence between source and target terms
of the encoding. Then the direction from right to left is easy
because contexts of the π-calculus are also contexts of πP
(under the encoding). The delicate direction is the opposite.
Here we use Theorem 21, and the characterisation of π-
calculus barbed congruence on the subset of asynchronous
processes as ground bisimilarity [5]. We also make use of
some up-to techniques, notably ‘by-need bisimulation up to
∼bn and restriction’ whose soundness is proved along the
lines of soundness proofs of similar techniques for other forms
of bisimilarity. We finally consider the relation defined as
{([[P]] | σ, [[Q]] | σ) | P ∼g Q}, where σ is a parallel compo-
sition of arcs, and prove that it is a by-need bisimulation up
to ∼bn and up to restriction.

Regarding translations in the opposite direction, both for
fusion calculi and for πP, the encoding into π is not possible
in general. However, for πP some results can be obtained under
constraints such as asynchrony and locality. Something similar
has been done by Merro [20] for the Fusion calculus.

VII. UNIQUE NEGATIVE OCCURRENCES OF NAMES

In this section we consider a constrained version of the
calculi discussed in the paper, where each name may have
at most one negative occurrence in a process. In the fusion
calculus [6] the constraint means that each name appears at
most once as the object of an input. In πP, the constraint
affects also arcs (as their source is a negative occurrence).

The constraint is rather draconian, bringing the calculi closer
to the π-calculus (where the constraint is enforced by having
binding input). Still, the constraint is more generous than tying
the input to a binder as in π. For instance, we have more
complex forms of causality involving input, as in νx(ax.wt |
bx), where the input at a blocks the output at w, and can be
triggered before or after the output at b takes place. We call
πP1 and FU1 the constrained versions of πP and Fusions; in
both languages the constraint is preserved by reduction.

We show that the constraint makes certain differences be-
tween calculi or semantics disappear. In πP1 the eager and the
by-need semantics of πP coincide, at least in a weak semantics.

Theorem 24. In πP1, relations uπP1ea and uπP1bn coincide.

The following property is useful in the proof (see [23]).

Lemma 25. For P ∈ πP1, suppose P −→ea P
′ where the

reduction is a rewrite step involving an arc. Then P uπP1ea P ′.

The calculi πP1 and FU1 resulting from the constraint are
behaviourally similar. For instance, in πP1 the directionality
of arcs is irrelevant, as shown by the following law (where we
omit the subscripts ‘ea’ and ‘bn’ in the light of Theorem 24).

Lemma 26. a/b uπP1 b/a.

Another difference that disappears under the constraint of
unique negative occurrences of names is the one concerning
capabilities and subtyping in fusion calculi with respect to π
and πP, exposed in Sections III and IV. Indeed, to equip FU1
with an I/O type system and subtyping, we can use exactly the
rules of πP in Section IV-B — with the exception of T-ARC
as FU1 does not have arcs. This intuitively because FU1 is,
syntactically, a subset of πP (each process of FU1 is also a
process of πP), and the Subject Reduction theorem for πP in
Section IV-B holds regardless of when and how arcs generate
substitutions (Remark 11); making an arc a/b act immediately
and on all positive occurrences of b is similar to substitution
as in FU1. This may however involve changing the type of a
name c into a smaller type when c is used in input object;
e.g., in ac | (νb : T)ab.P −→FU1 P{c/b} (where −→FU1

is reduction in FU1), name c is used at type T , which is a
smaller type than Γ(c).

Theorem 27. Let P be a FU1 process. If Γ ` P and
P −→FU1 P

′, then Γ′ ` P ′, where for at most one name c,
Γ′(c) ≤ Γ(c); for other names b, Γ′(b) = Γ(b).

Note that FU1 does not satisfy the conditions of Definition 2
because well-typed processes may not be freely put in parallel,
as this could break the constraint on unique input objects.

We leave for future work a thorough comparison between
πP1, FU1, and π-calculus.

VIII. FUTURE WORK

Here we mention some lines for future work, in addition to
those already mentioned in the main text.

The coinductive characterisation of behavioural equivalence
in πP has been presented in the strong case, and should be
extended to the weak case. We have presented and compared
two semantics for πP, eager and by-need. While we tend
to consider the advantages so far uncovered for the by-
need superior, more work is needed to draw more definite
conclusions. For instance, it would also be interesting to
contrast axiomatisations of the semantics, rules for pure SOS
presentations of the operational semantics, the expressiveness
of the subcalculus in which the two semantics agree, and
implementations. We do not expect, in contrast, significant
differences to arise from type systems.

Another possible advantage of by-need is a smoother ex-
tension with dynamic operators like guarded choice, in which
an action may discard a component. (In the eager case it is
unclear what should be the effect of an arc that acts on one
of the summands of a choice.) Choice would be useful for
axiomatisations. In by-need, we would have for instance

(νb, c)ab. ac. (b|c) ∼ (νb, c)ab. ac. (b. c+ c. b).

The law, valid in both πP and π, illustrates the possibility
of generating fresh names that cannot be identified with other
names even if exported. The law fails in fusion calculi as a
recipient might decide to equate b and c (cf. Section VI-B).

Solos calculus is the polyadic Fusion calculus without
continuations. Solos can encode continuations [10]. We believe
the same machinery would work for the ‘Solos version’ of πP.

It could also be interesting to study the representation of
πP into Psi calculi [21]. This may not be immediate because
the latter make use of on an equivalence relation on channels,
while the former uses a preorder. One could then see whether
the move from Fusions and π to πP in this paper, and the
corresponding results on types, can be lifted at the level of Psi
calculi, by comparing them with variants based on preorders.
[24] presents type systems for Psi calculi, and for explicit
fusions, but does not address subtyping.

ACKNOWLEDGEMENT

The authors acknowledge support from the ANR projects
2010-BLAN-0305 PiCoq and 12IS02001 PACE.

REFERENCES

[1] B. Pierce and D. Sangiorgi, “Typing and subtyping for mobile pro-
cesses,” Math. Str. in Comp. Sci., vol. 6, no. 5, pp. 409–453, 1996.

[2] N. Kobayashi, “Type systems for concurrent programs,” in 10th Anniver-
sary Colloquium of UNU/IIST, ser. LNCS, vol. 2757. Springer, 2003,
pp. 439–453.

[3] ——, “A new type system for deadlock-free processes,” in CONCUR,
ser. LNCS, vol. 4137. Springer, 2006, pp. 233–247.

[4] K. Honda, V. T. Vasconcelos, , and M. Kubo, “Language primitives and
type discipline for structured communication-based programming,” in
ESOP, ser. LNCS, vol. 1381. Springer, 1998, pp. 122—-138.

[5] D. Sangiorgi and D. Walker, The Pi-Calculus: a theory of mobile
processes. Cambridge University Press, 2001.

[6] J. Parrow and B. Victor, “The fusion calculus: expressiveness and
symmetry in mobile processes,” in LICS. IEEE, 1998, pp. 176 –185.

[7] ——, “The update calculus (extended abstract),” in AMAST, ser. LNCS,
vol. 1349. Springer, 1997, pp. 409–423.

[8] L. Wischik and P. Gardner, “Explicit fusions,” Theor. Comput. Sci., vol.
340, no. 3, pp. 606–630, 2005.

[9] Y. Fu, “The χ-calculus,” in APDC. IEEE Comp. Soc., 1997, pp. 74–81.
[10] C. Laneve and B. Victor, “Solos in concert,” Math. Str. in Comp. Sci.,

vol. 13, no. 5, pp. 657–683, 2003.
[11] P. Gardner and L. Wischik, “Explicit fusions,” in MFCS, ser. LNCS,

vol. 1893. Springer, 2000, pp. 373–382.
[12] J. Parrow and B. Victor, “The tau-laws of fusion,” in CONCUR, ser.

LNCS, vol. 1466. Springer, 1998, pp. 99–114.
[13] G. L. Ferrari, U. Montanari, E. Tuosto, B. Victor, and K. Yemane,

“Modelling Fusion Calculus using HD-Automata,” in CALCO, ser.
LNCS, vol. 3629. Springer, 2005, pp. 142–156.

[14] F. Bonchi, M. G. Buscemi, V. Ciancia, and F. Gadducci, “A presheaf
environment for the explicit fusion calculus,” J. Autom. Reasoning,
vol. 49, no. 2, pp. 161–183, 2012.

[15] M. Boreale, M. G. Buscemi, and U. Montanari, “A general name binding
mechanism,” in TGC, ser. LNCS, vol. 3705. Springer, 2005, pp. 61–74.

[16] N. Kobayashi, B. Pierce, and D. Turner, “Linearity and the pi-calculus,”
TOPLAS, vol. 21, no. 5, pp. 914–947, 1999.

[17] K. Honda and N. Yoshida, “On reduction-based process semantics,”
Theor. Comp. Sci., vol. 152, no. 2, pp. 437–486, 1995.

[18] R. De Nicola and M. Hennessy, “Testing equivalences for processes,”
Theor. Comput. Sci., vol. 34, pp. 83–133, 1984.

[19] D. Sangiorgi, “Pi-calculus, internal mobility, and agent-passing calculi,”
Theor. Comput. Sci., vol. 167, no. 1&2, pp. 235–274, 1996.

[20] M. Merro, “Locality in the pi-calculus and applications to distributed
objects,” Ph.D. dissertation, École des Mines, France, 2000.

[21] J. Bengtson, M. Johansson, J. Parrow, and B. Victor, “Psi-calculi: Mobile
processes, nominal data, and logic,” in LICS. IEEE, 2009, pp. 39—48.

[22] B. Victor, “The fusion calculus : Expressiveness and symmetry in mobile
processes,” Ph.D. thesis, Uppsala University, 1998.

[23] Web appendix to this paper, available from http://hal.inria.fr/
hal-00818068, 2013.

[24] H. Hüttel, “Typed ψ-calculi,” in CONCUR, ser. LNCS, vol. 6901.
Springer, 2011, pp. 265–279.

Under consideration for publication in Math. Struct. in Comp. Science

Compositional Methods for
Information-Hiding†

Konstantinos Chatzikokolakis, Catuscia Palamidessi and Christelle Braun

INRIA, CNRS and École Polytechnique.
Email: {kostas,catuscia,braun}@lix.polytechnique.fr

Received 27 June 2012

Systems concerned with information hiding often use randomization to obfuscate the link

between the observables and the information to be protected. The degree of protection

provided by a system can be expressed in terms of the probability of error associated to

the inference of the secret information. We consider a probabilistic process calculus to

specify such systems, and we study how the operators affect the probability of error. In

particular, we characterize constructs that have the property of not decreasing the

degree of protection, and that can therefore be considered safe in the modular

construction of these systems. As a case study, we apply these techniques to the Dining

Cryptographers, and we derive a generalization of Chaum’s strong anonymity result.

1. Introduction

During the last decade, internet activities have become an important part of many peo-

ple’s lives. As the number of these activities increases, there is a growing amount of

personal information about the users that is stored in electronic form and that is usually

transferred using public electronic means. This makes it feasible and often easy to collect,

transfer and process a huge amount of information about a person. As a consequence,

the need for mechanisms to protect such information is compelling.

A recent example of such privacy concerns are the so-called “biometric” passports.

These passports, used by many countries and required by all visa waiver travelers to the

United States, include a RFID chip containing information about the passport’s owner.

These chips can be read wirelessly without any contact with the passport and without

the owner even knowing that his passport is being read. It is clear that such devices need

protection mechanisms to ensure that the contained information will not be revealed to

any non-authorized person.

In general, privacy can be defined as the ability of users to prevent information about

themselves from becoming known to people other than those they choose to give the

† This work has been partially supported by the project ANR-09-BLAN-0169-01 PANDA and by the

INRIA DRI Equipe Associée PRINTEMPS. A preliminary version of this work appeared in the proc.
of FOSSACS 2008.

K. Chatzikokolakis, C. Palamidessi and C. Braun 2

information to. We can further categorize privacy properties based on the nature of the

hidden information. Data protection usually refers to confidential data like the credit card

number. Anonymity, on the other hand, concerns the identity of the user who performed

a certain action. Unlinkability refers to the link between the information and the user,

and unobservability regards the actions of a user.

Information-hiding protocols aim at ensuring a privacy property during an electronic

transaction. For example, the voting protocol Foo 92 ((Fujioka, Okamoto & Ohta 1993))

allows a user to cast a vote without revealing the link between the voter and the vote. The

anonymity protocol Crowds ((Reiter & Rubin 1998)) allows a user to send a message on a

public network without revealing the identity of the sender. These kinds of protocols often

use randomization to introduce noise, thus limiting the inference power of a malicious

observer.

1.1. Information theory

At an abstract level information-hiding protocols can be viewed as information-theoretic

channels. A channel consists of a set of input values S, a set of output values O (the

observables) and a transition matrix which gives the conditional probability p(o|s) of

producing o as the output when s is the input. In the case of privacy preserving protocols,

S contains the secret information that we want to protect and O the facts that the

attacker can observe. This framework allows us to apply concepts from information theory

to reason about the knowledge that the attacker can gain about the input by observing

the output of the protocol (information leakage). This leakage is usually expressed in

terms of mutual information, that is the difference between the a priori entropy (the

initial uncertainty of the attacker) and the a posteriori entropy (the uncertainty of the

attacker after the observation). The channel capacity, that is defined as the maximum

mutual information under all possible a priori distributions, represents the worst case of

leakage.

1.2. Hypothesis testing

Information theory is parametric on the notion of entropy. The most popular one is Shan-

non entropy, because of its relation with the channel’s transmission rate. With respect to

the problem of information-hiding, however, one of the most natural notion is arguably

the Rényi min entropy (Rényi 1961). As discussed by Smith (Smith 2009), this notion

represents well the one-try attacks, and it is strictly related to the problem of hypothesis

testing and to the Bayes risk.

In information-hiding systems the attacker finds himself in the following scenario: he

cannot directly detect the information of interest, namely the actual value of the random

variable S ∈ S, but he can discover the value of another random variable O ∈ O which

depends on S according to a known conditional distribution. This kind of situation is

quite common also in other disciplines, like medicine, biology, and experimental physics,

to mention a few. The attempt to infer S from O is called hypothesis testing (the “hy-

Compositional Methods for Information-Hiding 3

pothesis” to be validated is the actual value of S), and it has been widely investigated

in statistics.

One of the most used approaches to this problem is the Bayesian method, which con-

sists in assuming known the a priori probability distribution of the hypotheses, and

deriving from that (and from the matrix of the conditional probabilities) the a posteriori

distribution after a certain fact has been observed. It is well known that the best strat-

egy for the adversary is to apply the MAP (Maximum Aposteriori Probability) criterion,

which, as the name says, dictates that one should choose the hypothesis with the maxi-

mum a posteriori probability for the given observation. “Best” means that this strategy

induces the smallest probability of error in the guess of the hypothesis. The probability

of error, in this case, is called Bayes risk. The a posteriori Rényi min entropy is the loga-

rithm of the converse of the Bayes risk†. In (Chatzikokolakis, Palamidessi & Panangaden

2008b), we proposed to define the degree of protection provided by a protocol as the

Bayes risk associated to the matrix. McIver and al. (McIver, Meinicke & Morgan 2010)

have shown that the Bayes risk is the maximally discriminating among various notions

of entropy, when compositionality is taken into account.

A major problem with the Bayesian method is that the a priori distribution is not

always known. This is particularly true in security applications. In some cases, it may

be possible to approximate the a priori distribution by statistical inference, but in most

cases, especially when the input information changes over time, it may not. Thus other

methods need to be considered, which do not depend on the a priori distribution. One

such method is the one based on the so-called Maximum Likelihood criterion.

1.3. Contribution

In this paper we focus on the hypothesis testing approach to the one-try attacks, and

consider both the scenario in which the input distribution is known, in which case we

consider the Bayes risk, and the one in which we have no information on the input

distribution, or it changes over time. In this second scenario, we consider as degree of

protection the probability of error associated to the Maximum Likelihood rule, averaged

on all possible input distributions. It turns out that such average is equal to the value

of the probability of error on the point of uniform distribution, which is much easier to

compute.

Next, we consider a probabilistic process algebra for the specification of information-

hiding protocols, and we investigate which constructs in the language can be used safely

in the sense that by applying them to a term, the degree of protection provided by the

term does not decrease. This provides a criterion to build specifications in a compositional

way, while preserving the degree of protection. We do this study for both the Bayesian

and the Maximum Likelihood approaches.

We apply these compositional methods to the example of the Dining Cryptographers,

and we are able to strengthen the strong anonymity result by Chaum. Namely we show

† There are other possible definitions of the a posteriori Rényi min entropy. Smith proposed to use this
one because of its suitability for the information-hiding problem.

K. Chatzikokolakis, C. Palamidessi and C. Braun 4

that we can have strong anonymity even if some coins are unfair, provided that there

is a spanning tree of fair ones. This result is obtained by adding processes representing

coins to the specification and using the fact that this can be done with a safe construct.

1.4. Plan of the paper

In the next section we recall some basic notions. Section 3 introduces the language CCSp.

Section 4 shows how to model protocols and process terms as channels. Section 5 discusses

hypothesis testing and presents some properties of the probability of error. Section 6

characterizes the constructs of CCSp which are safe. Section 7 applies previous results

to find a new property of the Dining Cryptographers. Section 8 discusses related work.

Section 9 concludes.

2. Preliminaries

In this section we give a brief overview of the technical concepts from the literature that

will be used through the paper. More precisely, we recall here some basic notions of

probability theory and probabilistic automata ((Segala 1995, Segala & Lynch 1995)).

2.1. Probability spaces

Let Ω be a set. A σ-field over Ω is a collection F of subsets of Ω closed under complement

and countable union and such that Ω ∈ F . If B is a collection of subsets of Ω then the

σ-field generated by B is defined as the smallest σ-field containing U (its existence is

ensured by the fact that the intersection of an arbitrary set of σ-fields containing B is

still a σ-field containing B).

A measure on F is a function µ : F → [0,∞] such that

1 µ(∅) = 0 and

2 µ(
⋃
i Ci) =

∑
i µ(Ci) if {Ci}i is a countable collection of pairwise disjoint elements

of F .

A probability measure on F is a measure µ on F such that µ(Ω) = 1. A probability

space is a tuple (Ω,F , µ) where Ω is a set, called the sample space, F is a σ-field on Ω

and µ is a probability measure on F . The elements of a σ-field F are also called events.

We will denote by δ(x) (called the Dirac measure on x) the probability measure s.t.

δ(x)({y}) = 1 if y = x, and δ(x)({y}) = 0 otherwise. If {ci}i are convex coefficients,

and {µi}i are probability measures, we will denote by
∑
i ciµi the probability measure

defined as (
∑
i ciµi)(A) =

∑
i ciµi(A).

If A,B are events then A ∩ B is also an event. If µ(A) > 0 then we can define the

conditional probability p(B|A), meaning “the probability of B given that A holds”, as

p(B|A) =
µ(A ∩B)

µ(A)

Note that p(·|A) is a new probability measure on F . In continuous probability spaces,

Compositional Methods for Information-Hiding 5

where many events have zero probability, it is possible to generalize the concept of condi-

tional probability to allow conditioning on such events. However, this is not necessary for

the needs of this paper. Thus we will use the above “traditional” definition of conditional

probability and make sure that we never condition on events of zero probability.

A probability space and the corresponding probability measure are called discrete if Ω

is countable and F = 2Ω. In this case, we can construct µ from a function p : Ω→ [0, 1]

satisfying
∑
x∈Ω p(x) = 1 by assigning µ({x}) = p(x). The set of all discrete probability

measures with sample space Ω will be denoted by Disc(Ω).

2.2. Probabilistic automata

A probabilistic automaton M is a tuple (St , Tinit ,Act , T) where St is a set of states,

Tinit ∈ St is the initial state, Act is a set of actions and T ⊆ St × Act × Disc(St)

is a transition relation. Intuitively, if (T, a, µ) ∈ T then there is a transition from the

state T performing the action a and leading to a distribution µ over the states of the

automaton. (We use T for states instead of s because later in the paper states will be

(process) terms, and s will be used for sequences of actions.) We also write T
a−→ µ

if (T, a, µ) ∈ T . The idea is that the choice of transition among the available ones in

T is performed nondeterministically, and the choice of the target state among the ones

allowed by µ (i.e. those states T ′ such that µ(T ′) > 0) is performed probabilistically. A

probabilistic automatonM is fully probabilistic if from each state ofM there is at most

one transition available.

An execution fragment α of a probabilistic automaton is a (possibly infinite) sequence

T0a1T1a2T2 . . . of alternating states and actions, such that for each i there is a transition

(Ti, ai+1, µi) ∈ T and µi(Ti+1) > 0. We will use fst(α), lst(α) to denote the first and

last state of a finite execution fragment α respectively. An execution (or history) is an

execution fragment such that fst(α) = Tinit . An execution α is maximal if it is infinite or

there is no transition from lst(α) in T . We denote by exec∗(M), exec⊥(M), and exec(M)

the set of all the finite, all the non-maximal, and all executions of M, respectively.

A scheduler of a probabilistic automaton M = (St , Tinit ,Act , T) is a function

ζ : exec⊥(M)→ T

such that ζ(α) = (T, a, µ) ∈ T implies that T = lst(α).

The idea is that a scheduler selects a transition among the ones available in T and it

can base his decision on the history of the execution. The execution tree of M relative

to the scheduler ζ, denoted by etree(M, ζ), is a fully probabilistic automaton M′ =

(St ′, Tinit ,Act , T ′) such that St ′ ⊆ exec∗(M), and (α, a, µ′) ∈ T ′ if and only if ζ(α) =

(lst(α), a, µ) for some µ, and µ′(αaT) = µ(T). Intuitively, etree(M, ζ) is produced by

unfolding the executions of M and resolving the nondeterminism using ζ.

Given a fully probabilistic automaton M = (St , Tinit ,Act , T) we can define a proba-

bility space (ΩM,FM, pM) on the space of executions of M as follows:

— ΩM ⊆ exec(M) is the set of maximal executions of M.

— If α is a finite execution ofM we define the cone with prefix α as Cα = {α′ ∈ ΩM|α ≤

K. Chatzikokolakis, C. Palamidessi and C. Braun 6

α′}. Let CM be the collection of all cones of M. Then F is the σ-field generated by

CM (by closing under complement and countable union).

— We define the probability of a cone Cα where α = T0a1T1 . . . anTn as

p(Cα) =
n∏

i=1

µi(Ti)

where µi is the (unique because the automaton is fully probabilistic) measure such

that (Ti−1, ai, µi) ∈ T . We define pM as the measure extending p to F (see (Segala

1995) for more details about this construction).

3. CCS with internal probabilistic choice

We consider an extension of standard CCS ((Milner 1989)) obtained by adding internal

probabilistic choice. The resulting calculus CCSp can be seen as a simplified version of the

probabilistic π-calculus presented in (Herescu & Palamidessi 2000, Palamidessi & Herescu

2005) and it is similar to the one considered in (Deng, Palamidessi & Pang 2005). Like

in those calculi, computations have both a probabilistic and a nondeterministic nature.

The main conceptual novelty is a distinction between observable and secret actions,

introduced for the purpose of specifying information-hiding protocols.

We assume a countable set Act of actions a, and we assume that it is partitioned into

a set Sec of secret actions s, a set Obs of observable actions o, and the silent action τ .

For each s ∈ Sec we assume a complementary action s ∈ Sec such that s = s, and the

same for Obs. The silent action τ does not have a complementary action, so the notation

a will imply that a ∈ Sec or a ∈ Obs.

The syntax of CCSp is the following:

T ::= process term

◦∑i pi Ti probabilistic choice

| �

i si.Ti secret choice (si ∈ Sec)

| �

i ri.Ti nondeterministic choice (ri ∈ Obs ∪ {τ})

| T | T parallel composition

| (νa)T restriction

| !T replication

All the summations in the syntax are finite. We will use the notation T1 ⊕p T2 to

represent a binary probabilistic choice ◦∑i pi Ti with p1 = p and p2 = 1− p. Similarly we

will use a1.T1
�

a2.T2 to represent a binary secret or nondeterministic choice.

The semantics of a given CCSp term is a probabilistic automaton whose states are

process terms, whose initial state is the given term, and whose transitions are those

derivable from the rules in Table 1. We will use the notations (T, a, µ) and T
a−→ µ

interchangeably. We denote by µ | T the measure µ′ such that µ′(T ′ | T) = µ(T ′)

Compositional Methods for Information-Hiding 7

PROB
◦∑i pi Ti

τ−→∑
i pi δ(Ti)

ACT
j ∈ I

�

Iai.Ti
aj−→ δ(Tj)

PAR1
T1

a−→ µ

T1 | T2 a−→ µ | T2
PAR2

T2
a−→ µ

T1 | T2 a−→ T1 | µ
REP

T | !T a−→ µ

!T
a−→ µ | !T

COM
T1

a−→ δ(T ′
1) T2

a−→ δ(T ′
2)

T1 | T2 τ−→ δ(T ′
1 | T ′

2)
RES

T
b−→ µ α 6= a, a

(νa)T
b−→ (νa)µ

Table 1. The semantics of CCSp.

for all processes T ′ and µ′(T ′′) = 0 if T ′′ is not of the form T ′ | T , and similarly for

T | µ. Furthermore we denote by (νa)µ the measure µ′ such that µ′((νa)T) = µ(T), and

µ′(T ′) = 0 if T ′ is not of the form (νa)T .

Note that in the produced probabilistic automaton, all transitions to non-Dirac mea-

sures are silent. Note also that a probabilistic term generates exactly one (probabilistic)

transition.

A transition of the form T
a−→ δ(T ′), i.e. a transition having for target a Dirac mea-

sure, corresponds to a transition of a non-probabilistic automaton (a standard labeled

transition system). Thus, all the rules of CCSp specialize to the ones of CCS except from

PROB. The latter models the internal probabilistic choice: a silent τ transition is avail-

able from the sum to a measure containing all of its operands, with the corresponding

probabilities.

A secret choice
�

i si.Ti produces the same transitions as the nondeterministic term
�

i ri.Ti, except for the labels.

The distinction between the two kind of labels influences the notion of scheduler for

CCSp: the secret actions are assumed to be inputs of the system, namely they can only be

performed if the input matches them. Hence some choices are determined, or influenced,

by the input. In particular, a secret choice with different guards is entirely decided by

the input. The scheduler has to resolve only the residual nondeterminism.

In the following, we use the notation X ⇀ Y to represent the partial functions from

X to Y , and α|Sec represents the projection of α on Sec.

Definition 3.1. Let T be a process in CCSp and M be the probabilistic automaton

generated by T . A scheduler is a function

ζ : Sec∗ → exec∗(M) ⇀ T

such that:

(i) if s = s1s2 . . . sn and α|Sec = s1s2 . . . sm with m ≤ n, and

(ii) there exists a transition (lst(α), a, µ) such that, if a ∈ Sec then a = sm+1

then ζ(s)(α) is defined, and it is one of such transitions. We will write ζs(α) for ζ(s)(α).

Note that this definition of scheduler is different from the one used in probabilistic

automaton, where the scheduler can decide to stop, even if a transition is allowed. Here

the scheduler must proceed whenever a transition is allowed (provided that if it is labeled

by a secret, that secret is the next one in the input string s).

K. Chatzikokolakis, C. Palamidessi and C. Braun 8

We now adapt the definition of execution tree from the notion found in probabilistic

automata. In our case, the execution tree depends not only on the scheduler, but also on

the input.

Definition 3.2. Let M = (St , T,Act , T) be the probabilistic automaton generated by

a CCSp process T , where St is the set of processes reachable from T . Given an input

s and a scheduler ζ, the execution tree of T for s and ζ, denoted by etree(T, s, ζ), is

a fully probabilistic automaton M′ = (St ′, T,Act , T ′) such that St ′ ⊆ exec(M), and

(α, a, µ′) ∈ T ′ if and only if ζs(α) = (lst(α), a, µ) for some µ, and µ′(αaT) = µ(T).

4. Modeling protocols for information-hiding

In this section we propose an abstract model for information-hiding protocols, and we

show how to represent this model in CCSp. An extended example is presented in Section 7.

4.1. Protocols as channels

We view protocols as channels in the information-theoretic sense (Cover & Thomas

1991). The secret information that the protocol is trying to conceal constitutes the input

of the channel, and the observables constitute the outputs. The set of the possible inputs

and that of the possible outputs will be denoted by S and O respectively. We assume

that S and O are of finite cardinality m and n respectively. We also assume a discrete

probability distribution over the inputs, which we will denote by ~π = (πs1 , πs2 , . . . , πsm),

where πs is the probability of the input s.

To fit the model of the channel, we assume that at each run, the protocol is given

exactly one secret si to conceal. This is not a restriction, because the si’s can be complex

information like sequences of keys or tuples of individual data. During the run, the

protocol may use randomized operations to increase the level of uncertainty about the

secrets and obfuscate the link with the observables. It may also have internal interactions

between internal components, or other forms of nondeterministic behavior, but let us rule

out this possibility for the moment, and consider a purely probabilistic protocol. We also

assume there is exactly one output from each run of the protocol, and again, this is not

a restrictive assumption because the elements of O can be structured data.

Given an input s, a run of the protocol will produce each o ∈ O with a certain

probability p(o|s) which depends on s and on the randomized operations performed

by the protocol. Note that p(o|s) depends only on the probability distributions on the

mechanisms of the protocol, and not on the input distribution. The probabilities p(o|s),
for s ∈ S and o ∈ O, constitute a m × n array M which is called the matrix of the

channel, where the rows are indexed by the elements of S and the columns are indexed

by the elements of O. We will use the notation (S,O,M) to represent the channel.

Note that the input distribution ~π and the probabilities p(o|s) determine a distribution

on the output. We will represent by p(o) the probability of o ∈ O. Thus both the input and

the output can be considered random variables. We will denote these random variables

by S and O.

Compositional Methods for Information-Hiding 9

If the protocol contains some forms of nondeterminism, like internal components giving

rise to different interleaving and interactions, then the behavior of the protocol, and in

particular the output, will depend on the scheduling policy. We can reduce this case

to previous (purely probabilistic) scenario by assuming a scheduler ζ which resolves

the nondeterminism entirely. Of course, the conditional probabilities, and therefore the

matrix, will depend on ζ, too. We will express this dependency by using the notation

Mζ .

4.2. Process terms as channels

A given CCSp term T can be regarded as a protocol in which the input is constituted

by sequences of secret actions, and the output by sequences of observable actions. We

assume that only a finite set of such sequences is relevant. This is certainly true if the

term is terminating, which is usually the case in security protocols, as each session is

supposed to terminate in finite time.

Thus the set S could be, for example, the set of all sequences of secret actions up

to a certain length (for example, the maximal length of executions) and analogously O

could be the set of all sequences of observable actions up to a certain length. To be more

general, we will just assume S ⊆fin Sec∗ and O ⊆fin Obs∗.

Definition 4.1. Given a term T and a scheduler ζ : S → exec∗(M) → T , the matrix

Mζ(T) associated to T under ζ is defined as the matrix such that, for each s ∈ S and

o ∈ O, p(o|s) is the probability of the set of the maximal executions in etree(T, s, ζ)

whose projection in Obs is o.

The following remark may be useful to understand the nature of the above definition:

Remark 4.2. Given a sequence s = s1s2 . . . sh, consider the term

T ′ = (νSec)(s̄1.s̄2.s̄h.0 | T)

Given a scheduler ζ for T , let ζ ′ be the scheduler on T ′ that chooses the transition

((νSec)(s̄j .s̄2.s̄h.0 | U), r, (νSec)(s̄j .s̄2.s̄h.0 | µ))

if ζs chooses (U, r, µ), with (r 6∈ Sec), and it chooses

((νSec)(s̄j .s̄2.s̄h.0 | U), τ, (νSec)(δ(s̄j+1.s̄2.s̄h.0 | (U ′)))

if ζs chooses (U, sj , δ(U
′)).

Note that ζ ′ is a “standard” scheduler, i.s. it does not depend on an input sequence.

We have that each element p(o|s) in Mζ(T) is equal to the probability of the set of all

the maximal executions of T ′, under ζ ′, whose projection in Obs gives o.

5. Inferring the secrets from the observables

In this section we discuss possible methods by which an adversary can try to infer the

secrets from the observables, and consider the corresponding probability of error, that is,

K. Chatzikokolakis, C. Palamidessi and C. Braun 10

the probability that the adversary draws the wrong conclusion. We regard the probability

of error as a representative of the degree of protection provided by the protocol, and we

study its properties with respect to the associated matrix.

We start by defining the notion of decision function, which represents the guess the

adversary makes about the secrets, for each observable. This is a well-known concept,

particularly in the field of hypothesis testing, where the purpose is to try to discover

the valid hypothesis from the observed facts, knowing the probabilistic relation between

the possible hypotheses and their consequences. In our scenario, the hypotheses are the

secrets.

Definition 5.1. A decision function for a channel (S,O,M) is any function f : O → S.

Given a channel (S,O,M), an input distribution ~π, and a decision function f , the

probability of error P(f,M,~π) is the average probability of guessing the wrong hypothesis

by using f , weighted on the probability of the observable (see for instance (Cover &

Thomas 1991)). The probability that, given o, s is the wrong hypothesis is 1 − p(s|o)
(with a slight abuse of notation, we use p(·|·) to represent also the probability of the

input given the output). Hence we have:

Definition 5.2 ((Cover & Thomas 1991)). The probability of error is defined by

P(f,M,~π) = 1−
∑

O
p(o)p(f(o)|o)

Given a channel (S,O,M), the best decision function that the adversary can use,

namely the one that minimizes the probability of error, is the one associated to the

so-called MAP rule, which prescribes choosing the hypothesis s which has Maximum

Aposteriori Probability (for a given o ∈ O), namely the s for which p(s|o) is maximum.

The fact that the MAP rule represent the ‘best bet’ of the adversary is rather intuitive,

and well known in the literature. We refer to (Cover & Thomas 1991) for a formal proof.

The MAP rule is used in the so-called Bayesian approach to hypothesis testing, and

the corresponding probability of error is also known as Bayes risk. We will denote it by

PMAP(M,~π). The following characterization is an immediate consequence of Definition 5.2

and of the Bayes theorem p(s|o) = p(o|s)πs/p(o).

PMAP(M,~π) = 1−
∑

O
max
s

(p(o|s)πs)

It is natural then to define the degree of protection associated to a process term as the

infimum probability of error that we can obtain from this term under every compatible

scheduler (in a given class).

In the following, we assume the class of schedulers A to be the set of all the schedulers

compatible with the given input S.

It turns out that the infimum probability of error on A is actually a minimum. In order

to prove this fact, let us first define a suitable metric on A.

Definition 5.3. Consider a CCSp process T , and letM be the probabilistic automaton

Compositional Methods for Information-Hiding 11

generated by T . We define a distance d between schedulers in A as follows:

d(ζ, ζ ′) =

2−m if m = min{|α| | α ∈ exec∗(M) and ζ(α) 6= ζ ′(α)}

0 if ζ(α) = ζ ′(α) for all α ∈ exec∗(M)

where |α| represents the length of α.

Note that M is finitely branching, both in the nondeterministic and in the probabilistic

choices, in the sense that from every node T ′ there is only a finite number of transitions

(T ′, a, µ) and µ is a finite summation of the form µ =
∑
i pi δ(Ti). Hence we have the

following (standard) result:

Proposition 5.4. (A, d) is a sequentially compact metric space, i.e. every sequence has

a convergent subsequence (namely a subsequence with a limit in A).

We are now ready to show that there exists a scheduler that gives the minimum

probability of error:

Proposition 5.5. For every CCSp process T we have

inf
ζ∈A

PMAP(Mζ(T), ~π) = min
ζ∈A

PMAP(Mζ(T), ~π)

Proof. By Proposition 5.4, (A, d) is sequentially compact. By definition, PMAP(Mζ(T), ~π)

is a continuous function from (A, d) to ([0, 1], d′), where d′ is the standard distance on

real numbers. Consequently, ({PMAP(Mζ(T), ~π) | ζ ∈ A}, d′) is also sequentially compact.

Let {ζn}n be a sequence such that for all n

PMAP(Mζn(T), ~π)− inf
A
PMAP(Mζ(T), ~π) ≤ 2−n

We have that {PMAP(Mζn(T), ~π)}n is convergent and

lim
n
PMAP(Mζn(T), ~π) = inf

A
PMAP(Mζ(T), ~π)

Consider now a convergent subsequence {ζnj}j of {ζn}n. By continuity of PMAP , we have

lim
n
PMAP(Mζn(T), ~π) = lim

j
PMAP(Mζnj

(T), ~π) = PMAP(lim
j
Mζnj

(T), ~π)

which concludes the proof.

Thanks to previous proposition, we can define the degree of protection provided by a

protocols in terms of the minimum probability of error.

Definition 5.6. Given a CCSp process T , the protection PtMAP(T) provided by T , in

the Bayesian approach, is given by

PtMAP(T, ~π) = min
ζ∈A

PMAP(Mζ(T), ~π)

The problem with the MAP rule is that it assumes that the input distribution is known

to the adversary. This is often not the case, so it is natural to try to approximate it with

some other rule. One such rule is the so-called ML rule, which prescribes the choice

of the s which has Maximum Likelihood (for a given o ∈ O), namely the s for which

K. Chatzikokolakis, C. Palamidessi and C. Braun 12

p(o|s) is maximum. The name comes from the fact that p(o|s) is called the likelihood

of s given o. We will denote the corresponding probability of error by PML(M,~π). The

following characterization is an immediate consequence of Definition 5.2 and of the Bayes

theorem.

PML(M,~π) = 1−
∑

O
max
s

(p(o|s))πs

It has been shown (see for instance (Chatzikokolakis, Palamidessi & Panangaden

2008a)) that under certain conditions on the matrix, the ML rule approximates indeed

the MAP rule, in the sense that by repeating the protocol the adversary can make the

probability of error arbitrarily close to 0, with either rule.

We could now define the degree of protection provided by a term T under the ML

rule as the minimum PML(Mζ(T), ~π), but it does not seem reasonable to give a definition

that depends on the input distribution, since the main reason to apply a non-Bayesian

approach is that indeed we do not know the input distribution. Instead, we define the

degree of protection associated to a process term as the average probability of error with

respect to all possible distributions ~π:

Definition 5.7. Given a CCSp process T , the protection PtML(T) provided by T , in the

Maximum Likelihood approach, is given by

PtML(T) = min
ζ∈A

(m− 1)!

∫

~π

PML(Mζ(T), ~π) d~π

In the above definition, (m−1)! represents a normalization function: 1
(m−1)! is the hyper-

volume of the domain of all possible distributions ~π on S, namely the (m−1)-dimensional

space of points ~π such that 0 ≤ πs ≤ 1 and 0 ≤∑s∈S πs = 1 (where m is the cardinality

of S).

Fortunately, it turns out that this definition is equivalent to a much simpler one: the

average value of the probability of error, under the Maximum Likelihood rule, can be

obtained simply by computing PML on the uniform distribution ~πu = (1
m ,

1
m , . . . ,

1
m).

Theorem 5.8. PtML(T) = minζ∈A PML(Mζ(T), ~πu)

Proof.

SimplificationsGiven a channel (S,O,M) and an input distribution ~π = (π1, . . . , πm)

of cardinality m, the probability of error is characterized by the expression:

fm(~π) = 1−
∑

O
max
s

(p(o|s))πs = PML(M,~π)

fm(~π) is a linear function of the input distribution ~π of the form:

fm(~π) = 1− a1π1 − . . .− amπm
where ∀i, ai ∈ R.

With the additional constraint
∑
i=1...m πi = 1, the dependency on one of the m

variables π1, . . . , πm, for instance πm, can be removed. Replacing πm by the equivalent

Compositional Methods for Information-Hiding 13

expression 1−∑m−1
i=1 πi yields:

fm(~π) = c1π1 + . . .+ cm−1πm−1 + cm

with

c1 = am − a1

c2 = am − a2

. . .

cm−1 = am − am−1

cm = 1− am
Expression of the normalization functionThe hyper-volume Vm(X) of the domain

Dm(X) of all possible distributions ~π on S, i.e. the (m − 1)-dimensional space of

points ~π such that 0 ≤ πs ≤ X and 0 ≤∑s∈S πs = X (where m is the cardinality of

S) is given by:

Vm(X) =
Xm−1

(m− 1)!

Induction hypothesisWe will show by induction on m that following equalityHm holds

for all m: ∫

Dm(X)

fm(~π)d~π = Vm(X)fm(~πu(X))

where ~πu(X) = (Xm ,
X
m , . . . ,

X
m). Theorem 5.8 then follows by taking X = 1.

According to the aforementioned notations, Hm can be written as:

Lm(X) = Rm(X)

where

Lm(X) =

X∫

xm−1=0

X−xm−1∫

xm−2=0

. . .

X−xm−1−...−x2∫

x1=0

fm(x1, x2, . . . , xm−1)dx1dx2 . . . dxm−1

and

Rm(X) =
Xm−1

(m− 1)!
(
m−1∑

i=1

ci
X

m
+ cm)

Base step: m = 2We have:

L2(X) =
∫ x1=X

x1=0
(c1x1 + c2)dx1

= c1X
2

2 + c2X

= X(c1X2 + c2)

= R2(X)

K. Chatzikokolakis, C. Palamidessi and C. Braun 14

Induction step: Hm ⇒ Hm+1Consider

fm+1(x) = c1x1 + . . .+ cmxm + cm+1

=
∑m
i=1 cixi + cm+1

= fm(x)− cm + cmxm + cm+1

The left-hand side of Hm+1 is given by:

Lm+1(X) =
∫ xm=Y

xm=0
. . .
∫ x1=Y−xm−...−x2

x1=0
fm+1(x1, . . . , xm)dx1 . . . dxm

The m−1 inner-most integrations can be resolved according to Hm. Replacing X

by Y − xm leads to:

Lm+1(X) =
∫ xm=Y

xm=0
Vm(Y − xm)fm+1(Y−xmm , . . . , Y−xmm)dxm

=
∫ xm=Y

xm=0
(Y−xm)m−1

(m−1)! (
∑m−1
i=1 ci

Y−xm
m + cmxm + cm+1)dxm

Replacing Y − xm by Z leads to:

Lm+1(X) =
∫ Z=Y

Z=0
Zm−1

(m−1)! (
∑m−1
i=1 ci

Z
m + cm(Y − Z) + cm+1)dZ

=
∫ Z=Y

Z=0
((1
m!

∑m−1
i=1 ci − cm

(m−1)!)Z
m + cmY+cm+1

(m−1)! Zm−1)dZ

= (1
(m+1)!

∑m−1
i=1 ci)Y

m+1 − cm
(m−1)!(m+1)Y

m+1 + cm
m!Y

m+1 + cm+1

m! Y
m

= (1
(m+1)!

∑m−1
i=1 ci)Y

m+1 + cm
(m+1)!Y

m+1 + cm+1

m! Y
m

= Ym

m! (
∑m
i=1 ci

Y
m+1 + cm+1) = Rm+1(Y)

This completes the proof for Theorem 5.8.

The next corollary follows immediately from Theorem 5.8 and from the definitions of

PMAP and PML.

Corollary 5.9. PtML(T) = minζ∈A PMAP(Mζ(T), ~πu)

We conclude this section with some properties of PMAP . Note that the same properties

hold also for PML on the uniform distribution, because PML(M,~πu) = PMAP(M,~πu).

The next proposition shows that the probabilities of error are concave functions with

respect to the space of matrices.

Proposition 5.10. Consider a family of channels {(S,O,Mi)}i∈I , and a family {ci}i∈I
of convex coefficients, namely 0 ≤ ci ≤ 1 for all i ∈ I, and

∑
i∈I ci = 1. Then:

PMAP(
∑

i∈I
ciMi, ~π) ≥

∑

i∈I
ci PMAP(Mi, ~π)

Compositional Methods for Information-Hiding 15

Proof. Consider ∀i ∈ I,Mi = (pi(o|s))s∈S,o∈O. Then:

PMAP(
∑
i ciMi, ~π) = 1−∑o maxs(

∑
i ci pi(o|s)πs)

≥ 1−∑o

∑
i ci maxs(pi(o|s)πs)

= 1−∑i

∑
o ci maxs(pi(o|s)πs) (since the summands are positive)

= 1−∑i ci
∑
o maxs(pi(o|s)πs)

=
∑
i∈I ci −

∑
i∈I ci

∑
o∈Omaxs(pi(o|s)πs) (since

∑
i∈I ci = 1)

=
∑
i∈I ci(1−

∑
o∈Omaxs(pi(o|s)πs))

=
∑
i∈I ciPMAP(Mi, ~π)

Corollary 5.11. Consider a family of channels {(S,O,Mi)}i∈I , and a family {ci}i∈I of

convex coefficients. Then:

PMAP(
∑

i∈I
ciMi, ~π) ≥ min

i∈I
PMAP(Mi, ~π)

The next proposition shows that if we transform the observables, and collapse the

columns corresponding to observables which have become the same after the transfor-

mation, the probability of error does not decrease.

Proposition 5.12. Consider a channel (S,O,M), where M has conditional probabilities

p(o|s), and a transformation of the observables f : O → O′. Let M ′ be the matrix whose

conditional probabilities are p′(o′|s) =
∑
f(o)=o′ p(o|s) and consider the new channel

(S,O′,M ′). Then:

PMAP(M ′, ~π) ≥ PMAP(M,~π)

Proof. The result derives from:

∑
o′∈O′ maxs(p

′(o′|s)πs) =
∑
o′∈O′ maxs(

∑
f(o)=o′ p(o|s)πs)

≤ ∑
o′∈O′

∑
f(o)=o′ maxs(p(o|s)πs)

=
∑
o∈Omaxs(p(o|s)πs)

The following propositions are from the literature.

Proposition 5.13 ((Chatzikokolakis et al. 2008a)). Given S, O, let M be a matrix

indexed on S, O such that all the rows of M are equal, namely p(o|s) = p(o|s′) for all

o ∈ O, s, s′ ∈ S. Then,

PMAP(M,~π) = 1−max
s

πs

Furthermore PMAP(M,~π) is the maximum probability of error, i.e. for every other matrix

K. Chatzikokolakis, C. Palamidessi and C. Braun 16

M ′ indexed on S, O we have:

PMAP(M,~π) ≥ PMAP(M ′, ~π)

Proposition 5.14 ((Bhargava & Palamidessi 2005)). Given a channel (S,O,M),

the rows of M are equal (and hence the probability of error is maximum) if and only if

p(s|o) = πs for all s ∈ S, o ∈ O.

The condition p(s|o) = πs means that the observation does not give any additional

information concerning the hypothesis. In other words, the a posteriori probability of s

coincides with its a priori probability. The property p(s|o) = πs for all s ∈ S and o ∈ O
was used as a definition of (strong) anonymity by Chaum (Chaum 1988) and was called

conditional anonymity by Halpern and O’Neill (Halpern & O’Neill 2005).

6. Safe constructs

In this section we investigate constructs of the language CCSp which are safe with respect

to the protection of the secrets.

We start by giving some conditions that will allow us to ensure the safety of the parallel

and the restriction operators.

Definition 6.1. Consider process term T , and the observables o1, o2, . . . , ok such that

(i) T does not contain any secret action, and

(ii) the observable actions of T are included in o1, o2, . . . , ok.

Then we say that T is safe outside of o1, o2, . . . , ok.

The following theorem states our main results for PtMAP . Note that they are also valid

for PtML, because PtML(T) = PtMAP(T, ~πu).

Theorem 6.2. The probabilistic choice, the nondeterministic choice, and a restricted

form of parallel composition are safe constructs, namely, for every input probability π,

and any terms T1, T2, . . . , Th, we have

(1) PtMAP(�
∑

i

pi Ti, ~π) ≥
∑

i

pi PtMAP(Ti, ~π) ≥ min
i

PtMAP(Ti, ~π)

(2) PtMAP(
�

i

oi.Ti, ~π) = min
i

PtMAP(Ti, ~π)

(3) PtMAP((ν o1, o2, . . . , ok) (T1 | T2)) ≥ PtMAP(T2, ~π)

if T1 is safe outside of o1, o2, . . . , ok.

Proof.

1 By definition PtMAP(◦∑i pi Ti, ~π) = minζ∈A PMAP(Mζ(◦
∑
i pi Ti), ~π).

Let ζm = minargA PMAP(Mζ(◦
∑
i pi Ti), ~π). Hence

PtMAP(�
∑

i

pi Ti, ~π) = PMAP(Mζm(�
∑

i

pi Ti), ~π)

Consider, for each i, the scheduler ζmi defined as ζm on the i-th branch, except for

Compositional Methods for Information-Hiding 17

the removal of the first state and the first τ -step from the execution fragments in the

domain. It’s easy to see that

Mζm(�
∑

i

pi Ti) =
∑

i

piMζmi
(Ti)

From Proposition 5.10 we derive

PMAP(Mζm(�
∑

i

pi Ti), ~π) ≥
∑

i

piPMAP(Mζmi
(Ti), ~π)

Finally, observe that ζmi is still compatible with S, hence we have

PMAP(Mζmi
(Ti), ~π) ≥ PtMAP(Ti, ~π) for all i

which concludes the proof in this case.

2 Let ζm = minargA PMAP(Mζ(
�

i oi.Ti), ~π). LetAi be the class of schedulers that choose

the i-th branch at the beginning of the execution, and define

ζni = minarg
Ai

PMAP(Mζ(
�

i

oi.Ti), ~π)

Obviously we have

PtMAP(
�

i

oi.Ti, ~π) = min
i
PMAP(Mζni

(
�

i

oi.Ti), ~π)

Consider now, for each i, the scheduler ζmi defined as as ζni , except for the removal

of the first state and the first step from the execution fragments in the domain.

Obviously ζmi is still compatible with S, and the observables of Ti are i one-to one

correspondence with those of
�

i oi.Ti via the bijective function fi(oioj1 . . . ojk) =

oj1 . . . ojk . Furthermore, all the probabilities of the channel Mζni
(
�

i oi.Ti) are the

same as those of Mζmi
(Ti) modulo the renaming of o into f(o). Hence we have

PMAP(Mζni
(
�

i

oi.Ti), ~π) = PMAP(Mζmi
(Ti), ~π) = PtMAP(Ti, ~π)

which concludes the proof of this case.

3 Let ζm = minargA PMAP(Mζ((νo1, o2, . . . , ok) (T1 | T2)), ~π). Hence

PtMAP((νo1, o2, . . . , ok) (T1 | T2), ~π) = PMAP(Mζm((νo1, o2, . . . , ok) (T1 | T2)), ~π)

The proof proceeds by constructing a set of series of schedulers whose limit with

respect to the metric d in Definition 5.3 correspond to schedulers on the execution

tree of T2. Consider a generic node in the execution tree of (νo1, o2, . . . , ok) (T1 | T2)

under ζm, and let (νo1, o2, . . . , ok) (T ′1 | T ′2) be the new term in that node. Assume

α to be the execution history up to that node. Let us consider separately the three

possible kinds of transitions derivable from the operational semantics:

(a) (νo1, o2, . . . , ok) (T ′1 | T ′2)
a−→ (νo1, o2, . . . , ok) (µ | T ′2) due to a transition T ′1

a−→
µ. In this case a must be τ because of the assumption that T1 does not contain

secret actions and all its observable actions are included in {o1, o2, . . . , ok}. Assume

that µ =
∑
i pi δ(T

′
1i). Then we have (νo1, o2, . . . , ok) (µ | T ′2) =

∑
i pi δ((νo1, o2, . . . , ok) (T ′1i | T ′2)).

Let us consider the tree obtained by replacing this distribution with δ((νo1, o2, . . . , ok) (T ′1i | T ′2))

K. Chatzikokolakis, C. Palamidessi and C. Braun 18

(i.e. the tree obtained by pruning all alternatives except (νo1, o2, . . . , ok) (T ′1i | T ′2),

and assigning to it probability 1). Let ζmi be the projection of ζm on the new tree

(i.e. ζmi is defined as the projection of ζm on the histories α′ such that if α is a

proper prefix of α′ then ατ(νo1, o2, . . . , ok) (T ′1i | T ′2) is a prefix of α′). We have

PMAP(Mζm((νo1, o2, . . . , ok) (T1 | T2)), ~π)

=

PMAP(
∑
i pi Mζmi((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥ (by Proposition 5.10)
∑
i pi PMAP(Mζmi((νo1, o2, . . . , ok) (T1 | T2)), ~π)

In the execution tree of T2 the above transition does not have a correspondent, but

it obliges us to consider all different schedulers that are associated to the various

ζmi’s for different i’s.

(b) (νo1, o2, . . . , ok) (T ′1 | T ′2)
a−→ (νo1, o2, . . . , ok) (T ′1 | µ) due to a transition T ′2

a−→
µ, with a not included in {o1, o2, . . . , ok}. In this case, the corresponding scheduler

for T2 must choose the same transition, i.e. T ′2
a−→ µ.

(c) (νo1, o2, . . . , ok) (T ′1 | T ′2)
τ−→ (νo1, o2, . . . , ok) δ(T ′′1 | T ′′2) due to the transitions

T ′1
a−→ δ(T ′′1) and T ′2

ā−→ δ(T ′′2). In this case a must be an observable o because

of the assumption that T1 does not contain secret actions. The corresponding

scheduler for T2 must choose the transition T ′2
ā−→ δ(T ′′2).

By considering the inequalities given by the transitions of type (a), we obtain

PMAP(Mζm((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥
∑
i pi PMAP(Mζmi((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥
∑
i pi

∑
j qj PMAP(Mζmij ((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥
∑
i pi

∑
j qj

∑
h rh PMAP(Mζmijh((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥

. . .

Observe now that {ζm, ζmi, ζmij , ζmijh, . . .} is a converging series of schedulers whose

limit ζmijh... is isomorphic to a scheduler for T2, except that some of the observable

transitions in T2 may be removed due to the restriction on o1, o2, . . . , ok. This removal

Compositional Methods for Information-Hiding 19

determines a (usually non injective) mapping f on the observables. Hence:

PMAP(Mζm((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥
∑
i pi

∑
j qj

∑
h rh . . .PMAP(Mζmijh...((νo1, o2, . . . , ok) (T1 | T2)), ~π)

≥ (by Proposition 5.12)
∑
i pi

∑
j qj

∑
h rh . . .PMAP(Mζmijh...(T2), ~π)

≥
∑
i pi

∑
j qj

∑
h rh . . .minζ∈A PMAP(Mζ(T2), ~π)

Finally, observe that
∑
i pi =

∑
j qj =

∑
h rh = . . . = 1, hence

PMAP(Mζm((νo1, o2, . . . , ok) (T1 | T2)), ~π) ≥ min
ζ∈A
PMAP(Mζ(T2), ~π)

which concludes the proof.

Unfortunately the safety property does not hold for the secret choice. The following is

a counterexample.

Example 6.3. Let Sec = {s1, s2} and assume that S does not contain the empty se-

quence. Let T = o1.0
�

o2.0. Then PtMAP(T, ~π) is maximum (i.e. PtMAP(T, ~π) = 1 −
max~π) because for every sequence s ∈ S we have p(o1|s) = p(o2|s). Let T ′ = s1.T

�

s2.T .

We can now define a scheduler such that, if the secret starts with s1, it selects o1, and if the

secret starts with s2, it selects o2. Hence, under this scheduler, p(o1|s1s) = p(o2|s2s) = 1

while p(o1|s2s) = p(o2|s1s) = 0. Therefore PtMAP(T ′, ~π) = 1 − p1 − p2 where p1 and

p2 are the maximum probabilities of the secrets of the form s1s and s2s, respectively.

Note now that either max~π = p1 or max~π = p2 because of the assumption that S does

not contain the empty sequence. Let ~π be such that both p1 and p2 are positive. Then

1− p1 − p2 < 1−max~π, hence PtMAP(T ′, ~π) < PtMAP(T, ~π).

The reason why we need the condition (i) in Definition 6.1 for the parallel operator is

analogous to the case of secret choice. The following is a counterexample.

Example 6.4. Let Sec and S be as in Example 6.3. Define T1 = s1.0
�

s2.0 and

T2 = o1.0
�

o2.0. Clearly, PtMAP(T2, ~π) = 1−max~π. Consider now the term T1 | T2 and

define a scheduler that first executes an action s in T1 and then, if s is s1, it selects o1,

while if s is s2, it selects o2. The rest proceeds like in Example 6.3, where T ′ = T1 | T2

and T = T2.

The reason why we need the condition (ii) in Definition 6.1 is that without it the

parallel operator may create different interleavings, thus increasing the possibility of an

adversary discovering the secrets. The following is a counterexample.

Example 6.5. Let Sec and S be as in Example 6.3. Define T1 = o.0 and T2 =

K. Chatzikokolakis, C. Palamidessi and C. Braun 20

s1.(o1.0 ⊕.5 o2.0)
�

s2.(o1.0 ⊕.5 o2.0). It is easy to see that PtMAP(T2, ~π) = 1−max~π.

Consider the term T1 | T2 and define a scheduler that first executes an action s in

T2 and then, if s is s1, it selects first T1 and then the continuation of T2, while if s

is s2, it selects first the continuation of T2 and then T1. Hence, under this scheduler,

p(oo1|s1s) = p(oo2|s1s) = .5 and also p(o1o|s2s) = p(o2o|s2s) = .5 while p(oo1|s2s) =

p(oo2|s2s) = 0 and p(o1o|s1s) = p(o2o|s1s) = 0. Therefore PtMAP(T, ~π) = 1 − p1 − p2

where p1 and p2 are the maximum probabilities of the secrets of the form s1s and s2s,

respectively. Following the same reasoning as in Example 6.3, we have that for certain

~π, PtMAP(T ′, ~π) < PtMAP(T, ~π).

7. A case study: the Dining Cryptographers

In this section we consider the Dining Cryptographers (DC) protocol proposed by Chaum

(Chaum 1988), we show how to describe it in CCSp, and we apply the results of previous

section to obtain a generalization of Chaum’s strong anonymity result.

In its most general formulation, the DC consists of a multigraph where one of the nodes

(cryptographers) may be secretly designated to pay for the dinner. The cryptographers

would like to find out whether there is a payer or not, but without either discovering the

identity of the payer, nor revealing it to an external observer. The problem can be solved

as follows: we put on each edge a probabilistic coin, which can give either 0 or 1. The

coins get tossed, and each cryptographer computes the binary sum of all (the results of)

the adjacent coins. Furthermore, it adds 1 if it is designated to be the payer. Finally, all

the cryptographers declare their result.

It is easy to see that this protocol solves the problem of figuring out the existence of a

payer: the binary sum of all declarations is 1 if and only if there is a payer, because all

the coins get counted twice, so their contribution to the total sum is 0.

The property we are interested in, however, is the anonymity of the system. Chaum

proved that the DC is strongly anonymous if all the coins are fair, i.e. they give 0 and 1

with equal probability, and the multigraph is connected, namely there is a path between

each pair of nodes. To state formally the property, let us denote by s the secret identity

of the payer, and by o the collection of the declarations of the cryptographers.

Theorem 7.1 ((Chaum 1988)). If the multigraph is connected, and the coins are fair,

then DC is strongly anonymous, namely for every s and o, p(s|o) = p(s) holds.

We are now going to show how to express the DC in CCSp. We start by introducing a

notation for value-passing in CCSp, following standard lines.

Input c(x).T =
�

v

cv.T [v/x]

Output c̄〈v〉 = c̄v

The protocol can be described as the parallel composition of the cryptographers pro-

cesses Crypt i, of the coin processes Coinh, and of a process Collect whose purpose is to

collect all the declarations of the cryptographers, and output them in the form of a tuple.

Compositional Methods for Information-Hiding 21

Crypti = ci,i1 (x1) ci,ik (xk) . payi(x) . d̄i〈x1 + . . .+ xk + x〉

Coinh = c̄`,h〈0〉 . c̄r,h〈0〉.0 ⊕ph c̄`,h〈1〉 . c̄r,h〈1〉.0

Collect = d1(y1) . d2(y2) dn(yn) . out〈y1, y2, . . . , yn〉

DC = (ν~c)(ν ~d)(
∏
i Crypti |

∏
h Coinh | Collect)

Table 2. The dining cryptographers protocol expressed in CCSp.

See Table 2. In this protocol, the secret actions are pay i. All the others are observable

actions.

Each coin communicates with two cryptographers. ci,h represents the communication

channel between Coinh and Crypt i if h is indeed the index of a coin, otherwise it repre-

sents a communication channel “with the environment”. We will call the latter external.

In the original definition of the DC there are no external channels, we have added them

to prove a generalization of Chaum’s result. They could be interpreted as a way for

the environment to influence the computation of the cryptographers and hence test the

system, for the purpose of discovering the secret.

We are now ready to state our generalization of Chaum’s result:

Theorem 7.2. A DC is strongly anonymous if it has a spanning tree consisting of fair

coins only.

Proof. Consider the term DC in Table 2. Remove all the coins that do not belong to

the spanning tree, and the corresponding restriction operators. Let T be the process term

obtained this way. Let A be the class of schedulers which select the value 0 for all the

external channels. This situation corresponds to the original formulation of Chaum and

so we can apply Chaum’s result (Theorem 7.1) and Proposition 5.14 to conclude that all

the rows of the matrix M are the same and hence, by Proposition 5.13, PMAP(M,~π) =

1−maxi πi.

Consider now one of the removed coins, h, and assume, without loss of generality, that

c`,h(x), cr,h(x) are the first actions in the definitions of Crypt` and Cryptr. Consider

the class of schedulers B that selects value 1 for x in these channels. The matrix M ′

that we obtain is isomorphic to M : the only difference is that each column o is now

mapped to a column o + w, where w is a tuple that has 1 in the ` and r positions,

and 0 in all other positions, and + represents the componentwise binary sum. Since this

map is a bijection, we can apply Proposition 5.12 in both directions and derive that

PMAP(M ′, ~π) = 1−maxi πi.

By repeating the same reasoning on each of the removed coins, we can conclude that

PtMAP(T, ~π) = 1−maxi πi for any scheduler ζ of T .

Consider now the term T ′ obtained from T by adding back the coin h:

T ′ = (νc`,hcr,h)(Coinh | T)

K. Chatzikokolakis, C. Palamidessi and C. Braun 22

By applying Theorem 6.2 we can deduce that

PtMAP(T ′, ~π) ≥ PtMAP(T, ~π)

By repeating this reasoning, we can add back all the coins, one by one, and obtain the

original DC . Hence we can conclude that

PtMAP(DC , ~π) ≥ PtMAP(T, ~π) = 1−max
i
πi

and, since 1−maxi πi is the maximum probability of error,

PtMAP(DC , ~π) = 1−max
i
πi

which concludes the proof.

Interestingly, also the other direction of Theorem 7.2 holds. We report this result for

completeness, however we have proved it by using traditional methods, not by applying

the compositional methods of Section 6.

Theorem 7.3. A DC is strongly anonymous only if it has a spanning tree consisting of

fair coins only.

Proof. By contradiction. Let G be the multigraph associated to the DC and let n be

the number of vertices in G. Assume that G does not have a spanning tree consisting

only of fair coins. Then it is possible to split G in two non-empty subgraphs, G1 and G2,

such that all the edges between G1 and G2 are unfair. Let (c1, c2, . . . , cm) be the vector

of coins corresponding to these edges. Since G is connected, we have that m ≥ 1.

Let a1 be a vertex in G1 and a2 be a vertex in G2. By strong anonymity, for every

observable o we have

p(o | a1) = p(o | a2) (1)

Where a1, resp. a2, represents the event that the chryptographer a1, resp. a2, is the

payer.

Observe now that p(o | a1) = p(o + w | a2) where w is a binary vector of dimension

n containing 1 exactly twice, in correspondence of a1 and a2, and + is the binary sum.

Hence (1) becomes

p(o+ w | a2) = p(o | a2) (2)

Let d be the binary sum of all the elements of o in G1, and d′ be the binary sum of all

the elements of o+ w in G1. Since in G1 w contains 1 exactly once, we have d′ = d+ 1.

Hence (2), being valid for all o’s, implies

p(d+ 1 | a2) = p(d | a2) (3)

Because of the way o, and hence d, are calculated, and since the contribution of the edges

internal to G1 is 0, and a2 (the payer) is not in G1, we have that

d =

m∑

i=1

ci

Compositional Methods for Information-Hiding 23

from which, together with (3), and the fact that the coins are independent from the

choice of the payer, we derive

p(
m∑

i=1

ci = 0) = p(
m∑

i=1

ci = 1) = 1/2 (4)

The last step is to prove that p(
∑m
i=1 ci = 0) = 1/2 implies that one of the ci’s is

fair, which will give us a contradiction. We prove this by induction on m. The prop-

erty obviously holds for m = 1. Let us now assume that we have proved it for the

vector (c1, c2, . . . , cm−1). Observe that p(
∑m
i=1 ci = 0) = p(

∑m−1
i=1 ci = 0)p(cm = 0) +

p(
∑m−1
i=1 ci = 1)p(cm = 1). From (4) we derive

p(
m−1∑

i=1

ci = 0)p(cm = 0) + p(
m−1∑

i=1

ci = 1)p(cm = 1) = 1/2 (5)

Now, it is easy to see that (5) has only two solutions: one in which p(cm = 0) = 1/2, and

one in which p(
∑m−1
i=1 ci = 1) = 1/2. In the first case we are done, in the second case we

apply the induction hypothesis.

8. Related work

In the field of information flow there have been various works (McLean 1990, Gray,

III 1991, Lowe 2002, Clark, Hunt & Malacaria 2001, Clark, Hunt & Malacaria 2005,

Malacaria 2007, Malacaria & Chen 2008, Heusser & Malacaria 2009, Smith 2009, Andrés,

Palamidessi, van Rossum & Smith 2010, Alvim, Andrés & Palamidessi 2010, Boreale,

Pampaloni & Paolini 2011) in which the high information and the low information are

seen as the input and output respectively of a (noisy) channel. Information leakage is

formalized in this setting as the channel mutual information or the channel capacity. The

idea is that the leakage represents the difference between the a priori uncertainty about

the (secret) high information, and the a posteriori uncertainty, after the low information

has become pubblically known. The uncertainty is expressed in terms of entropy, and

there are various alternative notions depending on the notion of attack that one wishes

to model, as discussed in (Köpf & Basin 2007). Most of the above approaches are based

either on Shannon entropy or on the Rényi min entropy.

Channel capacity has been also used in relation to anonymity in (Moskowitz, Newman,

Crepeau & Miller 2003b, Moskowitz, Newman & Syverson 2003a). These works propose

a method to create covert communication by means of non-perfect anonymity.

A related line of work is (Serjantov & Danezis 2002, Dı́az, Seys, Claessens & Preneel

2002), where the main idea is to express the lack of (probabilistic) information in terms

of entropy.

A different information-theoretic approach is taken in (Clarkson, Myers & Schneider

2009). In this paper, the authors define as information leakage the difference between

the a priori accuracy of the guess of the attacker, and the a posteriori one, after the

attacker has made his observation. The accuracy of the guess is defined as the Kullback-

Leibler distance between the belief (which is a weight attributed by the attacker to each

K. Chatzikokolakis, C. Palamidessi and C. Braun 24

input hypothesis) and the true distribution on the hypotheses. This approach, that was

Shannon-based in (Clarkson et al. 2009), was later applied by Hamadou et al. (Hamadou,

Palamidessi & Sassone 2010) also to the case of the Rényi min entropy.

The problem of preservation of information protection under program composition was

considered also by McIver et al (McIver et al. 2010). In that paper, the author define

an order � on specifications based on Bayes Risk, and they identify a compositional

subset of it: a refinement order v such that S v I implies C[S] � C[I] for all contexts

C. They also show that v is the compositional closure of �, in the sense that S 6v I

only when C[S] 6� C[I] for some C. Finally, they prove that v is sound for other three,

competing notions of elementary test and that therefore Bayes-Risk testing, with context,

is maximally discriminating among them.

Desharnais et al. (Desharnais, Jagadeesan, Gupta & Panangaden 2002) defined a no-

tion of metric between probabilistic processes and proved that the Shannon capacity

associated to a protocol associated to a process is continuous with respect to this metric.

Deng et al. (Deng, Pang & Wu 2006) consider a probabilistic calculus similar to CCSp,

and define a relation between traces based on the Kullback-Leibler divergence. They show

that certain constructs of their calculus preserve the relation, in the sense that they do

not increase the divergence.

9. Conclusion and future work

In this paper we have investigated the properties of the probability of error associated

to a given information-hiding protocol, and we have investigated CCSpconstructs that

are safe, i.e. that are guaranteed not to decrease the protection of the protocol. Then we

have applied these results to strengthen a result of Chaum: the dining cryptographers

are strongly anonymous if and only if they have a spanning tree of fair coins.

In the future, we would like to extend our results to other constructs of the language.

This is not possible in the present setting, as the examples after Theorem 6.2 show. The

problem is related to the scheduler: the standard notion of scheduler is too powerful and

can leak secrets, by depending on the secret choices that have been made in the past. All

the examples after Theorem 6.2 are based on this kind of problem. In (Chatzikokolakis &

Palamidessi 2010), we have studied the problem and we came out with a language-based

solution to restrict the power of the scheduler. We are planning to investigate whether

such approach could be exploited here to guarantee the safety of more constructs.

References

Alvim, M. S., Andrés, M. E. & Palamidessi, C. (2010), Information Flow in Interactive Systems,

in P. Gastin & F. Laroussinie, eds, ‘Proceedings of the 21th International Conference on

Concurrency Theory (CONCUR 2010), Paris, France, August 31-September 3’, Vol. 6269 of

Lecture Notes in Computer Science, Springer, pp. 102–116.

Andrés, M. E., Palamidessi, C., van Rossum, P. & Smith, G. (2010), Computing the leakage of

information-hiding systems, in J. Esparza & R. Majumdar, eds, ‘Proceedings of the 16th In-

ternational Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2010)’, Vol. 6015 of Lecture Notes in Computer Science, Springer, pp. 373–389.

Compositional Methods for Information-Hiding 25

Bhargava, M. & Palamidessi, C. (2005), Probabilistic anonymity, in M. Abadi & L. de Alfaro,

eds, ‘Proceedings of CONCUR’, Vol. 3653 of Lecture Notes in Computer Science, Springer,

pp. 171–185.

Boreale, M., Pampaloni, F. & Paolini, M. (2011), Asymptotic information leakage under one-

try attacks, in M. Hofmann, ed., ‘Proceedings of the 14th International Conference on the

Foundations of Software Science and Computational Structures (FOSSACS)’, Vol. 6604 of

Lecture Notes in Computer Science, Springer, pp. 396–410.

Chatzikokolakis, K. & Palamidessi, C. (2010), ‘Making random choices invisible to the scheduler’,

Information and Computation 208(6), 694–715.

Chatzikokolakis, K., Palamidessi, C. & Panangaden, P. (2008a), ‘Anonymity protocols as noisy

channels’, Inf. and Comp. 206(2–4), 378–401.

Chatzikokolakis, K., Palamidessi, C. & Panangaden, P. (2008b), ‘On the Bayes risk in

information-hiding protocols’, Journal of Computer Security 16(5), 531–571.

Chaum, D. (1988), ‘The dining cryptographers problem: Unconditional sender and recipient

untraceability’, Journal of Cryptology 1, 65–75.

Clark, D., Hunt, S. & Malacaria, P. (2001), Quantitative analysis of the leakage of confidential

data, in ‘Proceedings of the Workshop on Quantitative Aspects of Programming Languages’,

Vol. 59 (3) of Electr. Notes Theor. Comput. Sci, Elsevier Science B.V., pp. 238–251.

Clark, D., Hunt, S. & Malacaria, P. (2005), Quantified interference for a while language, in

‘Proceedings of the Second Workshop on Quantitative Aspects of Programming Languages

(QAPL 2004)’, Vol. 112 of Electronic Notes in Theoretical Computer Science, Elsevier Science

B.V., pp. 149–166.

Clarkson, M. R., Myers, A. C. & Schneider, F. B. (2009), ‘Belief in information flow’, Journal of

Computer Security 17(5), 655–701.

Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, John Wiley & Sons, Inc.

Deng, Y., Palamidessi, C. & Pang, J. (2005), Compositional reasoning for probabilistic finite-

state behaviors, in A. Middeldorp, V. van Oostrom, F. van Raamsdonk & R. C. de Vrijer, eds,

‘Processes, Terms and Cycles: Steps on the Road to Infinity’, Vol. 3838 of Lecture Notes in

Computer Science, Springer, pp. 309–337. http://www.lix.polytechnique.fr/~catuscia/

papers/Yuxin/BookJW/par.pdf.

Deng, Y., Pang, J. & Wu, P. (2006), Measuring anonymity with relative entropy, in T. Dimitrakos,

F. Martinelli, P. Y. A. Ryan & S. A. Schneider, eds, ‘Proc. of the of the 4th Int. Worshop on

Formal Aspects in Security and Trust’, Vol. 4691 of LNCS, Springer, pp. 65–79.

Desharnais, J., Jagadeesan, R., Gupta, V. & Panangaden, P. (2002), The metric analogue of weak

bisimulation for probabilistic processes, in ‘Proceedings of the 17th Annual IEEE Symposium

on Logic in Computer Science’, IEEE Computer Society, pp. 413–422.

Dı́az, C., Seys, S., Claessens, J. & Preneel, B. (2002), Towards measuring anonymity, in R. Dingle-

dine & P. F. Syverson, eds, ‘Proceedings of the workshop on Privacy Enhancing Technologies

(PET) 2002’, Vol. 2482 of Lecture Notes in Computer Science, Springer, pp. 54–68.

Fujioka, A., Okamoto, T. & Ohta, K. (1993), A practical secret voting scheme for large scale

elections, in ‘ASIACRYPT ’92: Proceedings of the Workshop on the Theory and Application

of Cryptographic Techniques’, Springer-Verlag, London, UK, pp. 244–251.

Gray, III, J. W. (1991), Toward a mathematical foundation for information flow security, in

‘Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and

Privacy (SSP ’91)’, IEEE, Washington - Brussels - Tokyo, pp. 21–35.

Halpern, J. Y. & O’Neill, K. R. (2005), ‘Anonymity and information hiding in multiagent sys-

tems’, Journal of Computer Security 13(3), 483–512.

K. Chatzikokolakis, C. Palamidessi and C. Braun 26

Hamadou, S., Palamidessi, C. & Sassone, V. (2010), Reconciling belief and vulnerability in in-

formation flow, in ‘Proceedings of the 31st IEEE Symposium on Security and Privacy’, IEEE

Computer Society, pp. 79–92.

Herescu, O. M. & Palamidessi, C. (2000), Probabilistic asynchronous π-calculus, in J. Tiuryn,

ed., ‘Proceedings of FOSSACS 2000 (Part of ETAPS 2000)’, Vol. 1784 of Lecture Notes in

Computer Science, Springer, pp. 146–160. http://www.lix.polytechnique.fr/~catuscia/

papers/Prob_asy_pi/fossacs.ps.

Heusser, J. & Malacaria, P. (2009), Applied quantitative information flow and statistical

databases, in P. Degano & J. D. Guttman, eds, ‘Proceedings of the International Workshop

on Formal Aspects in Security and Trust’, Vol. 5983 of Lecture Notes in Computer Science,

Springer, pp. 96–110.

Köpf, B. & Basin, D. A. (2007), An information-theoretic model for adaptive side-channel attacks,

in P. Ning, S. D. C. di Vimercati & P. F. Syverson, eds, ‘Proceedings of the 2007 ACM

Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia,

USA, October 28-31, 2007’, ACM, pp. 286–296.

Lowe, G. (2002), Quantifying information flow, in ‘Proc. of CSFW 2002’, IEEE Computer Society

Press, pp. 18–31.

Malacaria, P. (2007), Assessing security threats of looping constructs, in M. Hofmann &

M. Felleisen, eds, ‘Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007’, ACM,

pp. 225–235.

Malacaria, P. & Chen, H. (2008), Lagrange multipliers and maximum information leakage in

different observational models, in Úlfar Erlingsson and Marco Pistoia, ed., ‘Proceedings of

the 2008 Workshop on Programming Languages and Analysis for Security (PLAS 2008)’,

ACM, Tucson, AZ, USA, pp. 135–146.

McIver, A., Meinicke, L. & Morgan, C. (2010), Compositional closure for bayes risk in probabilis-

tic noninterference, in S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide & P. G.

Spirakis, eds, ‘Proceedings of the 37th International Colloquium on Automata, Languages and

Programming (ICALP). Part II.’, Vol. 6199 of Lecture Notes in Computer Science, Springer,

pp. 223–235.

McLean, J. (1990), Security models and information flow, in ‘SSP’90’, IEEE, pp. 180–189.

Milner, R. (1989), Communication and Concurrency, International Series in Computer Science,

Prentice Hall.

Moskowitz, I. S., Newman, R. E. & Syverson, P. F. (2003a), Quasi-anonymous channels, in ‘Proc.

of CNIS’, IASTED, pp. 126–131.

Moskowitz, I. S., Newman, R. E., Crepeau, D. P. & Miller, A. R. (2003b), Covert channels

and anonymizing networks., in S. Jajodia, P. Samarati & P. F. Syverson, eds, ‘Workshop on

Privacy in the Electronic Society 2003’, ACM, pp. 79–88.

Palamidessi, C. & Herescu, O. M. (2005), ‘A randomized encoding of the π-calculus with mixed

choice’, Theoretical Computer Science 335(2-3), 373–404. http://www.lix.polytechnique.

fr/~catuscia/papers/prob_enc/report.pdf.

Reiter, M. K. & Rubin, A. D. (1998), ‘Crowds: anonymity for Web transactions’, ACM Trans-

actions on Information and System Security 1(1), 66–92.

Rényi, A. (1961), On Measures of Entropy and Information, in ‘Proceedings of the 4th Berkeley

Symposium on Mathematics, Statistics, and Probability’, pp. 547–561.

Segala, R. (1995), Modeling and Verification of Randomized Distributed Real-Time Systems,

PhD thesis. Tech. Rep. MIT/LCS/TR-676.

Compositional Methods for Information-Hiding 27

Segala, R. & Lynch, N. (1995), ‘Probabilistic simulations for probabilistic processes’, Nordic Jour-

nal of Computing 2(2), 250–273. An extended abstract appeared in Proceedings of CONCUR

’94, LNCS 836: 481-496.

Serjantov, A. & Danezis, G. (2002), Towards an information theoretic metric for anonymity.,

in R. Dingledine & P. F. Syverson, eds, ‘Proceedings of the workshop on Privacy Enhancing

Technologies (PET) 2002’, Vol. 2482 of Lecture Notes in Computer Science, Springer, pp. 41–

53.

Smith, G. (2009), On the foundations of quantitative information flow, in L. de Alfaro, ed., ‘Proc.

of the 12th Int. Conf. on Foundations of Software Science and Computation Structures’, Vol.

5504 of LNCS, Springer, York, UK, pp. 288–302.

Models and Emerging Trends of Concurrent
Constraint Programming ∗

Carlos Olarte† Camilo Rueda ‡ Frank D. Valencia §

June 2013

Abstract

Concurrent Constraint Programming (CCP) has been used over the last two
decades as an elegant and expressive model for concurrent systems. It models
systems of agents communicating by posting and querying partial information,
represented as constraints over the variables of the system. This covers a vast
variety of systems as those arising in biological phenomena, reactive systems, net-
centric computing and the advent of social networks and cloud computing. In this
paper we survey the main applications, developments and current trends of CCP.

1 Introduction
Concurrent Constraint Programming (CCP) [181, 186, 187] is a well-established for-
malism for concurrency based upon the shared-variables communication model. The
CCP model traces its origins back to the ideas of computing with constraints [142,
200, 202, 210], Concurrent Logic Programming [194, 123] and Constraint Logic Pro-
gramming (CLP) [134, 116, 117]. It was designed for giving programmers and models
explicit access to the concept of partial information, traditionally referred to as con-
straints. CCP is intended for reasoning, modeling and programming concurrent and
reactive agents (or processes) that interact with each other and their environment by
posting and asking information in a medium, a so-called store. The CCP formalism
enables a unified representation of agents: they can be seen as both computing pro-
cesses (behavioral imperative style) and as formulas in logic (logical declarative style).
Due to this dual view of processes, CCP can benefit from the development and mathe-
matical apparatus of well-established formalisms such as process calculi and logic. In
addition, it has been shown as a flexible and versatile framework where several variants
can be experimented with and validated.
∗Preprint of the paper: Carlos Olarte, Camilo Rueda, Frank D. Valencia: Models and emerging trends of

concurrent constraint programming. Constraints 18(4): 535-578 (2013)
†Pontificia Universidad Javeriana Cali, Colombia. carlosolarte@puj.edu.co
‡Pontificia Universidad Javeriana Cali, Colombia. crueda@puj.edu.co
§CNRS, LIX, École Polytechnique, France. frank.valencia@lix.polytechnique.fr

1

The CCP model has received a significant theoretical and implementational atten-
tion over the last two decades. In this survey, we shall provide a unified presentation
of the most important developments, applications and state of the art in CCP. We aim
at giving a broad perspective to the reader about the calculus, its variants, applications
and reasoning techniques, as well as recent trends in the area. We start by recalling
in Section 2.1 the notion of constraint system that makes CCP a flexible model able
to adapt to different application domains. Thereafter, Section 2.2 presents the core
language of CCP.

Similar to other mature models of concurrency, such as Petri nets [162, 170] and
process calculi [47, 19, 140], CCP has been extended also to capture the behavior of
different phenomena in emerging systems. Section 3 presents the developments of CCP
calculi in order to deal with: discrete and continuous time and asynchrony for reactive
systems; stochastic behavior for physical and biological systems; and linearity (con-
sumption of constraints) for imperative data structures. Furthermore, we shall show
the extensions of CCP to cope with: soft constraints where agents can express prefer-
ences; communication of local names or links (i.e. mobility) for net-centric computing
and protocols; and epistemic and spatial modalities for social networks and cloud com-
puting. In order to give a unified view of these developments, we shall use the same
notation of the core language in Section 2.2 that may marginally differ from the original
publications. We also present the operational semantics of the calculi and we follow a
simple running example to improve the understanding.

Section 4 is devoted to summarize different programming languages whose bases
are the CCP model and we also refer some implementations of interpreters for CCP
calculi. In Section 5 we show the applicability of CCP and its extensions to model
systems in a wide spectrum of scenarios including physical and reactive systems, bio-
logical phenomena, multimedia interaction, and net-centric computing.

An appealing feature of the concurrent constraint programming model is that it
offers a large set of reasoning techniques for studying the modeled systems. Such
techniques come from the theory of process calculi as well as from logic thanks to
the declarative reading of CCP agents as logical formulas. In Section 6 we describe
the elegant denotational semantics for CCP based on closure operators and the pro-
gram analysis techniques developed for the language. Furthermore, we summarize the
developments of logical characterizations of processes, inference systems and model
checking techniques for proving properties of CCP models. We also describe the cur-
rent efforts to endow CCP with bisimulation reasoning techniques as standardly done
in process calculi. Section 7 concludes the paper.

The reader may also refer [95], an article included in the book that celebrates the
25th anniversary of the Italian Association for Logic Programming (GULP) [68]. It
presents an overview of the contributions of the Italian research community to CCP.

2 Constraints and Agents
Concurrent Constraint Programming (CCP) [181, 186, 187] has emerged as a simple
but powerful paradigm for concurrency tied to logic. Under this paradigm, the con-
ception of store as valuation in the von Neumann model is replaced by the notion of

2

store as constraint, and processes are seen as information transducers. The CCP model
of computation makes use of ask and tell operations instead of the classical read and
write. An ask operation tests if a given piece of information (i.e., a constraint as in
x > 42) can be deduced from the store. A tell operation conjoins the store with a
new constraint to augment the information in it. This is a very general paradigm that
extends and subsumes both Concurrent Logic Programming [194, 123] and Constraint
Logic Programming [134, 116, 117].

A fundamental issue in CCP is then the specification of concurrent systems by
means of constraints that represent partial information about certain variables. The
state of the system is specified by the store (i.e., a constraint) that is monotonically
refined by adding new information.

In the spirit of process calculi [47, 19, 140], the language of processes in the CCP
model is given by a small number of primitive operators or combinators. A typical
CCP process language is equipped with the following operators:

• A tell operator adding a constraint to the store.

• An ask operator querying if a constraint can be deduced from the store.

• Parallel Composition combining processes concurrently.

• A hiding operator (also called restriction or locality) introducing local variables
and thus restricting the interface a process can use to interact with others.

Additionally, infinite computations can be described by means of recursion or repli-
cation as we shall see later.

Central to CCP is the notion of constraint system. Roughly, a constraint system
specifies the basic constraints agents can tell and ask during computation. This makes
the language parametric and hence, versatile to be used in different contexts. Next we
recall this idea to later introduce the language of CCP processes.

2.1 Constraint Systems
CCP calculi are parametric in a constraint system. A constraint system provides a sig-
nature from which the constraints can be constructed as well as an entailment relation,
notation `, specifying inter-dependencies between these constraints. Recall that a con-
straint represents a piece of information (or partial information) upon which processes
may act.

In the literature, the notion of constraint system has been set up in two alternative
ways: 1) in terms of Scott’s information systems [193] without consistency structure
as in [187] and 2) as first-order logic (FOL) formulas as in [180, 195]. In the following
we explain these two formulations.

2.1.1 Cylindric Constraint Systems

Processes in CCP can add constraints that lead to an inconsistent store. Therefore, it is
necessary to represent the possibility of inconsistent information. Constraint systems
in this approach are then formalized as algebraic structures with operators to express

3

conjunction of constraints, absence of information, inconsistent information, hiding of
information and parameter passing. More precisely, following the presentation in [41]:

Definition 1 (Constraint System) A cylindric constraint system is a structure C =
〈C,≤,t,true,false,Var ,∃, D〉 such that

• 〈C,≤,t,true,false〉 is a lattice with t the lub operation (representing the
logical and), and true, false the least and the greatest elements in C, respec-
tively. Elements in C are called constraints with typical elements c, d....

• Var is a denumerable set of variables and for each x ∈ Var the function ∃x :
C → C is a cylindrification operator satisfying: (1) ∃x(c) ≤ c; (2) if c ≤ d
then ∃x(c) ≤ ∃x(d); (3) ∃x(c t ∃x(d)) = ∃x(c) t ∃x(d); and (4) ∃x∃y(c) =
∃y∃x(c).

• For each x, y ∈ Var , dxy ∈ D is a diagonal element and it satisfies: (1) dxx =
true; (2) if z is different from x, y then dxy = ∃z(dxz t dzy) and (3) If x is
different from y then c ≤ dxy t ∃x(c t dxy).

The concepts of cylindrification operators and diagonal elements were borrowed
from the theory of cylindric algebras [110]. The cylindrification operator models a sort
of existential quantification, helpful for defining the CCP hiding (local) operator and it
is assumed to be a continuous function [187, 41]. The diagonal elements are useful to
model parameter passing in procedure calls The constraint dxy can be thought of as the
equality x = y.

The entailment relation (`) is the reverse of the ordering ≤, i.e., we say that d
entails c iff c ≤ d and we write d ` c. For operational reasons ` is often required to
be decidable. The entailment relation is defined in [187] only on the compact elements
of C (finite sets of tokens, or basic constraints) while this restriction is not required
in [41]. Nevertheless, in both cases, processes are only allowed to ask and tell basic
(finite) constraints.

2.1.2 Constraint System as FOL formulas

The notion of constraint system as first order logic (FOL) formulas can be seen as an
instance of the previous definition. It gives a logical flavor that has found widespread
use in the literature (see e.g., [195, 77, 153, 157]).

Definition 2 (Constraint System as FOL formulas) A constraint system is a pair (Σ,∆)
where Σ is a signature of constant, function and predicate symbols, and ∆ is a first or-
der theory over Σ (i.e., a set of non-logical axioms). Let L be the underlying first-order
language under Σ with variables x, y, . . ., and logic symbols ∧,∃,true and false.
Constraints are first-order formulas over L.

Under this definition, we say that c entails d iff the implication c⇒ d is true in all
models of ∆. In the rest of the paper, for the sake of presentation, we shall make use
only of this definition of constraint system.

Other realizations of constraint systems have given rise to CCP idioms. For in-
stance, constraints as Girard’s linear logic [97] formulas allowed to develop the theory

4

of linear CCP [77] where agents can consume information from the store. Semiring-
based constraints [25] allowed to define Soft Concurrent Constraint Programming [29]
where agents can post and ask soft constraints in order to express preferences, fuzzi-
ness, probabilities, etc. Moreover, by adding space functions into the structure of the
constraint system, CCP calculi devised for epistemic and spatial reasoning where stud-
ied in [124]. We will come back to these definitions in Section 3 where we give an
account of different CCP-based calculi.

2.1.3 Examples of Constraint Systems

Let P be a process modeling a temperature controller. Hence, P may have to deal
with partial information such as tsensor > 42 expressing that the sensor registers an
unknown (or not precisely determined) temperature value above 42. Furthermore, P
may query if tsensor > 0. Then, the constraint system must provide an entailment
relation to assert that this information can be inferred, for instance, from the informa-
tion tsensor > 42 (i.e., tsensor > 42 ` tsensor > 0). In order to deal with such
type of constraints, one can consider the finite domain constraint system (FD) [111].
FD variables are assumed to range over finite domains and, in addition to equality, one
may have predicates that restrict the possible values of a variable to some finite set.

Another example is the Herbrand constraint system [187] underlying logic pro-
gramming where a first-order language with equality is assumed. The entailment rela-
tion is the one we expect from equality, for instance, f(x, y) = f(a, g(z)) must entail
x = a and y = g(z).

The reader may find in [187] more examples of constraint systems such as the Kahn
Constraint System underlying data-flow languages and the Rational Interval Constraint
System. We also point to [65] and [149] that describe, respectively, an implementation
of a real interval constraint system and a constraint system to deal with finite sets.
Modern constraint solvers as Gecode (http://www.gecode.org/) can indeed be
used as basis for the implementation of interpreters for CCP languages (see Section
4.7).

2.2 The Language of CCP Processes
Now that we have set up the notion of constraint system, we are ready to define the
language of processes. By using the notation in [153]:

Definition 3 (Syntax of CCP [187]) Processes P,Q, . . . in CCP are built from con-
straints in the underlying constraint system by the following syntax:

P,Q := skip | tell(c) | when c do P | P ‖ Q | (localx; c)P | q(x)

The process skip does nothing and represents inaction. The process tell(c) adds
the constraint c to the store. The process when c do P asks if c can be deduced
from the store. If so, it behaves as P . In other case, it waits until the store contains at
least as much information as c. This way, ask agents define a powerful synchronization
mechanism based on entailment of constraints.

5

The parallel composition of the processes P and Q is represented as P ‖ Q. The
process (localx; c)P behaves like P , except that all the information on the variables
x produced by P (represented as c) can only be seen by P and the information on x
produced by other processes cannot be seen by P . In fact, what the other processes can
observe from c is ∃x(c) and what P can observe from the store d is ∃x(d). If there is
no local information (i.e., c = true), it is customary to write (localx)P instead of
(localx;true)P .

The process q(y) is an identifier with arity |y|. We assume that every such an identi-
fier has a unique (recursive) definition of the form q(x)

def
= Qwhere x are pairwise dis-

tinct and |x| = |y|. Then, q(y) behaves asQ[y/x]. The processQ[y/x] is actually mod-
eled, with the help of diagonal elements, as ∆y

x = (local z; dyz) (localx; dxz) (Q)
where dxy is the constraint

⊔
i∈1...|x| dxiyi .

2.3 Operational Semantics
The structural operational semantics (SOS) of CCP can be described by means of con-
figurations of the form 〈P, c〉 where P is a process and c represents the current store.
Then, a transition of the form 〈P, c〉 −→ 〈P ′, c′〉 dictates that P under the store c
evolves into P ′ and produces the store c′. Remember that processes in CCP can only
add information. Then, by monotonicity, it must be the case that c′ ` c. Figure 1 shows
the SOS for the CCP processes in Definition 3.

Let us explain the Rule RL as it may seem somewhat complex. Consider the pro-
cess Q = (localx; c)P . The global store is d and the local store is c. We distinguish
between the external (corresponding toQ) and the internal points of view (correspond-
ing to P). From the internal point of view, the information about x, possibly appearing
in the “global” store d, cannot be observed. Thus, before reducing P we first hide the
information about x thatQmay have in d by existentially quantifying x in d. Similarly,
from the external point of view, the observable information about x that the reduction
of internal agent P may produce (i.e., c′) cannot be observed. Thus we hide it by exis-
tentially quantifying x in c′ before adding it to the global store. Additionally, we make
c′ the new private store of the evolution of the internal process.

The semantics of the local operator can also be given by using fresh variables, i.e.,
variables that do not appear elsewhere in the processes as in [138, 77, 105]. In this
case, configurations are augmented with a set of eigenvariables.

Observe that parallel composition is defined above in terms of two rules, noted RPL

and RPR. It is also possible to define parallel composition with a single rule: this is
done by internalizing into the semantics a structural congruence relation which equates
processes with minor syntactic differences, such as P ‖ Q and Q ‖ P (see e.g., [153]).

An observable (or output) of a process P under input c is then a constraint d such
that 〈P, c〉 −→∗ 〈P ′, d〉 6−→ where −→∗ is the transitive and reflexive closure of the
relation −→. Depending on the semantic framework, one may be interested only in
finite computations and/or the limit of infinite ones [187, 41].

We conclude this section with the well known example of concatenation of lists
written in CCP taken from [187]:

6

RT 〈tell(c), d〉 −→ 〈skip, d ∧ c〉

RA
d ` c

〈when c do P, d〉 −→ 〈P, d〉

RPL

〈P, c〉 −→ 〈P ′, d〉
〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

RPR

〈Q, c〉 −→ 〈Q′, d〉
〈P ‖ Q, c〉 −→ 〈P ‖ Q′, d〉

RL

〈P, c ∧ (∃xd)〉 −→ 〈P ′, c′ ∧ (∃xd)〉
〈(localx; c)P, d〉 −→ 〈(localx; c′)P ′, d ∧ ∃xc′〉

RC

q(x)
def
= Q is a process definition
〈q(y), c〉 −→ 〈Q[y/x], c〉

Figure 1: Operational semantics for the CCP language in Definition 3.

Example 1 (Append) Assume the Herbrand constraint system where constraints are
existentially quantified conjunctions of equations over a given set of terms (e.g., L = []
represents that L is the empty list and ∃x∃y(L = [x | y]) that L is a list with head x
and tail y). The process below concatenates the lists L1 and L2 into L3:

append(L1, L2, L3)
def
= when L1 = [] do tell(L3 = L2) ‖

when ∃x∃y(L1 = [x | y]) do (localx, y, z) (
tell(L1 = [x | y]) ‖ tell(L3 = [x | z]) ‖ append(y, L2, z))

2.4 Non-determinism
Non-determinism arises in CCP by introducing guarded choices.

Definition 4 (Non-deterministic CCP [187]) Non-determinism is obtained by replac-
ing the ask operator when c do P with the guarded choice

∑
i∈I

when ci do Pi where

I is a finite set of indexes.

The process
∑
i∈I

when ci do Pi non-deterministically chooses one of the Pj whose

corresponding guard (constraint) cj is entailed by the store. The chosen alternative, if
any, precludes the others. If no choice is possible then the summation remains blocked
until more information is added to the store:

RSUM

d ` cj j ∈ I
〈∑
i∈I

when ci do Pi, d〉 → 〈Pj , d〉

7

Example 2 (Consumer-producer streams) Let append be as in the Example 1 and
assume the following process definitions

proda(x)
def
= when true do (localx′) (tell(x = [a|x′]) ‖ proda(x′)) +

when true do x = []

prodb(x)
def
= when true do (localx′) (tell(x = [b|x′]) ‖ prodb(x′)) +

when true do x = []

The process proda(x) ‖ prodb(y) ‖ append(x, y, z) binds x and y to a (possibly
infinite) list of a’s and b’s respectively and z to the concatenation of x and y.

3 Constraint-Based Concurrent Calculi
Several extensions of the CCP model have been studied in order to provide frameworks
for the programming, specification and verification of systems with the declarative
flavor of concurrent constraint programming. This section is devoted to describe these
developments.

3.1 Timed Concurrent Constraint Programming
Reactive systems [20, 107] are those that react continuously with their environment at
a rate controlled by the environment. For example, a controller or a signal-processing
system, receives a stimulus (input) from the environment, computes an output and then
waits for the next interaction with the environment.

In CCP, the shared store of constraints grows monotonically, i.e., agents cannot
drop information (constraints) from it. Then, a system that changes the state of a signal
(i.e., the value of a variable) cannot be straightforwardly modeled: the conjunction of
the constraints “signal = on” and “signal = off ” leads to an inconsistent store 1.

Timed CCP (tcc) [182] extends CCP for reactive systems and elegantly combines
CCP with ideas from the paradigm of Synchronous Languages [20]. Time in tcc is
conceptually divided into time intervals (or time-units). In a particular time interval,
a CCP process P gets an input c from the environment, it executes with this input as
the initial store, and when it reaches its resting point, it outputs the resulting store d to
the environment. The resting point determines also a residual process Q that is then
executed in the next time-unit. The resulting store d is not automatically transferred to
the next time-unit. This way, computations during a time-unit proceed monotonically
but outputs of two different time-units are not supposed to be related. Therefore, the
variable signal in the example above may change its value when passing from one
time-unit to the next one.

This view of reactive computation is particularly appropriate for programming re-
active systems such as robotic devices and micro-controllers. These systems typically
operate in a cyclic fashion, i.e., in each cycle they receive an input from the environ-
ment, compute on this input, and then return the corresponding output to the environ-
ment.

1It is possible however to make use of streams to represent changes in the value of a variable.

8

The tcc calculus extends the language of CCP processes with constructs that: (1)
delay the execution of a process; and (2) time-out (or weak pre-emption) operations
that wait during the current time interval for a given piece of information to be present,
if it is not, they trigger a process in the next time interval.

Definition 5 (Deterministic tcc [182]) The syntax of tcc is obtained by adding to
Definition 3 the processes nextP and unless c nextP .

The process nextP delays the execution of P to the next time interval. The time-
out unless c nextP is also a unit-delay, but P is executed in the next time-unit only
if c is not entailed by the final store at the current time interval. Notice that, in general,
P = unless c nextR is not the same asQ = when¬c do nextR. Take for instance
x = 1 as the constraint c. From the store true, one cannot deduce neither x = 1 nor
x 6= 1. In this particular case, the process P executes R (provided that the final store
is true) while Q remains blocked.

In tcc, recursive calls must be guarded by a next operator to avoid infinite com-
putations during a time-unit. If the temporal language does not consider recursive
definitions, it is customary to add the replication !P in order to give processes the
possibility to be executed in infinitely many time-units. The replication !P means
P ‖ nextP ‖ next2P ‖ . . ., i.e., unboundedly many copies of P but one at a time.
The reader may refer to [152] for a detailed account of the expressiveness power of
temporal CCP languages with and without recursion and replication.

In spite of its simplicity, the tcc extension to CCP is far-reaching. Many inter-
esting temporal constructs can be expressed as it is shown in [182]. As an example,
tcc allows processes to be “clocked” by other processes. This provides meaningful
pre-emption constructs and the ability of defining multiple forms of time instead of
only having a unique global clock.

The SOS of tcc considers internal and observable transitions. The internal tran-
sitions are similar to those in Figure 1 and correspond to the operational steps that take
place during a time-unit. As for the timed operators, the unless process evolves into
skip if its guard can be entailed from the current store:

RU
d ` c

〈unless c next P, d〉 −→ 〈skip, d〉
The seemingly missing rule for the next operator will be clarified soon.

The observable transition P
(c,d)

====⇒ Q should be read as “P on input c, reduces
in one time-unit to Q and outputs d”. The observable transitions are obtained from

finite sequences of internal ones, i.e., P
(c,d)

====⇒ Q whenever 〈P, c〉 −→∗ 〈R, d〉 6−→.
The process Q (the continuation for the next time-unit) is obtained from:

F (R) =

skip if R = skip or R = when c do R′

F (R1) ‖ F (R2) if R = R1 ‖ R2

(localx)F (R′) if P = (localx; c)R′

Q if R = nextR′ or R = unless c nextR′

The function F (R) (the future of R) unfolds next and unless expressions. Notice that
an ask process reduces to skip if its guard was not entailed by the final store d. Notice

9

also that F is not defined for tell(c), !Q or p(x) processes since they must occur within
a next or unless expression.

3.1.1 Strong Pre-Emption in Timed CCP

Modeling some systems may require detecting negative information (i.e., the absence
of information) and react instantaneously. Take for instance a process P that needs
to be aborted to immediately start a process Q when a specific event occurs. This is
usually called pre-emption of P . The work in [183] introduces the notion of strong
pre-emption in tcc: on the absence of a constraint, time-out operations can trigger
activity in the current time interval rather than delaying it to the next interaction with
the environment as in tcc. Borrowing ideas from default logics [171], Default tcc is
defined as follows:

Definition 6 (Default tcc [183]) The syntax of Default tcc is obtained by adding to
Definition 5 the constructor when c else P .

Unlike unless c nextP in tcc, the process when c else P reduces to P at the
present time instant if c has not been produced in the store, and will not be produced
throughout system execution. The transition system is then parametrized with a con-
straint e, representing the final “guess” that is used to evaluate defaults:

d ` c
〈when c else P, d〉 −→e 〈skip, d〉

RDA
e 6` c

〈when c else P, d〉 −→e 〈P, d〉
RDA′

Example 3 (Default values for variables [183]) The following program:

default(x, v)
def
= when x 6= v else x = v

sets the value of x to be v unless the current value of x is different from v.

3.1.2 Non-Determinism and Asynchrony in tcc

The notion of non-determinism and asynchrony is ubiquitous in concurrent systems.
As for non-determinism, a system may exhibit different behaviors when reacting to the
same input. As for asynchrony, we may have processes that occur at some point in the
future time but we do not know exactly when as in a failure model for a component that
is doomed to fail. The ntcc calculus [153] extends tcc by adding guarded-choices
for modeling non-deterministic behavior and an unbounded finite-delay operator for
asynchronous behavior. Computation in this language progresses as in tcc, except for
the non-determinism induced by the new constructs:

Definition 7 (ntcc Processes [153]) The ntcc processes result from adding to the
syntax in Definition 5 two constructs,

∑
i∈I

when ci do Pi and ?P .

The guarded-choice is similar to that in Definition 4. The operator “?” corresponds
to the unbounded but finite delay operator ε for synchronous CCS [139] and it allows

10

to express asynchronous behavior through the time intervals. Intuitively, the process
?P represents P + nextP + next 2P + ..., i.e., an arbitrary long but finite delay for
the activation of P :

RS
n ≥ 0

〈?P, d〉 → 〈next nP, d〉

Example 4 (Controller for a Robot) Assume a controller for a robot where the envi-
ronment sends signals when the device has to turn. Let

TurnR
def
= when dir = N do next tell(dir = E) +when dir = E do next tell(dir = S)+

when dir = S do next tell(dir = W) +when dir = W do next tell(dir = N)

be a process that changes in the next time-unit the value of dir according to its current
value. The process TurnL can be defined similarly. The process below specifies that
the robot turns left or right when the environment provides the signal turn:

Robot
def
= nextRobot ‖ when turn do TurnR + when turn do TurnL ‖∑

i∈{N,E,S,W}
when dir = i do unless turn next dir = i

The summation above specifies that the direction in the next time-unit is the same as in
the current one unless the constraint turn can be deduced.

3.1.3 The tccp Language

In the tcc and ntcc models of computation, stores are not automatically transferred
to the next time-unit. Therefore, the store is monotonically refined in each time-unit
but outputs of two different time-units are not supposed to be related to each other. The
tccp process calculus [34] is an orthogonal timed non-deterministic extension of CCP.
In this language, time is identified with the time needed to ask and tell information to
the store. Furthermore, unlike tcc, the information in the store is carried through the
time-units. Then, streams are used in tccp to model the evolution of variable values
along the time.

Definition 8 (tccp Processes [34]) The syntax of tccp is obtained by adding the
construct when c then P else Q to the language in Definition 4.

The tccp calculus introduces a discrete global clock and assumes that ask and tell
actions take one time-unit. Computation evolves in steps of one time-unit, so called
clock-cycles, that are syntactically separated by action prefixing. Moreover, maximal
parallelism is assumed, that is, at each moment every enabled agent of the system is
activated:

RP

〈P1, c〉 −→ 〈P ′1, c1〉 〈P2, c〉 −→ 〈P ′2, c2〉
〈P1 ‖ P2, c〉 −→ 〈P ′1 ‖ P ′2, c1 ∧ c2〉

Let P = when c then Q else R. This process queries if c can be deduced from
the current store. If so, Q is executed. Otherwise, unlike the unless process in tcc,

11

P reduces to R instantaneously:

RNE

〈Q, d〉 −→ 〈Q′, d′〉 d ` c
〈when c then Q else R, d〉 −→ 〈Q′, d′〉

R′NE

〈R, d〉 −→ 〈R′, d′〉 d 6` c
〈when c then Q else R, d〉 −→ 〈R′, d′〉

Analogous rules are given when Q and R cannot evolve on the store d.

Example 5 (Time-outs) Assume now that the controller in Example 4 must emit the
signal stop when the environment does not provide the signal turn after n time-
units. This can be done by defining inductively

∑
i∈I

when ci do Pi time-out(m) Q

that behaves as Q if after m time-units none of the guards ci can be entailed. Let
P =

∑
i∈I

when ci do Pi. When m = 0, the time-out constructor is defined as

when c1 then P else when c2 then P else ...when cn then P else Q

As for m > 0, we have:
∑

i∈I
when ci do Pi time-out(m) (

∑

i∈I
when ci do Pi time-out(m− 1) Q)

In our particular case, I is a singleton, ci = turn, m = n and Q = tell(stop).

tccp programs usually require to perform arithmetic calculations in order to out-
put a signal to the environment. Even though the underlying constraint system may
support some basic arithmetic, it is not realistic to assume that it implements any com-
putable function. One may think of implementing such functions as tccp processes.
Nevertheless, these computations would consume an unspecified amount of time-units,
making the synchronization of processes more difficult. In [4], tccp is extended to
consider external functions written in a functional language. Processes can evaluate
instantaneously a function by means of an external implementation, thus avoiding the
burden of computing it as a tccp process.

3.1.4 Continuous Time in CCP

The Hybrid concurrent constraint programming model, Hybrid cc (hcc) [101], is a
calculus that can express discrete and continuous evolution of time. More precisely,
there are points at which discontinuous change may occur (i.e. the execution proceeds
as a burst of activity) and open intervals in which the state of the system changes
continuously (i.e. the system evolves continuously and autonomously).

In hcc the notion of constraint system is extended with differential equations and
the entailment relation is defined in order to solve initial value problems. Hence,
continuous constraint systems allows for describing the continuous evolution of time.
For instance, the constraint init(x = 0) means that the initial value of x is 0 and
cont(dot(x) = 1) that the first derivative of x is 1. Then, it is possible to infer that
x = t in time t.

12

Definition 9 (hcc Processes [101]) The hcc processes result from adding to the syn-
tax in Definition 6 the construct hence P .

The constructor hence P specifies a process where P holds continuously beyond
the current instant. Therefore, if hence P is invoked at time t, a copy of P is created
at each time in the time interval (t,∞). In combination with the other constructs in
Default tcc, various patterns of temporal activity can be generated.

Example 6 (Controlling the speed of the robot) Assume that the variable v controls
the speed of the robot in Example 4. The following process reduces the speed of the
robot when it receives the signal stop:

speed-control def
= when stop do hence when v > 0 do tell(cont(dot(v) = −1))

The reader can find in [99] a survey of the developments of the temporal extensions
of tcc, Default tcc and hcc and the relationships between their semantic models.
We also point the reader to [189] where a CCP calculus based on the notion of real
time is proposed. The rtcc calculus allows to deal with strong preemption and delay
declarations in the lines of ntcc. Furthermore, the transition system is extended to
specify true concurrency and the resources that processes require to be executed.

3.2 Probabilistic Behavior
Non-deterministic choices in a model leave completely unspecified the way the system
may react to a given input. In some cases, models can be refined when information
about the propensity of an action to occur is available. For instance, we could have
information about the probability of a system component to fail. In [100] a probabilis-
tic model for CCP and tcc is studied where random variables with a given probability
distribution are introduced. The resulting languages, probabilistic CCP and probabilis-
tic tcc (pcc, ptcc), allow programs to make stochastic moves during execution, so
that they may be seen as stochastic processes.

Definition 10 (Probabilistic CCP and tcc [100]) The syntax of pcc (resp. ptcc)
are obtained by adding to Definition 3 (resp. 5) the constructor new (x, f) in P
where x is a variable and f is its probability mass function.

The constructor introduced above chooses a value for x according to f :

RPROB

f(r) > 0 y is a fresh variable
〈new (x, f) in P, d〉 −→ 〈P [y/x], d ∧ y = r〉

Example 7 (Random Zigzag) Assume that the robot in Example 4 takes autonomously
the decision of turning right or left:

choice
def
= new (x, f : f(0) = f(1) = 0.25, f(2) = 0.5) in

when x = 0 do TurnR ‖ when x = 1 do TurnL

The agent above with a probability of 0.25 calls the procedure TurnR. Similarly for
TurnL. Moreover, with a probability of 0.5, the directions does not change.

13

An interesting feature of pcc is the use of constraints to add information about
random variables. This can be used to declaratively modify the probabilities of the
possible execution paths as the following example shows.

Example 8 (Random Zigzag Revisited) Consider the process

choice
def
= new (x, f : f(0) = f(1) = 0.25, f(2) = 0.5) in tell(x ∈ {0, 1}) ‖

when x = 0 do TurnR ‖ when x = 1 do TurnL

Here we restrict the variable x to take a value in the set {0, 1}. Then, the choice x = 2
is precluded and, normalizing f , we observe the calls TurnL and TurnR with the
same probability of 0.5.

The results of [100] are extended in [98] where pcc processes with recursion are
considered. The authors show that due to the combination of probabilities and con-
straints (as in Example 8), the interpretations of procedure calls are not necessarily
monotonic and then, the semantics cannot be compositional. The authors extend the
operational semantics with labels indicating the needed constraint to perform a transi-
tion and a denotational semantics based on weak bisimulation on such transition system
is shown to be a congruence. The works in [161, 44, 9] study also stochastic exten-
sions for CCP. Although the calculi developed in those works differ in the constructs
provided and the semantic treatment, all of them aim at representing the stochastic na-
ture of the modeled system. The semantics of probabilistic extensions of CCP has been
also studied in [164, 165]. Furthermore, a framework for the analysis of probabilistic
programs is developed in [166].

3.3 Linear Concurrent Constraint Programming
Linear CCP (lcc) [179, 77, 22, 23, 105] is a variant of CCP where constraints are built
from a linear constraint system based on Girard’s intuitionistic linear logic (ILL) [97].

Definition 11 (Linear Constraint Systems [77]) A linear cs is a pair (C,`) where C
is a set of formulas (linear constraints) built from a signature Σ, a denumerable set of
variables V and the following ILL operators: multiplicative conjunction (⊗) and its
neutral element (1), the existential quantifier (∃) and the exponential bang (!). Let ∆
be a (possibly empty) subset of C × C defining the non-logical axioms of the constraint
system (i.e, a theory). Then the entailment relation ` is the least set containing ∆ and
closed by the rules of ILL.

The bang connective allows to recover the classical constraint system by writing all
constraints preceded by “! ”.

The language of lcc processes is similar to that of CCP but variables in ask agents
can be universally quantified.

Definition 12 (Linear CCP [77]) Processes in lcc are built from constraints in a lin-
ear constraint system and the syntax in Definition 4 where ask agents are of the form
∀x(when ci do Pi).

14

The linear tell operator tell(c) augments the current store d to d⊗ c. Furthermore,
the linear ask when c do P evolves into P whenever there exists e s.t. d entails c⊗ e.
When this happens, the constraint c is consumed:

RLA

d ` c[t/x]⊗ d′
〈∀x(when c do P), d〉 −→ 〈P [t/x], d′〉

Due to the removal of information, lcc is intrinsically non-deterministic and the con-
straint d′ above has to be carefully chosen to avoid the unwanted weakening of the store
as in !c ` c [106, 137, 105]. Nevertheless, since lcc is not monotonic (in the sense that
the information in the store can be dropped), this model introduces some forms of im-
perative programming particularly useful for reactive systems. For instance, imperative
data structures are encoded directly with linear constraints instead of streams.

Example 9 (Access Permissions) Assume a constraint system with the constant sym-
bols unq (unique) and shr (share) and with the ternary predicate acc(x, r, p) (agent
x is currently accessing the resource r with permission p ∈ {unq,shr}). Assume
also that the constraint system is equipped with the axiom ∆ = acc(x, r,unq) `
acc(x, r,shr). In words, if x makes use of r with permission unq, it can downgrade
this permission to shr. Let R = P ‖ Q where

P = tell(acc(x, r,unq)) Q = ∀y(when acc(x, y,shr) do Q′)

Roughly speaking, P adds to the store the information required to state that x uses r
and has a unique permission on it. Thereafter, Q consumes this information (by using
∆), leading to the store > (i.e., x has no longer access to r) where the agent Q′[r/y]
is executed.

3.4 Soft Concurrent Constraint Programming
Soft constraints [25, 30] have been introduced in constraint programming in order to
deal with different levels of consistency. The framework of semiring-based constraints
[25] gives a general setting where, according to an algebraic structure, it is possible to
represent preferences, fuzziness, probabilities and uncertainty in constraint satisfaction
problems (CSP).

The authors in [29] propose Soft Concurrent Constraint Programming (scc). The
key idea is to replace the (crisp) constraint system in Definition 1 by a semiring-based
constraint system. Let us first recall the notion of c-semirings.

Definition 13 (C-Semiring [25]) A semiring is a tuple 〈A,+,×, 0, 1〉 where (1) A is
a set and 0, 1 ∈ A. (2) + is commutative, associative and 0 is its unit element. (3) ×
is associative, distributes over +, 1 is its unit element and 0 is its absorbing element.
A c-semiring is a semiring such that + is idempotent, 1 is its absorbing element and ×
is commutative.

Intuitively, + is the lub operator and it is used to choose the best constraint: a ≤ b
iff a + b = b. The × operator allows for combining constraints. Here it is important
to notice that combining more constraints leads to a worse level of consistency, that is,

15

c × c′ ≤ c unlike in Definition 1 where c ≤ c t c′ (i.e., c t c′ ` c). As an example,
fuzzy constraint satisfaction problems [69] can be modeled and solved by using the
c-semirings 〈[0, 1],max,min, 0, 1〉.

By defining suitable operations on the semiring, it is possible to define a cylindric
algebra leading to a soft constraint system as shown in [29]. Then, CCP agents can tell
and ask soft constraints. Furthermore, such agents can define thresholds that express
the level of consistency of the store. This allows the programmer to specify that an
action (tell or ask) is executed only if it does not decrease the consistency level to a
given lower bound.

3.4.1 Timed Soft Concurrent Constraint Programming

Following the approach of tccp, a timed extension of scc (stcc) was proposed in
[28]. As in tccp, action-prefixing in stcc is interpreted as the next-time operator and
the parallel execution of agents follows the scheduling policy of maximal parallelism.

Definition 14 (stcc Processes [28]) Agents in stcc are built from:

P,Q := skip | tell(c) P | ∑
i∈I

when ci Pi | P ‖ Q | (localx; c)P | q(x)

whenΦ c then P else Q | whena c then P else Q

Here, can be either→Φ or→a where a is a semiring element and Φ a constraint.

Intuitively, the semiring value a and the constraint Φ are used as a cut level to prune
branches of computation that are not satisfactory. For instance, the process tell(c)→a

P adds c to the current store d, if the conjunction (based on the × operator of the
semiring) of d and c is better (with respect to +) than a.

Example 10 (Bounded Zigzag) Let us choose the Fuzzy c-semiring and assume now
that the robot in Example 7 zigzags according to preferences:

choice
def
= when true →0.1 TurnR+when true →0.3 TurnL+

when true → skip

The process above can always do nothing (skip) and then, the direction of the robot
remains the same. Moreover, assume that each time it turns left or right, we add a con-
straints and a penalization (in terms of the semiring value) is paid. Then, the number
of times the robot chooses to turn is confined according to the thresholds 0.1 and 0.3.

3.5 Mobile Behavior
Process calculi such as the π-calculus [140] allow to specify mobile systems, i.e., sys-
tems where agents can communicate their local names. Unlike the π-calculus (that is
based on point-to-point communication), interaction in CCP is asynchronous as com-
munication takes place thorough the shared store. In the CCP model it is possible to
specify mobility in the sense of reconfiguration of the communication structure of the
program. This can be done by using logical variables that represent communication
channels and unification to bind messages to channels [181]. Since logical variables

16

can be bound to a value only once, if two messages are sent through the same channel,
then they must be equal to avoid an inconsistent store. This problem was addressed
in [127] by considering atomic tells where the constraint c in tell(c) is added to the
store d if the conjunction c ∧ d is consistent. Channels are then represented as impera-
tive style variables by binding them to streams. Therefore, a protocol is required since
messages must compete for a position in such a stream.

The following two sections describe two alternative approaches to endow CCP with
mechanisms to communicate private channels or links.

3.5.1 The cc-pi Calculus

The cc-pi calculus [50] results from the combination of the CCP model with a name-
passing calculi. More precisely, cc-pi extends CCP by adding synchronous commu-
nication and by providing a treatment of names in terms of restriction and structural
axioms closer to nominal calculi than to variables with existential quantification.

Definition 15 (cc-pi Processes [50]) Processes in cc-pi are built from c-semiring
based constraints as follows:

P,Q := skip | P ‖ Q | ∑
i∈I

πi.Pi | (localx; c)P | p(x)

π := τ | x〈ỹ〉 | x(ỹ) | tell(c) | when c | retract c | check c

In this calculus, tell and ask actions are prefixing much like in stcc. The name passing
discipline of cc-pi is reminiscent to that in the pi-F calculus [211] whose synchro-
nization mechanism is global and, instead of binding formal names to actual names, it
yields explicit fusions, i.e., simple constraints expressing name equalities.

Example 11 (Name passing) Assume two components P and Q of a system such that
P creates a local variable that must be shared with Q. This system can be modeled as:

P = (local y) (x̄〈y〉.P ′) Q = x〈z〉.Q′

In P ‖ Q, P sends the private name y on channel x and synchronizes with Q leading
to (localx) (P ′ ‖ Q′ ‖ tell(y = z)).

Similar to the non-monotonic extension of scc reported in [31], cc-pi also intro-
duces retraction of constraints (retract c) whose effect is to erase a previously told
constraints. Furthermore, it is possible to check if a given constraint c is consistent
with the current store though the prefix check c.

Another line of development in this direction was the π+-calculus [66]. This lan-
guage is an extension of the π-calculus [140] with constraint agents that can perform
tell and ask actions. Similarly as in cc-pi, mobility of π+comes from the operands
inherited from the π-calculus.

3.5.2 Universal Timed CCP

Universal Timed CCP (utcc) was proposed in [158] as an orthogonal extension of
tcc for the specification of mobile reactive systems as security protocols. Basically,

17

utcc replaces the ask operation when c do P by a parametric ask constructor of the
form (abs x; c)P . This process can be viewed as an abstraction of the process P on
the variables x under the constraint (or with the guard) c.

Definition 16 (utcc Processes [158]) The utcc processes result from replacing in
the syntax in Definition 5 the expression when c do P with (abs x; c)P where vari-
ables in x are pairwise distinct.

Operationally, (abs x; c)P executes P [t/x] in the current time interval for all the
terms t s.t c[t/x] is entailed by the current store. This construct is akin to replicated
asks in lcc that can replace process declarations [106, 105].

Example 12 (Mobile behavior in utcc) Assume an uninterpreted binary predicate
out. The system in Example 11 can be specified in utcc as:

P = (local y) (tell(out(x, y)) ‖ P ′) Q = (abs z;out(x, z))Q′

The SOS of utcc dictates that the process above evolves into (localx) (P ′ ‖ Q′[y/z])
where P ′ and Q′ share the local variable y created by P . Then, any information
produced by P ′ on y can be seen by Q′ and viceversa.

The reader may also refer [172] where CCP is endowed with an asynchronous
message-based communication mechanism to model distributed systems. Agents can
then communicate messages by using send and receive primitives. The work in [96]
defines a model of process mobility for CCP. In this context, localities (or sites) are
defined and agents are allowed to have their own local store. Sites are organized in a
hierarchical way and then, it is possible for an agent to have sub-agents. A primitive
migrate is added to the calculus in order to allow processes to move to another location
and carry their local store. A distributed and probabilistic extension of CCP where a
network of computational nodes, each of them with their own local store, is studied in
[45]. Nodes can send and receive through communication channels constraints, agents
(processes) and channels themselves. We also point the reader to [132] where the
authors study an encoding of the utcc calculus into tccp. Such encoding has to deal
with the abs operator in utcc and also with the fact that the notion of time differs
from the source and target calculi.

3.6 Epistemic and Spatial Modalities in CCP
In some situations, the centralized notion of store makes CCP unsuitable for systems
where information and processes can be shared or spatially distributed among certain
groups of agents. In particular, agents posting and querying information in the pres-
ence of spatial hierarchies for sharing information and knowledge. For instance, friend
circles and shared albums in social networks or shared folders in cloud storage pro-
vide natural examples of managing information access. These domains raise important
problems such as the design of models to predict and prevent privacy breaches, which
are commonplace nowadays.

In [124] the authors enhance and generalize the theory of CCP for systems with
spatial distribution of information. More precisely, the underlying theory of constraint

18

systems is extended by adding space functions to their structure. Take for instance the
constraint d = si(c) ∧ sj(c

′). Intuitively, d asserts that the local store of the agent i
(resp. j) is c (resp. c′). Functions si, sj ,... can be seen as topological and closure
operators and they allow for specifying spatial and epistemic information.

Definition 17 (Spatial-Epistemic CCP [124]) Processes in Spatial-Epistemic CCP are
obtained by adding the operator [P]i in the Syntax of Definition 3.

The spatial operator can specify a process, or a local store of information, that resides
within the space of the agent i (e.g., an application in some user account, or some
private data shared with a specific group). This operator can also be interpreted as an
epistemic construction to specify that the information computed by a process will be
known to a given agent. It is worth noticing that the CCP concept of local variables
cannot faithfully model local spaces since in the spatial constraint systems defined in
[124], it is possible to have inconsistent local stores without propagating their incon-
sistencies towards the global store.

4 Programming Languages Based on the CCP Model
Several CCP programming languages have been designed. These cover a wide spec-
trum going from syntactic sugar over a particular CCP calculus, to graphical represen-
tations of the calculus primitives and to full fledged general purpose multiparadigm lan-
guages. Early CCP languages took inspiration in constraint logic programming (CLP),
where unification was replaced by constraint solving. An example is the language
cc(FD) [111] that implements an efficient finite domains constraint system. The CLP
model was implemented in various languages, each with a suitable constraint system
(finite domains, booleans, real numbers). Nevertheless, these languages lacked flex-
ibility since problem solving had to be tailored to the specific fix set of predefined
constraints. In contrast, cc(FD) offered general-purpose combinators, applicable to
any constraint system, such as constructive disjunction and blocking implication [111].
These, together with entailment, allow the language to be tailored to specific user do-
mains without losing the “naturalness” of specifications.

Programs in cc(FD) are written in a Prolog-like syntax and user constraints are
translated into canonical forms called indexicals [56] that can be implemented very
efficiently.

Even though solving constraint problems remains an important goal of CCP lan-
guages, they have mostly evolved into powerful ways to define complex synchroniza-
tion schemes in concurrent and distributed settings. In the rest of this section we de-
scribe some of the systems and programming languages built on the ideas of the CCP
model. We also point to some implementation of frameworks and interpreters for the
calculi described in Section 3. The reader may also refer to [88], a survey of the devel-
opments of (concurrent) languages that integrate constraint reasoning and solving.

19

4.1 Janus
Lucy [185] is a simple language were agents communicate by posting constraints over
a mailbox called a “bag”. Processes can merge and pass around bags in a kind of
distributed version of the CCP model. Janus is an extension of Lucy intended for
distributed programming and it resembles a concurrent logic programming language. A
program is a network of agents that communicate by passing messages over a channel.
Agents consist of rules of the form p(t1, . . . , tn) ← C | C1, B where t1, . . . , tn are
terms, C are ask and C1 tell constraints, and B is a conjunction of goals. When a
message matches the pattern on the left, it triggers the behavior determined by the right
hand side of the rule. In accordance with the CCP model, variables are logical and
they have two aspects or faces, corresponding to ask and tell annotations. Any of these
can also be passed around. Careful design of restrictions on askers and tellers ensure
the failure-free property: Janus computations never abort due to the store becoming
inconsistent.

A graphical representation of Janus, Pictorial Janus was proposed in [122]. The
basic elements of a Pictorial Janus program are graphical primitives, i.e., closed con-
tours, connections and links between objects. Rules like the one above can be specified
inside agents. A visual debugging environment for Pictorial Janus, providing real-time
animation of programs can be found in [72].

4.2 JCC
The language jcc [184] was designed as an integration of Default tcc into Java. jcc
is intended for embedded reactive systems and for simulation and modeling in robotics
and system biology. It implements bounded-time execution of the tcc calculus con-
structs. In jcc users can define their own constraint system and thus tune the language
to particular domains. The main purpose of the language is to provide a model of
loosely-coupled concurrent programming in Java. The model introduces the notion of
a vat. A vat may be thought of as encapsulating a single synchronous, reactive tcc
computation. A computation consists of a dynamically changing collection of inter-
acting vats, communicating with each other through shared, mutable objects called
ports. Asker and teller objects read from and write into the port. Constructs from the
underlying tcc model allows an object to specify code that should be executed in the
future.

4.3 LMNtal
The goal of LMNtal [205] is to provide a scalable and uniform view of concurrent
programming concepts such as processes, messages, synchronous and asynchronous
computation. It inherits ideas from the concurrent constraint language of Guarded
Horn Clauses (GHC) [93] and from Janus. Basic components of the language are links,
multisets, nodes and transformations. Links represent both communication channels
between logically neighboring processes and logical neighborhood relations between
data cells. Links are bi-directional.

20

Communication is based on constraints over logical variables. Processes sharing
variables are thought of as been “connected”, as in the CCP model. Multisets of nested
nodes and links are a first-class notion in LMNtal. These organize into a hierarchy
(called a membrane structure) and thus provide a kind of ambient, as in the Ambient
calculus [55]. Transformations are rules, much like in Janus. LMNtal provides both
channel mobility and process mobility: it allows dynamic reconfiguration of process
structures as well as the migration of nested computations. An expression p(x1, ..., xm)
defines an atomic process. Variables xi are its links. LMNtal makes no distinction be-
tween processes and data. Atom x = y denotes a connector between one side of the
link x and one side of the link y. {P} denotes a process enclosed within the mem-
brane {}; and T : −T a rewrite rule for processes. Links in the left part of the rule are
consumed and on the right hand are produced. Complex patterns can thus be defined
for rule triggering and concepts such as mobility can be easily expressed. An im-
plementation of LMNtal is available at http://www.ueda.info.waseda.ac.
jp/lmntal/.

4.4 Constraint Handling Rules
Constraint Handling Rules (CHR) [89, 90] was originally conceived as a language for
extending CLP systems with elegant mechanisms to define new constraint solvers, thus
fulfilling the aim of CLP languages to be truly parametric in (user-built) constraint sys-
tems. CHR found afterwards widespread use as a general purpose multi-paradigm pro-
gramming language. CHR provides users with declarative (multi-headed) rules for im-
plementing simplification, propagation and so-called simpagation of constraints. Rules
can be guarded with conditions that must hold for them to be applied. The rules act
on a (multiset) constraint store. Simplification rules replace constraints in the store by
simpler ones, propagation rules add redundant constraints (useful for additional sim-
plifications) and simpagation rules do both. CHR is embedded in some host language
H, written CHR(H). The host language provides data types and some primitive con-
straints.

The declarative (classical logic) semantics of CHR [199] is given in terms of the
constraint theory of the host language together with the logical formulas for each rule.
A simplification rule H ⇐⇒ G | B, for example, corresponds to the formula ∀̃(G →
(H ↔ ∃x̄.B)), where ∀̃ quantifies over all free variables. This semantics, however,
does not comply with the intended meaning of some CHR programs. The problem
comes from the multiset store and from the unidirectionality and committed-choice
nature of CHR rules. A better declarative semantics based on intuitionistic linear logic
[97] was later proposed in [24].

CHR can encode a basic CCP language, as shown in [91]. The committed-choice
feature of CHR is used to represent each when ci do Pi process in a non-deterministic
choice

∑
i∈I when ci doPi as a simplification rule of the form summation(

∑
(...))⇐⇒

ci | Pi. The committed choice ensures that when this rule is chosen (ci holds) none of
the other rules for ask constructs in the summation can be used.

As mentioned, a key feature of CHR is the possibility of its embedding in many
different types of programming languages (logic, functional, explicit-state), such as
CHR(Prolog), CHR(Haskell), CHR(C). Various applications, ranging from Multi-Agent

21

systems to language processing (CHR grammars) or software testing have been devel-
oped in CHR. A summary of these can be found in [199].

The simplicity and expressivity of CHR have attracted the attention of several re-
searchers. The meaning of CHR has evolved from theoretical semantics [90], which are
highly non-deterministic, to more refined notions of transition systems that eliminate
some of the non-determinism [70]. The latter is the basis for implementing systems
based on CHR. Similar to the developments of probabilistic extensions of CCP, CHR
has been also extended to replace non-deterministic choices (in the rule to be applied)
with probabilistic choices [92]. Probabilistic CHR (PCHR) allows for an explicit con-
trol of the rule to be applied and fairness can be directly expressed by choosing an
appropriate probability distribution on the rules. Other extensions dealing with dis-
tributed constraint stores [188] and user-definable rule priorities [125] have been also
proposed. In [137] the connection between lcc and CHR is studied. The authors
show that a semantic preserving encoding in both directions is possible. Moreover,
properties as confluence [71], termination [168] as well as general abstract interpreta-
tion techniques [192] for the analysis and optimization of CHR programs have been
established. The reader may refer [199] and [91] for a more complete account on these
topics.

4.5 Oz
Arguably the CCP-based language that has found more widespread use is Oz [196,
197]. The Oz model takes inspiration from CCP and CLP and from its predecessor
AKL [87]. It builds up from a kernel language consisting of a first-order structure
defining the values and constraints Oz computes with, a CCP calculus (called the Oz
calculus) over this structure and the actor model, a (non-formal) computation model
introducing high level concurrent notions such as computation spaces (for speculative
computation) and threads. In this model the usual store of constraints coexists with a
so-called predicate store that includes a non-monotonic mutable store. The last one is
used to model shared state and message passing concurrent computation via the notions
of cells and ports.

Although the Oz kernel is small and conceptually simple, its rich semantics al-
lows for the implementation of several computation models: declarative, stateful, lazy
declarative, lazy stateful, eager, in both sequential and concurrent settings. The Oz
kernel is based on a calculus comprising the ρ calculus [151] plus some additions for
modeling functional, object-oriented, constraint-based and logic programming. The ρ
calculus is a relational calculus parametrized by a logical constraint system. Its basic
constructs are constraints, parallel composition, local declarations, conditionals and
abstractions. Constraints are taken from the underlying constraint system, conditionals
test for entailment of constraints from the store and abstractions are used to encode
procedures.

As mentioned, traditional programming styles such as imperative, functional or
object-oriented can homogeneously coexist within the Oz language. Furthermore, con-
straint programming, message passing concurrency and an asynchronous distribution
model are also supported. A complete presentation and analysis of all Oz computation
models, together with programming strategies for each, can be found in [173].

22

By default, Oz relies on a constraint system over (infinite) feature trees for value as-
signment to logical variables. Extensions to finite domains, finite sets and real intervals
are also provided. Oz has been successfully used in many different problem domains.
A strong point of the language is the coherent combination of the declarative pure CCP
model with the traditional shared state scheme. A cell variable is assigned to a unique
name in the monotonic (i.e. CCP) store and this name is associated with another vari-
able in the mutable store. The latter represents the value of the cell. Changing the value
of a cell amounts to changing the association of its name to a different variable. This
variable, in turn, may have a different value from the previous one in the monotonic
store. That is, cell values do not really change. What changes is the variable associated
to its name.

4.6 CORDIAL
CORDIAL [174] is a visual language based on the π+-calculus [66] and provides trans-
parent integration of constraints and objects. Objects within methods are represented
by closed contours. Object methods launch CCP processes that, in addition to the usual
ask and tell operations, can send messages to other objects. Messages are objects con-
nected by links to object mailboxes. In CORDIAL objects are not located at some
reference but “float” over a constraints medium and they are identified by an associ-
ated constraint parametrized on the local variable self . Senders willing to invoke some
object method post a constraint involving some variable, say x, and then send the mes-
sage to x. Any object such that its associated constraint can be entailed by the store
conjoined with the constraint self = x, is eligible to accept the message. Some eligible
object is then non-deterministically chosen to handle the message. This scheme allows
for very complex patterns of communication and mobility.

4.7 Interpreters for CCP Calculi
Similar to jcc, some other interpreters for the calculi described in Section 3 have
been implemented. In the context of lcc, SiLCC (http://contraintes.rocq.
inria.fr/˜tmartine/silcc/) is an implementation of the language with a
module system as described in [106]. Furthermore, ALCOVE Aeminium Linear COn-
straints VErifier (http://avispa.puj.edu.co) is a lcc-based tool for the anal-
ysis of access permissions in concurrent-by-default programs written in Aeminium
[201].

The ntcc calculus has been implemented as ntccSim (http://avispa.puj.
edu.co), an interpreter written in the Oz language. An important feature of this tool
is that several constraint systems can be included in the same model. For instance, con-
straints over finite domains (FD) and real intervals (XRI) have been used to implement
computational models of biological system (see Section 5.3). The ntccrt interpreter
for the ntcc calculus (http://sourceforge.net/projects/ntccrt/) is
written in C++ and specifications can be made in Common Lisp or in OpenMusic
(http://repmus.ircam.fr/openmusic/), and then translated to C++. This
framework can be also integrated as a plugin for either Pure Data (PD) or Max/MSP
[169] to take advantage of the facilities offered by those languages to implement, for

23

example, sound processors. ntccrt makes use of the state of the art propagation
techniques in Gecode (http://www.gecode.org/) to implement the underlying
constraint system. Hence, the system is able to deal with real-time requirements for the
execution of ntccmodels in the context of computer-based musical improvisation (see
Section 5.2). In [130] an interpreter for tccp written in Maude is described (http:
//users.dsic.upv.es/˜villanue/tccp-func/). As for hcc, at http:
//www-cs-students.stanford.edu/˜vgupta/hcc/ the reader may find
an interpreter for this language. Finally, k-stores [16] is an interpreter for the epis-
temic and spatial calculus in Definition 17.

In the context of CHR, implementations of Prolog such as SWI-Prolog (http:
//www.swi-prolog.org) and SICStus Prolog (http://sicstus.sics.se)
feature modules for CHR. WebCHR is a web tool that allows the execution of Prolog
and CHR programs (http://chr.informatik.uni-ulm.de/˜webchr/). Im-
plementations of CHR for different programming languages such as Java, C and Haskell
can be found at http://chr.informatik.uni-ulm.de/. The system CHRat
[76] implements a modular version of CHR that allows for reusing built-in constraints,
defined in a constraint system, as a constraint solver in another CHR program (http:
//contraintes.inria.fr/˜tmartine/chrat/). CHRiSM [198] (http:
//people.cs.kuleuven.be/˜jon.sneyers/chrism/) integrates CHR and
PRISM (PRogramming In Statistical Modeling) [190], a probabilistic extension of Pro-
log for symbolic-statistical modeling.

5 Emergent Applications for CCP
Nowadays concurrent systems are ubiquitous in several domains and applications.
They pervade different areas in science (e.g. biological and chemical systems), en-
gineering (e.g., security protocols, mobile and service oriented computing and social
networks) and even the arts (e.g. tools for multimedia interaction). CCP based lan-
guages and calculi have been extensively used to model, analyze and verify concurrent
systems in different scenarios such as the aforementioned. The simplicity and the ex-
pressivity of this model attracts the attention of modelers mainly due to: (1) the pa-
rameterization of CCP in a constraint system provides a very flexible way to tailor data
structures to specific domains and applications; (2) The declarative synchronization
mechanism based on entailment of constraints eases the modeling of complex interac-
tions between subsystems; (3) The ability to deal with partial information allows for
modeling and studying such systems even when one is not fully aware of the behavior
of all the components involved; (4) As we shall show in Section 6, CCP enjoys several
reasoning techniques; finally, (5) the underlying model of CCP based on a common
store of partial information is akin to several systems where components post informa-
tion asynchronously.

This section is devoted to show some of the most relevant applications of CCP. We
shall show that the reactive model of temporal CCP allows for the declarative spec-
ification of reactive systems such as electromechanical devices, software control and
multimedia interaction systems. The temporal and probabilistic extensions of CCP
have found application in system biology and physical systems. Finally, the declara-

24

tive nature of CCP and its reasoning techniques have been used to specify and verify,
for instance, security protocols and service oriented computing systems.

5.1 Physical Systems
The work in [212] shows the applicability of tcc as programming language to specify
controllers for electromechanical systems. In this setting, tcc provides a declarative
model for the components that comprise the device. The authors show that the timing
constructs in tcc can neatly express the pattern of interaction over time between the
controller and the environment. Furthermore, since tcc programs can be compiled
into finite-state machines [182], the implementation of the system is straightforward
and efficient. The strong connection of CCP calculi and logic is also an advantage in
this context since it is possible to use standard techniques for proving properties over
the software constructed.

A natural application of the hcc calculus is the modeling of physical systems.
In this scenario, one is interested in observing the change of the state of the system
when interacting with the environment (discrete change) and also when evolving au-
tonomously (continuous change). In [103], a compositional model of a photocopier
paper path in hcc is presented. The declarative nature of hcc is particularly useful in
this setting, since for each fragment of the model, it is only necessary to state the laws
of physics applicable, e.g. equilibrium laws, boundary condition, etc.

The work in [207] makes use of CCP for the design of reprographic machines. In
this case, the CCP model allows to capture in a declarative and compositional way the
model of the machine in an appropriate level of abstraction, thus providing support for
the requirement specification and design activities.

Finally, in [153, 167] the authors show how tasks for an RCX programmable micro-
controller can be specified in the ntcc calculus.

5.2 Music Interaction and Composition
Many systems for music composition and interaction have been proposed in the past.
These are based in general either on dataflow models and languages inspired in digital
sound processing systems, for interaction, and on existing (mostly functional) general-
purpose programming languages, for music composition. The purpose of the former
is controlling musical devices (e.g. sound synthesizers) in real-time performance set-
tings. The latter aim at providing composers with tools for supporting the structuring
and controlled evolution of complex musical material. CCP-based calculi have been
proposed recently in both domains. What is intended in the first case is to take ad-
vantage of the natural synchronization mechanism provided by blocking ask processes
to model complex concurrent interactions in a precise and simple way. In the second
case, the logical nature of the calculus is used to verify musical properties of a system
before launching costly constraint processes.

In [175], ntcc models of various musical problems are described. These problems
involve relations between harmonic and rhythmic properties. What (harmonic) infor-
mation is output at each time unit determines rhythm properties. The problem consists
in finding out whether two musical voices with specific melodic evolution rules can

25

comply with some given harmonic relations when played together. This problem pops
up frequently in music composition in many different forms. The particular instance
of this problem described in [175] is the following: two voices are constructed in such
a way that the second one reproduces the first (up to transposition) with a time gap of
p. The upper and lower voices play notes in the sets S1 and S2, respectively. A trans-
position function f gives for each upper voice note the lower note that is to be played
p time units later. Additional constraints state that time units that are either contiguous
or separated by p units should not play the same two notes (chords). Finally, all chords
thus formed between the two voices must be chosen among the elements of a given set
C. The strategy is to construct a weaker ntcc model of the problem and then, use
the linear temporal logic associated with ntcc to find conditions for the problem to be
solvable.

In [13] an entirely different domain is explored using ntcc, that of live improvi-
sation of an interpreter and the computer. The computer must first learn the musical
style of the human interpreter and then begin to play jointly in the same style. A style
in this case means some set of meaningful sequences of musical material (notes, dura-
tions, etc.) the interpreter has played. A graph structure called factor oracle (FO) is
used to efficiently represent this set. The ntcc models define processes that construct
in real-time the FO (i.e. learn the style) and then synchronize with the interpreter to
travel through different paths in the FO graph (i.e. improvise).

Interactive Multimedia deals with scenarios where multimedia content and interac-
tive events are related via computer programs. A recent trend is to express the rela-
tionships between contents and interactions in a precise way by integrating both in a
general model, thus providing a kind of enriched score for composers. One such sys-
tem, called interactive scores [2], allows the specification of contents whose temporal
occurrence is not given in advance but is the result of temporal constraints (in the form
of Allen interval relations) defined for them. The occurrence of external interactions
(whose window of observation is also subject to constraints) is thought to transform
(or instantiate) the temporal structure of the piece by imposing further constraints. The
score thus defines a collection of possible temporal occurrences of the audio/visual
events in a performance. In [204], ntcc has been proposed to extend this model so
that external interactions can condition paths in the score. The calculus is also used to
implement a precise synchronization of processes in this model. In [156] the ability of
utcc to express mobile behavior was exploited to define interactive scores where in-
teractive points can be defined to adapt the hierarchical structure of the score depending
on the information inferred from the environment.

The ntcc system in [176] is proposed as a framework for constructing sound pro-
cessing models in a precise and compact way. Processes in a given time unit define
(data flow) transformations of a sound sample supplied by the environment (or a past
process). The resulting sample is then output and can also be transmitted to the next
time unit. Shared variables are used to represent links between processes. Sample
delay units are straightforwardly represented with the ntcc next primitive. The com-
positionality of the calculus is used to represent hierarchies of sound processing boxes.

26

5.3 Biological Systems
The study of biological systems has found a fertile substrate in the CCP model, mainly
due to: (1) constraints can naturally express quantitative information as well as partial
information on the available reactants in the system; (2) synchronization via constraint
entailment allows for triggering actions when some information can be derived from
the system. For instance, it is natural to express that a given reaction occurs only when
certain component is present in the system; (3) the ability of CCP to build up models
(i.e., components) by parallel composition leads to a robust modeling strategy: one
can study separately components of a system and then observe the behavior of the
whole system; (4) timed operators in temporal extensions of CCP allows for describing
actions (more precisely reaction in this context) that can take several time-units to be
completed; and (5), probabilistic constructs as in pcc allow for choosing, according
to a given probability distribution function, among different reaction that may have
different propensities to occur.

In [10, 104] the authors propose a model in ntcc of a mechanism for cellular
transport: the Sodium-Potassium pump. In the same work, the connection of ntcc
and linear temporal logic is exploited to facilitate reachability analysis.

BioWayS (http://avispa.javerianacali.edu.co) [57] is a web tool
for the modeling of biochemical networks based on the ntcc calculus. In [112], it is
shown that BioWayS allows for the compositional modeling and simulation of biolog-
ical systems.

The stochastic extension sCCP proposed in [44] allows for describing stochastic
duration by means of functional rates. This calculus has been used to describe bio-
logical networks and it has been shown to be a general and extensible framework to
describe a wide class of dynamical behaviors and kinetic laws.

The discrete and continuous nature of hcc has been exploited to model dynamic
biological systems, e.g. in [74, 32]. For instance, in [32] it is shown that hcc can nat-
urally model a variety of biological phenomena, such as reaching thresholds, kinetics,
genetic interaction and biological pathways.

In [46], the authors carry out a comparative study of sCCP, hcc, and Biocham [75]
as languages for the modeling of biochemical reactions. In [26] the authors compare
the sCCP, ntcc, and hcc models for the blood coagulation process. Experimental
results are shown when using the interpreters of hcc and ntcc to simulate the system.

Finally, [178] makes use of a linear CCP language to model protein interaction.
The work in [160] uses CCP techniques for the protein structure prediction problem,
which consists in predicting the 3D native conformation of a protein, when its sequence
of amino acids is known. The authors also provide a prototype in the Oz language
showing the feasibility of the approach proposed.

5.4 Security and Service Oriented Computing
Due to technological advances such as the Internet and mobile computing, security
has become a serious challenge in Computer Science. Several process calculi have
been proposed in order to deal with the verification of security protocols. Some of the
features of those calculi are reminiscent of CCP. For instance, SPL [61], the spi calculus

27

variants in [1] and the calculi presented in [8] and [42] are all operationally defined in
terms of configurations containing items of information (messages) which can only
increase during evolution. Such monotonic evolution of information is akin to the
notion of monotonic store in CCP. Moreover, the calculi in [8, 42, 86, 18] are parametric
in an entailment relation over a logic for reasoning about protocol properties very much
like CCP is parametric in an entailment relation over an underlying constraint system.

The notion of mobility in utcc is used in [158] to model and exhibit the secrecy
flaw of the well known Needham-Schroeder [150] security protocol. The cryptographic
primitives and the messages an attacker may infer are specified in a suitable constraint
system. In [157] the authors describe an encoding of a simple language for security into
monotonic utcc processes (i.e. processes not including the unless constructor). Then,
by using the denotational semantics of utcc, the authors show that it is possible to give
a closure operator semantics to languages for security. Moreover, [82] develops an
abstract interpretation framework to approximate the semantics of a security protocol
for verification purposes.

A type system for restricting the behavior of agents in utcc is studied in [113].
This system gives guarantees that a channel name and encrypted values are only ex-
tracted by agents that are able to infer the channel or the non-encrypted value from the
store.

An extension of tccp [34] is studied in [129] as a language for modeling security
protocols. The authors show how the language can naturally express the behavior of
the principals in the protocol and a Dolev-Yao attacker [67] for verification purposes.

In [118], a policy language for role-based access control in distributed systems
along the lines of Default tcc is proposed. The authors combine constraint reasoning
and temporal logic model-checking to verify whether a given resource (e.g. a directory
in a file system) can be accessed.

Soft Concurrent Constraint Programming based languages have been used in the
modeling and verification of service oriented computing systems. The cc-pi calcu-
lus, for instance, has been used to specify Quality of Service (QoS) and to conclude
Service Level Agreement (SLA) contracts [50]. The language is equipped with mech-
anisms for resource allocation and for joining different SLA requirements to reach
an agreement between agents (clients and servers) in a service oriented computing
scenario. In [53], the non-deterministic choice in cc-pi is replaced by a prioritized
guarded choice. Alternatives are labeled with constraints and the chosen one corre-
sponds to the constraint with a higher priority over the constraints of the alternative
branches. The prioritized calculus is then used to express richer QoS negotiations
where agents may state preferences between a set of possible alternatives. See also
[52] where an overview of cc-pi and prioritized cc-pi is given. That work describes
also the application of these languages in the specification of service negotiation in
telecommunication and financial domains in the context of the SENSORIA project
(http://www.sensoria-ist.eu).

The work in [31] shows the application of a non-monotonic extension of scc
(where constraints can be retracted from the store) in the modeling of negotiation pro-
cesses where different parties have to agree on a contract specifying QoS requirements
expressed as semiring values. Moreover, in [27], the authors specify with the same lan-
guage an access control mechanism with granularity at the level of constraints. Then,

28

it is possible to control the way the different agents of the system post and consume
information.

Sessions and sessions types [203, 64] were introduced with the aim of guaranteeing
structured communication between agents. Type rules statically ensure that a prede-
fined communication scheme/protocol (typically based on duality) is respected along
process execution. The work in [133] studies an encoding of the language for structured
communications proposed in [115] into utcc. The framework allows for the declar-
ative analysis of sessions in network protocols. Furthermore, due to the timed nature
of utcc, it is possible to reason about session duration and expiration in structured
communications. In [59], the authors combine CCP and name passing in the style of
cc-pi together with sessions. The resulting calculus aims at specifying QoS require-
ments where safe interactions between clients and servers are assured. The primitive
used to open a session makes use of constraints whose satisfaction is necessary for
starting and conducting the session interaction. Hence, constraints and the underlying
type system guarantee bilinearity, i.e., channels are private and they are exclusively
used to carry on the communication prescribed by the session. The calculus is also en-
dowed with a primitive for delegation (also restricted by constraints) that allows agents
in a protocol to delegate a service to a third party.

In [49] a different approach for guaranteeing structured communication is devised.
In this work, the client-service interaction is decomposed in three phases: negotiation
where agents negotiate certain desired behaviors, but without any guarantee of success;
once the agents agree, they commit and the choosing behaviors must be respected;
finally, the protocol is executed upon the agreed properties and deadlock-freeness is
guaranteed. The communication scheme is specified in a source calculus close to the π-
calculus establishing communication patterns between clients and services. This model
is then compiled into a target calculus close to the prioritized cc-pi calculus [53]
where named constraint semirings [50] encode the behaviors of agents. More precisely,
the choices in the compiled model are guarded by check (ask) constructs that enable
the corresponding continuation only if the global store allows it. The novelty of this
approach relies on the fact that constraints are used to choose the right interaction and
to avoid deadlock in the execution phase. That is, the combination of the constraints
of the client and the server leads only to executions of the client-service system that do
not stuck.

Propositional Contract Logic (PCL) [17] extends intuitionistic logic with a con-
tractual form of implication. This logic aims to model SLA contracts to formalize the
duties of the client and the server in a service oriented scenario. The execution model
of this logic is based on a calculus of contracting processes which relies on a CCP
language (plus primitives for a name passing discipline) where agents tell and asks for-
mulas in PCL. The calculus provides also a fuse operation that, unlike cc-pi, allows
for simultaneous multiparty agreements.

5.5 Other Applications and Results
In [206], a Büchi finite state automata characterization of the strongest postcondition
of the local independent fragment of the ntcc calculus is given. Using this character-
ization, the author proves the decidability of the satisfaction problem for the restricted

29

negation formulas without rigid variables in linear temporal logic [135].
The work in [209] studies the execution of formal specifications in SPECS-C++,

a model-based formal specification language designed for specifying the interfaces of
C++ classes. Since this specification language was not designed to be executed, the
approach proposed by the authors is to translate such a formal specifications into the
CCP based language AKL [109]. A subset of the specifications in SPECS-C++ can be
then executed in AKL. If the specification is consistent (and executable), it is possible
to find the set of post-states satisfying the specification.

The connection between CCP languages parametrized with a finite domain (FD)
constraint system and query languages in finite model theory such as first-order logic
over relational vocabulary, fixpoint logics, and Datalog is studied in [78]. This work
presents complexity results for CCP(FD) when considering complete and open con-
straint systems (those that do not fix the interpretation of all relation symbols); flat
and deep guards, i.e. guards that can be an arbitrary process instead of a constraint;
and terminal and success observables (where there are no blocking asks in the final
configuration).

The work in [191] introduces a constraint system to handle equations and inequa-
tions over real numbers. This constraint system along with the model of lcc provides
a general and extensible foundation for linear programming algorithms design. The
authors show that it is possible to build a version of the (constraint solver) simplex
algorithm in this framework and additionally, that it is possible to specify non-trivial
concurrent algorithms on it.

In [141] the authors experiment with the use of ntcc as a language to describe dy-
namic enumeration strategies to solve constraint satisfaction problems. In this case, the
reactivity of the calculus allows to design enumeration strategies that adapt themselves
according to information issued from the resolution process and from external solvers
such as an incomplete solver (e.g. local search).

A lcc model of the access permission mechanism in Aeminium [201], an object-
oriented concurrent-by-default programming language, is presented in [155]. The log-
ical interpretation of lcc as formulas in intuitionistic linear logic allows for the auto-
matic verification of Aeminium’s program properties such as deadlock detection, cor-
rectness with respect to the access permission specification, and the ability of methods
to run concurrently.

6 Verification and Reasoning Techniques
In this section we survey different reasoning techniques developed for CCP. As we
stated before, CCP is a model of concurrency tied to logic. Then, CCP benefits from
verification techniques coming from both process calculi and logic. In the forthcoming
section, we give an account of semantics, program analyses, logic characterizations,
model checking and equivalences developed for CCP calculi.

30

DSKIP [[skip]]I = C
DTELL [[tell(c)]]I = {d | d ` c}
DASK [[when c do P]]I = {d | d 6` c} ∪ [[P]]I
DPAR [[P ‖ Q]]I = [[P]]I ∩ [[Q]]I
DLOCAL [[(localx; c)P]]I = {d | there is d′ s.t. d′ ` c,∃x(d) = ∃x(d′) and d′ ∈ [[P]]I}
DCALL [[q(x)]]I = I(q(x))

Figure 2: Semantic equations for the CCP calculus in Definition 3. C denotes the set of
constraints in the underlying constraint system.

6.1 Semantic Frameworks and Program Analysis
The first semantic characterizations of CCP were inspired by methods and techniques
from concurrency theory such as failure sets and bisimulation. For instance, [37] and
[38] made use of tree-like structures labeled with functions on substitutions. Simpler
tree-like structures labeled by constraints are used in [94], and in [186], similar struc-
tures modulo equivalence relations based on bisimulation are considered. The work
in [39] showed that it is possible to give a simpler compositional semantics for CCP
since communication is asynchronous and actions are triggered only depending on the
current store. The proposed semantics consists of sequences of constraints labeled by
assume/tell modes.

In [187], deterministic CCP processes are identified with Scott’s closure opera-
tors (idempotent, extensive and monotonic functions). Such functions can be retrieved
from their set of fixpoints and then, the meaning of a process is given by the set of
constraints upon which the process cannot add any information. This set is also known
as the strongest postcondition and it corresponds to the quiescent constraints for the
process. This semantics characterization is quite elegant and simple. Figure 2 shows
the semantic equations for the CCP calculus in Definition 3. Let us elaborate on them.
Notice that all constraints are quiescent for skip (DSKIP), i.e., skip cannot add any
information to any constraint. A process tell(c) cannot add any information to d if
d entails c (DTELL). A constraint d is quiescent for when c do P either if d does
not entail c or d is quiescent for P (DASK). The constraint d is quiescent for P ‖ Q
if neither P nor Q can add any information to d (DPAR). If d′ cannot add any in-
formation to P and d and d′ differ only on the information about the variables in x
(i.e., ∃x(d) = ∃x(d′)), then d cannot add any information to (localx; c)P (DLOCAL).
Process calls are interpreted according to the interpretation I that gives meaning to
the process definition (DCALL). The semantics is then obtained by a standard fixpoint
construction.

For the case of non-deterministic CCP, [187] denotes processes with bounded traced
operators that recall the path the processes followed to reach the fixpoint, i.e., the se-
quence of tell/ask interactions with the environment. This semantics was proven to be
equivalent [40] to that in [39]. The result follows from the fact that both semantics are
fully abstract with respect to the notion of observables for finite computations. Further-
more, [80] studied restricted fragments of (non-deterministic) CCP that can be charac-
terized as closure operators on sets of constraints. More precisely, the authors show
that this is possible for structurally confluent CCP processes, i.e., processes whose out-

31

puts do not depend on the scheduling policy of the system. This fragment includes, for
instance, angelic-CCP where only local choices are allowed (i.e, all the guards are the
same) and mutually exclusive choice (i.e., one guard excludes the others). The semantic
characterization for CCP with local choice found application in [36, 81] to establish the
semantic foundations and a verification system for CLP with delay by means of closure
operators. Confluence in CCP has been also studied in [148] where a confluent opera-
tional semantics for CCP with blind and angelic choice is proposed. In the same lines,
[136] proposes a confluent calculus for CCP that considers blind and guarded choices.
This calculus is later used for the analysis of CCP programs. To effectively deal with
guarded choices, the semantics in [136] keeps the precluded alternatives when selecting
a branch of execution. Those alternatives are guarded in such a way that they reduce to
“failure” on termination.

For the case of infinite computations and non-deterministic behavior, the semantic
foundations in [187] were extended in [119] and [126] to give meaning to angelic-CCP
processes. Later on, [41] showed that the domain used in [119, 126] is not closed under
set intersection and then, the semantics of parallel composition is not well defined. In
[154] the authors considered the Lehmann’s powerdomain [128] over set of traces.
Then, a (compositional) fixpoint semantics can be obtained in order to retrieve the
outputs of infinite computations where fairness is assumed, i.e., all enabled agents
are eventually executed. Relying on these ideas, [41] shows that the construction in
[154] can be used to capture both infinite computations and non-determinism when
considering sets of constraints (instead of traces). Fairness requirements have been
also studied in [54], where the operational semantics of the parallel operator makes
use of quantitative metrics to provide a more accurate way to establish which of the
processes in a parallel composition can succeed. This thus guarantees a fair criterion
on the selection of processes.

The elegant semantic characterization of CCP has been extended to its subcalculi.
In [182], tcc processes are denoted as closure operators on sequences of constraints.
Then, for instance, the sequence c1.c2.c3.... is quiescent for nextP only if the subse-
quent c2.c3... is quiescent for P . Similarly, [153] gives a denotational semantics to the
ntcc calculus. This idea is also present in [157] where processes are identified with
closure operators on sequences of linear temporal logic formulas [135] for the case of
the utcc calculus. As for tccp, in [34] it is shown that the full abstraction problem
for this language cannot be reduced to that one of CCP. Then, a semantics based on
reactive sequences is proposed to be correct with respect to the notion of observables
and fully abstract. Following these ideas, [28] proposes a semantics for stcc.

The aforementioned semantic characterizations of CCP rely on the idea of the
strongest postcondition, i.e., the quiescent inputs of a process. A finer-grain charac-
terization consists in determining the minimal requirements from the environment to
produce an output, this is, observe the causality relation between inputs and outputs.
These ideas have been developed to endow CCP with true concurrency semantics, i.e.,
semantics that interpret the parallel operator as a concurrent execution (instead of an
interleaving execution) of processes. In [143, 144, 145], the operational rules of CCP
are augmented with the context required for the reaction to occur. From such rules,
the authors show that a contextual net [146] (a Petri Net that considers contexts rep-
resenting the conditions required for an event to occur) can be constructed to capture

32

all possible computations of a given program. It allows also to capture causal depen-
dencies, mutual exclusion and the concurrency among processes. The contextual net
semantics of CCP has been extended in [147, 48] with an inconsistency dependency
relations to deal with atomic tells (see Section 3.5). This semantics is exploited to de-
rive safe parallelization of CLP computation steps. The ideas in [143, 145] found also
application in [102] where a semantics for CCP based on contexted tokens of the form
cd is proposed. Intuitively, cd means d is the cause for the effect c. In this work it is also
shown that the contexted tokens a process may output can be retrieved compositionally.

In the context of program analysis and transformations, unfold/fold transforma-
tions in CCP have been studied in [73]. The proposed transformation system, besides
folding and unfolding, includes other new operations, namely backward instantiation,
ask and tell simplification, branch elimination, conservative ask elimination and distri-
bution. This framework has found application for proving deadlock freeness of CCP
programs. Furthermore, [21] investigated transformation techniques for CCP based
on the replacement (see [163] for a survey of transformation techniques in logic lan-
guages). Abstract semantic characterizations for CCP have been studied in [79, 213].
Those works proved that it is not possible to give a sound approximation, in the sense of
abstract interpretation [60], for the ask operator if one considers only abstract domain
values. The main problem is that weaker constraints are needed to over-approximate
the program outputs but ask-synchronization requires stronger constraints to guarantee
that suspension in the abstract model implies suspension in the concrete model. Then,
an entailment relation between abstract and concrete constraints is used to give a safe
approximation of the semantics. These ideas have been extended in [82] to consider
temporal extensions of CCP. The proposed abstract semantics have been used to prove
properties such as groundness and suspension freeness and they have served as the
foundation for abstract diagnosis and debugging techniques for tccp [58] and ntcc
programs [83].

6.2 Logics, Specifications and Verification
CCP-based languages have been shown to have a strong connection to logic that distin-
guishes this model from other formalisms for concurrency. The work in [138] shows
that CCP processes can be viewed as logic formulas, constructs in the language as
logical connectives and simulations (runs) as proofs. In [126], the semantic character-
ization of CCP processes is used to show that the logical view of the program and its
denotation correspond to each other. Then, proving that P satisfies a given property F
amounts to show that the semantics of P is included in the semantic objects satisfying
F . Here the author considered infinite computations and then, liveness properties (i.e.,
something good eventually happens) may be proved. In [33], a calculus for proving
correctness of CCP programs is introduced. In this framework, the specification of the
program is given in terms of a first-order formula. The authors pointed out that some
problems arise when representing non-deterministic choices by disjunction and when
considering the representation of this logical connective in the constraint system. For
example, assume that process P satisfies certain property F and consider the agent
Q = when x = 0 do P + when x > 0 do P . One would like to state that the above
process satisfies the formula F ′ defined as (x = 0∨ x > 0)⇒ F . Logically speaking,

33

x ≥ 0 implies x = 0 ∨ x > 0. Nevertheless, if we run Q in parallel with tell(x ≥ 0),
none of the guards of Q is enabled and then, P is not executed. Therefore, the authors
enrich the logic of the constraint system and a property (represented by a constraint) is
thus interpreted as the set of constraints that entails it. Consequently, logical operators
are interpreted in terms of the corresponding set-theoretic operations. For instance, the
formula F ′ above is interpreted as the union of the set of constraints that entails x = 0
and F and the set of constraints that entails x > 0 and F .

As for lcc, [77] shows that the observable behavior of CCP and lcc processes
can be characterized as proofs in intuitionistic linear logic. This characterization is
shown to be useful to verify liveness properties of systems. Furthermore, the language
is endowed with a phase semantics to verify safety properties.

In the context of timed CCP calculi, [182] proposes a proof system for tcc based
on an intuitionistic logic enriched with a next operator. Judgments in the proof system
have the form P1, ..., Pn ` P where P1, ..., Pn and P are processes. Such judgments
are valid if and only if the intersection of the denotations of the agents P1, ..., Pn is
contained in the denotation of P ; equivalently, any observation that can be made from
the parallel system of agents P1, ..., Pn can also be made from P . The results in [33]
are extended and strengthened in [153], where a linear temporal logic characterization
of ntcc is studied along with a proof system to verify properties. In the same lines,
[158] gives a logic characterization for the utcc calculus. A temporal logic based on
the epistemic modalities of knowledge and belief is proposed in [35]. The assertions
in the logic capture what a process assumes from the input (the environment) and what
a process commits to, i.e., the outputs in a given time-unit. Then, this logic provides a
language for the specification of the reactive behavior of processes. A sound a complete
proof system to reason about the correctness of tccp programs based on this logic is
reported in [35].

Model checking techniques have been also explored in the context of temporal
CCP languages. In [3, 85], the behavior of tccp processes is modeled by means of a
so called tccp structure. Such structure is like a Kripke structure where, following the
CCP philosophy, the state of the system is represented as a conjunction of constraints.
This allows for the specification of the possible states and transitions the system may
exhibit. Then, the modal logic in [35] is used to specify the property to be verified
and the model checking graph is analyzed to decide if the process satisfies or not the
property. A tool implementing the construction of the tccp structure is described in
[131]. The work of [85] was based on the ideas developed for the automatic verification
of tcc programs in [84].

In order to mitigate the state explosion problem, [5] considers an abstract model-
checking technique where both the model and the property to be verified are abstracted.
Following a data-abstraction approach, abstract operations are defined to over ap-
proximate the behavior of the original program. The authors identify that an over-
approximation is not sufficient to give an accurate approximation of the synchroniza-
tion and timed mechanisms of tccp. Then, under-approximations of the semantics
are considered to improve accuracy. The authors prove the total correctness of the
abstract semantics which models precisely the suspension of processes. The abstract
semantics is also implemented as a source-to-source transformation that compiles the
abstract program back into tccp. Abstract refinements are also proposed to improve

34

accuracy in the verification process. The work in [5] is extended in [7] where the au-
thors study a general framework for abstract verification and analysis of concurrent
programs. The programs considered in this study are imperative (states as variable val-
uations) and declarative (states as conjunction of constraints as in tccp) style. The
semantics is approximated and implemented as a source-to-source transformation that
interprets the abstract actions into the original language. Finally, we mention the work
of [6] that proposes a new semantics for tccp able to recognize the time instant when
some piece of information is added to the store. The logic in [35] is also extended
with discrete-time marks to model synchronous real-time properties. Thus, real time
is introduced in tccp and it is shown how model checkers for this language can be
extended to deal with real-time properties.

6.3 Equivalences
Bisimilarity is one of the main representative of process equivalences. It captures our
intuitive notion of process equivalence; two processes are equivalent if they can match
each other moves. Furthermore, it provides an elegant co-inductive proof technique
based on bisimulation [177]. Despite the relevance of bisimilarity, there have been
few attempts to define a notion of bisimilarity for CCP. The work in [11] provides
a labeled transition semantics and a notion of bisimilarity for CCP. A labeled tran-
sition 〈P, c〉 d→ 〈Q, e〉 says that d is the minimal piece of information that needs to
be joint with c to perform a reduction from P . From these transitions, a derived no-
tion of bisimulation following standard lines is obtained: Two configurations 〈P, c〉
and 〈P ′, c′〉 are bisimilar iff whenever 〈P, c〉 d→ 〈Q, e〉 then must exist a transition
〈P ′, c′ ∧ d〉 → 〈Q′, e′〉 so that 〈Q, e〉 and 〈Q′, e′〉 are also bisimilar. The authors
also showed a strong correspondence with existing CCP notions by providing a fully-
abstract characterization of a standard observable behavior. Furthermore, in [12] the
authors provided an algorithm for the automatic verification of bisimilarity. In the same
lines, [105] studies a labeled bisimulation for Linear CCP processes. The latter equiva-
lence is shown to coincide with a may-testing equivalence and the barbed congruence.
Finally, a notion of open bisimulation is proposed in [51] for cc-pi. Essentially, two
processes are open bisimilar if they have the same stores of constraints - which can be
statically checked - and if their moves can be mutually simulated.

6.4 CCP and other Computational Models
The Fusion calculus [208] is a π-calculus variant that, rather than substitution, uses
an implicit notion of equality, a fusion, between variables/names. So, in the Fusion
calculus instead of replacing a parameter x of an input with that of an output, say z,
an implicit fusion is given between the parameters involved in the communication by
imposing x = z. This idea results in a calculus that is simpler and yet as expressive as
the π-calculus. In fact, the Fusion calculus has only one binding operator where the π-
calculus has two (input and restriction) and it has a complete symmetry between input
and output actions. The authors in [208] gave an encoding from CCP into Fusion cal-
culus as a compelling demonstration of the expressivity of their calculus. This makes

35

the reasoning techniques and tools of the Fusion calculus available for CCP. However,
the encoding is only intended for equality (inequality) based constraint systems such as
the Herbrand constraint system. This may not come as a surprise since a fusion can be
thought of as an equality constraint between two variables. In fact, an encoding from
CCP with equality constraints into Explicit Fusion [211], an alternative presentation of
the Fusion calculus, should be almost immediate.

CCP offers reasoning techniques substantially different from those from π-based
calculi. CCP also focuses on the notion of partial information while it abstracts away
from channel and point-to-point communication. It is worth noticing that some vari-
ants of the π-calculus include logic assertions in their process language (see e.g., the
ψ-calculus [18] and cc-pi [50]) as well the use of parametric signatures (see e.g.,
the applied π-calculus [86]). These recent additions to the machinery of the π-calculus
variants bear witness to the importance of the concepts singled out in CCP. We note also
that CCP has been shown to be expressive enough to encode other models of compu-
tation, different from its predecessors Concurrent Logic Programming and Constraint
Logic Programming. For instance, different (fragments of) asynchronous concurrent
formalisms such as the asynchronous π-calculus, Actor models, Linda, Petri nets have
been encoded as (linear and higher order) CCP processes [121, 181, 179, 127, 105].
Furthermore, sequential models of computations such as the the untyped λ-calculus
and Minsky machines have been encoded into CCP [179, 157].

7 Concluding Remarks
The simplicity and elegance of the CCP model have attracted the attention of both
practitioners and theoreticians in Computer Science. It can be seen in the large number
of extensions proposed in the literature to cope with different notions such as time,
non-determinism, mobility, etc. Being parametric in an underlying constraint system,
the CCP model has offered the flexibility needed to be adopted as a formal basis for
several programming languages and practical applications.

Another appealing feature of CCP is the set of reasoning techniques the model
offers. For instance, closure operator semantics, logical characterization, proof and
type systems, model checking, and more recently, equivalences and bisimulation tech-
niques.

A current line of research is the development of a more principled notion of time in
CCP. This is central to applications that require to impose real-time constraints on the
execution of processes as in multimedia interaction systems. In the same lines, building
interpreters that guarantee reliable responses in time is required.

From the verification point of view, there are ongoing works in defining more robust
proof systems for CCP calculi and static analyzers for CCP programs. Developing
machine-assisted tools relying on those techniques for the automatic verification of
system properties is also desirable.

Finally, epistemic and spatial constraint systems open a new window for the speci-
fication of emergent systems such as cloud computing and social networks in ways that
provide more flexible views of information hiding/sharing and where properties such
as privacy could be specified.

36

Acknowledgments. We thank the anonymous reviewers for their detailed comments
that helped us to improve this paper. Special thanks to Jorge A. Perez for his careful
remarks and suggestions. This work has been partially supported by grant 1251-521-
28471 from Colciencias (Colombia), and by Digiteo and DGAR (École Polytechnique)
funds for visitors.

References
[1] Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi cal-

culus. Inf. Comput. 148(1), 1–70 (1999)

[2] Allombert, A., Desainte-Catherine, M., Assayag, G.: Iscore: a system for writ-
ing interaction. In: S. Tsekeridou, A.D. Cheok, K. Giannakis, J. Karigiannis
(eds.) DIMEA, ACM International Conference Proceeding Series, vol. 349, pp.
360–367. ACM (2008)

[3] Alpuente, M., Falaschi, M., Villanueva, A.: A symbolic model checker for tccp
programs. In: N. Guelfi (ed.) RISE, LNCS, vol. 3475, pp. 45–56. Springer (2004)

[4] Alpuente, M., Gramlich, B., Villanueva, A.: A framework for timed concurrent
constraint programming with external functions. ENTCS 188, 143–155 (2007)

[5] Alpuente, M., del Mar Gallardo, M., Pimentel, E., Villanueva, A.: A semantic
framework for the abstract model checking of tccp programs. Theor. Comput.
Sci. 346(1), 58–95 (2005)

[6] Alpuente, M., del Mar Gallardo, M., Pimentel, E., Villanueva, A.: Verifying
real-time properties of tccp programs. J. UCS 12(11), 1551–1573 (2006)

[7] Alpuente, M., del Mar Gallardo, M., Pimentel, E., Villanueva, A.: An abstract
analysis framework for synchronous concurrent languages based on source-to-
source transformation. ENTCS 206, 3–21 (2008)

[8] Amadio, R.M., Lugiez, D., Vanackère, V.: On the symbolic reduction of pro-
cesses with cryptographic functions. Theor. Comput. Sci. 290(1), 695–740
(2003)

[9] Aranda, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Stochastic behavior and ex-
plicit discrete time in concurrent constraint programming. In: de la Banda and
Pontelli [14], pp. 682–686

[10] Arbelaez, A., Gutierrez, J., Perez, J.A.: Timed concurrent constraint program-
ming in systems biology. Newsletter of the ALP 19(4) (2006)

[11] Aristizábal, A., Bonchi, F., Palamidessi, C., Pino, L.F., Valencia, F.D.: Deriving
labels and bisimilarity for concurrent constraint programming. In: M. Hofmann
(ed.) FOSSACS, LNCS, vol. 6604, pp. 138–152. Springer (2011)

37

[12] Aristizábal, A., Bonchi, F., Valencia, F.D., Pino, L.F.: Partition refinement for
bisimilarity in ccp. In: Ossowski and Lecca [159], pp. 88–93

[13] Assayag, G., Dubnov, S., Rueda, C.: A concurrent constraints factor oracle
model for music improvisation. In: Proc. of CLEI 2006 (2006)

[14] de la Banda, M.G., Pontelli, E. (eds.): Logic Programming, 24th Int. Confer-
ence, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, LNCS, vol.
5366. Springer (2008)

[15] Barahona, P., Felty, A.P. (eds.): Proceedings of the 7th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming, July
11-13 2005, Lisbon, Portugal. ACM (2005)

[16] Barco, A., Knight, S., Valencia, F.: K-stores A spatial and epistemic concurrent
constraint interpreter. In: Proc. of WFLP’12 (2012)

[17] Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS, pp.
332–341. IEEE Computer Society (2010)

[18] Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for
mobile processes with nominal data and logic. Logical Methods in Computer
Science 7(1) (2011)

[19] Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theor. Comput. Sci. 37, 77–121 (1985)

[20] Berry, G., Gonthier, G.: The esterel synchronous programming language: De-
sign, semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

[21] Bertolino, M., Etalle, S., Palamidessi, C.: The replacement operation for ccp
programs. In: A. Bossi (ed.) LOPSTR, LNCS, vol. 1817, pp. 216–233. Springer
(1999)

[22] Best, E., de Boer, F., Palamidessi, C.: Concurrent constraint programming with
information removal. In: First Workshop on Concurrent Constraint Program-
ming (1995)

[23] Best, E., de Boer, F.S., Palamidessi, C.: Partial order and sos semantics for linear
constraint programs. In: D. Garlan, D.L. Métayer (eds.) COORDINATION,
LNCS, vol. 1282, pp. 256–273. Springer (1997)

[24] Betz, H., Frühwirth, T.W.: A linear-logic semantics for constraint handling rules.
In: P. van Beek (ed.) CP, LNCS, vol. 3709, pp. 137–151. Springer (2005)

[25] Bistarelli, S.: Semirings for Soft Constraint Solving and Programming, LNCS,
vol. 2962. Springer (2004)

[26] Bistarelli, S., Bottalico, M., Santini, F.: Constraint-based languages to model
the blood coagulation cascade. In: S. Ferilli, D. Malerba (eds.) Logic-Based
Approaches in Bioinformatics, pp. 32–41 (2009)

38

[27] Bistarelli, S., Campli, P., Santini, F.: A secure coordination of agents with non-
monotonic soft concurrent constraint programming. In: Ossowski and Lecca
[159], pp. 1551–1553

[28] Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F.: Timed soft concurrent
constraint programs. In: D. Lea, G. Zavattaro (eds.) COORDINATION, LNCS,
vol. 5052, pp. 50–66. Springer (2008)

[29] Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming.
ACM Trans. Comput. Log. 7(3), 563–589 (2006)

[30] Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: Frameworks, properties, and compari-
son. Constraints 4(3), 199–240 (1999)

[31] Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language
to model the negotiation process. Fundam. Inform. 111(3), 257–279 (2011)

[32] Bockmayr, A., Courtois, A.: Using hybrid concurrent constraint programming
to model dynamic biological systems. In: P.J. Stuckey (ed.) ICLP, LNCS, vol.
2401, pp. 85–99. Springer (2002)

[33] de Boer, F.S., Gabbrielli, M., Marchiori, E., Palamidessi, C.: Proving concurrent
constraint programs correct. ACM Trans. Program. Lang. Syst. 19(5), 685–725
(1997)

[34] de Boer, F.S., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint lan-
guage. Inf. Comput. 161(1), 45–83 (2000)

[35] de Boer, F.S., Gabbrielli, M., Meo, M.C.: Proving correctness of timed concur-
rent constraint programs. ACM Trans. Comput. Log. 5(4), 706–731 (2004)

[36] de Boer, F.S., Gabbrielli, M., Palamidessi, C.: Proving correctness of constraint
logic programs with dynamic scheduling. In: R. Cousot, D.A. Schmidt (eds.)
SAS, LNCS, vol. 1145, pp. 83–97. Springer (1996)

[37] de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: Control flow ver-
sus logic: A denotational and a declarative model for guarded horn clauses.
In: A. Kreczmar, G. Mirkowska (eds.) MFCS, LNCS, vol. 379, pp. 165–176.
Springer (1989)

[38] de Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: Semantic models
for a version of parlog. In: ICLP, pp. 621–636 (1989)

[39] de Boer, F.S., Palamidessi, C.: A fully abstract model for concurrent constraint
programming. In: S. Abramsky, T.S.E. Maibaum (eds.) TAPSOFT, Vol.1, LNCS,
vol. 493, pp. 296–319. Springer (1991)

[40] de Boer, F.S., Palamidessi, C.: On the semantics of concurrent constraint pro-
gramming. In: ALPUK, pp. 145–173 (1992)

39

[41] de Boer, F.S., Pierro, A.D., Palamidessi, C.: Nondeterminism and infinite com-
putations in constraint programming. Theor. Comput. Sci. 151(1), 37–78 (1995)

[42] Boreale, M.: Symbolic trace analysis of cryptographic protocols. In: F. Orejas,
P.G. Spirakis, J. van Leeuwen (eds.) ICALP, LNCS, vol. 2076, pp. 667–681.
Springer (2001)

[43] Borning, A. (ed.): Principles and Practice of Constraint Programming, Second
International Workshop, PPCP’94, Rosario, Orcas Island, Washington, USA,
May 2-4, 1994, Proceedings, LNCS, vol. 874. Springer (1994)

[44] Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concur-
rent constraint programming. Constraints 13(1-2), 66–90 (2008)

[45] Bortolussi, L., Wiklicky, H.: A distributed and probabilistic concurrent con-
straint programming language. In: M. Gabbrielli, G. Gupta (eds.) ICLP, Lecture
Notes in Computer Science, vol. 3668, pp. 143–158. Springer (2005)

[46] Bottalico, M., Bistarelli, S.: Constraint based languages for biological reactions.
In: Hill and Warren [114], pp. 561–562

[47] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating se-
quential processes. J. ACM 31(3), 560–599 (1984)

[48] Bueno, F., Hermenegildo, M.V., Montanari, U., Rossi, F.: Partial order and con-
textual net semantics for atomic and locally atomic cc programs. Sci. Comput.
Program. 30(1-2), 51–82 (1998)

[49] Buscemi, M.G., Coppo, M., Dezani-Ciancaglini, M., Montanari, U.: Constraints
for service contracts. In: R. Bruni, V. Sassone (eds.) TGC, LNCS, vol. 7173, pp.
104–120. Springer (2011)

[50] Buscemi, M.G., Montanari, U.: CC-Pi: A constraint-based language for speci-
fying service level agreements. In: R. De Nicola (ed.) ESOP, LNCS, vol. 4421,
pp. 18–32. Springer (2007)

[51] Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint
pi-calculus. In: S. Drossopoulou (ed.) ESOP, LNCS, vol. 4960, pp. 254–268.
Springer (2008)

[52] Buscemi, M.G., Montanari, U.: CC-Pi: A constraint language for service ne-
gotiation and composition. In: M. Wirsing, M.M. Hölzl (eds.) Results of the
SENSORIA Project, LNCS, vol. 6582, pp. 262–281. Springer (2011)

[53] Buscemi, M.G., Montanari, U.: Qos negotiation in service composition. J. Log.
Algebr. Program. 80(1), 13–24 (2011)

[54] Campli, P., Bistarelli, S.: Capturing fair computations on concurrent constraint
language. In: Hill and Warren [114], pp. 559–560

40

[55] Cardelli, L., Gordon, A.D.: Mobile ambients. In: M. Nivat (ed.) FoSSaCS,
LNCS, vol. 1378, pp. 140–155. Springer (1998)

[56] Carlson, B., Haridi, S., Janson, S.: AKL(FD) - a concurrent language for FD
programming. In: SLP, pp. 521–535 (1994)

[57] Chiarugi, D., Falaschi, M., Olarte, C., Palamidessi, C.: Compositional mod-
elling of signalling pathways in timed concurrent constraint programming. In:
A. Zhang, M. Borodovsky, G. Özsoyoglu, A.R. Mikler (eds.) BCB, pp. 414–417.
ACM (2010)

[58] Comini, M., Titolo, L., Villanueva, A.: Abstract diagnosis for timed concurrent
constraint programs. TPLP 11(4-5), 487–502 (2011)

[59] Coppo, M., Dezani-Ciancaglini, M.: Structured communications with concur-
rent constraints. In: C. Kaklamanis, F. Nielson (eds.) TGC, LNCS, vol. 5474,
pp. 104–125. Springer (2008)

[60] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Log. Program. 13(2&3), 103–179 (1992)

[61] Crazzolara, F., Winskel, G.: Petri nets in cryptographic protocols. In: IPDPS, p.
149. IEEE Computer Society (2001)

[62] Dahl, V., Niemelä, I. (eds.): Logic Programming, 23rd International Conference,
ICLP 2007, Porto, Portugal, September 8-13, 2007, Proceedings, LNCS, vol.
4670. Springer (2007)

[63] Demoen, B., Lifschitz, V. (eds.): Logic Programming, 20th International Con-
ference, ICLP 2004, Saint-Malo, France, September 6-10, 2004, Proceedings,
LNCS, vol. 3132. Springer (2004)

[64] Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An
overview. In: C. Laneve, J. Su (eds.) WS-FM, LNCS, vol. 6194, pp. 1–28.
Springer (2009)

[65] Dı́az, J.F., Gutierrez, G., Olarte, C.A., Rueda, C.: Using constraint programming
for reconfiguration of electrical power distribution networks. In: P.V. Roy (ed.)
MOZ, LNCS, vol. 3389, pp. 263–276. Springer (2004)

[66] Dı́az, J.F., Rueda, C., Valencia, F.D.: Pi+- calculus: A calculus for concurrent
processes with constraints. CLEI Electron. J. 1(2) (1998)

[67] Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transac-
tions on Information Theory 29(2), 198–207 (1983)

[68] Dovier, A., Pontelli, E. (eds.): A 25-Year Perspective on Logic Programming:
Achievements of the Italian Association for Logic Programming, GULP, LNCS,
vol. 6125. Springer (2010)

41

[69] Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis
for flexible constraint satisfaction. In: Proc. 2nd IEEE Conference on Fuzzy
Systems, pp. 1131–1136 vol.2. San Francisco, CA (1993)

[70] Duck, G.J., Stuckey, P.J., de la Banda, M.J.G., Holzbaur, C.: The refined oper-
ational semantics of constraint handling rules. In: Demoen and Lifschitz [63],
pp. 90–104

[71] Duck, G.J., Stuckey, P.J., Sulzmann, M.: Observable confluence for constraint
handling rules. In: Dahl and Niemelä [62], pp. 224–239

[72] Dücker, M., Lehrenfeld, G., Müller, W., Tahedl, C.: A generic system for in-
teractive real-time animation. In: ECBS, pp. 263–270. IEEE Computer Society
(1997)

[73] Etalle, S., Gabbrielli, M., Meo, M.C.: Transformations of CCP programs. ACM
Trans. Program. Lang. Syst. 23(3), 304–395 (2001)

[74] Eveillard, D., Ropers, D., de Jong, H., Branlant, C., Bockmayr, A.: A multi-
scale constraint programming model of alternative splicing regulation. Theor.
Comput. Sci. 325(1), 3–24 (2004)

[75] Fages, F., Batt, G., Maria, E.D., Jovanovska, D., Rizk, A., Soliman, S.: Compu-
tational systems biology in biocham. ERCIM News 2010(82), 36 (2010)

[76] Fages, F., de Oliveira Rodrigues, C.M., Martinez, T.: Modular CHR with ask
and tell. In: Proc. of Fifth Workshop on Constraint Handling Rules (2008)

[77] Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming:
Operational and phase semantics. Inf. Comput. 165(1), 14–41 (2001)

[78] Fages, F., Soliman, S., Vianu, V.: Expressiveness and complexity of concurrent
constraint programming: a finite model theoretic approach. Tech. Rep. 98-14,
LIENS (1998)

[79] Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Compositional anal-
ysis for concurrent constraint programming. In: LICS, pp. 210–221. IEEE Com-
puter Society (1993)

[80] Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Confluence in con-
current constraint programming. Theor. Comput. Sci. 183(2), 281–315 (1997)

[81] Falaschi, M., Gabbrielli, M., Marriott, K., Palamidessi, C.: Constraint logic pro-
gramming with dynamic scheduling: A semantics based on closure operators.
Inf. Comput. 137(1), 41–67 (1997)

[82] Falaschi, M., Olarte, C., Palamidessi, C.: A framework for abstract interpreta-
tion of timed concurrent constraint programs. In: A. Porto, F.J. López-Fraguas
(eds.) PPDP, pp. 207–218. ACM (2009)

42

[83] Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F.: Declarative diagnosis
of temporal concurrent constraint programs. In: Dahl and Niemelä [62], pp.
271–285

[84] Falaschi, M., Policriti, A., Villanueva, A.: Modeling concurrent systems speci-
fied in a temporal concurrent constraint language-i. ENTCS 48, 197–210 (2001)

[85] Falaschi, M., Villanueva, A.: Automatic verification of timed concurrent con-
straint programs. TPLP 6(3), 265–300 (2006)

[86] Fournet, C., Abadi, M.: Hiding names: Private authentication in the applied pi
calculus. In: M. Okada, B.C. Pierce, A. Scedrov, H. Tokuda, A. Yonezawa (eds.)
ISSS, LNCS, vol. 2609, pp. 317–338. Springer (2002)

[87] Franzén, T., Haridi, S., Janson, S.: An overview of the andorra kernel language.
In: L.H. Eriksson, L. Hallnäs, P. Schroeder-Heister (eds.) ELP, LNCS, vol. 596,
pp. 163–179. Springer (1991)

[88] Frühwirth, T., Michel, L., Schulte, C.: Chapter 13 - constraints in procedural and
concurrent languages. In: F. Rossi, P. van Beek, T. Walsh (eds.) Handbook of
Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 453
– 494. Elsevier (2006)

[89] Frühwirth, T.W.: Constraint handling rules. In: Constraint Programming, pp.
90–107 (1994)

[90] Frühwirth, T.W.: Theory and practice of constraint handling rules. J. Log. Pro-
gram. 37(1-3), 95–138 (1998)

[91] Frühwirth, T.W.: Constraint Handling Rules. Cambridge University Press
(2009)

[92] Frühwirth, T.W., Pierro, A.D., Wiklicky, H.: Probabilistic constraint handling
rules. ENTCS 76, 115–130 (2002)

[93] Furukawa, K., Ueda, K.: Ghc - a language for a new age of parallel program-
ming. In: K.V. Nori, S. Kumar (eds.) FSTTCS, Lecture Notes in Computer
Science, vol. 338, pp. 364–376. Springer (1988)

[94] Gabbrielli, M., Levi, G.: Unfolding and fixpoint semantics of concurrent con-
straint logic programs. In: H. Kirchner, W. Wechler (eds.) ALP, LNCS, vol. 463,
pp. 204–216. Springer (1990)

[95] Gabbrielli, M., Palamidessi, C., Valencia, F.D.: Concurrent and reactive con-
straint programming. In: Dovier and Pontelli [68], pp. 231–253

[96] Gilbert, D., Palamidessi, C.: Concurrent constraint programming with pro-
cess mobility. In: J.W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.K. Lau,
C. Palamidessi, L.M. Pereira, Y. Sagiv, P.J. Stuckey (eds.) Computational Logic,
LNCS, vol. 1861, pp. 463–477. Springer (2000)

43

[97] Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)

[98] Gupta, V., Jagadeesan, R., Panangaden, P.: Stochastic processes as concurrent
constraint programs. In: A.W. Appel, A. Aiken (eds.) POPL, pp. 189–202. ACM
(1999)

[99] Gupta, V., Jagadeesan, R., Saraswat, V.A.: Models for concurrent constraint
programming. In: U. Montanari, V. Sassone (eds.) CONCUR, LNCS, vol. 1119,
pp. 66–83. Springer (1996)

[100] Gupta, V., Jagadeesan, R., Saraswat, V.A.: Probabilistic concurrent constraint
programming. In: A.W. Mazurkiewicz, J. Winkowski (eds.) CONCUR, LNCS,
vol. 1243, pp. 243–257. Springer (1997)

[101] Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change.
Sci. Comput. Program. 30(1-2), 3–49 (1998)

[102] Gupta, V., Jagadeesan, R., Saraswat, V.A.: Truly concurrent constraint program-
ming. Theor. Comput. Sci. 278(1-2), 223–255 (2002)

[103] Gupta, V., Saraswat, V., Struss, P.: A model of a photocopier paper path. In: Pro-
ceedings of the 2nd IJCAI Workshop on Engineering Problems for Qualitative
Reasoning (1995)

[104] Gutierrez, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Timed concurrent constraint
programming for analysing biological systems. ENTCS 171(2), 117–137 (2007)

[105] Haemmerlé, R.: Observational equivalences for linear logic concurrent con-
straint languages. TPLP 11(4-5), 469–485 (2011)

[106] Haemmerlé, R., Fages, F., Soliman, S.: Closures and modules within linear logic
concurrent constraint programming. In: V. Arvind, S. Prasad (eds.) FSTTCS,
LNCS, vol. 4855, pp. 544–556. Springer (2007)

[107] Halbwachs, N.: Synchronous programming of reactive systems. In: A.J. Hu,
M.Y. Vardi (eds.) CAV, LNCS, vol. 1427, pp. 1–16. Springer (1998)

[108] Hankin, C. (ed.): Programming Languages and Systems - ESOP’98, LNCS, vol.
1381. Springer (1998)

[109] Haridi, S., Janson, S., Montelius, J., Franzén, T., Brand, P., Boortz, K., Daniels-
son, B., Carlson, B., Keisu, T., Sahlin, D., Sjöland, T.: Concurrent constraint
programming at sics with the andorra kernel language (extended abstract). In:
PPCP, pp. 107–116 (1993)

[110] Henkin, L., J.D., M., Tarski, A.: Cylindric Algebras, Part I. North-Holland
(1971)

[111] Hentenryck, P.V., Saraswat, V.A., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(FD). J. Log. Program. 37(1-3), 139–164
(1998)

44

[112] Hermith, D., Olarte, C., Rueda, C., Valencia, F.D.: Modeling cellular signal-
ing systems: An abstraction-refinement approach. In: M.P. Rocha, J.M.C.
Rodrı́guez, F. Fdez-Riverola, A. Valencia (eds.) PACBB, Advances in Intelligent
and Soft Computing, vol. 93, pp. 321–328. Springer (2011)

[113] Hildebrandt, T., López, H.A.: Types for secure pattern matching with local
knowledge in universal concurrent constraint programming. In: Hill and Warren
[114], pp. 417–431

[114] Hill, P.M., Warren, D.S. (eds.): Logic Programming, 25th International Confer-
ence, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings, LNCS,
vol. 5649. Springer (2009)

[115] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disci-
pline for structured communication-based programming. In: Hankin [108], pp.
122–138

[116] Jaffar, J., Lassez, J.L.: Constraint logic programming. In: POPL, pp. 111–119.
ACM Press (1987)

[117] Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. J. Log. Pro-
gram. 19/20, 503–581 (1994)

[118] Jagadeesan, R., Marrero, W., Pitcher, C., Saraswat, V.A.: Timed constraint pro-
gramming: a declarative approach to usage control. In: Barahona and Felty [15],
pp. 164–175

[119] Jagadeesan, R., Saraswat, V., Shanbhogue, V.: Angelic non-determinism in con-
current constraint programming. Tech. rep., Xerox Parc (1991)

[120] Jouannaud, J.P. (ed.): Constraints in Computational Logics, First International
Conference, CCL’94, Munich, Germant, September 7-9, 1994, LNCS, vol. 845.
Springer (1994)

[121] Kahn, K.M., Saraswat, V.A.: Actors as a special case of concurrent constraint
programming. In: A. Yonezawa (ed.) OOPSLA/ECOOP, pp. 57–66. ACM
(1990)

[122] Kahn, K.M., Saraswat, V.A.: Complete visualization of concurrent programs
and their executions. In: LPE, pp. 30–34 (1990)

[123] de Kergommeaux, J.C., Codognet, P.: Parallel logic programming systems.
ACM Comput. Surv. 26(3), 295–336 (1994)

[124] Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epis-
temic modalities in constraint-based process calculi. In: M. Koutny, I. Ulidowski
(eds.) CONCUR, LNCS, vol. 7454, pp. 317–332. Springer (2012)

[125] Koninck, L.D., Schrijvers, T., Demoen, B.: User-definable rule priorities for chr.
In: M. Leuschel, A. Podelski (eds.) PPDP, pp. 25–36. ACM (2007)

45

[126] Kwiatkowska, M.Z.: Infinite behaviour and fairness in concurrent constraint
programming. In: J.W. de Bakker, W.P. de Roever, G. Rozenberg (eds.) REX
Workshop, LNCS, vol. 666, pp. 348–383. Springer (1992)

[127] Laneve, C., Montanari, U.: Mobility in the cc-paradigm. In: I.M. Havel,
V. Koubek (eds.) MFCS, LNCS, vol. 629, pp. 336–345. Springer (1992)

[128] Lehmann, D.J.: Categories for fixpoint-semantics. In: FOCS, pp. 122–126.
IEEE Computer Society (1976)

[129] Lescaylle, A., Villanueva, A.: Using tccp for the Specification and Verification
of Communication Protocols. In: Proc. of WFLP 07 (2007)

[130] Lescaylle, A., Villanueva, A.: The tccp interpreter. ENTCS 258(1), 63–77
(2009)

[131] Lescaylle, A., Villanueva, A.: A tool for generating a symbolic representation
of tccp executions. ENTCS 246, 131–145 (2009)

[132] Lescaylle, A., Villanueva, A.: Bridging the gap between two concurrent con-
straint languages. In: J. Mariño (ed.) WFLP, LNCS, vol. 6559, pp. 155–173.
Springer (2010)

[133] López, H.A., Olarte, C., Pérez, J.A.: Towards a unified framework for declara-
tive structured communications. In: A.R. Beresford, S.J. Gay (eds.) PLACES,
EPTCS, vol. 17, pp. 1–15 (2009)

[134] Maher, M.J.: Logic semantics for a class of committed-choice programs. In:
ICLP, pp. 858–876 (1987)

[135] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer-Verlag (1991)

[136] Marriott, K., Odersky, M.: A confluent calculus for concurrent constraint pro-
gramming. Theor. Comput. Sci. 173(1), 209–233 (1997)

[137] Martinez, T.: Semantics-preserving translations between linear concurrent con-
straint programming and constraint handling rules. In: T. Kutsia, W. Schreiner,
M. Fernández (eds.) PPDP, pp. 57–66. ACM (2010)

[138] Mendler, N.P., Panangaden, P., Scott, P.J., Seely, R.A.G.: A logical view of
concurrent constraint programming. Nord. J. Comput. 2(2), 181–220 (1995)

[139] Milner, R.: A finite delay operator in synchronous CCS. Tech. Rep. CSR-116-
82, University of Edinburgh (1992)

[140] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Parts I and
II. Inf. Comput. 100(1), 1–40 (1992)

[141] Monfroy, E., Olarte, C., Rueda, C.: Process calculi for adaptive enumeration
strategies in constraint programming. Research in Computer Science (2007)

46

[142] Montanari, U.: Networks of constraints: Fundamental properties and applica-
tions to picture processing. Inf. Sci. 7, 95–132 (1974)

[143] Montanari, U., Rossi, F.: True concurrency in concurrent constraint program-
ming. In: ISLP, pp. 694–713 (1991)

[144] Montanari, U., Rossi, F.: Contextual occurence nets and concurrent constraint
programming. In: H.J. Schneider, H. Ehrig (eds.) Dagstuhl Seminar on Graph
Transformations in Computer Science, LNCS, vol. 776, pp. 280–295. Springer
(1993)

[145] Montanari, U., Rossi, F.: A concurrenct semantics for concurrent constraint pro-
gramming via contextual nets. In: V. Saraswat, P.V. Hentenryck (eds.) Principles
and Practice of Constraint Programming, pp. 3–27. MIT Press (1995)

[146] Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995)

[147] Montanari, U., Rossi, F., Bueno, F., de la Banda, M.J.G., Hermenegildo, M.V.:
Towards a concurrent semantics based analysis of cc and clp. In: Borning [43],
pp. 151–161

[148] Montanari, U., Rossi, F., Saraswat, V.A.: Cc programs with both in- and non-
determinism: A concurrent semantics. In: Borning [43], pp. 162–172

[149] Müller, T., Müller, M.: Finite set intervals in oz. In: WLP, pp. 17–19 (1997)

[150] Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

[151] Niehren, J., Smolka, G.: A confluent relational calculus for higher-order pro-
gramming with constraints. In: Jouannaud [120], pp. 89–104

[152] Nielsen, M., Palamidessi, C., Valencia, F.D.: On the expressive power of tem-
poral concurrent constraint programming languages. In: PPDP, pp. 156–167.
ACM (2002)

[153] Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint
programming: Denotation, logic and applications. Nord. J. Comput. 9(1), 145–
188 (2002)

[154] Nyström, S.O., Jonsson, B.: Indeterminate concurrent constraint programming:
A fixpoint semantics for non-terminating computations. In: ILPS, pp. 335–352
(1993)

[155] Olarte, C., Pimentel, E., Rueda, C., Cataño, N.: A linear concurrent constraint
approach for the automatic verification of access permissions. In: D.D. Schreye,
G. Janssens, A. King (eds.) PPDP, pp. 207–216. ACM (2012)

[156] Olarte, C., Rueda, C.: A declarative language for dynamic multimedia inter-
action systems. In: E. Chew, A. Childs, C.H. Chuan (eds.) Mathematics and
Computation in Music, Communications in Computer and Information Science,
vol. 38, pp. 218–227. Springer Berlin Heidelberg (2009)

47

[157] Olarte, C., Valencia, F.D.: The expressivity of universal timed ccp: undecidabil-
ity of monadic fltl and closure operators for security. In: S. Antoy, E. Albert
(eds.) PPDP, pp. 8–19. ACM (2008)

[158] Olarte, C., Valencia, F.D.: Universal concurrent constraint programing: sym-
bolic semantics and applications to security. In: R.L. Wainwright, H. Haddad
(eds.) SAC, pp. 145–150. ACM (2008)

[159] Ossowski, S., Lecca, P. (eds.): Proceedings of the ACM Symposium on Applied
Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012. ACM (2012)

[160] Palù, A.D., Dovier, A., Fogolari, F.: Protein folding simulation in ccp. In: De-
moen and Lifschitz [63], pp. 452–453

[161] Pérez, J.A., Rueda, C.: Non-determinism and probabilities in timed concurrent
constraint programming. In: de la Banda and Pontelli [14], pp. 677–681

[162] Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In:
IFIP Congress, pp. 386–390 (1962)

[163] Pettorossi, A., Proietti, M.: Transformation of logic programs: Foundations and
techniques. J. Log. Program. 19/20, 261–320 (1994)

[164] Pierro, A.D., Wiklicky, H.: A banach space based semantics for probabilistic
concurrent constraint programming. In: X. Lin (ed.) CATS, Australian Com-
puter Science Communications, vol. 20, pp. 245–260. Springer-Verlag Singa-
pore Pte. Ltd. (1998)

[165] Pierro, A.D., Wiklicky, H.: Probabilistic concurrent constraint programming:
Towards a fully abstract model. In: L. Brim, J. Gruska, J. Zlatuska (eds.) MFCS,
LNCS, vol. 1450, pp. 446–455. Springer (1998)

[166] Pierro, A.D., Wiklicky, H.: Concurrent constraint programming: towards prob-
abilistic abstract interpretation. In: PPDP, pp. 127–138. ACM (2000)

[167] del Pilar Muñoz, M., Hurtado, A.R.: Programming robotic devices with a timed
concurrent constraint language. In: M. Wallace (ed.) CP, LNCS, vol. 3258, p.
803. Springer (2004)

[168] Pilozzi, P., Schreye, D.D.: Improved termination analysis of chr using self-
sustainability analysis. In: G. Vidal (ed.) LOPSTR, LNCS, vol. 7225, pp. 189–
204. Springer (2011)

[169] Puckette, M., Apel, T., Zicarelli, D.: Real-time audio analysis tools for Pd and
MSP. In: Proceedings, International Computer Music Conference., pp. 109–112
(1998)

[170] Reisig, W.: Petri Nets: An Introduction, Monographs in Theoretical Computer
Science. An EATCS Series, vol. 4. Springer (1985)

[171] Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)

48

[172] Réty, J.H.: Distributed concurrent constraint programming. Fundam. Inform.
34(3), 323–346 (1998)

[173] Roy, P.V., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press (2004)

[174] Rueda, C., Alvarez, G., Quesada, L., Tamura, G., Valencia, F.D., Dı́az, J.F.,
Assayag, G.: Integrating constraints and concurrent objects in musical applica-
tions: A calculus and its visual language. Constraints 6(1), 21–52 (2001)

[175] Rueda, C., Valencia, F.: On validity in modelization of musical problems by
CCP. Soft Comput. 8(9) (2004)

[176] Rueda, C., Valencia, F.D.: A temporal concurrent constraint calculus as an audio
processing framework. In: Sound and Music Computing conference (2005)

[177] Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Uni-
verstity Press (2012)

[178] Saraswat, V.: Euler: an applied lcc language for graph rewriting. Tech. rep.,
IBM TJ Watson Research Center (2004)

[179] Saraswat, V., Lincoln, P.: Higher-order Linear Concurrent Constraint Program-
ming. Tech. rep., Xerox Parc (1992)

[180] Saraswat, V.A.: The category of constraint systems is cartesian-closed. In:
LICS, pp. 341–345. IEEE Computer Society (1992)

[181] Saraswat, V.A.: Concurrent Constraint Programming. MIT Press (1993)

[182] Saraswat, V.A., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent
constraint programming. In: LICS, pp. 71–80. IEEE Computer Society (1994)

[183] Saraswat, V.A., Jagadeesan, R., Gupta, V.: Timed default concurrent constraint
programming. J. Symb. Comput. 22(5/6), 475–520 (1996)

[184] Saraswat, V.A., Jagadeesan, R., Gupta, V.: jcc: Integrating timed default con-
current constraint programming into java. In: F. Moura-Pires, S. Abreu (eds.)
EPIA, LNCS, vol. 2902, pp. 156–170. Springer (2003)

[185] Saraswat, V.A., Kahn, K.M., Levy, J.: Janus: A step towards distributed con-
straint programming. In: NACLP, pp. 431–446 (1990)

[186] Saraswat, V.A., Rinard, M.C.: Concurrent constraint programming. In: F.E.
Allen (ed.) POPL, pp. 232–245. ACM Press (1990)

[187] Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concur-
rent constraint programming. In: D.S. Wise (ed.) POPL, pp. 333–352. ACM
Press (1991)

49

[188] Sarna-Starosta, B., Ramakrishnan, C.R.: Compiling constraint handling rules
for efficient tabled evaluation. In: M. Hanus (ed.) PADL, LNCS, vol. 4354, pp.
170–184. Springer (2007)

[189] Sarria, G.: Real-time concurrent constraint calculus: The complete operational
semantics. Engineering Letters 19(1), 38–45 (2011)

[190] Sato, T.: A glimpse of symbolic-statistical modeling by prism. J. Intell. Inf.
Syst. 31(2), 161–176 (2008)

[191] Schächter, V.: Linear concurrent constraint programming over reals. In: M.J.
Maher, J.F. Puget (eds.) CP, LNCS, vol. 1520, pp. 400–416. Springer (1998)

[192] Schrijvers, T., Stuckey, P.J., Duck, G.J.: Abstract interpretation for constraint
handling rules. In: Barahona and Felty [15], pp. 218–229

[193] Scott, D.S.: Domains for denotational semantics. In: M. Nielsen, E.M. Schmidt
(eds.) ICALP, LNCS, vol. 140, pp. 577–613. Springer (1982)

[194] Shapiro, E.: The family of concurrent logic programming languages. ACM
Comput. Surv. 21(3) (1989)

[195] Smolka, G.: A foundation for higher-order concurrent constraint programming.
In: Jouannaud [120], pp. 50–72

[196] Smolka, G.: The Oz programming model. In: J. van Leeuwen (ed.) Computer
Science Today, LNCS, vol. 1000, pp. 324–343. Springer (1995)

[197] Smolka, G.: Concurrent constraint programming based on functional program-
ming (extended abstract). In: Hankin [108], pp. 1–11

[198] Sneyers, J., Meert, W., Vennekens, J., Kameya, Y., Sato, T.: Chr(prism)-based
probabilistic logic learning. TPLP 10(4-6), 433–447 (2010)

[199] Sneyers, J., Weert, P.V., Schrijvers, T., Koninck, L.D.: As time goes by: Con-
straint handling rules. TPLP 10(1), 1–47 (2010)

[200] Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artif. Intell. 9(2),
135–196 (1977)

[201] Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions
to express dataflow in stateful programs. In: S. Arora, G.T. Leavens (eds.) OOP-
SLA Companion, pp. 933–940. ACM (2009)

[202] Sussman, G.J., Jr., G.L.S.: Constraints - a language for expressing almost-
hierarchical descriptions. Artif. Intell. 14(1), 1–39 (1980)

[203] Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: C. Halatsis, D.G. Maritsas, G. Philokyprou, S. Theodoridis (eds.)
PARLE, LNCS, vol. 817, pp. 398–413. Springer (1994)

50

[204] Toro-Bermúdez, M., Desainte-Catherine, M.: Concurrent constraints
conditional-branching timed interactive scores. In: Sound and Music Comput-
ing conference. Barcelona, Spain (2010)

[205] Ueda, K., Kato, N., Hara, K., Mizuno, K.: Lmntal as a unifying declarative lan-
guage: Live demonstration. In: S. Etalle, M. Truszczynski (eds.) ICLP, LNCS,
vol. 4079, pp. 457–458. Springer (2006)

[206] Valencia, F.D.: Decidability of infinite-state timed ccp processes and first-order
ltl. Theor. Comput. Sci. 330(3), 577–607 (2005)

[207] Varejao, F.M., Fromherz, M.P., Garcia, A.C.B., de Souza, C.S.: An integrated
framework for the specification and design of reprographic machines. In: Thir-
teenth Int. Conf. on Applications of Artificial Intelligence in Engineering. Com-
putational Mechanics Publications (1998)

[208] Victor, B., Parrow, J.: Concurrent constraints in the fusion calculus. In: K.G.
Larsen, S. Skyum, G. Winskel (eds.) ICALP, LNCS, vol. 1443, pp. 455–469.
Springer (1998)

[209] Wahls, T., Leavens, G.T., Baker, A.L.: Executing formal specifications with
concurrent constraint programming. Autom. Softw. Eng. 7(4), 315–343 (2000)

[210] Waltz, D.L.: Gene freuder and the roots of constraint computation. Constraints
11(2-3), 87–89 (2006)

[211] Wischik, L., Gardner, P.: Explicit fusions. Theor. Comput. Sci. 340(3), 606–630
(2005)

[212] Wong, H.C., Fromherz, M., Gupta, V., Saraswat, V.: Control-based program-
ming of electro-mechanical controllers. In: IJCAI Workshop on Executable
Temporal Logics (1995)

[213] Zaffanella, E., Giacobazzi, R., Levi, G.: Abstracting synchronization in con-
current constraint programming. Journal of Functional and Logic Programming
1997(6) (1997)

51

Coalgebraic up-to techniques

Damien Pous1?

CNRS, LIP, ENS Lyon, France
damien.pous@ens-lyon.fr

1 The concrete case of finite automata

A simple algorithm for checking language equivalence of finite automata con-
sists in trying to compute a bisimulation that relates them. This is possible
because language equivalence can be characterised coinductively, as the largest
bisimulation.

More precisely, consider an automaton 〈S, t, o〉, where S is a (finite) set of
states, t : S → P(S)A is a non-deterministic transition function, and o : S → 2
is the characteristic function of the set of accepting states. Such an automation
gives rise to a determinised automaton 〈P(S), t], o]〉, where t] : P(S) → P(S)A

and o] : P(S) → 2 are the natural extensions of t and o to sets. A bisimulation
is a relation R between sets of states such that for all sets of states X,Y , X R Y
entails:

1. o](X) = o](Y), and

2. for all letter a, t]a(X) R t]a(Y).

The coinductive characterisation is the following one: two sets of states recognise
the same language if and only if they are related by some bisimulation.

Taking inspiration from concurrency theory [4,5], one can improve this proof
technique by weakening the second item in the definition of bisimulation: given
a function f on binary relations, a bisimulation up to f is a relation R between
states such that for all sets X,Y , X R Y entails:

1. o](X) = o](Y), and

2. for all letter a, t]a(X) f(R) t]a(Y).

For well-chosen functions f , bisimulations up to f are contained in a bisimula-
tion, so that the improvement is sound. So is the function mapping each relation
to its equivalence closure. In this particular case, one recover the standard al-
gorithm by Hopcroft and Karp [2]: two sets can be skipped whenever they can
already be related by a sequence of pairwise related states.

One can actually do more, by considering the function c mapping each rela-
tion to its congruence closure: the smallest equivalence relation which contains

? Work partially funded by the PiCoq and PACE projects, ANR-10-BLAN-0305 and
ANR-12IS02001

the argument, and which is compatible w.r.t. set union:

X c(R) X

Y c(R) X

X c(R) Y

X c(R) Y Y c(R) Z

X c(R) Z

X R Y

X c(R) Y

X1 c(R) Y1 X2 c(R) Y2

X1 ∪X2 c(R) Y1 ∪ Y2
.

This is how we obtained HKC [1], an algorithm that can be exponentially faster
than Hopcroft and Karp’s algorithm or more recent antichain algorithms [7].

2 Generalisation to coalgebra

The above ideas generalise nicely, using the notion of λ-bialgebras [3].
Let T be a monad, F an endofunctor, and λ a distributive law TF ⇒ FT ,

a λ-bialgebra is a triple 〈X,α, β〉, where 〈X,α〉 is a F -coalgebra, 〈X,β〉 a T -
algebra, and α ◦ β = Fβ ◦ λX ◦ Tα. Given such a λ-bialgebra, FT -algebra
generalise non-deterministic automata: take X 7→ 2×XA for F , and X 7→ PfX
for T . Determinisation through the powerset construction can be generalised as
follows [6], when the functor F has a final coalgebra 〈Ω,ω〉:

X

α

��

η
// TX

α]{{

! // Ω

ω

��

FTX
F ! // FΩ

Bisimulations up-to can be expressed in a natural way in such a framework.
One can in particular consider bisimulations up to congruence, where the con-
gruence is taken w.r.t. the monad T : the fact that λ is a distributive law ensures
that this improvement is always sound.

References

1. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to con-
gruence. In POPL, pages 457–468. ACM, 2013.

2. J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite
automata. Technical Report 114, Cornell University, December 1971.

3. B. Klin. Bialgebras for structural operational semantics: An introduction. TCS,
412(38):5043–5069, 2011.

4. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
5. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in Com-

puter Science, 8:447–479, 1998.
6. A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the powerset con-

struction, coalgebraically. In Proc. FSTTCS, volume 8 of LIPIcs, pages 272–283.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

7. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proc. CAV, volume 4144
of Lecture Notes in Computer Science, pages 17–30. Springer, 2006.

Saturated Semantics for Coalgebraic
Logic Programming

Filippo Bonchi and Fabio Zanasi

ENS Lyon, U. de Lyon, CNRS, INRIA, UCBL

Abstract. A series of recent papers introduces a coalgebraic semantics
for logic programming, where the behavior of a goal is represented by
a parallel model of computation called coinductive tree. This semantics
fails to be compositional, in the sense that the coalgebra formalizing such
behavior does not commute with the substitutions that may apply to a
goal. We suggest that this is an instance of a more general phenomenon,
occurring in the setting of interactive systems (in particular, nominal
process calculi), when one tries to model their semantics with coalgebrae
on presheaves. In those cases, compositionality can be obtained through
saturation. We apply the same approach to logic programming: the re-
sulting semantics is compositional and enjoys an elegant formulation in
terms of coalgebrae on presheaves and their right Kan extensions.

1 Introduction

Coalgebrae on presheaves have been successfully employed to provide semantics
to nominal calculi: sophisticated process calculi with complex mechanisms for
variable binding, like the π-calculus [17, 14, 37, 16, 15]. The idea is to have an
index category C of interfaces (or names), and encode as a presheaf F : C→ Set
the mapping of any object i of C to the set of states having i as interface, and
any arrow f : i → j to a function switching the interface of states from i to
j. The operational semantics of the calculus will arise as a notion of transition
between states, that is, as a coalgebra α : F → B(F), where B : SetC → SetC is
a functor on presheaves encoding the kind of behavior that we want to express.

As an arrow in a presheaf category, α has to be a natural transformation, i.e.
it should commute with arrows f : i→ j in the index category C. Unfortunately,
this naturality requirement may fail when the structure of C is rich enough, as
for instance when non-injective substitutions [18, 33, 38] or name fusions [32,
5] occur. As a concrete example, consider the π-calculus term t = ā⟨x⟩|b(y)
consisting of a process ā⟨x⟩ sending a message x on a channel named a, in
parallel with b(y) receiving a message on a channel named b. Since the names a
and b are different, the two processes cannot synchronize. Conversely the term
tθ = ā⟨x⟩|a(y), that is obtained by applying the substitution θ mapping b to a,
can synchronize. If θ is an arrow of the index category C, then the operational
semantics α is not natural since α(tθ) ̸= α(t)θ, where θ denotes the application
of θ to the transitions of t. As a direct consequence, also the unique morphism to
the terminal coalgebra is not natural: this means that the abstract semantics of
π-calculus is not compositional - in other words, bisimilarity is not a congruence

w.r.t. name substitutions. In order to make bisimilarity a congruence, Sangiorgi
introduced in [36] open bisimilarity, that is defined by considering the transitions
of processes under all possible name substitutions θ.

The approach of saturated semantics [6, 8] can be seen as a generalization of
open bisimilarity, relying on analogous principles: the operational semantics α
is “saturated” w.r.t. the arrows of the index category C, resulting in a natural
transformation α♯ in SetC. In [5, 34], this is achieved by first shifting the def-

inition of α to the category Set|C| of presheaves indexed by the discretization
|C| of C. Since |C| does not have other arrow than the identities, α is trivially a

natural transformation in this setting. The source of α is U(F) ∈ Set|C|, where

U : SetC → Set|C| is a forgetful functor defined by composition with the inclu-
sion ι : |C| → C. The functor U has a right adjoint K : Set|C| → SetC sending
a presheaf to its right Kan extension along ι. The adjoint pair U ⊣ K induces
an isomorphism (−)♯

X,Y : Set|C|[U(X), Y] → SetC[X,K(Y)] mapping α to α♯.

The latter is a natural transformation in SetC and, consequently, the abstract
semantics results to be compositional.

In this paper, we show that the saturated approach can be fruitfully in-
stantiated to coalgebraic logic programming [23, 25, 24, 26], which consists of a
novel semantics for logic programming and a parallel resolution algorithm based
on coinductive trees. These are a variant of and-or trees [21] modeling parallel
implementations of logic programming, where the soundness of the derivations
represented by a tree is guaranteed by the restriction to term-matching (whose
algorithm, differently from unification, is parallelizable [13]).

There are two analogies with the π-calculus: (a) the state space is modeled
by a presheaf on the index category Lop

Σ , that is the (opposite) Lawvere Theory
associated with some signature Σ; (b) the operational semantics given in [25] fails

to be a natural transformation in SetL
op
Σ : Example 2 provides a counter-example

which is similar to the π-calculus term t discussed above. The authors of [25]
obviate to (b) by relaxing naturality to lax naturality : the operational semantics p
of a logic program is given as an arrow in the category Lax (Lop

Σ ,Poset) of locally
ordered functors F : Lop

Σ → Poset and lax natural transformations between
them. They show the existence of a cofree comonad that induces a morphism
[[−]]p mapping atoms (i.e., atomic formulae) to coinductive trees. Since [[−]]p is
not natural but lax natural, the semantics provided by coinductive trees is not
compositional, in the sense that, for some atoms A and substitution θ,

[[Aθ]]p ̸= [[A]]pθ

where [[Aθ]]p is the coinductive tree associated with Aθ and [[A]]pθ denotes the
result of applying θ to each atom occurring in the tree [[A]]p.

Instead of introducing laxness, we propose to tackle the non-naturality of p
with a saturated approach. It turns out that, in the context of logic program-
ming, the saturation map (−)♯ has a neat description in terms of substitution
mechanisms: while p performs term-matching between the atoms and the heads
of clauses of a given logic program, its saturation p♯ (given as a morphism in

SetL
op
Σ) performs unification. It is worth to remark here that not only most

general unifiers are considered but all possible unifiers.

A cofree construction leading to a map [[−]]p♯ can be obtained by very stan-
dard categorical tools, such as terminal sequences [1]. This is possible because,

as Set, both SetL
op
Σ and Set|Lop

Σ
| are (co)complete categories, whereas in the lax

approach, Lax (Lop
Σ ,Poset) not being (co)complete, more indirect and more so-

phisticated categorical constructions are needed [24, Sec. 4]. By naturality of p♯,
the semantics given by [[−]]p♯ turns out to be compositional, as in the desiderata.
Analogously to [[−]]p, also [[−]]p♯ maps atoms to tree structures, which we call
saturated trees. They generalize coinductive trees, in the sense that the latter can
be seen as a “desaturation” of saturated trees, where all unifiers that are not
term-matchers have been discarded. This observation leads to a translation from
saturated to coinductive trees, based on the counit ϵ of the adjunction U ⊣ K.
It follows that our framework encompasses the semantics in [25, 24].

Analogously to what is done in [24], we propose a notion of refutation sub-
tree of a given saturated tree, intuitively corresponding to an SLD-refutation
of an atomic goal in a program. This leads to a result of soundness and com-
pleteness of our semantics with respect to SLD-resolution, crucially using both
compositionality and the translation into coinductive trees.

Related works. Apart from [23, 25, 24], there exist other categorical perspectives
on (extensions of) logic programming, such as [12, 22, 31, 3]. Amongst these, the
most relevant for us is [8] since it exploits a form of saturation: states represent-
ing formulae are both instantiated by substitution and contextualized by other
formulae in “and”. Beyond logic programming, the idea of exploiting saturation
to achieve compositionality is even older than [36] (see e.g. [35]). As far as we
know, [11] is the first work where saturation is explored in terms of coalgebrae.
It is interesting to note that, in [10], a subset of the same authors also proposed
laxness as a solution for the lack of compositionality of Petri-nets.

A third approach, alternative to laxness and saturation, may be possible by
taking a special kind of “powerobject” functor as done in [32, 38] for giving a
coalgebraic semantics to fusion and open π-calculus. We have chosen saturated
semantics for its generality: it works for any behavioral functor B and it models
a phenomenon that occurs in many different computational models (see e.g. [4]).

Synopsis. Section 2 introduces the background on logic programming and its
coalgebraic semantics. In Section 3 we propose saturated semantics as an al-
ternative to laxness and we show that it is compositional. Section 4 builds a
bridge between the different approaches. We define a translation from saturated
to coinductive trees. In Section 5 the results of the previous two sections are
used to deduce soundness and completeness of saturated semantics with respect
to SLD-resolution.

2 Coalgebraic Logic Programming

In this section we recall the framework of coalgebraic logic programming, as
introduced in [23, 25, 24]. For this purpose, we first fix some terminology and
notation, mainly concerning category theory and logic programming.

Given a (small) category C, |C| denotes the category with the same objects
as C but no other arrow than the identities. With a little abuse of notation,
o ∈ |C| indicates that o is an object of C and C[o1, o2] the set of arrows from o1

to o2. A C-indexed presheaf is any functor G : C→ Set. We write SetC for the
category of C-indexed presheaves and natural transformations between them.
Given a functor B : C→ C, a B-coalgebra on o ∈ |C| is an arrow p : o→ B(o).

We fix a signature Σ of function symbols, each equipped with a fixed arity,
and a countably infinite set Var = {x1, x2, x3, . . . } of variables. We model sub-
stitutions and unification of terms over Σ and Var according to the categorical
perspective of [19, 9]. To this aim, let the (opposite) Lawvere Theory of Σ be
a category Lop

Σ where objects are natural numbers, with n ∈ |Lop
Σ | intuitively

representing variables x1, x2, . . . , xn from Var . For any two n,m ∈ |Lop
Σ |, the set

Lop
Σ [n,m] consists of all n-tuples ⟨t1, . . . , tn⟩ of terms where only variables among

x1, . . . , xm occur. The identity on n ∈ |Lop
Σ |, denoted by idn, is given by the tuple

⟨x1, . . . , xn⟩. The composition of ⟨t11, . . . , t1n⟩ : n → m and ⟨t21, . . . , t2m⟩ : m → m′

is the tuple ⟨t1, . . . , tn⟩ : n→ m′, where ti is the term t1i in which every variable
xj has been replaced with t2j , for 1 ≤ j ≤ m and 1 ≤ i ≤ n.

We call substitutions the arrows of Lop
Σ and use Greek letters θ, σ and τ to

denote them. Given θ1 : n→ m1 and θ2 : n→ m2, a unifier of θ1 and θ2 is a pair
of substitutions σ : m1 → m and τ : m2 → m, where m is some object of Lop

Σ ,
such that σ ◦ θ1 = τ ◦ θ2. The most general unifier of θ1 and θ2 is a unifier with

a universal property, i.e. a pushout of the diagram m1
θ1←− n

θ2−→ m2.

An alphabet A consists of a signature Σ, a set of variables Var and a set
of predicate symbols P, P1, P2, . . . each assigned an arity. Given P of arity n
and Σ-terms t1, . . . , tn, P (t1, . . . , tn) is called an atom. We use Latin capital
letters A,B, . . . for atoms. Given a substitution θ = ⟨t1, . . . , tn⟩ : n → m and
an atom A with variables among x1, . . . , xn, we adopt the standard notation
of logic programming in denoting with Aθ the atom obtained by replacing xi

with ti in A, for 1 ≤ i ≤ n. The atom Aθ is called a substitution instance of A.
The notation {A1, . . . , Am}θ is a shorthand for {A1θ, . . . , Amθ}. Given atoms
A1 and A2, we say that A1 unifies with A2 (equivalently, they are unifiable)
if they are of the form A1 = P (t1, . . . , tn), A2 = P (t′1, . . . , t

′
n) and a unifier

⟨σ, τ⟩ of ⟨t1, . . . , tn⟩ and ⟨t′1, . . . , t′n⟩ exists. Observe that, by definition of unifier,
this amounts to saying that A1σ = A2τ . Term matching is a particular case of
unification, where σ is the identity substitution. In this case we say that ⟨σ, τ⟩
is a term-matcher of A1 and A2, meaning that A1 = A2τ .

A logic program P consists of a finite set of clauses C written as H ←
B1, . . . , Bk. The components H and B1, . . . , Bk are atoms, where H is called
the head of C and B1, . . . , Bk form the body of C. One can think of H ←
B1, . . . , Bk as representing the first-order formula (B1 ∧ · · · ∧ Bk) → H. We
say that P is ground if only ground atoms (i.e. without variables) occur in its
clauses. The central algorithm of logic programming is SLD-resolution [27, 28],
checking whether a finite set of atoms (called a goal) is refutable in P and giving
a substitution called computed answer as output: we refer to Appendix A for
more details. Relevant for our exposition are and-or trees [21], which represent

executions of SLD-resolution exploiting two forms of parallelism: and-parallelism,
corresponding to simultaneous refutation-search of multiple atoms in a goal, and
or-parallelism, exploring multiple attempts to refute the same goal.

Definition 1. Given a logic program P and an atom A, the (parallel) and-or
tree for A in P is the possibly infinite tree T satisfying the following properties:

1. Each node in T is either an and-node or an or-node.
2. Each and-node is labeled with one atom and its children are or-nodes.
3. The root of T is an and-node labeled with A.
4. Each or-node is labeled with • and its children are and-nodes.
5. For every and-node s in T , let A′ be its label. For every clause H ← B1, . . . , Bk

of P and most general unifier ⟨σ, τ⟩ of A′ and H, s has exactly one child t,
and viceversa. For each atom B in {B1, . . . , Bk}τ , t has exactly one child
labeled with B, and viceversa.

As standard for any tree, we have a notion of depth: the root is at depth 0 and
depth i + 1 is given by the children of nodes at depth i.

2.1 The Ground Case

We recall the coalgebraic semantics of ground logic programs introduced in [23].
For the sequel we fix an alphabet A, a set At of ground atoms and a ground logic
program P. The behavior of P is represented by a coalgebra p : At → PfPf (At)
on Set, where Pf is the finite powerset functor and p is defined as follows:

p : A 7→ {{B1, . . . , Bk} | H ← B1, . . . , Bk is a clause of P and A = H}.
The idea is that p maps an atom A ∈ At to the set of bodies of clauses of P
whose head H unifies with A, i.e. (in the ground case) A = H. Therefore p(A) ∈
PfPf (At) can be seen as representing the and-or tree of A in P up to depth 2,
according to Definition 1: each element {B1, . . . , Bk} of p(A) corresponds to a
child of the root, whose children are labeled with B1, . . . , Bk. The full tree is
recovered as an element of C(PfPf)(At), where C(PfPf) is the cofree comonad
on PfPf , standardly provided by the following construction [1, 39].

Construction 1 The terminal sequence for the functor At × PfPf (−) : Set→
Set consists of sequences of objects Xα and arrows δα : Xα+1 → Xα, defined by
induction on α as follows.

Xα : =

{
At α = 0
At × PfPf (Xβ) α = β + 1

δα : =

{
π1 α = 0
idAt × PfPf (δβ) α = β + 1

For α a limit ordinal, Xα is given as a limit of the sequence and a function
δα : Xα → Xβ is given for each β < α by the limiting property of Xα.

By [39] it follows that the sequence given above converges to a limit Xγ such
that Xγ

∼= Xγ+1. Since Xγ+1 is defined as At ×PfPf (Xγ), there is a projection
function π2 : Xγ+1 → PfPf (Xγ) which makes π2 ◦ δ−1

γ : Xγ → PfPf (Xγ) the
cofree PfPf -coalgebra on At. This induces the cofree comonad C(PfPf) : Set→
Set on PfPf as a functor mapping At to Xγ .

As the elements of the cofree comonad on Pf are standardly presented as
finitely branching trees [39], those for PfPf can be seen as finitely branching
trees with two sorts of nodes occurring at alternating depth. We now define a
C(PfPf)-coalgebra [[−]]p : At → C(PfPf)(At).

Construction 2 Given a ground program P, let p : At → PfPf (At) be the coal-
gebra associated with P. We define a cone {pα : At → Xα}α<γ on the terminal
sequence of Construction 1 as follows:

pα : =

{
idAt α = 0
⟨idAt , (PfPf (pβ) ◦ p)⟩ α = β + 1.

For α a limit ordinal, pα : At → Xα is provided by the limiting property of Xα.
Then in particular Xγ = C(PfPf)(At) yields a function [[−]]p : At → C(PfPf)(At).

Given an atom A ∈ At , the tree [[A]]p ∈ C(PfPf)(At) is built by iteratively
applying the map p, first to A, then to each atom in p(A), and so on. For each
natural number m, pm maps A to its and-or tree up to depth m. As shown in
[23], the limit [[−]]p of all such approximations provides the full and-or tree of A.

Example 1. Consider the ground logic program on the left-hand side, based on
an alphabet consisting of a signature {a0, b0, c0} and predicates p(−,−), q(−).
The and-or tree [[p(b, b)]]p ∈ C(PfPf)(At) is depicted on the right-hand side.

p(b, c)← q(a), q(b), q(c)
p(b, b)← p(b, a), p(b, c)
p(b, b)← q(c)
q(c)←

p(b, b)

ppp NNN
• •

ppp NNN

q(c) p(b, a) p(b, c)

• •
ppp NNN

q(a) q(b) q(c)

•

2.2 The General Case

We recall the extension of the coalgebraic semantics to arbitrary (i.e. possibly
non-ground) logic programs presented in [25, 24]. In presence of variables, and-or
trees are not guaranteed to represent sound derivations, whence coinductive trees
are introduced as a sound variant of and-or trees, where unification is restricted
to term-matching. We refer to [25, 24] and Appendix A for more details.

Before formally defining coinductive trees, it is worth recalling that, in [25],
the collection of atoms (based on an alphabet A) is modeled as a presheaf
At : Lop

Σ → Set. The index category is the (opposite) Lawvere Theory Lop
Σ of

Σ, as defined above. For each natural number n ∈ |Lop
Σ |, At(n) is defined as the

set of atoms with variables among x1, . . . , xn. Given an arrow θ ∈ Lop
Σ [n, m], the

function At(θ) : At(n)→ At(m) is defined by substitution, i.e. At(θ)(A) : = Aθ.
By definition, whenever an atom A belongs to At(n), then it also belongs to
At(n′), for all n′ ≥ n. However, the occurrences of the same atom in At(n) and
At(n′) (for n ̸= n′) are considered distinct: the atoms A ∈ At(n) and A ∈ At(n′)
can be thought of as two states x1, . . . , xn ⊢ A and x1, . . . , xn′ ⊢ A with two
different interfaces x1, . . . , xn and x1, . . . , xn′ . For this reason, when referring to
an atom A, it is important to always specify the set At(n) to which it belongs.

Definition 2. Given a logic program P, a natural number n and an atom A ∈
At(n), the n-coinductive tree for A in P is the possibly infinite tree T satisfying
properties 1-4 of Definition 1 and property 5 replaced by the following1:

5. For every and-node s in T , let A′ ∈ At(n) be its label. For every clause H ←
B1, . . . , Bk of P and term-matcher ⟨idn, τ⟩ of A′ and H, with B1τ, . . . , Bkτ ∈
At(n), s has exactly one child t, and viceversa. For each atom B in
{B1, . . . , Bk}τ , t has exactly one child labeled with B, and viceversa.

We recall from [25] the categorical formalization of this class of trees. The first
step is to generalize the definition of the coalgebra p associated with a program
P. Definition 2 suggests how p should act on an atom A ∈ At(n), for a fixed n:

A 7→ {{B1, . . . , Bk}τ | H ← B1, . . . , Bk is a clause of P,

A = Hτ and B1τ, . . . , Bkτ ∈ At(n)}. (1)

For each clause H ← B1, . . . , Bk, there might be infinitely (but countably) many
substitutions τ such that A = Hτ (see e.g. [25]). Thus the object on the right-
hand side of (1) will be associated with the functor PcPf : Set→ Set, where Pc

and Pf are respectively the countable powerset functor and the finite powerset
functor. In order to formalize this as a coalgebra on At : Lop

Σ → Set, consider

liftings P̃c : SetL
op
Σ → SetL

op
Σ and P̃f : SetL

op
Σ → SetL

op
Σ , standardly defined on

presheaves F : Lop
Σ → Set by postcomposition respectively with Pc and Pf .

Then one would like to fix (1) as the definition of the n-component of a natural

transformation p : At → P̃cP̃f (At). The key problem with this formulation is
that p would not be a natural transformation, as shown by the following example.

Example 2. Consider the signature Σ = {cons2, succ1, zero0, nil0} and the pred-
icates List(−), Nat(−). The program NatList, encoding the definition of lists
of natural numbers, will be our running example of a non-ground logic program.

List(cons(x1, x2)) ← Nat(x1), List(x2) List(nil) ←
Nat(succ(x1)) ← Nat(x1) Nat(zero) ←

Fix a substitution θ = ⟨nil⟩ : 1 → 0 and, for each n ∈ |Lop
Σ |, suppose that

p(n) : At(n)→ P̃cP̃f (At)(n) is defined according to (1). Then the square

1 The notion of coinductive tree that we define here, differently from the one given in
[24, Def.4.1], allows at a given depth multiple or-nodes to represent the same clause
(with different term-matchers). In fact, it corresponds to the notion of coinductive
forest of breadth n [24, Def.4.4], the only difference being that we “glue” together
all trees of the forest into a single tree. This formulation is more convenient for our
presentation. Observe that the adequacy theorem for the coalgebraic semantics [24,
Th.4.5] is formulated in terms of coinductive forests and their breadth, whence one
can also express it in terms of our notion of n-coinductive tree.

At(1)

At(θ)

��

p(1) // P̃cP̃f (At)(1)

P̃cP̃f (At)(θ)
��

At(0)
p(0)

// P̃cP̃f (At)(0)

does not commute. A counterexample is provided by the atom List(x1) ∈ At(1).
Passing through the bottom-left corner of the square, List(x1) is mapped first

to List(nil) ∈ At(0) and then to {∅} ∈ P̃cP̃f (At)(0) - intuitively, this yields
a refutation of the goal {List(x1)} with substitution of x1 with nil. Passing

through the top-right corner, List(x1) is mapped first to ∅ ∈ P̃cP̃f (At)(1) and

then to ∅ ∈ P̃cP̃f (At)(0), i.e. the computation ends up in a failure.

In [25, Sec.4] the authors overcome this difficulty by relaxing the naturality

requirement. The morphism p is defined as a P̆cP̆f -coalgebra in the category
Lax (Lop

Σ ,Poset) of locally ordered functors F : Lop
Σ → Poset and lax natural

transformations, with each component p(n) given according to (1) and P̆cP̆f the

extension of P̃cP̃f to an endofunctor on Lax (Lop
Σ ,Poset).

The lax approach fixes the problem, but presents also some drawbacks. Unlike
the categories Set and SetL

op
Σ , Lax (Lop

Σ ,Poset) is neither complete nor cocom-

plete, meaning that a cofree comonad on P̆cP̆f cannot be retrieved through the
standard Constructions 1 and 2 that were used in the ground case. Moreover,
the category of P̆cP̆f -coalgebrae becomes problematic, because coalgebra maps
are subject to a commutativity property stricter than the one of lax natural
transformations. These two issues force the formalization of non-ground logic
program to use quite different (and more sophisticated) categorical tools than
the ones employed for the ground case. Finally, as stressed in the Introduction,
the laxness of p makes the resulting semantics not compositional.

3 Saturated Semantics

Motivated by the observations of the previous section, we propose a saturated
approach to the semantics of logic programs. For this purpose, we consider an
adjunction between presheaf categories as depicted on the left.

SetL
op
Σ

U

&&
⊥ Set|Lop

Σ
|

K

cc

|Lop
Σ |

� � ι //

F

��

Lop
Σ

K(F)||zz
zz
zz
zz

Set

The left adjoint U is the forgetful functor, given by precomposition with the
inclusion functor ι : |Lop

Σ | ↪→ Lop
Σ . As shown in [29, Th.X.1], U has a right adjoint

K : Set|Lop
Σ

| → SetL
op
Σ sending F : |Lop

Σ | → Set to its right Kan extension along ι.
This is a presheaf K(F) : Lop

Σ → Set mapping an object n of Lop
Σ to

K(F)(n) : =
∏

θ∈Lop
Σ

[n,m]

F(m)

where m is any object of Lop
Σ . Intuitively, K(F)(n) is a set of tuples indexed by

arrows with source n and such that, at index θ : n → m, there are elements of
F(m). We use ẋ ẏ, . . . to denote such tuples and we write ẋ(θ) to denote the
element at index θ of the tuple ẋ. Alternatively, when it is important to show
how the elements depend from the indexes, we use ⟨x⟩θ:n→m (or simply ⟨x⟩θ) to
denote the tuple having at index θ the element x. With this notation, we can
express the behavior of K(F) : Lop

Σ → Set on an arrow θ : n→ m as

K(F)(θ) : ẋ 7→ ⟨ẋ(σ ◦ θ)⟩σ:m→m′ . (2)

The tuple ⟨ẋ(σ ◦ θ)⟩σ in K(F)(m) can be intuitively read as follows: for each
σ ∈ Lop

Σ [m,m′], we let the element indexed by σ be the one which was indexed
by σ ◦ θ ∈ Lop

Σ [n, m′] in the input tuple ẋ.

All this concerns the behavior of K on the objects of Set|Lop
Σ

|. For an arrow
f : F → G in Set|Lop

Σ
|, the natural transformation K(f) is defined as an indexwise

application of f on tuples from K(F). For all n ∈ |Lop
Σ |, ẋ ∈ K(F)(n),

K(f)(n) : ẋ 7→ ⟨f(m)(ẋ(θ))⟩θ:n→m.

For any presheaf F : Lop
Σ → Set, the unit η of the adjunction is instantiated to

a morphism ηF : F → KU(F) given as follows: for all n ∈ |Lop
Σ |, X ∈ F(n),

ηF(n) : X 7→ ⟨F(θ)(X)⟩θ:n→m.

When taking F to be At , ηAt : At → KU(At) maps an atom to its saturation:
for each A ∈ At(n), the tuple ηAt(n)(A) consists of all substitution instances
At(θ)(A) = Aθ of A, each indexed by the corresponding θ ∈ Lop

Σ [n,m].

As shown in Example 2, given a program P, the family of functions p defined
by (1) fails to be a morphism in SetL

op
Σ . However, it forms a morphism in Set|Lop

Σ
|

p : UAt→ P̂cP̂f (UAt)

where P̂c and P̂f denote the liftings of Pc and Pf to Set|Lop
Σ

|. The naturality re-

quirement is trivially satisfied in Set|Lop
Σ

|, since |Lop
Σ | is discrete. The adjunction

induces a morphism p♯ : At→ KP̂cP̂fU(At) in SetL
op
Σ , defined as

At
ηAt−−→ KU(At)

K(p)−−−→ KP̂cP̂fU(At). (3)

In the sequel, we write S for KP̂cP̂fU. The idea is to let S play the same role
as PfPf in the ground case, with the coalgebra p♯ : At → S(At) encoding the
program P. An atom A ∈ At(n) is mapped to ⟨p(m)(Aσ)⟩σ:n→m, that is:

p♯(n) : A 7→ ⟨{{B1, . . . , Bk}τ | H ← B1, . . . , Bk is a clause of P,

Aσ = Hτ and B1τ, . . . , Bkτ ∈ At(m)}⟩σ:n→m. (4)

Intuitively, p♯(n) retrieves all unifiers ⟨σ, τ⟩ of A and heads of P: first, Aσ ∈
At(m) arises as a component of the saturation of A, according to ηAt(n); then,
the substitution τ is given by term-matching on Aσ, according to K(p)(m).

By naturality of p♯, we achieve the property of “commuting with substi-
tutions” that was precluded by the term-matching approach, as shown by the
following rephrasing of Example 2.

Example 3. Consider the same square of Example 2, with p♯ in place of p and S

in place of P̃cP̃f . The atom List(x1) ∈ At(1) together with the substitution θ =
⟨nil⟩ : 1 → 0 does not constitute a counterexample to commutativity anymore.
Indeed p♯(1) maps List(x1) to the tuple ⟨p(n)(List(x1)σ)⟩σ : 1→n, which is then
mapped by S(At)(θ) to ⟨p(n)(List(x1)σ

′ ◦ θ)⟩σ′ : 0→n according to (2). Observe
that the latter is just the tuple ⟨p(n)(List(nil)σ′)⟩σ′ : 0→n obtained by applying
first At(θ) and then p♯(0) to the atom List(x1).

Another benefit of saturated semantics is that p♯ : At → S(At) lives in a (co)com-
plete category which behaves (pointwise) as Set. This allows us to follow the
same steps as in the ground case, constructing a coalgebra for the cofree comonad
C(S) as a straightforward generalization of Constructions 1 and 2.

Construction 3 The terminal sequence for the functor At × S(−) : SetL
op
Σ →

SetL
op
Σ consists of a sequence of objects Xα and arrows δα : Xα+1 → Xα, which

are defined just as in Construction 1, with S replacing PfPf . As shown in Ap-
pendix B, this sequence converges to a limit Xγ such that Xγ

∼= Xγ+1 and Xγ

is the carrier of the cofree S-coalgebra on At.

Since S is accessible, the cofree comonad C(S) exists and maps At to Xγ given
as in Construction 3. A C(S)-coalgebra [[−]]p♯ : At → C(S)(At) is given below.

Construction 4 The terminal sequence for At×S(−) induces a cone {p♯
α : At →

Xα}α<γ as in Construction 2 with p♯ and S replacing p and PfPf . This yields
a natural transformation [[−]]p♯ : At → Xγ , where Xγ = C(S)(At).

As in the ground case, the coalgebra [[−]]p♯ is constructed as an iterative appli-

cation of p♯: we call saturated tree the associated tree structure.

Definition 3. Given a logic program P, a natural number n and an atom A ∈
At(n), the saturated tree for A in P is the possibly infinite tree T satisfying
properties 1-3 of Definition 1 and properties 4 and 5 replaced by the following:

4. Each or-node is labeled with a substitution σ and its children are and-nodes.
5. For every and-node s in T , let A′ ∈ At(n′) be its label. For every clause

H ← B1, . . . , Bk of P and unifier ⟨σ, τ⟩ of A′ and H, with σ : n′ → m′

and B1τ, . . . , Bkτ ∈ At(m′), s has exactly one child t labeled with σ, and
viceversa. For each atom B in {B1, . . . , Bk}τ , t has exactly one child labeled
with B, and viceversa.

We have now seen three kinds of tree, exhibiting different substitution mecha-
nisms. In saturated trees one considers all the unifiers, whereas in and-or trees
and coinductive trees one restricts to most general unifiers and term-matchers
respectively. Moreover, in a coinductive tree each and-node is labeled with an
atom in At(n) for a fixed n, while in a saturated tree n can dynamically change.

Example 4. Part of the infinite saturated tree of List(x1) ∈ At(1) in NatList is
depicted below. Note that not all labels of and-nodes belong to At(1), as it would
be the case for a coinductive tree: such information is inherited from the label of
the parent or-node, which is now a substitution. For instance, both Nat(x1) and
List(x2) belong to At(2), since their parent is labeled with ⟨cons(x1, x2)⟩ : 1→
2 (using the convention that the target of a substitution is the largest index
appearing among its variables).

List(x1)�� ���� ��⟨nil⟩ �� ���� ��⟨cons(x1, x2)⟩
llll

�� ���� ��⟨cons(x1, cons(x1, x2))⟩
XXXXXX

. . .

Nat(x1)

nnn
List(x2)

SSSS
SS

Nat(x1)

jjjj
jjj

List(cons(x1, x2))�� ���� ��⟨zero, x2⟩ . . .
�� ���� ��⟨x1, nil⟩

�� ���� ��⟨zero, x2⟩ . . .

We can generalize these observations to the following adequacy theorem.

Theorem 1. Let [[−]]p♯ be defined from a program P according to Construction
4. Then, for all n and A ∈ At(n), the saturated tree of A in P is [[A]]p♯ .

In the above theorem and in the rest of the paper, with an abuse of nota-
tion we use [[A]]p♯ to denote the application of [[−]]p♯(n) to A ∈ At(n) without

mentioning the object n ∈ |Lop
Σ |. For an arrow θ ∈ Lop

Σ [n, m], we write θ for
C(S)(At)(θ) : C(S)(At)(n)→ C(S)(At)(m). With this notation, we can state the
following theorem that is an immediate consequence of the naturality of [[−]]p♯ .

Theorem 2 (Compositionality). For all atoms A ∈ At(n) and substitutions
θ ∈ Lop

Σ [n,m],
[[Aθ]]p♯ = [[A]]p♯θ.

We conclude this section with a concrete description of the behavior of the
operator θ, for a given substitution θ ∈ Lop

Σ [n, m]. Let r be the root of a tree
T ∈ C(S)(At)(n) and r′ the root of Tθ. Then

1. the node r has label A iff r′ has label Aθ;
2. the node r has a child t with label σ ◦ θ and children t1, . . . , tn iff r′ has a

child t′ with label σ and children t1 . . . tn.

Note that the children t1, . . . , tn are exactly the same in both trees: θ only
modifies the root and the or-nodes at depth 1 of T , while it leaves untouched all
the others. This peculiar behavior can be better understood by observing that
the definition of K(F)(θ), as in (2), is independent of the presheaf F. As a result,
θ = Xγ(θ) is independent of all the Xαs built in Construction 3.

Example 5. Recall from Example 4 the saturated tree [[List(x1)]]p♯ . For θ =

⟨cons(x1, x2)⟩, the tree [[List(x1)]]p♯θ is depicted below.

List(cons(x1, x2))�� ���� ��id2

ooo
o

�� ���� ��⟨x1, cons(x1, x2)⟩
WWWWW

. . .

Nat(x1)

nnn
List(x2)

TTTT
TTT

Nat(x1)

lll
ll

List(cons(x1, x2))�� ���� ��⟨zero, x2⟩ . . .
�� ���� ��⟨x1, nil⟩

�� ���� ��⟨zero, x2⟩ . . .

7

4 Desaturation

One of the main features of coinductive trees is to represent (sound) and-or par-
allel derivations of goals. This leads the authors of [24] to a resolution algorithm
exploiting the two forms of parallelism [26]. Motivated by these developments, we
include coinductive trees in our framework, showing how they can be obtained
as a “desaturation” of saturated trees.

For this purpose, the key ingredient is given by the counit ϵ of the adjunction
U ⊣ K. Given a presheaf F : |Lop

Σ | → Set, the morphism ϵF : UK(F) → F is
defined as follows: for all n ∈ |Lop

Σ | and ẋ ∈ UK(F)(n),

ϵF(n) : ẋ 7→ ẋ(idn) (5)

where ẋ(idn) is the element of the input tuple ẋ which is indexed by the identity
substitution idn ∈ Lop

Σ [n, n]. In the logic programming perspective, the intuition
is that, while the unit of the adjunction provides the saturation of an atom, the
counit reverses the process. It takes the saturation of an atom and gives back
the substitution instance given by the identity, that is, the atom itself.

The next construction defines a morphism d : U
(
C(S)(At)

)
→ C(P̂cP̂f)(UAt)

where C(P̂cP̂f) : Set|Lop
Σ

| → Set|Lop
Σ

| is the cofree comonad on P̂cP̂f , obtained
through a terminal sequence analogously to Construction 3. The idea is that d
acts on saturated trees as the depthwise application of ϵUAt .

Construction 5 For α an ordinal, let us note by Yα the objects occurring in

the construction of C(P̂cP̂f)(UAt) and with Xα the ones in the construction of
C(S)(At), converging to Xγ = C(S)(At). We define a sequence {dα : U(Xα) →
Yα}α<γ in Set|Lop

Σ
| as follows:

dα : =

{
idUAt α = 0

idUAt ×
(
P̂cP̂f (dβ) ◦ ϵ

P̂cP̂fU(Xβ)

)
α = β + 1.

For α < γ a limit ordinal, dα : U(Xα)→ Yα is provided by the limiting property

of Yα. This sequence induces a morphism d : U
(
C(S)(At)

)
→ C(P̂cP̂f)(UAt). We

refer to Appendix C for more details.

The next theorem shows that d is a translation from saturated to coinductive
trees: given an atom A ∈ At(n), it maps [[A]]p♯ to the n-coinductive tree of A.
The key intuition is that n-coinductive trees can be seen as saturated trees
where the labeling of or-nodes has been restricted to the identity substitution
idn, represented as • (see Definition 2). The operation of pruning all or-nodes
(and their descendants) in [[A]]p♯ which are not labeled with idn is precisely what
is provided by Construction 5, in virtue of the definition of the counit ϵ given
in (5).

Theorem 3 (Desaturation). Let [[−]]p♯ : At → C(S)(At) be defined for a logic

program P according to Construction 4 and d : U
(
C(S)(At)

)
→ C(P̂cP̂f)(UAt) be

defined according to Construction 5. Then for all n ∈ |Lop
Σ | and A ∈ UAt(n),

the n-coinductive tree of A in P is
(
d ◦ U([[−]]p♯)

)
(n)(A).

Theorem 3 also provides an alternative formalization for the coinductive tree se-
mantics [25], given by composition of the saturated semantics with desaturation.
In fact it represents a different approach to the non-compositionality problem:
instead of relaxing naturality to lax naturality, we simply forget about all the
arrows of the index category Lop

Σ , shifting the framework from SetL
op
Σ to Set|Lop

Σ
|.

The substitutions on trees (that are essential, for instance, for the resolution al-
gorithm given in [24, 26]) exist at the saturated level, i.e. in C(S)(At), and they
are given precisely as the operator θ described at the end of Section 3.

Example 6. The coinductive tree for List(cons(x1, x2))
in NatList is depicted on the right. It is constructed
by desaturating the tree [[List(cons(x1, x2))]]p♯ in Ex-
ample 5, i.e., by pruning all the or-nodes (and their
descendants) that are not labeled with id2.

List(cons(x1, x2))�� ���� ��id2

UUUU
UUU

Nat(x1) List(x2)

5 Soundness and Completeness

The notion of coinductive tree leads to a semantics that is sound and complete
with respect to SLD-resolution [24, Th.4.8]. To this aim, a key role is played by
derivation subtrees of a given coinductive tree.

Definition 4. Let T be the n-coinductive tree for an atom A in a program P.
A subtree T ′ of T is a derivation subtree if it satisfies the following conditions:

1. the root of T ′ is the root of T ;
2. if an and-node of T belongs to T ′, then just one of its children belongs to T ′;
3. if an or-node of T belongs to T ′, then all its children belong to T ′.

A refutation subtree (called success subtree in [24]) is a finite derivation subtree
with only or-nodes as leaves.

In analogy with coinductive trees, we want to define a notion of subtree
for saturated semantics. This requires care: saturated trees are associated with
unification, which is more liberal than term-matching. In particular, similarly
to and-or trees, they may represent unsound derivation strategies. However, in
saturated trees all unifiers, and not just the most general ones, are taken into
account. This gives enough flexibility to shape a sound notion of subtree, based
on an implicit synchronization of the substitutions used in different branches.

Definition 5. Let T be the saturated tree for an atom A in a program P. A
subtree T ′ of T is called a synched derivation subtree if it satisfies properties
1-3 of Definition 4 and the following condition:

4. all or-nodes of T ′ which are at the same depth are labeled with the same
substitution.

A synched refutation subtree is a finite synched derivation subtree with only or-
nodes as leaves. Its answer is the substitution θ2k+1 ◦ . . . θ3 ◦ θ1, where θi is the
(unique) substitution labeling the or-nodes of depth i and 2k + 1 is its maximal
depth.

List(c(x1, (c(x1, x2))))�� ���� ��⟨x1, x2⟩
hhhh

hhh

Nat(x1) List(c(x1, x2))�� ���� ��⟨s(x1), n⟩ �� ���� ��⟨s(x1), n⟩
UUUUU

U

Nat(x1) Nat(s(x1)) List(n)�� ���� ��⟨z⟩ �� ���� ��⟨z⟩ �� ���� ��⟨z⟩

Nat(z)�� ���� ��id0

List(c(s(z), (c(s(z), n))))�� ���� ��id0

ggggg
gggg

Nat(s(z)) List(c(s(z), n))�� ���� ��id0
�� ���� ��id0

VVVVV
VVVV

Nat(z) Nat(s(z)) List(n)�� ���� ��id0
�� ���� ��id0

�� ���� ��id0

Nat(z)�� ���� ��id0

Fig. 1. Successful synched derivation subtrees for List(cons(x1, (cons(x1, x2)))) (left)
and List(cons(succ(zero), (cons(succ(zero), nil)))) (right) in NatList. The symbols
cons, nil, succ and zero are abbreviated to c, n, s and z respectively.

The prefix “synched” emphasizes the restriction to and-parallelism which is
encoded in Definition 5. Intuitively, we force all subgoals at the same depth to
proceed with the same substitution. For instance, this rules out the unsound
derivation of [24, Ex.5.2] (reported in Appendix A, Example 7).

Note that derivation subtrees can be seen as special instances of synched
derivation subtrees where all the substitutions are forced to be identities.

Theorem 4 (Soundness and Completeness). Let P be a logic program and
A ∈ At(n) an atom. The following are equivalent.

1. The saturated tree for A in P has a synched refutation subtree with answer
θ.

2. There is some natural number m such that the m-coinductive tree for Aθ in
P has a refutation subtree.

3. There is an SLD-refutation for {A} in P with computed answer τ such that
there exists a substitution σ with σ ◦ τ = θ.

The statement (2 ⇔ 3) is a rephrasing of [24, Th.4.8], while (1 ⇔ 2) is proved
in Appendix D by using compositionality and desaturation (Theorems 2 and 3).

Figure 1 provides an example of the argument for direction (1 ⇒ 2). Note
that the root of the rightmost tree is labeled with an atom of the form Aθ, where
θ and A are respectively the answer and the label of the root of the leftmost
tree. The key observation is that the rightmost tree is a refutation subtree of
the 0-coinductive tree for Aθ and can be obtained from the leftmost tree by a
procedure involving the operator θ discussed at the end of Section 3.

6 Conclusions

This work proposed a coalgebraic semantics for logic programming, extending
the framework introduced in [23] for the case of ground logic programs. Our
approach has been formulated in terms of coalgebrae on presheaves, whose nice

categorical properties made harmless to reuse the very same constructions as in
the ground case. We stressed how the critical point of this generalization was to
achieve compositionality, which we obtained by employing saturation techniques.
Starting from the operational semantics p proposed in [25], we characterized its
saturation p♯ in terms of substitution mechanisms, showing that the latter corre-
sponds to unification, whereas the former is associated with term-matching. The
map p♯ gave rise to the notion of saturated tree, as the model of computation
represented in our semantics. We observed that coinductive trees, introduced
in [25], can be seen as a desaturated version of saturated trees, and we com-
pared the two notions with a translation. Eventually, we tailored a notion of
subtree (of a saturated tree), called synched derivation subtree, representing a
sound derivation of a goal in a program. This led to a result of soundness and
completeness of our semantics with respect to SLD-resolution. A next step in
this direction would be to investigate infinite computations and the semantics of
coinductive logic programming [20]. These have been fruitfully explored within
the approach based on coinductive trees [24, 26], and we expect the notion of
synched derivation subtree to bring further insights on the question.

Another line of research concerns a deeper understanding of saturation. A
drawback of saturated semantics is that one has to take into account all the ar-
rows in the index category, which are usually infinitely many. This problem has
been tackled in [7] for powerset-like functors, by employing normalized coalge-
brae: one considers only a minimal set of arrows, as an “optimal” representation
of all the arrows in the index category. It is not immediate to see how this ap-
proach can be generalized to arbitrary functors, as it would be in the formulation
of saturation in terms of right Kan extension. We believe that the case of logic
programming represents an ideal benchmark to investigate this question, since
minimal arrows have a very intuitive characterization as most general unifiers.

References

1. J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theor. Comput. Sci.,
150:57–75, 1995.

2. J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Cambridge Univer-
sity Press, 1994.

3. G. Amato, J. Lipton, and R. McGrail. On the algebraic structure of declarative programming
languages. Theor. Comput. Sci., 410(46):4626–4671, 2009.

4. F. Bonchi. Abstract Semantics by Observable Contexts. PhD thesis, Department of Computer
Science of Pisa, 2008.

5. F. Bonchi, M. G. Buscemi, V. Ciancia, and F. Gadducci. A presheaf environment for the explicit
fusion calculus. J. Autom. Reason., 49(2):161–183, 2012.

6. F. Bonchi, B. König, and U. Montanari. Saturated semantics for reactive systems. In LICS,
pages 69–80. IEEE, 2006.

7. F. Bonchi and U. Montanari. Coalgebraic symbolic semantics. In CALCO, pages 173–190,
2009.

8. F. Bonchi and U. Montanari. Reactive systems, (semi-)saturated semantics and coalgebras on
presheaves. Theor. Comput. Sci., 410(41):4044–4066, 2009.

9. R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming. Theory
and Practice of Logic Programming, 1(6):647–690, 2001.

10. A. Corradini, M. Große-Rhode, and R. Heckel. A coalgebraic presentation of structured tran-
sition systems. Theor. Comput. Sci., 260(1-2):27–55, 2001.

11. A. Corradini, R. Heckel, and U. Montanari. From sos specifications to structured coalgebras:
How to make bisimulation a congruence. ENTCS, 19(0):118 – 141, 1999.

12. A. Corradini and U. Montanari. An algebraic semantics for structured transition systems and
its application to logic programs. Theor. Comput. Sci., 103(1):51 – 106, 1992.

13. C. Dwork, P. C. Kanellakis, and J. C. Mitchell. On the sequential nature of unification. The
Journal of Logic Programming, 1(1):35 – 50, 1984.

14. M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract model for the π-calculus. Inf.
Comput., 179(1):76–117, 2002.

15. M. P. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Inf.
Comput., 204(4):524–560, 2006.

16. M. P. Fiore and S. Staton. A congruence rule format for name-passing process calculi from
mathematical structural operational semantics. In LICS, pages 49–58. IEEE, 2006.

17. M. P. Fiore and D. Turi. Semantics of name and value passing. In LICS, pages 93–104. IEEE,
2001.

18. N. Ghani, K. Yemane, and B. Victor. Relationally staged computations in calculi of mobile
processes. volume 106, pages 105–120, 2004.

19. J. A. Goguen. What is unification? - a categorical view of substitution, equation and solution.
In Resolution of Equations in Algebraic Structures, Volume 1: Algebraic Techniques, pages
217–261. Academic, 1989.

20. G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic programming and
its applications. In ICLP, pages 27–44, 2007.

21. G. Gupta and V. S. Costa. Optimal implementation of and-or parallel prolog. In PARLE, pages
71–92, 1994.

22. Y. Kinoshita and A. J. Power. A fibrational semantics for logic programs. In Proceedings of the
5th International Workshop on Extensions of Logic Programming, ELP ’96, pages 177–191,
London, UK, UK, 1996. Springer-Verlag.

23. E. Komendantskaya, G. McCusker, and J. Power. Coalgebraic semantics for parallel derivation
strategies in logic programming. In AMAST, pages 111–127, 2010.

24. E. Komendantskaya and J. Power. Coalgebraic derivations in logic programming. In CSL, pages
352–366, 2011.

25. E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic programming.
In CALCO, pages 268–282, 2011.

26. E. Komendantskaya, J. Power, and M. Schmidt. Coalgebraic logic programming: from semantics
to implementation. Submitted to the Journal of Logic and Computation, 2012.

27. R. Kowalski. Logic for problem-solving. North-Holland Publishing Co., Amsterdam, The
Netherlands, The Netherlands, 1986.

28. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2nd edition, 1993.

29. S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 2nd edition, Sept. 1998.

30. S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos
Theory. Springer, corrected edition, May 1992.

31. Z. Majkic. Coalgebraic semantics for logic programs. In Proceedings of the 18th Workshop
W(C)LP on Constraint Logic Programming, pages 76–87, 2004.

32. M. Miculan. A categorical model of the fusion calculus. ENTCS, 218:275–293, 2008.
33. M. Miculan and K. Yemane. A unifying model of variables and names. In FOSSACS, volume

3441, pages 170–186, 2005.
34. U. Montanari and M. Sammartino. A network-conscious pi-calculus and its coalgebraic seman-

tics. Submitted to TCS (Festschrift for Glynn Winskel).
35. U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for ccs. FI,

16(1):171–199, 1992.
36. D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Inf., 33(1):69–97, 1996.
37. I. Stark. A fully abstract domain model for the π-calculus. In LICS, pages 36–42. IEEE, 1996.
38. S. Staton. Relating coalgebraic notions of bisimulation. In CALCO, pages 191–205, 2009.

39. J. Worrell. Terminal sequences for accessible endofunctors. ENTCS, 19, 1999.

A More on SLD-Resolution and And-Or Trees

In this appendix we provide a more detailed description of SLD-resolution and
the problem of unsoundness in and-or trees.

As mentioned in Section 2, SLD-resolution is an algorithm to check whether
a goal G (which we represent as a finite set of atoms) is refutable in a program
P. A run of the algorithm on inputs G and P gives rise to an SLD-derivation,
whose steps of computation can be sketched as follows. At the initial step 0, a
set of atoms G0 (the current goal) is initialized as G. At each step i, an atom
Ai is selected in the current goal Gi and one checks whether Ai is unifiable with
the head of some clause of the program. If not, the computation terminates with
a failure. Otherwise, one such clause Ci = H ← B1, . . . , Bk is selected: by
a classical result, since Ai and H unify, they have also a most general unifier
⟨σi, τi⟩. The goal Gi+1 for the step i + 1 is given as

{B1, . . . , Bk}τi ∪ (Gi \ {Ai})σi.

Such a computation is called an SLD-refutation if it terminates in a finite num-
ber (say n) of steps with Gn = ∅. In this case one calls computed answer the
substitution given by composing the first projections σn, . . . , σ0 of the most gen-
eral unifiers associated with each step of the computation. The goal G is refutable
in P if an SLD-refutation for G in P exists2.

As reported in Section 2, implementations of SLD-resolution exploiting and-
or parallelism have a standard representation of computations as and-or trees
(Definition 1). Unfortunately, in presence of variables these trees are not guar-
anteed to represent sound derivations. The problem lies in the interplay between
variable dependencies and unification, which makes SLD-derivations for logic
programs inherently sequential processes [13].

Example 7. Let NatList be the same program of Example 2 and consider the
atom A = List(cons(x1, cons(x2, x1))). It is intuitively clear that there is no
substitution of variables making A represent a list of natural numbers: we should
replace x1 with a “number” (for instance zero) in its first occurrence and with
a “list” (for instance nil) in its second occurrence. Consequently, there is no
SLD-refutation for {A} in NatList. However, consider the and-or tree of A in

2 In any derivation of G in P, the standard convention is that the variables occurring
in the clause Ci considered at step i do not appear in goals Gi−1, . . . , G0. This
guarantees that the computed answer is a well-defined substitution and may require
a dynamic (i.e. at step i) renaming of variables appearing in Ci. The associated
procedure is called standardizing the variables apart and we assume it throughout
the paper without explicit mention. It also justifies our definition (Section 2) of the
most general unifier as pushout of two substitutions with different target, whereas it
is also modeled in the literature as the coequalizer of two substitutions with the same
target, see for instance [19]. The different target corresponds to the two substitutions
depending on disjoint sets of variables.

NatList, for which we provide a partial representation as follows.

List(cons(x1, cons(x2, x1)))

•
eeeeee

eeeee ZZZZZZZZ
ZZZ

Nat(x1)

ppp
List(cons(x2, x1))

• • •
dddddddd

ddddddd WWWWW
WW

. . . Nat(x2)

ZZZZZZZZ
ZZZZZZZ List(x1)

OOO
. . . • • . . .

The above tree seems to yield an SLD-refutation: List(cons(x1, cons(x2, x1)))
is refuted by proving Nat(x1) and List(cons(x2, x1)). However, the associated
computed answer would be ill-defined, as it is given by substituting x2 with zero
and x1 both with zero and with nil (the computed answer of Nat(x1) maps x1

to zero and the computed answer of List(cons(x2, x1)) maps x1 to nil).

In Section 2 we recall coinductive trees [25]: a variant of and-or trees where
unification is restricted to the case of term-matching. This constraint is sufficient
to guarantee that coinductive trees only represent sound derivations: the key
intuition is that a term-matcher is a unifier that leaves untouched the current
goal, meaning that the “previous history” of the derivation remains uncorrupted.

For instance, the coinductive tree for the atom A of Example 7 in NatList is
the subtree of the represented and-or tree having the nodes labeled with Nat(x1),
Nat(x2) and List(x1) as leaves. Despite of the restriction to term-matching, one
can show correctness and completeness of coinductive tree semantics with respect
to SLD-resolution, as reported in Theorem 4 and originally shown in [24].

B Convergence of a Terminal Sequence

This appendix is devoted to the following proposition, which is propaedeutic to
Construction 3.

Proposition 1. The terminal sequence for At × S(−) converges to a terminal
coalgebra.

Proof. By [39, Th.7], it suffices to prove that S is an accessible mono-preserving
functor. Since these properties are preserved by composition, we show them
separately for each component of S:

– Being adjoint functors between accessible categories, K and U are accessible
themselves [2, Prop.2.23]. Moreover, they are both right adjoints: in partic-
ular, U is right adjoint to the left Kan extension functor along ι : |C| ↪→ C.
It follows that both preserve limits, whence they preserve monos.

– The functors P̂c : Set|Lop
Σ

| → Set|Lop
Σ

| and P̂f : Set|Lop
Σ

| → Set|Lop
Σ

| are defined
as liftings of Pc : Set → Set and Pf : Set → Set. It is well-known that
Pc and Pf are both mono-preserving accessible functors on Set. It follows

that P̂c and P̂f also have these properties, because (co)limits in presheaf
categories are computed objectwise and monos are exactly the objectwise
injective morphisms (as shown for instance in [30, Ch.6]).

C A Closer Look at Desaturation

In this appendix we spell out the details of the construction of d, as presented in
Section 4. For this purpose, first we state the construction of the cofree comonad

on P̂cP̂f for later reference.

Construction 6 The terminal sequence for UAt×P̂cP̂f (−) : Set|Lop
Σ

| → Set|Lop
Σ

|

consists of sequences of objects Yα and arrows λα : Yα+1 → Yα, defined by in-
duction on α as follows.

Yα : =

{
UAt α = 0

UAt × P̂cP̂f (Yβ) α = β + 1
λα : =

{
π1 α = 0

idUAt × P̂cP̂f (λβ) α = β + 1

For α a limit ordinal, Yα and λα are defined as expected. As stated in the proof

of Proposition 1, P̂cP̂f is a mono-preserving accessible functors. Then by [39,
Th.7] we know that the sequence given above converges to a limit Yχ such that

Yχ
∼= Yχ+1 and Yχ is the value of C(P̂cP̂f) : Set|Lop

Σ
| → Set|Lop

Σ
| on UAt, where

C(P̂cP̂f) is the cofree comonad on P̂cP̂f induced by the terminal sequence given
above, analogously to Construction 1.

Now, we can define the desaturation map d : U
(
C(S)(At)

)
→ C(P̂cP̂f)(UAt),

filling in the details of Construction 5.

Construction 7 Consider the image of the terminal sequence converging to
C(S)(At) = Xγ (Construction 3) under the forgetful functor U : SetL

op
Σ → Set|Lop

Σ
|.

We define a sequence of natural transformations {dα : U(Xα)→ Yα}α<γ as fol-
lows3:

dα : =

{
idUAt α = 0

idUAt ×
(
P̂cP̂f (dβ) ◦ ϵ

P̂cP̂fU(Xβ)

)
α = β + 1.

U(Xβ)

dβ

-- Yβ

U(Xβ+1)

dβ+1

..

U(δβ)

OO

idUAt×ϵ
P̂cP̂fU(Xβ)

TTTT
T

))TTT

Yβ+1

λβ

OO

UAt × P̂cP̂fU(Xβ)

idUAt×P̂cP̂f (dβ)kkk

55kkkkkkk

3 Concerning the successor case, observe that idUAt ×
(
P̂cP̂f (dβ) ◦ ϵ

P̂cP̂f U(Xβ)

)
is in

fact an arrow from UAt ×UKP̂cP̂fU(Xβ) to Yβ+1. However, the former is isomorphic

to U(Xβ+1) = U
(
At × KP̂cP̂fU(Xβ)

)
, because U is a right adjoint (as observed in

Proposition 1) and thence it commutes with products.

For α < γ a limit ordinal, a natural transformation dα : U(Xα) → Yα is
provided by the limiting property of Yα. In order to show that the limit case is
well defined, observe that, for every β < α, the above square commutes, that is,
λβ ◦ dβ+1 = dβ ◦ U(δβ). This can be easily checked by ordinal induction, using
the fact that ϵ

P̂cP̂fU(Xβ)
is a natural transformation, for each such β.

We now turn to the definition of a natural transformation d : U
(
C(S)(At)

)
→

C(P̂cP̂f)(UAt). If χ ≤ γ, then this is provided by dχ : U(Xχ)→ Yχ together with
the limiting property of U(Xγ) on U(Xχ). In case γ < χ, observe that, since
Xγ is isomorphic to Xγ+1, then Xγ is isomorphic to Xζ for all ζ > γ, and in
particular Xγ

∼= Xχ. Then we can suitably extend the sequence to have a natural
transformation dχ : U(Xχ) → Yχ. The morphism d is given as the composition
of dχ with the isomorphism between U(Xγ) and U(Xχ).

D Proof of Theorem 4

In this appendix we provide more details on the proof of Theorem 4. To this
aim, a key role is played by the following lemma that generalizes the example of
Figure 1.

Lemma 1. Let P be a logic program and A ∈ At(n) an atom. If [[A]]p♯ has a

synched refutation subtree with answer θ : n → m, then [[A]]p♯θ has a synched
refutation subtree whose or-nodes are all labeled with idm.

Proof. First, we observe that the two following properties hold for all the and-
nodes of [[A]]p♯ .

(†) Let θ, θ′ be two arrows in Lop
Σ such that θ′ ◦ θ is defined. If an and-node s

has a child t such that (a) the label of t is θ and (b) t has children labeled
with B1, . . . , Bn, then s has also another child t′ such that (a) the label of
t′ is θ′ ◦ θ and (b) t′ has children labeled with B1θ

′, . . . , Bnθ′.
(‡) Let θ, θ′, σ, σ′ be four arrows in Lop

Σ such that σ ◦ θ = σ′ ◦ θ′. If an and-node
labeled with A′ has a child t such that (a) the label of t is θ and (b) t has
children labeled with B1, . . . , Bn, then each node labeled with A′θ′ has a
child t′ such that (a) the label of t′ is σ′ and (b) t′ has children labeled with
B1σ, . . . , Bnσ.

Assume that [[A]]p♯ has a synched refutation subtree T whose or-nodes are labeled
with θ1, θ3, . . . , θ2k+1 (where θi is the substitution labeling the or-nodes of depth
i). We prove that [[A]]p♯ has another synched refutation subtree T ′ whose first
or-node is labeled with θ = θ2k+1 ◦ θ2k−1 ◦ · · · ◦ θ1 and all the other or-nodes are
labeled with identities.

By assumption, the root r has a child (in T) that is labeled with θ1. Assume
that its children are labeled with B2

1 . . . B2
n2

. By (†), r has another child t′ (in
[[A]]p♯), that (a) is labeled with θ and (b) has children labeled with B2

1σ3 . . . B2
nσ3

where σ3 = θk+1 ◦ θk−1 ◦ · · · ◦ θ3. These children form depth 2 of T ′ (the root r
and t form, respectively, depth 0 and 1).

We now build the other depths. For an even i ≤ 2k, let σi+1 denote θ2k+1 ◦
θ2k−1 ◦ · · ·◦θi+1 and let Bi

1, . . . , B
i
ni

be the labels of the and-nodes of T at depth
i. The depth i of T ′ is given by and-nodes labeled with Bi

1σi+1, . . . , B
i
ni

σi+1; the
depth i+1 by or-nodes all labeled with idm. It is easy to see that T ′ is a subtree
of [[A]]p♯ : by assumption the nodes labeled with Bi

1, . . . , B
i
ni

have children in T
all labeled with θi+1; since σi+3 ◦ θi+1 = idm ◦ σi+1, by property (‡), the nodes
labeled with Bi

1σi+1, . . . , B
i
ni

σi+1 have children (in [[A]]p♯) that (a) are labeled

with idm and (b) have children with labels Bi+2
1 σi+3, . . . , B

i+2
ni+2

σi+3.

Once we have built T ′, we can easily conclude. Recall that t′ (the first or-
node of T ′) is labeled with θ. Following the construction at the end of Section
3, the root of [[A]]p♯θ has a child that is labeled with idm and that has the same

children as t′. Therefore [[A]]p♯θ has a synched refutation subtree with answer
idm.

We are now ready to provide a proof of Theorem 4.

Proof (Proof of Theorem 4). The statement (2 ⇔ 3) is a rephrasing of [24,
Th.4.8], whence we focus on proving (1 ⇔ 2), where m is always the target
object of θ.

(1 ⇒ 2). If [[A]]p♯ has a synched refutation subtree with answer θ, then by

Lemma 1, [[A]]p♯θ has a synched refutation subtree T whose or-nodes are all
labeled with idm. Compositionality (Theorem 2) guarantees that T is a synched
refutation subtree of [[Aθ]]p♯ . Since all the or-nodes of T are labeled with idm,
T is preserved by desaturation. This means that T is a refutation subtree of
d(U([[−]]p♯))(m)(Aθ) which, by Theorem 3, is the m-coinductive tree for Aθ in
P.

(2 ⇐ 1). If the m coinductive tree for Aθ has a refutation subtree T then,
by Theorem 3, this is also the case for d(U([[−]]p♯))(m)(Aθ). This means that T
is a synched derivation subtree of [[Aθ]]p♯ whose or-nodes are all labeled by idm.

By compositionality, T is also a subtree of [[A]]p♯θ. Let t be the or-node at the

first depth of T . By construction of the operator θ, the root of [[A]]p♯ has a child
t′ labeled with θ having the same children as t. Therefore [[A]]p♯ has a synched
refutation subtree with answer θ.

M. Carbone, I. Lanese, A. Lluch-Lafuente, A. Sokolova (Eds.):
6th Interaction and Concurrency Experience (ICE 2013)
EPTCS 131, 2013, pp. 37–51, doi:10.4204/EPTCS.131.5

c© Xian Xu

On Context Bisimulation for Parameterized Higher-order
Processes

Xian Xu ∗

Department of Computer Science and Technology

East China University of Science and Technology, Shanghai, China P.R. (200237)

xuxian@ecust.edu.cn, xuxian2004@gmail.com

This paper studies context bisimulation for higher-order processes, in the presence of parameteriza-
tion (viz. abstraction). We show that the extension of higher-order processes with process parameter-
ization retains the characterization of context bisimulation by a much simpler form of bisimulation
called normal bisimulation (viz. they are coincident), in which universal quantifiers are eliminated;
whereas it is not the same with name parameterization. These results clarify further the bisimulation
theory of higher-order processes, and also shed light on the essential distinction between the two
kinds of parameterization.
Keywords: Context Bisimulation, Normal Bisimulation, Higher-order, Processes

1 Introduction

Higher-order processes differ from first-order (name-passing) ones in that they can transmit them-
selves (i.e. integral programs) in communication. This mechanism of process-passing provides an al-
ternative yet essentially distinct way from name-passing to achieve mobility. That distinction lies in
several aspects, among which the behavioral theory is of pivotal importance. As a basis of behavioral
theory, bisimulation theory has been studied since the very early work on higher-order processes. The
most well-know (and probably standard) bisimulation is context bisimulation [7]. It was proposed to im-
prove on the previous forms of bisimulation, including (applicative) higher-order bisimulation [14] [15],
by considering the sent process and residual process at the same time. It then continued to draw atten-
tion [9] [16] [2] [1] [5] [12].

Related work and motivation

Context bisimulation, in its original form, is not so convenient in that, for example, it involves uni-
versal quantifiers when comparing output (as well as input), i.e. in the output clause of the definition of
context bisimulation one has to check the matching of the output action with respect to all possible con-
texts. Here matching means the output action of one process can be simulated with an output by the other
and the resulting derivatives are bisimilar again. That is a particularly heavy burden. This situation is
improved by the so-called normal bisimulation, which characterizes context bisimulation (i.e. coincident
with it) but requires only the checking with some special context (see an example below) [7] [9] [1].

A common methodology for establishing such a characterization in [7] [9] [1] consists of two main
ingredients: (1) Showing a factorization theorem using triggers. The factorization theorem provides a
mechanism of relocating a (sub)process to a new place, and setting up a pointer to the new place for

∗The author acknowledges the support by the National Nature Science Foundation of China
(61202023,61261130589,61173048), and the ANR project 12IS02001 PACE.

38 Context Bisimulation for Parameterized HO Processes

potential use. Such a pointer is represented by a trigger. (2) Showing the coincidence of context and
normal bisimulation with the help of an intermediate bisimulation equivalence called triggered bisimula-
tion, which is defined on a subclass of higher-order processes communicating only triggers. This design
of normal bisimulation, particularly the special context used in it, is guided by the factorization theorem
as described above.

We exemplify below the simplification of context bisimulation by normal bisimulation in basic
higher-order processes [9], equipped with the basic operators including input prefix (a(X).P in which
X is a bound variable), output prefix (aA.P), parallel composition (P |Q) and restriction ((c)P in which
c is a bound name). Notice that E[X] denotes a process with the free occurrence of X (i.e. not bound
by an input prefix a(X).P), E[A] denotes substituting A for all free occurrences of X in E[X], output
action (c̃)aA means sending over (port) name a a process A containing a set c̃ of bound names, and the
replication operation !m.A is a derivable one in a higher-order setting [15]. We use ≈ for context bisim-
ilarity (i.e. the equivalence induced by context bisimulation), and ∼= for normal bisimilarity (complete
definitions are given in Definitions 1,2). First of all, the factorization theorem is stated as below (m is
fresh, i.e. it does not occur in E[A]).

E[A]≈ (m)(E[Trm] | !m.A), where the trigger Trm ≡ m.0

Intuitively, using factorization theorem one can extract from E[A] the process A that might cause differ-
ence to its behavior. For instance,

A |Q≈ (m)((m.0 |Q) | !m.A)

Now suppose P and Q are basic higher-order processes, and are bisimilar with respect to either
bisimulation equivalence (i.e. context bisimulation or normal bisimulation). We focus on the output
clauses of context bisimulation and normal bisimulation, since the input case is similar. Note f n(E[X])
returns the free names of E[X] (i.e. not bound by restriction), and for simplicity we do not claim the
existence of d̃,B,Q′ below.

• The output clause of context bisimulation is

If P
(c̃)aA−−−→P′, then Q

(d̃)aB
=⇒Q′ s.t. for every E[X] with f n(E[X]) ∩ (c̃ ∪ d̃) = /0, (c̃)(P′ |E[A]) ≈

(d̃)(Q′ |E[B]).
• The output clause of normal bisimulation is

If P
(c̃)aA−−−→P′, then Q

(d̃)aB
=⇒Q′ s.t. for some fresh m, (c̃)(P′ | !m.A)∼= (d̃)(Q′ | !m.B).

The intuition behind the simplification is that using the factorization theorem one can extract process A
(respectively B) in E[A] (respectively E[B]), so in context bisimulation one obtains the following, due to
the congruence property of ≈,

R1
de f
= (c̃)(P′ |(m)(E[Trm] | !m.A))

≈

≈
(d̃)(Q′ |(m)(E[Trm] | !m.B))

de f
= R2

≈

(c̃)(P′ |E[A]) ≈
(d̃)(Q′ |E[B])

where each dotted line connects two processes that are related by context bisimilarity (≈). Then by the
congruence property of ≈, one can eliminate the common part in processes R1 and R2 (i.e. E[Trm] and
restriction on m), and thus arrive at the form of the output clause in normal bisimulation.

Xian Xu 39

The above has explained how the normal bisimulation works in basic higher-order processes [9] [1].
This paper concentrates on the extension of normal bisimulation, including its relevant technique, to
higher-order processes with parameterization (also known as abstraction, akin to that in lambda-calculus;
we postpone some examples until before stating the contribution), which still lacks full discussion.

Although parameterization is considered in [7], the definition of higher-order processes in [7] in-
cludes both name-passing and process-passing, and the coincidence between context bisimulation and
normal bisimulation is studied in such a mixed language. So one does not know clearly whether the
normal bisimulation can be extended to a pure higher-order setting with parameterization. To the best of
our knowledge, it has not been discussed thoroughly whether such characterization, together with related
technique such as trigges, is still applicable in a pure higher-order calculus extended with the two kinds
of parameterization (on names and on processes) respectively. In general, it is still not clear whether the
characterization result can be extended to an enriched higher-order setting. Yet the question whether the
context bisimulation has such a convenient characterization of normal bisimulation in a parameterized
setting is significant in broader research, as well as in improving the bisimulation theory itself (i.e. no
universal checking is demanded). It would be interesting to know the answer to this question also be-
cause it is already known that parameterization can strictly enhance the expressiveness power of mere
process-passing [3]; thus potential difference in the behavior theory of a more expressive calculus can be
revealed. Relevantly in the study of expressiveness, a simpler yet equivalent form of context bisimula-
tion would probably render much easier the proof of soundness (i.e. two processes are equivalent only
if their encodings are equivalent), which requires the establishing of context bisimulation in a handy
way. For instance, when comparing name-passing and processing [8] [17], the soundness demands that
two name-passing processes are equivalent (e.g. early bisimilar) only if their translations to process-
passing processes are context bisimilar. In this case, establishing normal bisimulation instead of context
bisimulation would be much more convenient.

In this paper, we explicitly examine the normal characterization of context bisimulation in pure
higher-order processes with parameterization; this time the language is not mixed, that is we study each
parameterization separately, so that the essential difference can be revealed. We use Π to denote the basic
(strict) higher-order pi-calculus, with the elementary operators (higher-order input and output, parallel
composition, restriction) and without any first-order fragment. Notation ΠD

n (respectively Πd
n) stands for

the calculus extending Π with process parameterization (respectively name parameterization) of arity n
(n ∈ N and N is the set of natural numbers); ΠD (respectively Πd) is the union of ΠD

n (respectively Πd
n).

For example, the process P1 below is a Π process (it means outputting X on name a and continuing as
null); P2 is a ΠD

1 process; P3 is a Πd
1 process. The parameterization operation is denoted by (leftmost) 〈·〉.

In the case of P2, the X is a parameterized variable that can be instantiated with an application (rightmost
〈·〉), for instance P2〈A〉 results in the process aA.0. We will formally define the calculi in section 2.

P1
de f
= aX .0 P2

de f
= 〈X〉aX .0 P3

de f
= 〈x〉xX .0

More often than not, process (respectively name) parameterization is understood as certain abstraction
on processes (respectively names) in the literature. So parameterization and abstraction may be used
interchangeably.

Contribution

The main contribution of this paper can be summarized as below.
• In the calculus ΠD

n (ΠD as well), we have normal bisimulation and it indeed characterizes con-
text bisimulation. We prove the coincidence by re-exploiting the available method from [7] [9].

40 Context Bisimulation for Parameterized HO Processes

Moreover, a technical novelty here is that the proof is given in a more direct way, rather than first
resorting to an intermediate bisimulation called triggered bisimulation by restricting to a sub-class
of processes as described above.

• The approach of normal bisimulation (i.e. simple characterization of context bisimulation with
normal bisimulation) cannot be extended to the calculus Πd

n (Πd either). That is, one cannot reuse
the explicit technique of ‘normal’ bisimulation from [7] [9]. We provide a counterexample and
some detailed discussion.

Since bisimulation theory often serves as the basis (or tool) for more advanced studies, these results pro-
vide a reference point for related work on higher-order calculi. They also shed light on the expressiveness
of parameterization, because the contrast between the two results above reveals an essential separation
between parameterization on process and names. Furthermore, such distinction also stresses the intrin-
sic complexity of name-handling (in a strictly higher-order setting without name-passing). So it will be
interesting to look for some other kind of simpler characterization of context bisimulation in presence of
name parameterization.

Organization

The paper is organized as follows. In section 2, we define the calculi Π,ΠD
n ,Πd

n , and the standard
form of context bisimulation. Section 3 proves that there indeed exists the normal bisimulation that
characterizes context bisimulation in ΠD

n (n ∈ N). On the other hand, Πd
n does not have such characteri-

zation in general, which we show in section 4. In section 5, we provide the conclusions and some further
discussions.

2 Calculi

In this section, we define the calculus Π, and its variants ΠD
n ,Πd

n within which the context bisimula-
tion is examined.

2.1 Calculus Π

The Π processes, denoted by uppercase letters (A,B,E,F,P,Q,R,T...) and their variant forms (e.g.
T ′), are defined by the following grammar (Πseg is used to provide convenience for defining the variants
of Π). Lowercase letters represent channel names, whereas X ,Y,Z stand for process variables.

T ::= Πseg

Πseg ::= 0
∣∣∣ X
∣∣∣ u(X).T

∣∣∣ uT ′.T
∣∣∣ T |T ′

∣∣∣ (c)T

The operators are: prefix (u(X).T,uT ′.T), parallel composition (T |T ′), restriction ((c)T) in which c is
bound (or local); they have their standard meaning, and parallel composition has the least precedence.
As usual some convenient notations are: a for a(X).0; a for a0.0; mA for mA.0; τ.P for (a)(a.P |a);
sometimes a[A].T for aA.T (for the sake of clarity); ·̃ for a finite sequence of some items (e.g. names,
processes), and c̃d̃ for the concatenation of c̃ and d̃. By standard definition, f n(T̃), bn(T̃), n(T̃); f v(T̃),
bv(T̃), v(T̃) respectively denote free names, bound names, names; free variables, bound variables and
variables in T̃ . Closed processes contain no free variables, and are studied by default. A fresh name
or variable is one that does not occur in the processes under consideration. Name substitution T{ñ/m̃}

Xian Xu 41

and higher-order substitution T{Ã/X̃} are defined structurally in the standard way. E[X̃] denotes E with
variables X̃ , and E[Ã] stands for E{Ã/X̃}. We work up-to α-conversion and always assume no capture.

We use the following version of replication as a derived operator [15] [5]: !φ .P de f
= (c)(Qc |cQc), Qc

de f
=

c(X).(φ .(X |P) |cX), where φ is a prefix.
The operational semantics is given in Figure 1. Symmetric rules are omitted. The rules are mostly

self-explanatory. For example, in higher-order input (a(A)), the received process A becomes part of the
receiving environment through a substitution; in higher-order output ((c̃)aA), the process A is sent with
a set of local names for prospective use in further communication. In the first rule of the second row,
we slightly abuse the notation, i.e. f n(A)−{c̃,a} means the free names of A minus the names in c̃ and
a, which excludes the possibility of d=a. Symbols α,β ,λ , ... denote actions, whose subject (e.g. a in
action a(A)) indicates the channel name on which it happens. Operations f n(),bn(),n() can be similarly

defined on actions. =⇒ is the reflexive transitive closure of the internal transition (τ−→), and λ
=⇒ is

=⇒ λ−→=⇒. λ̂
=⇒ is =⇒ when λ is τ and λ

=⇒ otherwise. τ−→k means k consecutive τ’s. P=⇒·R Q means
P=⇒Q′ for some Q′ and Q′R Q (i.e. (Q′,Q) ∈R), where R is a binary relation. We say relation R is
closed under (variable) substitution if (E{A/X},F{A/X}) ∈ R for any A,X whenever (E,F) ∈ R, in
which E,F (possibly) have free occurrence of variable X . A process diverges if it can perform an infinite
τ sequence.

a(X).T
a(A)−−→T{A/X} aA.T aA−→T

T λ−→T ′

(c)T λ−→(c)T ′
c 6∈ n(λ) T1

a(A)−−→T ′1,T2
(c̃)a[A]−−−−→T ′2

T1 |T2
τ−→(c̃)(T ′1 |T ′2)

T
(c̃)a[A]−−−−→T ′

(d)T
(dc̃)a[A]−−−−→T ′

d ∈ f n(A)−{c̃,a} T λ−→T ′

T |T1
λ−→T ′ |T1

bn(λ)∩ f n(T1) = /0

Figure 1: Semantics of Π
2.2 Calculi ΠD

n and Πd
n

Parameterization extends Π with the syntax and semantics in Figure 2. 〈U1,U2, ...,Un〉T is a pa-
rameterization where U1,U2, ...,Un are the pairwise distinct formal parameters to be instantiated by the
application T 〈K1,K2, ...,Kn〉where the parameters are instantiated by concrete objects K1,K2, ...,Kn. Ap-
plication binds tighter than prefixes and restriction. In the rule of Figure 2, |Ũ |=|K̃| requires the sequence
of parameters and the sequence of instantiating objects should be equally sized. It also expresses that
the parameterized process can do an action only after the application happens. Calculus ΠD

n , which has
process parameterization (or higher-order abstraction), is defined by setting Ũ , K̃ to be X̃ , T̃ ′ respectively.
Calculus Πd

n , which has name parameterization (or first-order abstraction), is defined by setting Ũ , K̃ to
be x̃, ũ respectively. For convenience, names (ranged over by u,v,w) are divided into two disjoint sub-
sets: name constants (ranged over by a,b,c, ...,m,n); name variables (ranged over by x,y,z). Process

T ::= Πseg

∣∣∣ 〈U1,U2, ...,Un〉T
∣∣∣ T 〈K1,K2, ...,Kn〉

T{K̃/Ũ} λ−→ T ′

F〈K̃〉 λ−→ T ′
if F

de f
= 〈Ũ〉T (|Ũ |= |K̃|= n)

Figure 2: Π with parameterization

expressions (or terms) of the form 〈X̃〉P or 〈x̃〉P, in which X̃ and x̃ are not empty, are parameterized pro-
cesses. Terms without outmost parameterization are non-parameterized processes, or simply processes.

42 Context Bisimulation for Parameterized HO Processes

We mainly focus on (closed) processes. Only free variables can be effectively parameterized (i.e. it does
not make sense to parameterize a bound variable); they become bound after parameterization. In the
syntax, redundant parameterizations, for example 〈X1,X2〉P in which X2 /∈ f v(P), are allowed. A ΠD

n
(n≥ 1) process is therefore definable in ΠD

n+1 (similar for Πd
n). In the case of 〈X̃〉P, it can be coded up by

setting an additional fresh dummy variable Y (of no use) to obtain 〈X̃ ,Y 〉P. Sometimes related notations
are slightly abused if no confusion is caused.

Type systems for the processes of ΠD
n and Πd

n can be routinely defined in a similar way to that in [7].
We do not present the type system and always assume type consistency, since such a type system is not
important for the discussion in this paper. Without loss of generality, we stipulate that the processes of
ΠD

n and Πd
n are strictly abstraction-passing, i.e. all the transmitted objects are parameterized processes;

accordingly, it is assumed that all the process variables have the type of abstractions, so an occurrence
of a variable X typically takes the form X〈T ′〉 in some context. This can be justified by two facts: firstly
a non-parameterized process can be treated as a special case of parameterization; secondly to the aim of
this paper, the characterization of context bisimulation in the case of non-parameterized processes has
been examined in depth by Sangiorgi [9].

T ≡ T ′, if they are α-convertible to each other,
i.e., a(X).T ≡ a(Z).T{Z/X},(c)T ≡ (d)T{d/c}

T |0≡ T, T |(T ′ |T ′′)≡ (T |T ′) |T ′′, T |T ′ ≡ T ′ |T
(c)(d)T ≡ (d)(c)T, (c)λ .T ≡ 0 whenever the subject of λ is c
(c)(T |T ′)≡ (c)T |T ′ whenever c /∈ f n(T ′)

(〈Ũ〉T)〈K̃〉 ≡ T{K̃/Ũ}, |Ũ |= |K̃|= n

Figure 3: Structural congruence
The semantics of parameterization renders it somewhat natural to deem application as some (extra)

rule of structural congruence, denoted by ≡, which is defined in Figure 3 in a standard way [6] [9]. In
addition to the standard algebraic laws (concerning parallel composition and restriction), the last rule of
application is included. So the rule below can used in place of that in Figure 2.

T ≡ T1,T1
α−→T2,T2 ≡ T ′

T α−→T ′

2.3 Context Bisimulation

The bisimulation equivalence of higher-order processes we intend to examine is the context bisimu-
lation. The form of its definition is the same for the calculi defined above.

Definition 1 (Context bisimulation). A symmetric binary relation R on closed processes is a context
bisimulation, if whenever PR Q the following properties hold:

1. If P α−→P′ and α is τ or a(A), then Q α̂
=⇒Q′ for some Q′ and P′R Q′;

2. If P
(c̃)aA−−−→P′ then Q

(d̃)aB
=⇒Q′ for some d̃,B,Q′, and for every process E[X] s.t. {c̃, d̃}∩ f n(E) = /0 it

holds that (c̃)(E[A] |P′) R (d̃)(E[B] |Q′).
Process P is context bisimilar to Q, written P ≈,Q, if PR Q for some context bisimulation R. Relation
≈ is called context bisimilarity.

Xian Xu 43

Context bisimulation can be extended to general (open) processes in a standard way, i.e. suppose
f v(T,T ′)⊆ X̃ , then T ≈ T ′ if T{Ã/X̃} ≈ T ′{Ã/X̃} for all closed Ã. Similarly the extension to parame-
terized processes is: 〈X̃〉T ≈ 〈X̃〉T ′ if T{Ã/X̃} ≈ T ′{Ã/X̃} all closed Ã.

Relation ∼ is the strong version of ≈. For clarity, notation ≈L (resp. ∼L) indicates the context
bisimilarity (resp. strong context bisimilarity) of calculus L (Π,ΠD

n , or Πd
n); we simply use ≈ (resp.

∼) when it is clear from context. It is well-known that context bisimilarity is an equivalence and a
congruence with respect to prefixing, parallel composition and restriction; see [7] [8] [9] [10]. Notice
E[X] is different from the well-known concept of contexts, which neglect name capture (i.e. the case a
free name falls into the scope of some restriction of the same name). That is E[X] is sensitive to name
capture and should use α-conversion to avoid that. Otherwise, such two α-convertible processes like
(m)a[m.0].m.b and (n)a[n.0].n.b would be distinguishable by context bisimilarity using E[X]≡ (m)X as
the receiving environment (the latter can produce a visible action on b while the former does not), which
is contradictory because α-convertibility shall entail context bisimilarity.

3 Normal bisimulation in ΠD
n

In this section, we show that in ΠD
n we have normal bisimulation that characterizes context bisimula-

tion. For convenience, we focus on ΠD
1 ; the result can be readily extended to ΠD

n . We first define normal

bisimulation, and then prove the coincidence theorem. Hereinafter Trm
de f
= 〈Z〉mZ denotes a trigger with

(trigger name) m.
The form of normal bisimulation and the proof schema stem from the result in [7] [9] [1]. However,

as mentioned, we go beyond those works in several respects. Firstly, the processes under inspection
here are purely higher-order without name-passing, and capable of parameterization on processes only.
Secondly, although the schema for the proof of the characterization of context bisimulation using normal
bisimulation exploits those works, the technical details are not the same. More specifically, different from
the approaches in [1], where the so-called index technique is essentially used to deal with actions, and
in [7] [9], where an intermediate equivalence called triggered bisimulation is used and processes are first
transformed into a subclass called triggered processes, we prove the coincidence of normal bisimulation
and context bisimulation in a more direct and easier way.

3.1 Definition of normal bisimulation

Definition 2. A symmetric binary relation R on closed processes of ΠD
1 is a normal bisimulation, if

whenever PR Q the following properties hold:

1. If P τ−→P′, then Q=⇒Q′ for some Q′ s.t. P′R Q′;

2. If P
a(Trm)−−−−→P′ and Trm ≡ 〈Z〉mZ (m is fresh), then Q

a(Trm)
=⇒ Q′ for some Q′ s.t. P′R Q′;

3. If P
(c̃)aA−−−→P′ then Q

(d̃)aB
=⇒Q′ for some d̃,B,Q′, and it holds that (m is fresh)

(c̃)(P′ | !m(Z).A〈Z〉) R (d̃)(Q′ | !m(Z).B〈Z〉)

which can be rephrased as (c̃)(P′ |E ′[A])R (d̃)(Q′ |E ′[B]) where the E ′[X]
de f
= !m(Z).X〈Z〉 holding

A and B is special, in contrast to the general requirement in context bisimulation.

Process P is normal bisimilar to Q, written P ∼=,Q, if PR Q for some normal bisimulation R. Relation
∼= is called normal bisimilarity.

44 Context Bisimulation for Parameterized HO Processes

Remark The strong version of ∼= is denoted by '. Notation ∼=L (resp. 'L) indicates the normal
bisimilarity (resp. strong normal bisimilarity) of calculus L , if any; we simply use ∼= (resp. ') when
there is no confusion. It can be shown in a standard way that normal bisimilarity is an equivalence and
a congruence; see [7] [9] for a reference.

The rest of this section is mainly devoted to the (technical) proof of the following theorem.

Theorem 3. In ΠD
1 , normal bisimilarity coincides with context bisimilarity; that is ∼==≈.

3.2 Normal bisimulation characterizes context bisimulation

A key step in proving Theorem 3 is to prove the Factorization theorem (Theorem 6). First we need
some preparation, i.e. the two lemmas below. Intuitively, these two lemmas state some distributive
laws concerning the replication !m(Z).A〈Z〉 (m is fresh) that are useful in the proof of the Factorization
theorem.

Lemma 4. Suppose E[X],E1[X],E2[X] belong to ΠD
1 , and let m /∈ f n(E,E1,E2,A).

(1) If m /∈ f n(α), then

(m)(α.E[Trm] | !m(Z).A〈Z〉)≈ α.(m)(E[Trm] | !m(Z).A〈Z〉)

(2) It holds for output prefix that

(m)(aB1.E1[Trm] | !m(Z).A〈Z〉)≈ (m)(aB2.E1[Trm] | !m(Z).A〈Z〉)

where B1 ≡ E2[Trm], B2 ≡ (m)(E2[Trm] | !m(Z).A〈Z〉).
(3) It holds for parallel composition that

(m)(E1[Trm] |E2[Trm] | !m(Z).A〈Z〉)
≈ (m)(E1[Trm] | !m(Z).A〈Z〉) |(m)(E2[Trm] | !m(Z).A〈Z〉)

Proof. The proof is based on a standard argument on establishing bisimulations, where the scope of
restriction concerning m is the critical part. The details are thus omitted.

Lemma 5. Suppose E1[X] belongs to ΠD
1 , and let m be fresh. It holds for every A,B (of the type of

abstraction) that

B〈(m)(E1[Trm] | !m(Z).A〈Z〉)〉 ≈ (m)(B〈E1[Trm]〉 | !m(Z).A〈Z〉)

Proof. Suppose B≡ 〈Y 〉T , it amounts to prove

T{T1/Y} ≈ (m)(T{T2/Y}| !m(Z).A〈Z〉)
where T1 ≡ (m)(E1[Trm] | !m(Z).A〈Z〉) and T2 ≡ E1[Trm]

This can be done by a simple induction on the structure of T in a routine way. The details pertaining to
establishing bisimulation during the induction would not raise major obstacle.

Now we are ready to show the Factorization theorem. As mentioned, this theorem offers some
method to relocate a subprocess, which might cause difference in behavior, and set up a reference to it
with the help of a trigger, while maintaining the equivalence with respect to context bisimilarity. The
proof of Theorem 6 is put in appendix A.

Xian Xu 45

Theorem 6 (Factorization). Given a E[X] of ΠD
1 , let m be fresh and notice Trm ≡ 〈Z〉mZ. It holds for

every A (of the type of abstraction) that

(1) if E[Trm] is non-parameterized, i.e. not an abstraction, then

E[A]≈ (m)(E[Trm] | !m(Z).A〈Z〉)

(2) else if E[Trm]≡ 〈Y1〉 · · · 〈Yk〉E ′ for some k ≥ 1 and non-parameterized E ′, then

E[A]≈ 〈Y1〉 · · · 〈Yk〉((m)(E ′ | !m(Z).A〈Z〉))

With the help of factorization theorem (Theorem 6), below we give the proof of Theorem 3.

Proof of Theorem 3. The fact that ≈ implies ∼= barely needs argument, because the former demands
more and the latter is actually a special case of it. So we focus on the other direction. To achieve this,

we show the relation R
de f
= {(P,Q) |P ∼= Q} (i.e. normal bisimilarity ∼=) is a context bisimulation up-to

≈ [11] [13] (the definition is standard and thus omitted), by using mainly the factorization theorem.
There are several cases to analyze in terms of the definition of context bisimulation. Notice we

use weak transitions in the bisimulation, which is somewhat a standard variant of the corresponding
bisimulation. Moreover we focus on the case when the first result (1) of theorem 6 applies, the case
when the other applies can be handled in a similar (and easier) way.

• Internal action. This case is trivial, because the clauses in context bisimulation and normal bisim-
ulation are the same.

• Input. If P
a(A)
=⇒P′, then we want to show that

Q
a(A)
=⇒Q′ for some Q′ (1)

and P′ ≈ R ≈ Q′ (2)

W.l.o.g. suppose P′ ≡ E[A] for some E[X] (i.e. from P
a(X)
=⇒ intuitively). So P

a(Trm)
=⇒ E[Trm] for some

fresh m. Since P∼= Q, we know

Q
a(Trm)
=⇒ F [Trm] for some F

and
E[Trm]∼= F [Trm] (3)

Thus
Q

a(A)
=⇒F [A]

de f
= Q′

which fulfills (1). We know from (3) and the congruence properties of ∼= that

(m)(E[Trm] | !m(Z).A〈Z〉)∼= (m)(F [Trm] | !m(Z).A〈Z〉)

Now by factorization theorem (Theorem 6), we have

E[A]≈ (m)(E[Trm] | !m(Z).A〈Z〉)R (m)(F [Trm] | !m(Z).A〈Z〉)≈ F [A]

which arrives at (2).

46 Context Bisimulation for Parameterized HO Processes

• Output. If P
(c̃)aA
=⇒P′, then we want to show that (notice {c̃, d̃}∩ f n(E) = /0)

Q
(d̃)aB
=⇒Q′ for some d̃,B,Q′ (4)

and for every E[X], (c̃)(E[A] |P′)≈ R ≈ (d̃)(E[B] |Q′) (5)

The argument can be conducted in a pretty similar way to that in the previous case for input; this
time one attaches a process E[Trm] and also uses the congruence properties of ∼=.

Since P∼= Q, we have Q
(d̃)aB
=⇒Q′ which fulfills (4), and also

(c̃)(P′ | !m(Z).A〈Z〉)∼= (d̃)(Q′ | !m(Z).B〈Z〉) (6)

We know from the congruence properties and (6) that

(m)((c̃)(P′ | !m(Z).A〈Z〉) |E[Trm])∼= (m)((d̃)(Q′ | !m(Z).B〈Z〉) |E[Trm]) (7)

By some simple structural adjustment and the factorization theorem (Theorem 6), we know the lhs
(left hand side) and rhs (right hand side) of (7) are equivalent to (c̃)(E[A] |P′) and (d̃)(E[B] |Q′)
respectively. So we have

(c̃)(E[A] |P′)≈ (lhs of (7))R (rhs of (7))≈ (d̃)(E[B] |Q′)

This is exactly what (5) says.

The proof is completed now.

Remark.

• The success of the characterization of context bisimulation using normal bisimulation in ΠD
n can

be attributed to the fact that ΠD
n processes are purely higher-order, i.e. no names can be passed but

only (parameterized) processes (carrying names), and moreover no names can be parameterized.
Thus one can delay the instantiation of a process parameterization by moving it elsewhere with the
help of triggers.

• We mentioned in the introduction that in [1], the index technique is utilized to show that strong
normal bisimulation characterizes strong context bisimulation, within a calculus capable of both
name-passing and process-passing but without any parameterization. A critical point there is that
indices can be used to precisely pinpoint the matching of actions from the processes when going
through some intermediate transformation (e.g. factorization). We believe, by combining the
technique in that paper with the approach in this section, one can further show that ∼ and '
coincide in the calculus ΠD

n . The key point in this combination is that we can reuse the approach in
this section for proving the coincidence in the strong case, except that we need to harness indices
to mark and filter out the extra τ actions brought about by the operation of factorization, and thus
the precise matching of strong actions can be established.

4 Normal bisimulation in Πd
n

In this section, we examine context bisimulation in Πd
n , particularly Πd

1 for simplicity. We show that,
unlike that in ΠD

1 , the technique of normal bisimulation [7] [9] cannot be extended to Πd
1 that is endowed

Xian Xu 47

with name parameterization instead of process parameterization. To this end, we show the negative fact
in two steps. Firstly, we discuss the possible form of normal bisimulation, toward giving some intuition.
Then we provide a counterexample, to show that the expected form of normal bisimulation does not work
out. Therefore finding a useful characterization of context bisimulation may amount to exploiting further
the essence (e.g. expressiveness) of Πd

n .

Possible form of normal bisimulation

Along the line of the very original idea of normal bisimulation [7] [9], we pretend having the ‘normal
bisimulation’, among which the largest one is denoted by ∼=′. This would lead to the argument below.

• A trigger now should be defined as Trm
de f
= 〈z〉mz, because it is supposed to carry names rather than

processes. This immediately brings about a critical problem. That is, name-passing is not allowed
in Πd

1 , and we only admit abstraction-passing.

• In the definition of ∼=′, the output clause should take the following form.

If P
(c̃)aA−−−→P′ then Q

(d̃)aB
=⇒Q′ for some d̃,B,Q′, and it holds that (m is fresh)

(c̃)(P′ |E[A]) R (d̃)(Q′ |E[B])

where particularly it should be that E[X]
de f
= !m(z).X〈z〉 in line with the trigger form. Again, the

special environment E[X] does not belong to the calculus Πd
1 .

• As for the input clause of ∼=′, one meets with similar obstacle.

So intuitively, the failure of trigger technique, and thus the failure of the factorization theorem, de-
prives Πd

1 of the normal bisimulation. Furthermore, below we provide a counterexample to exhibit the
deprival of normal bisimulation in Πd

1 .

A counterexample

We examine the following example: W
de f
= A〈d〉, in which A

de f
= 〈x〉x. Obviously W belongs to Πd

1

and is able to fire an action on d, i.e. W ≡ d d−→0. However if one tries to factorize out the subprocess A,
some contradiction arises by the examining below.

1) One is supposed to replace A with a trigger of certain (general) form, say T , which has to be an
abstraction on a name (to remain well-typed); so T must take the shape 〈z〉T ′, and we have after a
substitution

W{T/A} ≡ T ′{d/z} (8)

Now some sugar should be added, i.e. some context F is needed to contain W{T/A} so that the
resulting process bi-simulates W . Let us suppose F is of the form

(c̃)([·] |G[A])

in which G should have A, in conformance to the rationale of factorization. Then generally, in
terms of bisimulation, F [T ′{d/z}] should engage in some internal moves between T ′{d/z} and
G[A], so that in its current (different) position, A can do the same action d after an instantiation on
x. It is the responsibility of T ′ to convey the particular information of d to G.

48 Context Bisimulation for Parameterized HO Processes

2) Holding back a little bit, a crux is that there is no way to transmit, with the help of any process
(let alone a trigger), a concrete name for instantiation of the abstraction (e.g. in (8)) to the newly-
assigned place for future access, because all the processes here are strictly higher-order.

Hence we conclude that the technique of normal bisimulation does not work for Πd
n . This result also

sheds light on the expressiveness of Πd
n . It reflects that name parameterization offers more flexibility

than process parameterization in expressiveness so that its bisimulation does not have a similar (simpler)
characterization. We give more discussion in the conclusion below.

5 Conclusion

This paper provides some results on the characterization of context bisimulation in parameterized
higher-order processes, and thus offers some tool as well as some insights for the bisimulation theory in
higher-order paradigm. Firstly, we show that when extended with process parameterization, higher-order
processes possess the characterization of context bisimulation by normal bisimulation. Secondly, we
show that this technique of normal bisimulation, at least in its original form, cannot be extended to char-
acterizing context bisimulation in presence of name parameterization. This separation result implies that
the two kinds of parameterization have some essential difference. It will offer some potential reference
for relevant research, for instance expressiveness studies.

There is some work worth further consideration.

• Finding some appropriate proof technique for the context bisimulation in Πd
n . To some extent,

Πd
n is more useful than ΠD

n , which can strictly enhance the expressiveness of Π [3], because it
consists of some name-handling primitive, though it is still a higher-order language (i.e. no name-
passing). So in order to make Πd

n more convenient when studying related topics, for example
expressiveness and applications like modeling-verifying, there should be some proof technique
for its canonical bisimulation equivalence, i.e. the context bisimulation. Since a standard normal
characterization based on triggers is not available, one has to search for other ways to simplify
the work on proving/checking whether two processes are context bisimilar. This may need some
restriction on name abstraction or some other novel technique catering for certain motivation.

• Extension of the available characterization and related proof technique to more general higher-
order models. For a long time, normal bisimulation and trigger technique has seen successful
application and been deemed as a somewhat general method of dealing with higher-order pro-
cesses (even applicable in some first-order process models). However, the result here implies that
the normal approach, i.e. proof of context bisimulation up-to trigger and context, deserves more
examination. Sometimes it would be better to study a general form of bisimulation in some general
higher-order model. This is advantageous in that the usefulness of the available technique can be
further tested, and also more essence of the behavior equivalence in higher-order processes can be
hopefully revealed. A possible direction is to follow the idea in [12] where environmental bisim-
ulation is proposed for higher-order models, and examine the proof technique of environmental
bisimulation that is shown to coincide with canonical bisimulation in various higher-order models.
In such a more general model, one may exploit some general proof technique (e.g. up-to certain
normal feature) of different nature.

Acknowledgement The author thanks Davide Sangiorgi for many constructive comments, and Qiang
Yin for much helpful discussion. He is also grateful to the comments and suggestions from the anony-
mous referees.

Xian Xu 49

References
[1] Z. Cao (2006): More on Bisimulations for Higher Order π-Calculus. In L. Aceto & A. Inǵolfsdóttir, editors:

Proceedings of FOSSACS2006, LNCS 3921, pp. 63–78, doi:10.1007/11690634 5. Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31,
2006.

[2] A. Jeffrey & J. Rathke (2005): Contextual equivalence for higher-order pi-calculus revisited. Logical Meth-
ods in Computer Science 1(1:4), doi:10.2168/LMCS-1(1:4)2005.

[3] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2010): On the Expressiveness of Polyadic and Synchronous
Communication in Higher-Order Process Calculi. In: Proceedings of ICALP 2010, LNCS, Springer Verlag,
pp. 442–453, doi:10.1007/978-3-642-14162-1 37.

[4] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2011): On the Expressiveness and Decidability of Higher-
Order Process Calculi. Information and Computation 209(2), pp. 198–226, doi:10.1016/j.ic.2010.10.001.

[5] I. Lanese, J.A. Perez, D. Sangiorgi & A. Schmitt (2008): On the Expressiveness and Decidability of Higher-
Order Process Calculi. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science
(LICS 2008), IEEE Computer Society, pp. 145–155, doi:10.1109/LICS.2008.8. Journal version in [4].

[6] R. Milner (1992): Functions as Processes. Mathematical Structures in Computer Science 2(2), pp. 119–141,
doi:10.1017/S0960129500001407. Research Report 1154, INRIA, Sofia Antipolis, 1990.

[7] D. Sangiorgi (1992): Expressing Mobility in Process Algebras: First-order and Higher-order Paradigms.
Phd thesis, University of Edinburgh.

[8] D. Sangiorgi (1992): From π-Calculus to Higher-Order π-Calculus—and Back. In: Proceedings of TAP-
SOFT ’93, LNCS 668, Springer Verlag, pp. 151–166, doi:10.1007/3-540-56610-4 62.

[9] D. Sangiorgi (1996): Bisimulation for Higher-order Process Calculi. Information and Computation 131(2),
pp. 141–178, doi:10.1006/inco.1996.0096. Preliminary version in proceedings of PROCOMET’94 (IFIP
Working Conference on Programming Concepts, Methods and Calculi), pages 207-224, North Holland, 1994.

[10] D. Sangiorgi (1996): Pi-calculus, Internal Mobility and Agent-Passing Calculi. Theoretical Computer Sci-
ence 167(2), doi:10.1016/0304-3975(96)00075-8. Extracts of parts of the material contained in this paper
can be found in the Proceedings of TAPSOFT’95 and ICALP’95.

[11] D. Sangiorgi (1998): On the Bisimulation Proof Method. Mathematical Structures in Computer Science 8(6),
pp. 447–479, doi:10.1017/S0960129598002527. An extended abstract in Proceedings of MFCS’95, LNCS
969, pp. 479-488, Springer Verlag.

[12] D. Sangiorgi, N. Kobayashi & E. Sumii (2011): Environmental bisimulations for higher-order languages.
ACM Transactions on Programming Languages and Systems 33(1), p. 5, doi:10.1145/1889997.1890002.

[13] D. Sangiorgi & D. Walker (2001): The Pi-calculus: a Theory of Mobile Processes. Cambridge Universtity
Press.

[14] B. Thomsen (1990): Calculi for Higher Order Communicating Systems. Phd thesis, Department of Comput-
ing, Imperial College.

[15] B. Thomsen (1993): Plain CHOCS, a Second Generation Calculus for Higher-Order Processes. Acta Infor-
matica 30(1), pp. 1–59, doi:10.1007/BF01200262.

[16] J.-L. Vivas & M. Dam (1998): From Higher-Order Pi-Calculus to Pi-Calculus in the Presence of Static
Operators. In: Proceedings of the 9th International Conference on Concurrency Theory, LNCS 1466, pp.
115–130, doi:10.1007/BFb0055619. Nice, France, September 8-11, 1998.

[17] Xian Xu (2012): Distinguishing and Relating Higher-order and First-order Processes by Expressiveness.
Acta Informatica 49(7-8), pp. 445–484, doi:10.1007/s00236-012-0168-9.

50 Context Bisimulation for Parameterized HO Processes

Appendix

A Proof of Section 3

In this appendix, we give the proof of the factorization theorem in section 3.

Proof of Theorem 6: Factorization. The proof is by induction on the structure of E. The cases 1,2,3 are
the base cases.

1. E is 0 or E is Y and Y 6= X . These cases are trivial.

2. E is X . Notice this time E[Trm] is Trm ≡ 〈Z〉mZ ≡ 〈Y 〉mY (up-to alpha-conversion), so the second
statement of this theorem applies and the two terms of interest are

A and 〈Y 〉((m)(mY | !m(Z).A〈Z〉)

Suppose A≡ 〈Z′〉F , then it is easy to verify that for each B one has

F〈B〉 ≈ (m)(mB | !m(Z).F{Z/Z′}

which completes this case.

3. E is X〈E1〉. This can be proven by showing the following relation R is a context bisimulation
up-to ∼ (this technique is standard [9] [13] and we omit its definition here).

R
de f
= {(A〈E1〉,(m)(Trm〈E1〉 | !m(Z).A〈Z〉) |m is fresh }∪ ≈

Let (A〈E1〉,(m)(Trm〈E1〉 | !m(Z).A〈Z〉) ∈R and A≡ 〈Z′〉T ; so the pair is actually

(T{E1/Z′},(m)(mE1 | !m(Z).T{Z/Z′})

There are mainly two cases to consider.

• (m)(mE1 | !m(Z).T{Z/Z′}) α−→T ′. Then α must be τ , and thus

T ′ ≡ (m)(T{E1/Z′}| !m(Z).T{Z/Z′})

By T{E1/Z′}=⇒T{E1/Z′} (null transition), since m is fresh, it can be easily seen that,

T{E1/Z′} ∼ T{E1/Z′}R T{E1/Z′} ∼ T ′

• T{E1/Z′} α−→T1. Then this is simulated by

(m)(mE1 | !m(Z).T{Z/Z′})
τ−→ (m)(T{E1/Z′}| !m(Z).T{Z/Z′})
α−→ (m)(T1 | !m(Z).T{Z/Z′}) de f

= T2

So it holds in a straightforward way that

T1 ∼ T1 R T1 ∼ T2

Xian Xu 51

The following cases 4,5,6,7,8,9 are cases involving the induction hypothesis (ind. hyp. for short).
Notice that we will only consider the case when statement (1) in the theorem applies, and the case
for (2) can be dealt with similarly.

4. E is 〈Y 〉E1. Then we have by ind. hyp.

E[A]≡ 〈Y 〉E1[A]
≈ 〈Y 〉((m)(E1[Trm] | !m(Z).A〈Z〉))

To conclude this case, we have to show

〈Y 〉((m)(E1[Trm] | !m(Z).A〈Z〉))≈ 〈Y 〉((m)(E1[Trm] | !m(Z).A〈Z〉))

This is immediate and the right-hand-side is exactly the second claim (2) of this theorem.

5. E is aE2.E1. Then we have

E[A]≡ aE2[A].E1[A]
≈ a[(m)(E2[Trm] | !m(Z).A〈Z〉)].((m)(E1[Trm] | !m(Z).A〈Z〉)) (ind. hyp.)
≈ (m)(a[(m)(E2[Trm] | !m(Z).A〈Z〉)].E1[Trm] | !m(Z).A〈Z〉) (Lemma 4(1))
≈ (m)(aE2[Trm].E1[Trm] | !m(Z).A〈Z〉) (Lemma 4(2))

The last equation gives exactly what we expect.

6. E is a(Y).E1. This is similar (and easier) than the previous case.

7. E is E1 |E2. Then we have

E[A]≡ E1[A] |E2[A]
≈ (m)(E1[Trm] | !m(Z).A〈Z〉) |(m)(E2[Trm] | !m(Z).A〈Z〉) (ind. hyp.)
≈ (m)(E1[Trm] |E2[Trm] | !m(Z).A〈Z〉) (Lemma 4(3))

The last equation completes this case.

8. E is (c)E1. This is similar to the previous case.

9. E is E2〈E1〉. This case can be reduced to the case E is Y 〈E1〉 and Y 6= X , because if E2 is not
a variable (i.e. an abstraction) or is X , then it can be handled in a way that falls into one of the
previous cases (up-to structural congruence). So we have

E[A]
≡ Y 〈E1[A]〉
≈ Y 〈(m)(E[Trm] | !m(Z).A〈Z〉)〉 de f

= T (ind. hyp.)

We want to show that T ≈ (m)(Y 〈E1[Trm]〉 | !m(Z).A〈Z〉) i.e. for every B,

B〈(m)(E1[Trm] | !m(Z).A〈Z〉)〉 ≈ (m)(B〈E1[Trm]〉 | !m(Z).A〈Z〉)

This is immediately from Lemma 5.

The proof is now completed.

Submitted to:

QAPL 2013

c© I. Gazeau, D. Miller, and C. Palamidessi

This work is licensed under the

Creative Commons Attribution License.

Preserving differential privacy under finite-precision

semantics ∗

Ivan Gazeau, Dale Miller, and Catuscia Palamidessi

INRIA and LIX, Ecole Polytechnique

The approximation introduced by finite-precision representation of continuous data can induce ar-

bitrarily large information leaks even when the computation using exact semantics is secure. Such

leakage can thus undermine design efforts aimed at protecting sensitive information. We focus here

on differential privacy, an approach to privacy that emerged from the area of statistical databases and

is now widely applied also in other domains. In this approach, privacy is protected by the addition of

noise to a true (private) value. To date, this approach to privacy has been proved correct only in the

ideal case in which computations are made using an idealized, infinite-precision semantics. In this

paper, we analyze the situation at the implementation level, where the semantics is necessarily finite-

precision, i.e. the representation of real numbers and the operations on them, are rounded according

to some level of precision. We show that in general there are violations of the differential privacy

property, and we study the conditions under which we can still guarantee a limited (but, arguably,

totally acceptable) variant of the property, under only a minor degradation of the privacy level. Fi-

nally, we illustrate our results on two cases of noise-generating distributions: the standard Laplacian

mechanism commonly used in differential privacy, and a bivariate version of the Laplacian recently

introduced in the setting of privacy-aware geolocation.

Keywords: Differential privacy, floating-point arithmetic, robustness to errors.

1 Introduction

It is well known that, due to the physical limitations of actual machines, in particular the finiteness of

their memory, real numbers and their operations cannot be implemented with full precision. While for

traditional computation getting an approximate result is not critical when a bound on the error is known,

we argue that, in security applications, the approximation error can became a fingerprint potentially

causing the disclosure of secrets.

Obviously, the standard techniques to measure the security breach do not apply, because an analysis

of the system in the ideal (aka exact) semantics does not reveal the information leaks caused by the

implementation. Consider, for instance, the following simple program

if f (h)> 0 then ℓ= 0 else ℓ= 1

where h is a high (i.e., confidential) variable and ℓ is a low (i.e., public) variable. Assume that h can take

two values, v1 and v2, and that both f (v1) and f (v2) are strictly positive. Then, in the ideal semantics,

the program is perfectly secure, i.e. it does not leak any information. However, in the implementation, it

could be the case that the test succeeds in the case of v1 but not in the case of v2 because, for instance,

the value of f (v2) is below the smallest representable positive number. Hence, we would have a total

disclosure of the secret value.

∗This work has been partially supported by the project ANR-09-BLAN-0345-02 CPP and by the INRIA Action d’Envergure

CAPPRIS.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

Author manuscript, published in "QAPL - 11th International Workshop on Quantitative Aspects of Programming Languages and
Systems 117 (2013) 1-18"

 DOI : 10.4204/EPTCS.117.1

2 Preserving differential privacy

The example above is elementary but it should give an idea of the pervasive nature of the problem,

which can have an impact in any confidentiality setting, and should therefore receive attention by those

researchers interested in (quantitative) information flow. In this paper, we initiate this investigation with

an in-depth study of the particular case of differential privacy.

Differential privacy [9, 10] is an approach to the protection of private information that originated

in the field of statistical databases and is now investigated in many other domains, ranging from pro-

gramming languages [3, 11] to social networks [18] and geolocation [15, 13, 2]. The key idea behind

differential privacy is that whenever someone queries a dataset, the reported answer should not allow him

to distinguish whether a certain individual record is in the dataset or not. More precisely, the presence or

absence of the record should not change significantly the probability of obtaining a given answer. The

standard way of achieving such a property is by using an oblivious mechanism1 which consists in adding

some noise to the true answer. Now the point is that, even if such a mechanism is proved to provide the

desired property in the ideal semantics, its implementation may induce errors that alter the least signif-

icant digits of the reported answer and cause significant privacy breaches. Let us illustrate the problem

with an example.

Example 1.1. Consider the simplest representation of reals: the fixed-point numbers. This representation

is used on low-cost processors which do not have floating-point arithmetic module. Each value is stored

in a memory cell of fixed length. In such cells, the last d digits represent the fractional part. Thus, if

the value (interpreted as an integer) stored in the cell is z, its semantics (i.e., the true real number being

represented) is z ·2−d .

To grant differential-privacy, the standard technique consists of returning a random value with prob-

ability p(x) = 1/2b · e−|x−r|/b where r is the true result and b is a scale parameter which depends on the

degree of privacy to be obtained and on the sensitivity of the query. To get a random variable with any

specific distribution, in general, we need to start with an initial random variable provided by a primitive

of the machine with a given distribution. To simplify the example, we assume that the machine already

provides a Laplacian random variable X with a scale parameter 1. The probability distribution of such an

X is pX(x) = 1/2e−|x|. Hence, if we want to generate the random variable bX with probability distribution

pbX(x) = 1/2b · e−|x|/b, we can just multiply by b the value x = z ·2−d returned by the primitive.

Assume that we want to add noise with a scale parameter b = 2n for some fixed integer n (b can

be big when the sensitivity of the query and the required privacy degree are high). In this case, the

multiplication by 2n returns a number 2nz · 2−d that, in the fixed-point representation terminates with n

zeroes. Hence, when we add this noise to the true result, we return a value whose representation has

the same n last digits as the secret. For example, assume b = 22 = 4 and d = 6. Consider that the true

answers are r1 = 0 and r2 = 1+2−5. In the fixed-point representation, the last two digits of r1 are 00, and

the last two digits of r2 are 10. Hence, even after we add the noise, we can always tell whether the true

value was r1 or r2. Note that the same example holds for every b = 2n and every pair of true values r1

and r2 which differ by (2nk+h)/2d where k is any integer and h is any integer between 1 and 2n −1. Figure

1 illustrates the situation for b = 4, k = 3 and h = 2.

Another attack, based on the IEEE standard floating-point representation [14], was presented in [17].

In contrast to [17], we have chosen an example based on the fixed point representation because it allows

to illustrate more distinctively a problem for privacy which rises from the finite precision2 and which

1The name “oblivious” comes from the fact that the final answer depends only on the answer to the query and not on the

dataset.
2More precisely, the problem is caused by scaling a finite set of randomly generated numbers. It is easy to prove that the

problem raises for any implementation of numbers, although it may not raise for every point like in the case of the fixed-point

representation.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 3

x

P(x)

0

Figure 1: The probability distribution of the reported answers after the addition of Laplacian noise for

the true answer r1 = 0 (black) and r2 = 3 ·2−4 +2−5 (green).

is, therefore, pandemic. (This is not the case for the example in [17]: fixed-point and integer-valued

algorithms are immune to that attack.)

In this paper, we propose a solution to fix the privacy breach induced by the finite-precision imple-

mentation of a differentially-private mechanism for any kind of implementation. Our main concern is

to establish a bound on the degradation of privacy induced by both the finite representation and by the

computational errors in the generation of the noise. In order to achieve this goal, we use the concept of

closeness introduced by the authors in [12], which allows us to reason about the approximation errors

and their accumulation. We make as few assumptions as possible about the procedure for generating the

noise. In particular, we do not assume that the noise has a linear Laplacian distribution: it can be any

noise that provides differential privacy and whose implementation satisfies a few properties (normally

granted by the implementation of real numbers) which ensure its closeness. We illustrate our method

with two examples: the classic case of the univariate (i.e., linear) Laplacian, and the case of the bivariate

Laplacian. The latter distribution is used, for instance, to generate noise in privacy-aware geolocation

mechanisms [2].

1.1 Related work

As far as we know, the only other work that has considered the problem introduced by the finite precision

in the implementation of differential privacy is [17]. As already mentioned, that paper showed an attack

on the Laplacian-based implementation of differential privacy within the IEEE standard floating-point

representation3. To thwart such an attack, the author of [17] proposed a method that avoids using the

standard uniform random generator for floating point (because it does not draw all representable numbers

but only multiple of 2−53). Instead, his method generates two integers, one for the mantissa and one for

the exponent in such a way that every representable number is drawn with its correct probability. Then

it computes the linear Laplacian using a logarithm implementation (assumed to be full-precision), and

finally it uses a snapping mechanism consisting in truncating large values and then rounding the final

result.

The novelties of our paper, w.r.t. [17], consist in the fact that we deal with a general kind of noise, not

3We discovered our attack independently, but [17] was published first.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

4 Preserving differential privacy

necessarily the linear Laplacian, and with any kind of implementation of real numbers, not necessarily

the IEEE floating point standard. Furthermore, our kind of analysis allows us to measure how safe an

existing solution can be and what to do if the requirements needed for the safety of this solution are

not met. Finally, we consider our correct implementation of the bivariate Laplacian also as a valuable

contribution, given its practical usefulness for location-based applications.

The only other work we are aware of, considering both computational error and differential privacy, is

[7]. However, that paper does not consider at all the problem of the loss of privacy due to implementation

error: rather, they develop a technique to establish a bound on the error, and show that this technique can

also be used to compute the sensitivity of a query, which is a parameter of the Laplacian noise.

1.2 Plan of the paper

This paper is organized as follow. In section 2, we recall some mathematical definitions and introduce

some notation. In section 3, we describe the standard Laplacian-based mechanism that provides differen-

tial privacy in a theoretical setting. In section 4, we discuss the errors due to the implementation, and we

consider a set of assumptions which, if granted, allows us to establish a bound on the irregularities of the

noise caused by the finite-precision implementation. Furthermore we propose a correction to the mecha-

nism based on rounding and truncating the result. Section 5 contains our main theorem, stating that with

our correction the implementation of the mechanism still preserves differential privacy, and establishing

the precise degradation of the privacy parameter. The next two sections propose some applications of our

result: Section 6 illustrates the technique for the case of Laplacian noise in one dimension and section

7 shows how our theorem applies to the case of the Euclidean bivariate Laplacian. Section 8 concludes

and discusses some future work.

2 Preliminaries and notation

In this section, we recall some basic mathematical definitions and we introduce some notation that will

be useful in the rest of the paper. We will assume that the the queries give answers in R
m. Examples

of such queries are the tuples representing, for instance, the average height, weight, and age. Another

example comes from geolocation, where the domain is R2.

2.1 Distances and geometrical notations

There are several natural definitions of distance on R
m [19]. For m ∈ N and x = (x1, . . . ,xm) ∈ R

m, the

Lp norm of x, which we will denote by ‖x‖p, is defined as

‖x‖p = p

√

m

∑
i=1

|xi|p

The corresponding distance function is

dp(x,y) = ‖x− y‖p

We extend this norm and distance to p = ∞ in the usual way: ‖x‖∞ = maxi∈{1,...,m} |xi| and d∞(x,y) =
‖x− y‖∞. The notion of L∞ norm is extended to functions in the following way: given f : A → R

m, we

define ‖ f‖∞ = maxx∈A ‖ f (x)‖. When clear from the context, we will omit the parameter p and write

simply ‖x‖ and d(x,y) for ‖x‖p and dp(x,y), respectively.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 5

Let S ⊆R
m. We denote by Sc the complement of S, i.e., Sc =R

m \S. The diameter of S is defined as

�(S) = max
x,y∈S

d(x,y).

For ε ∈ R
+, the +ε-neighbor and the −ε-neighbor of S are defined as

S+ε = {x | ∃s ∈ S,d(x,s)≤ ε} S−ε = {x | ∀s ∈ R
m,d(x,s)≤ ε =⇒ s /∈ S}= ((Sc)+ε)c

For x ∈ R
m, the translations of S by x and −x are defined as

S+ x = {y+ x | y ∈ S} S− x = {y− x | y ∈ S}

2.2 Measure theory

We recall here some basic notions of measures theory that will be used in this paper.

Definition 2.1 (σ -algebra and measurable space). A σ -algebra T for a set M is a nonempty set of

subsets of M that is closed under complementation (wrt to M) and (potentially empty) enumerable union.

The tuple (M,T) is called a measurable space.

Definition 2.2 (Measure). A positive measure µ on a measurable space (M,T) is a function T →
R
+∪{0} such that µ(/0) = 0 and whenever (Si) is a enumerable family of disjoint subset of M then

∑µ(Si) = µ(
⋃

Si).

A positive measure µ where µ(X) = 1 is called a probability measure.

A tuple (M,T ,P) where (M,T) is a measurable space and P a probability measure is called proba-

bility space.

In this paper we will make use of the Lebesgue measure λ on (Rm,S) where S is the Lebesgue

σ -algebra. The Lebesgue measure is the standard way of assigning a measure to subsets of Rm.

Definition 2.3 (Measurable function). Let (M,T) and (V,Σ) be two measurable spaces. A function

f : M →V is measurable if f−1(v) ∈ T for all v ∈ Σ.

Definition 2.4 (Absolutely continuous). A measure ν is absolutely continuous according to a measure

µ , if for all M ∈ S , µ(M) = 0 implies ν(M) = 0.

If a measure is absolutely continuous according to the Lebesgue measure then by the Radon-Nikodym

theorem, we can express it as an integration of a density function f :

µ(M) =
∫

M
f (x)dλ

2.3 Probability theory

Definition 2.5 (Random variable). Let (Ω,F ,P) be a probability space and (E,E) a measurable space.

Then a random variable is a measurable function X : Ω → E. We shall use the expression P [X ∈ B] to

denote P
(

X−1(B)
)

.

Let f : Rm →R
m be a measurable function and let X : Ω →R

m be a random variable. In this paper,

we will use the notation f (X) to denote the random variable Y : Ω →R
m such that f (X)(ω) = f (X(ω)).

In particular, for m ∈R
m we denote by m+X the random variable Y : Ω →R

m such that ω 7→ X(ω)+m.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

6 Preserving differential privacy

Definition 2.6 (Density function). Let X : Ω → E be a random variable. If there exists a function f

such that, for all S ∈ S , P[X ∈ S] =
∫

S f (u)du, then f is called the density function of X.

In this paper, we use the following general definition of the Laplace distribution (centered at zero).

Definition 2.7 (Laplace distribution). The density function F of a Laplace distribution with scale pa-

rameter b is Fb(x) = K(b)e−b‖x‖ where K(b) is a normalization factor which is determined by imposing
∫

S Fb(x)dx = 1.

Definition 2.8 (Joint probability). Let (X ,Y) be a pair of random variable on R
m. The joint probability

on (X ,Y) is defined for all I,J ∈ S as: P[(X ,Y) ∈ (I,J)] = P[X ∈ I ∧ Y ∈ J].

Definition 2.9 (Marginals). Let X and Y : (Ω,F ,P) → (Rm,S). The marginal probability of the

random variable (X ,Y) for X is defined as:

P[X ∈ B] =
∫

Rm
P[(X ,Y) ∈ (B,dy)].

3 Differential privacy in the exact semantics

In this section we recall the definition of differential privacy and of the standard mechanisms to achieve

it, and we discuss its correctness.

3.1 Differential privacy

We denote by D the set of databases and we assume that the domain of the answers of the query is Rm

for some n ≥ 1. We denote by D1 ∼ D2 the fact that D1 and D2 differ by at most one element. Namely,

D2 is obtained from D1 by adding or removing one element.

Definition 3.1 (ε-differential privacy). A randomized mechanism A : D →R
m is ε-differentially private

if for all databases D1 and D2 in D with D1 ∼ D2, and all S ∈ S (the Lebegue σ -algebra), we have :

P[A (D1) ∈ S]≤ eεP[A (D2) ∈ S]

Definition 3.2 (sensitivity). The sensitivity ∆ f of a function f : D → R
m is

∆ f = sup
D1,D2∈D ,D1∼D2

d(f (D1), f (D2)).

3.2 Standard technique to implement differential privacy

The standard technique to grant differential privacy is to add random noise to the true answer to the

query. In the following, we denote the query by f : D → R
m. This is usually a deterministic function.

We represent the noise as a random variable X : Ω → R
m. The standard mechanism, which we will

denote by A0, returns a probabilistic value which is the sum of the true result and of a random variable

X , namely:

Mechanism 1.

A0(D) = f (D)+X

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 7

3.3 Error due to the implementation of the query

The correctness of a mechanism A , if we do not take the implementation error into account, consists

in A being ε-differentially private. However, we are interested in analyzing the correctness of the

implemented mechanism. We start here by discussing the case in which, in mechanism 1, the noise X is

exact but we take into account the approximation error in the implementation of f .

Notation Given a function g, we will indicate by g′ its implementation, i.e. the function that, for any

x, gives as result the value actually computed for g(x), with all the approximation an representation errors.

The first thing we observe is that the implementation of f can give a sensitivity ∆ f ′ greater than ∆ f and

we need to take that into account. In fact, in the exact semantics the correctness of the mechanism relies

on the fact that d(f (D1), f (D2))≤∆ f . However, with rounding errors, we may have d(f ′(D1), f ′(D2))>
∆ f . Hence we need to require the following property, usually stronger than differential privacy.

Condition 1. Given a mechanism A (D) = f ′(D)+X, we say that A satisfies Condition 1 with degree ε

(the desired degree of differential privacy) if the random variable X has a probability distribution which

is absolutely continuous according to the Lebesgue measure, and

∀S ∈ S ,r1,r2 ∈ R
m,P[r1 +X ∈ S]≤ e

ε
d(r1 ,r2)

∆
f ′ P[r2 +X ∈ S]

Remark 1. In general we expect that an analysis of the implementation of f will provide some bound

on the difference between f and f ′, and that will allow us to provide a bound on ∆ f ′ in terms of ∆ f . For

instance, if ‖ f − f ′‖ ≤ δ f then we get ∆ f ′ ≤ ∆ f +2δ f .

Proposition 3.1. Condition 1 implies that the mechanism A (D) = f ′(D)+X is ε-differentially private

(w.r.t. f ′).

Proof Let D1 and D2 be two databases such that D1 ∼ D2. Let r1 = f ′(D1) and r2 = f ′(D2) be two

answers. By definition of sensitivity, d(r1,r2)≤ ∆ f ′ so e
ε

d(r1 ,r2)
∆

f ′ ≤ eε . Hence,

P[A (D1) ∈ S]≤ eεP[A (D2) ∈ S]

The following theorem shows that Condition 1 is actually equivalent to differential privacy in the

case of Laplacian noise.

Theorem 3.1. Let A (D) = f ′(D) +X be a mechanism, and assume that X is Laplacian. If A is ε-

differentially private (w.r.t. f ′), then Condition 1 holds.

Proof First, we show that if A is ε-differentially private then b ≤ ε
∆ f ′

holds for the scale parameter b

of X . Let D1 ∼ D2 with d(f ′(D1), f ′(D2)) = ∆ f ′ . By ε-differential privacy we have, for any S ∈ S :

P[f ′(D1)+X ∈ S]≤ eεP[f ′(D2)+X ∈ S]

From the density function of the Laplace noise (Definition 2.7), we derive:

K(n,d)dλ ≤ eεK(n,d)e−b∆ f ′ dλ

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

8 Preserving differential privacy

Hence,

b ≤ ε

∆ f ′
. (1)

Now, by definition of the density function, we have

P[r2 +X ∈ S] =
∫

x∈S
K(n,d)e−bd(x,r2)dλ

From the triangular inequality, we derive:

P[r2 +X ∈ S]≥
∫

x∈S
K(n,d)e−b(d(x,r1)+d(r1,r2))dλ

Hence,

P[r2 +X ∈ S]≥ e−bd(r2,r1)
∫

x∈S
e−bd(r1,x)dλ

From inequality (1), we derive:

P[r2 +X ∈ S]≥ e
− εd(r2 ,r1)

∆
f ′
∫

x∈S
e−bd(r1,x)dλ

Finally,

P[r2 +X ∈ S]≥ e
− εd(r2 ,r1)

∆
f ′ P[r1 +X ∈ S]

4 Error due to the implementation of the noise

In this section we consider the implementation error in the noise, trying to make as few assumptions as

possible about the implementation of real numbers and of the noise function.

We start with example which shows that any finite implementation makes it impossible for a mech-

anism to achieve the degree of privacy predicted by the theory (i.e. the degree of privacy it has in the

exact semantics). This example is more general than the one in the introduction in the sense that it does

not rely on any particular implementation of the real numbers, just on the (obvious) assumption that in

a physical machine the representation of numbers in memory is necessarily finite. On the other hand it

is less “dramatic” than the one in the introduction, because it only shows that the theoretical degree of

privacy degrades in the implementation, while the example in the introduction shows a case in which

ε-differential privacy does not hold (in the implementation) for any ε .

Example 4.1. Consider the standard way to produce a random variable with a given probability law,

such as the Laplace distribution. Randomness on most computers is generated with integers. When we

call a function that returns a uniform random value on the representation of reals, the function generates a

random integer z (with uniform law) between 0 and N (in practice N ≥ 232) and returns u= z/N. From this

uniform random generator, we compute n(z/N) where n depends on the probability distribution we want

to generate. For instance, to generate the Laplace distribution we have n(u) = −bsgn(u− 1/2) ln(1−
2|u− 1/2|) which is the inverse of the cumulative function of the Laplace distribution. However the

computation of n is performed in the finite precision semantics, i.e. n is a function F → F where F is

the finite set of the representable numbers. In this setting, the probability of getting some value x for

our noise depends on the number of integers z such that n(z/N) = x : if there are k values for z such

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 9

x

P(x)

0x0

Figure 2: The probability distributions of Laplace noises generated from a discretized uniform generator

that n(z/N) = x then the probability of getting x is k/N. This means, in particular, that, if the theoretical

probability for a value x is 1.5/N, then the closest probability actually associated with the drawing of x

is either 1/N or 2/N and in both cases the error is at least 33%. In figure 2, we illustrate how the error on

the distribution breaks the differential-privacy ratio that holds for the theoretical distribution. The ratio

between the two theoretical Laplacian distributions is 4/3. However, since the actual distribution is issued

from a discretization of the uniform generator, the resulting distribution is a step function. So when the

theoretical probability is very low like in x0, the discretization creates an artificial ratio of 2 instead of
4/3.

4.1 The initial uniform random generator

To generate a random variable, programing languages have only one primitive that generates a random

value between 0 and 1 that aims to be uniform and independent across several calls.Hence, to get a

random variable with a non uniform distribution, we generate it with a function that makes calls to this

random generator. For instance, to draw a value from a random variable X on R distributed according

to the cumulative function C : R→]0,1], it is sufficient to pick a value u from the uniform generator in

]0,1] and then return C−1(u).

We identify three reasons why a uniform random generator may induce errors. The first has been

explained in the introduction: finite precision allows generating only N different numbers such that when

we apply a function on the value picked some values are missing and other are over represented. The

second reason comes from the generator itself which can returns the N values with different probabilities

even though we might assume that they are returned with probability 1/N: furthermore, some values

may not even be returned at all. A third error is due to the dependence of returned results when we pick

several random values. Indeed most of the generator implementations are indeed pseudo generators:

when a value is picked the next one is generated as a hash function of the first one. This means that if we

have N possibilities for one choice then we also have N possible pairs of successive random values.

To reason about implementation leakage, we have to take into account all of these sources of errors.

We propose the following model. In the exact semantics, the uniform random variable Uq is generated

from a cross product of q uniform independent variables U (with q≥m). We denote by u1, . . . ,uq ∈ [0,1]q

the values picked by our perfect random generator. Then we consider the random variable Uq′ actually

provided as generated from a function n0 : Rq → R
q, (u′1, . . . ,u

′
q) = n0(u1, . . . ,uq). We assume that the

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

10 Preserving differential privacy

bias, i.e., the difference between n0 and the identity, is bounded by some δ0 ∈ R
+:

‖n0 − Id‖∞ ≤ δ0. (2)

4.2 The function n for generating the noise

From the value u (resp. u′) drawn according to the distribution Uq in the exact semantics (resp. according

to Uq′ in the actual implementation), we generate another value by applying the functions n and n′

respectively. Let X = n(Uq) be the random variable with the exact distribution and X ′ = n′(Uq′) the

random variable with the actual one.

Definition 4.1. We denote by µ and ν the probability measure of X and X ′, respectively: for all S ∈ S ,

µ(S) = P[n(Uq) ∈ S] = λ (n−1(S)) and ν(S) = P[n′(Uq′) ∈ S] = λ (n−1
0 (n−1(S))).

In order to establish a bound on the difference between the probability distribution of X and X ′ we

need some condition on the implementation n′ of n. For this purpose we use the notion of closeness that

we defined in [12].

Definition 4.2 ((k,δ)-close, [12]). Let A and B be metric spaces with distance dA and dB, respectively.

Let n and n′ be two functions from A to B and let k,δ ∈ R
+. We say that n′ is (k,δ)-close to n if

∀u,v ∈ A,dB(n(u),n
′(v))≤ k dA(u,v)+δ .

This condition is a combination of the k-Lipschitz property, that states a bound between the error on

the output and the error on the input, see below, and the implementation errors of n:

Definition 4.3 (k-Lipschitz). Let (A,dA) and (B,dB) be two metrics spaces and k ∈ R: A function n :

A → B is k-Lipschitz if:

∀u,v ∈ A,dB(n(u),n(v))≤ kdA(u,v)

In [12], we have proven the following relation between the properties of being k-Lipschitz and of

being (k,δ)-close.

Theorem 4.1 ([12]). If n is k-Lipschitz and ‖n−n′‖∞ ≤ δ then n and n′ are (k,δ)-close.

We strengthen now the relation by proving that (a sort of) the converse is also true.

Theorem 4.2. If there exist u,v, d(n(u),n(v))> kd(u,v)+2δ then there exist no function n′ such that n

and n′ are (k,δ)-close.

Proof Let u, v such that d(n(u),n(v))> kd(u,v)+2δ . Let n′ such that n and n′ are (k,δ)-close. From

the definition of closeness, we get d(n(u),n′(u))≤ δ and d(n′(u),n(v))≤ kd(u,v)+δ . From a triangular

inequality, we derive d(n(u),n(v))≤ kd(u,v)+2δ . Hence, we obtain a contradiction.

Now, we would like n and n′ to be (k,δ)-close on R
m. However, this implies that A0 (mechanism 1)

cannot be ε-differentially-private. In fact, the latter would imply ‖n([0,1]q)‖∞ = ∞ otherwise certain

answers could be reported (with non-null probability) only in correspondence with certain true answers

and not with others. However, ‖n([0,1]q)‖∞ = ∞ and [0,1]q bounded implies there exist u,v, such that

d(n(u),n(v))> kd(u,v)+2δ : we derive from theorem 4.2 that n′ cannot exist.

In order to keep computed results in a range where we are able to bound the computational errors,

one possible solution consists of a truncation of the result. The traditional truncation works as follows:

choose a subset Mr ⊂ R
m and, whenever the reported answer x is outside Mr return the closest point to

x in Mr. However, while such a procedure is safe in the exact semantics because remapping does not

alter differential privacy, problems might appears when n and n′ are not close. Furthermore, while in the

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 11

uni-dimensional case there are two disjoints set that are mapped one on the minimal value and the other

on the maximal value, in higher dimensions we have a connected set that is mapped on several points,

and on which the error is not bounded.

Therefore, to remain in a general framework where we do not have any additional knowledge about

computational errors for large numbers, we decide here to return an exception value when the result is

outside of some compact subset Mr of Rm. We denote by ∞ the value returned by the mechanism when

f ′(D)+X ′ /∈Mr. Hence, the truncated mechanism A returns the randomized value or ∞:

Mechanism 2.

A (D) =

{

f ′(D)+X ′ if f ′(D)+X ′ ∈Mr

∞ otherwise

We truncate the result because we want to exclude non-robust computations from our mechanism.

However, such a procedure is effective only if unsafe computations remain outside the safe domain.

To grant this property we need two more conditions. One requires the implementation to respect the

monotonicity of the computed functions:

Condition 2. We say that a function g : Rm → R
k satisfies Condition 2 if, for all x,y ∈ R

m, ‖g(x)‖ ≤
‖g(y)‖ implies ‖g′(x)‖ ≤ ‖g′(y)‖.

With this property, even if the implementation is not robust for large values, if we know some result

is not in Mr then the result for any greater value is not in Mr either.

The other condition is about the closeness of the implementation of the noise and its exact semantics

in a safe area. For any δr ∈ R
+, we consider the set Ur ⊂ Uq defined as ∀u ∈ Ur ‖n(u)‖ ≤ �(Mr)+ δr

i.e. : Ur = n−1 ({y |‖y‖ ≤ �(Mr)+δr }).
Condition 3. We say that a noise n satisfies Condition 3 if n and n′ are (k,δn)-close on a set Ur such that

∀u ∈Uc
r f ′(D)+n(u) /∈M

+kδ0+δn
r

To find such a set Ur, one possible way is by a fix point construction. We begin by finding the smallest

k0 and δn0 such that n and n′ are (k0,δn0)-close on Mr. Then for the generic step m > 0, we compute the

smallest km+1 and δnm+1 such that n and n′ are (km+1,δnm+1)-close on M
kmδ0+δnm
r .

If Conditions 2 and 3 hold, then from (2) we derive

∀u ∈Uc
r f ′(D)+n′(n0(u)) /∈Mr (3)

So whatever happens outside of Ur, the result will be truncated. We can then consider that there is no

implementation error outside Ur. Finally, we have a bound δt for the maximal shift between the exact

and the actual semantics:

δt = kδ0 +δn (4)

4.3 A distance between distributions

Given that we are in a probabilistic setting, the round-off errors cannot be measured in terms of numerical

difference as they can be in the deterministic case, they should rather be measured in terms of distance

between the theoretical distribution and the actual distribution. Hence, we need a notion of distance

between distributions. We choose to use the ∞-Wassertein distance [5] which, as we will show, is the

natural metric to measure our deviation.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

12 Preserving differential privacy

Definition 4.4 (∞-Wassertein distance). Let µ , ν two probability measures on (Rm,S) such that there

exist a compact Ω, µ(Ω) = ν(Ω) = 1, the ∞-Wassertein distance between µ and ν is defined as follows:

W∞(µ,ν) = inf
γ∈Γ(µ,ν)

(

inf
t≥0

(

γ
({

(x,y) ∈ (Rm)2
∣

∣d(x,y)> t
}))

= 0

)

Where Γ(µ,ν) denotes the collection of all measure on M×M with marginals µ and ν respectively.

If we denote by Supp(x,y), the support where γ(x,y) is non zero, we have an equivalent definition

[5] for the ∞-Wassertein distance:

W∞(µ,ν) = inf
γ∈Γ(µ,ν)

(

sup
Supp(x,y)

d(x,y)

)

We extend this definition to any pair of measures that differ only on a compact (Mr in our case) by

considering the subset of Γ(µ,ν) containing only measure γ(x,y) with γ(x,y) = 0 if x 6= y and either

x ∈M
c
r or y ∈M

c
r .

We have introduced this measure because it has a direct link with the computational error as expressed

by the following theorem.

Theorem 4.3. Let X and X ′ be two random variables with distribution µ and ν respectively. We have

that ‖X −X ′‖∞ ≤ δ implies d(µ,ν)≤ δ .

Proof We consider the measure γ on M×M, ∀A,B ∈ S ,γ(A,B) = P(X ∈ A ∧ X ′ ∈ B). The marginals

of γ are µ and ν . Moreover, the support of γ is δ since P(X ∈ A ∧ X ′ ∈ B) = 0 when A and B are distant

by more than δ . Since we have such a γ the minimum on all the γ ∈ Γ(µ,ν) is less than δ .

In our case, according to (4), we have d(µ,ν)≤ δt . The following theorem allow us to bound the µ

measure of some set with the measure ν .

Theorem 4.4.

d(µ,ν)≤ ε =⇒ ∀S ∈ R
m,ν(S−ε)≤ µ(S)≤ ν(Sε)

Proof The property of marginals is ν(S) =
∫

Rm×S dγ(x,y). Since γ(x,y) = 0 if d(x,y) > ε , we derive

ν(S) =
∫

Sε×S dγ(x,y). Then we get ν(S) ≤ ∫

Sε×Rm dγ(x,y). The last expression is the marginal of γ in

Sε , hence by definition of marginal: ν(S) ≤ µ(Sε). The other inequality is obtain by considering the

complement set of S (Rm \S).

4.4 Rounding the answer

Once the computation of A (D) is achieved, we cannot yet return the answer, because it could still leak

some information. Indeed, the distribution of X and X ′ are globally the same, but, on a very small scale,

the distributions could differ a lot. We prevent this problem by rounding the result:

Mechanism 3. The mechanism rounds the result by returning the value closest to f (D)+ n′ in some

discrete subset S′. So K (D) = r(A (D)) where r is the rounding function.

From the above rounding function we define the set S ′
0 of all sets that have the same image under

r. Then we define the σ -algebra S ′ generated by S ′
0: it is the closure under union of all these sets.

Observe now that it is not possible for the user to measure the probability that the answer belongs to a

set which is not in S ′. Hence our differential privacy property becomes:

∀S ∈ S
′,P[A (D1) ∈ S]≤ eεP[A (D2) ∈ S] (5)

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 13

In this way we grant that any measurable set has a minimal measure and we prevent the inequality

from being violated when probabilities are small. The following value R represents the robustness of the

rounding.

R = max
S∈S ′

0 ,S 6= /0

λ (Sε \S−δt)

λ (S−δt)
(6)

5 Preserving differential privacy

In this section, we prove that if all conditions are met, then the implementation of the mechanism satisfies

differential privacy.

Theorem 5.1. Any mechanism that respects Conditions 1–3 is ε ′-differentially private, with:

∀S ∈ S ,P[A ′(D1) ∈ S]≤ eε ′P[A ′(D2) ∈ S′]

where ε ′ = ε + ln(1+Re
ε L+δt

∆
f ′), δt = kδ0 +δn and L = maxS∈S ′

0
�S.

Proof Let S in S . We first consider the case S 6= ∞.

Define P1 = P[A ′(D1)∈ Sa] and P2 = P[A ′(D2)∈ Sa]. Since the result has been rounded (Definition

3), it is equivalent to consider the set S′ ∈ S ′ with S′ = r−1(S) instead of Sa.

Now we have Pi = P[f ′(Di)+ n′(X) ∈ S′] = P[n′(X) ∈ S′− f ′(Di)] where i is 1 or 2. Since ν is the

measure associated to n′, we have

Pi = ν(S′− f ′(Di))

From (4) and Theorem 4.3, d(ν ,µ)≤ δt . From Theorem 4.4 we derive

P1 ≤ µ(Sδt − f ′(D1)) and P2 ≥ µ(S−δt − f ′(D2)).

The additivity property of measures grants us µ(Sδt) = µ(S−δt) + µ(Sδt − S−δt). Condition 1 can be

expressed in term of the measure as:

∀S ∈ S ,r ∈ R
m‖r‖,µ(S)≤ e

ε
‖r‖
∆

f ′ µ(S− r)

From this inequality, we can derive, since ‖r‖= ∆ f ′ :

µ(Sε)≤ eεP2 +µ(Sδt \S−δt)

Since the probability is absolutely continuous according to the Lebesgue measure (Condition 1), we

can express the probability with a density function p:

∀S ∈ S ,µ(S) =
∫

S
p(x)dλ

We derive:

∀S ∈ S ,min
x∈S

p(x)≤ µ(S)

λ (S)

By applying this property on S−δt − f ′(D2), we get:

min
x∈S−δt − f ′(D2)

p(x)≤ µ(S−δt − f ′(D2))

λ (S−δt − f ′(D2))

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

14 Preserving differential privacy

We derive:

∃x0 ∈ S− f ′(D2), p(x0)≤
P2

λ (S)

By the triangular inequality, we can bound the distance between x0 and any point of Sδt by ∆ f ′+L+δt

Hence, from Condition 1 we derive:

∀x ∈ Sδt − f ′(D1), p(x)≤ e
ε

∆
f ′+L+δt

∆
f ′ p(x0)

Then by integration:

µ(Sδt − f ′(D1)\S−δt)≤ e
ε

∆
f ′+L+δt

∆
f ′

λ (Sδt \S−δt)

λ (S−δt)
P2

We apply the condition 6:

µ(Sδt − f ′(D1)\S−δt)≤ e
ε

∆
f ′+L+δt

∆
f ′ RP2

Finally we obtain :

P1 ≤ (1+Re
ε L+δt

∆
f ′)eεP2

In case S is ∞, due to (3), P[A ′(D) = ∞] is the same as P[f ′(D)+X ′ ∈ M
c
r] where d(µ,ν) ≤ δt .

Moreover, Mc
r can be decomposed in a enumerable disjoint union of element of S0. Therefore, the first

part of the proof applies: ε ′-differential privacy holds for all these elements. By the additivity of the

measure of disjoint union we conclude.

6 Application to the Laplacian noise in one dimension

In this section we illustrate how to use our result in the case in which the domain of the answers is R.

The noise added for the protocol, stated in the mechanism 1, is the Laplacian centered in 0 with scale

parameter ∆ f ′/ε . Theorem 3.1 implies that Condition 1 holds for ε . We truncate the result outside of

some interval Mr = [m,M].

Implementation of the n function To generate a centered Laplacian distribution from a uniform ran-

dom variable U in]0,1], a standard method consists in using the inverse of the cumulative function, i.e.

X = n(U) = −bsgn(U − 1/2) ln(1− 2|U − 1/2|), where b is the intended scale parameter (
∆ f ′
ε in our

case). Hence our exact function n is

n(u) =
∆ f ′

ε
sgn(x−1/2) ln(1−2|x−1/2|). (7)

Closeness of n and n′ In order to apply our theorem, we need to prove that Condition 3 is satisfied.

By theorem 4.1, it is sufficient to prove that, in the interval of interest, n(u) is k-Lipschitz and that

|n(u)− n′(u)| ≤ δn. Note that the values of δn and k in general depend on n and on its implementation

(often the logarithm is implemented by the CORDIC algorithm).

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 15

The logarithm function used by n is not k-Lipschitz for any k. However, we are interested in the

behavior of n when |n(u)| ≤ M−m. From the definition of n in (7), we have:

dn

du
(u)≤ dnmax =

2∆ f ′

ε
e

ε�(Mr)
∆

f ′

in Ur = {u|n(u)≤ M−m}. So our function n is dnmax-Lipschitz. Finally, our global error is

δt =
2∆ f ′

ε
e

ε�(Mr)
∆

f ′ δ0 +δn

Rounding the result The rounding process generates a σ -algebra S ′ composed by small intervals of

length L where L is the accuracy step of the rounding. In that case, the value defined in (6) is R = L+2δt

L−2δt
.

Differential privacy By Theorem 5.1, the implementation of our mechanism is ε ′-differentially private

with

ε ′ = ε + ln(1+
L+2δt

L−2δt

e
ε L+δt

∆
f ′)

Remark 2. In case our answer is not in [m,M], we can return −∞ or +∞ instead of ∞. The reason is

that even if the algorithm is not robust when |u−0.5| is small the sign is still correct. Then we can remap

−∞ to m and +∞ to M to get the usual truncation procedure.

7 Application to the Laplacian noise in R
2

When the domain of the answers are the points of a map, like in the case of location-based applications,

it is natural to formalize it as the space R
2 equipped with the Euclidean distance.

According to the protocol, we sanitize the results by adding a random variable X . In this case, we

will use for X the bivariate Laplacian defined for the Euclidean metric [2] whose density function is:

p(x,y) = Keb
√

|x−x0|2+|y−y0|2

where K is the normalization constant and b the scale parameter. Since we are using a Laplacian noise,

by Theorem 3.1, Condition 1 holds.

Truncation Since most of the time the domain studied is bound (for instance the public transportation

of a city is inside the limit of the city), we can do a truncation. However, we recall that our truncation

is made for robustness purpose and not just for utility reasons. Hence, if our domain of interest is a

circle, we will not choose Mr to be the same circle because the probability the truncation would return

an exception would be too high (more than one half if the true result is on the circumference).

Implementation of the n function Following [2], we compute the random variable by drawing an

angle and a distance independently. The angle θ is uniformly distributed in [−π,π[. The radius r has a

probability density Dε,R(r) = ε2re−εr and cumulative function Cε(r) = 1− (1+ εr)e−εr. The radius can

therefore be drawn by setting r =C−1
ε (u) where u is generated uniformly in]0,1].

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

16 Preserving differential privacy

Robustness of n As in the previous section, we do not analyze an actual implementation but we care

about the k factor used for Condition 3. First, we analyze for which kC(ε,�(Mr)) the function C−1
ε

is k-Lipschitz in [0,�(Mr)]. Since C is differential, this question is equivalent to find the inverse of

the minimal value taken by its derivative function on the interval C−1
ε ([0,�(Mr)]). By computing this

minimum value, we get:

KC(ε,�(Mr)) =
eε�(Mr)

2ε + rε2

On the other hand, the computation of θ is just a multiplication by 2π of the uniform generator hence

kθ = 2π . Then, with the conversion (r,θ) 7→ (r cos(θ),r sin(θ)) from polar coordinates to Cartesian

coordinates we obtain the global k factor:

k =
√

KC(ε,�(Mr))2 +2π�(Mr)

Let δn be the distance between n and n′, and δ0 be the error of the uniform generator. From (4) we get:

δt =
√

KC(ε,�(Mr))2 +2π�(Mr)δ0 +δn.

Rounding the answer We now compute the parameter R in (6). The rounding is made in the Cartesian

coordinates, hence the inverse image of any returned value is a square S of length L. Note that Sδt is

included in the square of length L+ 2δt and S−δt is a square of length L− 2δt . Hence the ratio value is

smaller than R = (L+2δt

L−2δt
)2.

Differential privacy By Theorem 5.1 we get that (the implementation of) our mechanism is ε ′-differentially

private with

ε ′ = ε + ln(1+(
L+2δt

L−2δt

)2e
ε L+δt

∆
f ′)

8 Conclusion and future work

In this paper we have shown that, in any implementation of mechanisms for differential privacy, the finite

precision representation of numbers in any machine induces approximation errors that cause the loss of

the privacy property. To solve this problem, we have proposed a method based on rounding the answer

and raising an exception when the result is outside some values. The main result of our paper is that the

above method is sound in the sense that it preserves differential privacy at the price of a degradation of

the privacy degree. To prove this result, we needed to pay special attention at expressing the problem in

terms of probability theory and at defining the link between computational error and distance between

probability distributions. Finally, we have shown how to apply our method to the case of the linear

Laplacian and to that of bivariate Laplacian.

As future developments of this work, we envisage two main lines of research:

• Deepening the study of the implementation error in differential privacy: there are several directions

that seem interesting to pursue, including:

– Improving the mechanisms for generating basic random variables. For instance, when gen-

erating a one-dimensional random variable, it may have some advantage to pick more values

from the uniform random generator, instead than just one (we recall that the standard method

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

I. Gazeau, D. Miller, and C. Palamidessi 17

is to draw one uniformly distributed value in]0,1] and then apply the inverse of the cumula-

tive function). For instance, u1 + u2 has a density function with a triangular shape and cost

only one addition. The other advantage is due to the finite representation: if the uniform

random generator can pick N different values then two calls of it generate N2 possibilities,

which enlarge considerably the number of possibilities, and therefore reduce the “holes” in

the distribution.

– Considering more relaxed versions of differential privacy, for instance the (ε,δ)-differential

privacy allows for a (small) additive shift δ between the two likelihoods in Definition 3.1 and

it is therefore more tolerant to the implementation error. It would be worth investigating for

what values of δ (if any) the standard implementation of differential privacy is safe.

• Enlarging the scope of this study to the more general area of quantitative information flow. There

are various notions of information leakage that have been considered in the computer security

literature; the one considered in differential privacy is just one particular case. Without the pretense

of being exhaustive, we mention the information-theoretic approaches based on Shannon entropy

[8, 16, 6] and those based on Rényi min-entropy [20, 4] and the more recent approach based on

decision theory [1]. The main difference between differential privacy and these other notions

of leakage is that in the former any violation of the bound in the likelihood ratio is considered

catastrophic, while the latter focuses on the average amount of leakage, and it is therefore less

sensitive to the individual violations. However, even though the problem of the implementation

error may be attenuated in general by the averaging, we expect that there are cases in which it may

still represent a serious problem.

References

[1] Mário S. Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Geoffrey Smith. Measuring infor-

mation leakage using generalized gain functions. In Proc. of CSF, pages 265–279, 2012.

[2] Miguel E. Andrés, Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. Technical report, 2012. Available at

arXiv:1212.1984.

[3] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic relational reason-

ing for differential privacy. In Proc. of POPL. ACM, 2012.

[4] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi. Quantitative notions of leakage

for one-try attacks. In Proc. of MFPS, volume 249 of ENTCS, pages 75–91. Elsevier, 2009.

[5] T. Champion, L. De Pascale, and P. Juutinen. The ∞-wasserstein distance: Local solutions and existence of

optimal transport maps. SIAM Journal on Mathematical Analysis, 40(1):1–20, 2008.

[6] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panangaden. Anonymity protocols as

noisy channels. Inf. and Comp., 206(2–4):378–401, 2008.

[7] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara NavidPour. Proving programs robust. In

Proc. of ESEC-13, pages 102–112. ACM, 2011.

[8] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantified interference for a while language. In Proc.

of QAPL, volume 112 of ENTCS, pages 149–166. Elsevier, 2005.

[9] Cynthia Dwork. Differential privacy. In Proc. of ICALP, volume 4052 of LNCS, pages 1–12. Springer, 2006.

[10] Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private

data analysis. In Proc. of TCC, volume 3876 of LNCS, pages 265–284. Springer, 2006.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

18 Preserving differential privacy

[11] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Ravi Narayan, and Benjamin C. Pierce. Linear

dependent types for differential privacy. In Proc. of POPL 2013. To appear.

[12] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. A non-local method for robustness analysis of float-

ing point programs. Technical report, INRIA, June 2012. Available at http://hal.inria.fr/

hal-00665995.

[13] Shen-Shyang Ho and Shuhua Ruan. Differential privacy for location pattern mining. In Proc. of SPRINGL,

pages 17–24. ACM, 2011.

[14] IEEE Task P754. IEEE 754-2008, Standard for Floating-Point Arithmetic. IEEE, pub-IEEE-STD:adr, August

2008.

[15] Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke, and Lars Vilhuber. Privacy:

Theory meets practice on the map. In Proc. of ICDE, pages 277–286. IEEE, 2008.

[16] Pasquale Malacaria. Assessing security threats of looping constructs. In Proc. of POPL, pages 225–235.

ACM, 2007.

[17] Ilya Mironov. On significance of the least significant bits for differential privacy. In Proceedings of the 2012

ACM conference on Computer and communications security, CCS ’12, pages 650–661, New York, NY, USA,

2012. ACM.

[18] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In Proc. of S&P, pages 173–187.

IEEE, 2009.

[19] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 3rd edition, 1986.

[20] Geoffrey Smith. On the foundations of quantitative information flow. In Proc. of FOSSACS, volume 5504 of

LNCS, pages 288–302. Springer, 2009.

ha
l-0

07
80

77
4,

 v
er

si
on

 1
 -

25
 J

an
 2

01
3

A differentially private mechanism of optimal utility
for a region of priors?

Ehab ElSalamouny1,2, Konstantinos Chatzikokolakis1, and Catuscia Palamidessi1

1 INRIA and LIX, Ecole polytechnique, France
2 Faculty of Computer and Information Science, Suez Canal University, Egypt

Abstract. The notion of differential privacy has emerged in the area of statistical
databases as a measure of protection of the participants’ sensitive information,
which can be compromised by selected queries. Differential privacy is usually
achieved by using mechanisms that add random noise to the query answer. Thus,
privacy is obtained at the cost of reducing the accuracy, and therefore the utility,
of the answer. Since the utility depends on the user’s side information, commonly
modelled as a prior distribution, a natural goal is to design mechanisms that are
optimal for every prior. However, it has been shown that such mechanisms do not
exist for any query other than (essentially) counting queries ([1]).
Given the above negative result, in this paper we consider the problem of iden-
tifying a restricted class of priors for which an optimal mechanism does exist.
Given an arbitrary query and a privacy parameter, we geometrically characterise
a special region of priors as a convex polytope in the priors space. We then derive
upper bounds for utility as well as for min-entropy leakage for the priors in this
region. Finally we define what we call the tight-constraints mechanism and we
discuss the conditions for its existence. This mechanism reaches the bounds for
all the priors of the region, and thus it is optimal on the whole region.

1 Introduction

Statistical databases are commonly used to provide aggregate information about the
individuals of a certain population, to attain a social benefit. In general, certain data of
the participants in the database may be confidential, and we should not allow queries
that can reveal them. On the other hand we would like to allow global queries, like,
for instance, the average salary of the inhabitants of a certain region, the percentage
of individuals having a certain disease, or the cities with the highest rates of crime.
This kind of information can be extremely useful for e.g. financial planning, medical
research, and anti-crime measures.

Unfortunately, even though these kinds of queries do not refer directly to the indi-
vidual data, they still represent a major threat to the privacy of the participants in the
databases. To illustrate the problem, consider a database whose records contain per-
sonal data, among which the salary, regarded as confidential. Suppose we are allowed
to query the number of participants and their average salary. Then, by querying the

? This work is partially funded by the Inria large scale initiative CAPPRIS, the EU FP7 grant
no. 295261 (MEALS), and the project ANR-09-BLAN-0169-01 (PANDA).

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

Author manuscript, published in "POST-2nd Conference on Principles of Security and Trust 7796 (2013) 41-62"
 DOI : 10.1007/978-3-642-36830-1_3

2 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

database before and after the insertion of a new record “Bob”, we can easily infer, by
an easy calculation, the exact salary of Bob.

A successful approach to solve the above problem is to report to the user an approx-
imate answer instead of the exact one. The approximate answer is produced by adding
controlled random noise to the exact answer. The overall procedure, representing the
sanitized query, is a (probabilistic) mechanism K which takes as input the database v
and reports to the user an output o in some domain O, according to some probabilis-
tic distribution. Intuitively, the uncertainty introduced at the level of the global answer
induces uncertainty about the value of the individual data in the database, thus mak-
ing it difficult for an attacker to guess such value. However it is crucial to know ex-
actly what kind of protection is achieved this way. Differential privacy, introduced by
Dwork ([2–5]), is a formalization of the privacy property that can be guaranteed by
such mechanism. It is a quantitative notion, in the sense that it depends on a parameter
ε representing the provided level of privacy.

Following common lines (e.g. [6–8]), in this paper we assume that the mechanism
K is oblivious with respect to the given query f . Namely, its output depends only on the
exact query result and not on the underlying database. Furthermore, we consider only
the case in which the domains of the answers (exact and reported) are finite. Under these
assumptions, the mechanism K is determined by an underlying stochastic noise matrix
X whose generic element xio is the conditional probability of reporting the answer o
when the exact query answer is i.

Besides guaranteeing differential privacy, a mechanism should of course provide an
answer which is still “useful” enough to the user asking the query. This second goal
is measured in terms of utility, which represents the average gain that a rational user
obtains from the reported answer. More precisely, on the basis of the reported answer o
the user can make a guess k (remapping) about the exact hidden query result i. His gain
g(i, k) is established by a given function g. The utility is then defined as the expected
gain under the best possible remapping. While the gain function can take various forms,
in this paper we restrict our analysis to the binary gain function, which evaluates to 1
when the user’s guess is the same as the query result (k = i) and evaluates to 0 otherwise.

The utility of a mechanism depends on the side-information which the user may
have about the database. This knowledge induces a probability distribution, called ‘prior’,
over the possible query results. Suppose for example that a user “Alice” knows that all
people in the database have a salary of at least 20K e. Thus Alice expects the av-
erage of the salaries to be at least 20K e. This is reflected on Alice’s prior over the
average-salary query results: the total probability mass is distributed on the range of
values ≥ 20K, while it is 0 on lower values. Given this prior, a mechanism X producing
only outputs ≥ 20K is intuitively more useful to Alice than another one generating also
values < 20K, which are less informative for Alice.

The optimal mechanism for a given prior and level of privacy ε is defined as the
mechanism which maximises the utility function, while satisfying ε-differential pri-
vacy. Naturally, we do not want to change the mechanism depending on the user, so
we would like to devise mechanisms which are universally optimal, i.e. optimal for any
prior. A famous result by Gosh et al. [6] states that this is possible for the so-called
counting queries, which are queries concerned with questions of the kind “how many

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 3

records in the database have the property P?” (for some P). In [6] it was proved that
the truncated geometric mechanism is optimal, for this type of queries, for all priors. Of
course the question immediately arises whether we can obtain a similar result for other
queries as well. Unfortunately Brenner and Nissim answered this question negatively,
by showing that for any query other than (essentially) counting queries a universally
optimal mechanism does not exist [1]. However, one can still hope that, also for other
queries, by restricting the class of users (i.e. the domain of priors), one could find mech-
anisms that are optimal for all the users of the class. This is exactly the objective of the
present paper: given a query, we aim at identifying a mechanism, and a class of users,
for whom that same mechanism provides ε-differential privacy and maximal utility at
the same time.

Given an arbitrary query and a privacy level ε > 0, we call ε-regular the priors, for
which, the probabilities of two adjacent answers (i.e. answers obtained from databases
that differ for only one record) are not very different (their ratio is bounded by eε). At
the same time, they may assign significantly different probabilities to “distant” answers.
As an example of such prior, consider a researcher “Alice” in a medical school who is
interested in the incidence of a certain disease in a statistical medical database contain-
ing 1000 records. (Each record represents a person and contains a field saying whether
or not the person is infected.) Assume that Alice’s side knowledge lets her to expect
that the percentage of infected people is likely to be, say, between 1% and 2%, while it
is highly unlikely to be higher than 5%. Also, assume that Alice does not have “sharp”
enough information to assign significantly different probabilities to adjacent answers,
e.g. 1.5% (15 people affected) and 1.6% (16 people affected). It is precisely this kind
of users that we target in this paper: we will see that, under certain conditions, we can
design a mechanism which maximises the utility for all of them.

A related issue that we consider in this paper is the amount of information leaked
by a mechanism, from the point of view of the so-called quantitative information flow
framework. There have been various proposal for quantifying the information flow; we
consider here the information-theoretic approach, in which the system (in this case the
mechanism) is regarded as a noisy channel, and the leakage is defined as the difference
between the a priori entropy of the input (the secret – in this case the database entries),
and the a posteriori one, after revealing the output (in this case the reported answer).
Depending on the notion of entropy adopted one can model different kinds of adver-
saries [9]. In particular, Shannon entropy (used, for instance, in [10–13]) is suitable for
adversaries who can probe the secret repeatedly, while Rényi min-entropy (used, for
instance, in [14, 15]) is suitable for one-try attacks. In both cases, the main difference
with differential privacy is that the information-theoretic approaches measure the ex-
pected threat to confidentiality (i.e. the average amount of leakage, where each leak is
weighted by its probability to occur), while differential privacy considers catastrophic
any disclosure of confidential information, no matter how unlikely it is.

Computing and bounding the information leakage has been pursued in several pa-
pers, we mention for instance [16, 17]. Recently, researchers have investigated the rela-
tion between differential privacy and information leakage [18–20, 8], and in particular
it has been proved in [20] that differential privacy induces a bound on the min-entropy
leakage, which is met by a certain mechanism for the uniform prior (for which min-

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

4 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

entropy leakage is always maximum). In this paper, we extend the above result so to
provide a more accurate bound for any fixed ε-regular prior distribution. More pre-
cisely, we provide a bound to the leakage specific to the prior and that can be met, under
a certain condition, by a suitable mechanism. It is worth noting that this mechanism is
defined similarly to the one that is optimal for the ε-regular priors. In fact, min-entropy
leakage and utility are strongly related: the main difference is what we regard as the
input of the channel. For the former is the database, for the latter the exact answer to
the query. Correspondingly, min-entropy leakage measures the correlation between the
reported answer and the database entries, while utility measures the correlation between
the reported answer and the exact answer.

Contribution

– We identify, for an arbitrary query and a privacy parameter ε, the class of the ε-
regular prior distributions on the exact answers. The interest of this class is that for
each prior in it we are able to provide a specific upper bound to the utility of any ε-
differentially-private mechanism. We characterise this class as a geometric region,
and we study its properties.

– We describe an ε-differentially-private mechanism, called “tight-constraints mech-
anism”, which meets those upper bounds for every ε-regular prior, and is therefore
universally optimal in this region. We provide necessary and sufficient conditions
for the existence of such mechanism, and an effective method to test the conditions
and to construct the mechanism.

– Switching view, and considering the correlation between the databases and the re-
ported answers (instead than between the exact and reported answers) we recast
the above definitions and results in terms of quantitative information flow. The out-
come is that we are able to improve the upper bounds for the min-entropy leakage
of an ε-differentially-private mechanism, for all the ε-regular prior distributions on
the databases. A construction similar to the one in previous point yields the tight-
constraints mechanism which reaches those upper bounds.

Plan of the paper In the next section we recall the basic definitions of differential pri-
vacy and utility. Section 3 introduces the notion of ε-regular prior, investigates the prop-
erties of these priors, and gives a geometric characterisation of their region. Section 4
shows that for all ε-regular priors on the exact answers (resp. databases), ε-differential
privacy induces an upper bound on the utility (resp. on the min-entropy leakage). Sec-
tion 5 identifies a mechanism which reaches the above bounds for every ε-regular prior,
and that is therefore the universally optimal mechanism (resp. the maximally leaking
mechanism) in the region. Section 6 illustrates our methodology and results using the
example of the sum queries. Section 7 concludes and proposes some directions for fu-
ture research.

For reason of space we have omitted several proofs from the body of the paper. The
interested reader can find them in the appendix.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 5

2 Preliminaries

2.1 Differential privacy

The notion of ε-differential privacy, introduced by Dwork in [2], imposes constraints
on data reporting mechanisms so that the user is unable to distinguish, from an output,
between two databases differing only for one record. This indistinguishability property
represents a protection for the individual corresponding to that record. In the following,
the mechanism is represented as a probabilistic function K from the set of possible
databases V to the set of possible reported outputs O. The relation of ‘differing only
for one record’ for two databases v and v′ is represented by the adjacency relation and
written as v ∼ v′.

Definition 1 (Differential privacy [2]). A probabilistic mechanism K from V to O
satisfies ε-differential privacy if for all pairs v, v′ ∈ V, with v ∼ v′, and all S ⊆ O, it
holds that

P(K(v) ∈ S) ≤ eε P(K(v′) ∈ S).

Note that the indistinguishability property is independent from the a priori knowledge
the user may have about the database.

Consider a query f : V → R f , where R f is the set of the query results. Then
a mechanism K is said to be oblivious if for every database v ∈ V, the output of the
mechanism,K(v), depends only on f (v), the result of applying the query to the database
v, regardless of v itself. More formally,

Definition 2 ([1]). Let f : V → R f be a query. A mechanism K : V → O is oblivious
if there exists a randomised function M : R f → O such that, for all v ∈ V, and all
S ⊆ O, it holds that

P(K(v) ∈ S) = P(M(f (v)) ∈ S).

According to the above definition, any oblivious mechanismK can be seen as a cascade
of two functions: the deterministic query f and a randomised functionM. The role of
M is to add random noise to the exact query result f (v) and produce a ‘noisy’ output
o ∈ O to the user. The privacy guarantees are therefore provided by the function M
which we implement by a stochastic matrix X = (xio), called the noise matrix. The rows
of X are indexed by the elements of R f and the columns are indexed by the elements of
O. With this representation xio is the probability of giving the output o when the exact
query result is i. In this paper, we consider only oblivious mechanisms and therefore our
results concern the design of the noise matrix X. Similarly, the query function f and the
mechanism can be represented as matrices and hence it holds by Def. 2 that K = f X.

Given a query f , The adjacency relation on databasesV induces another adjacency
relation on the set of query results R f as follows.

Definition 3 (Adjacent query results). Given a query function f with a range R f , two
different results i, h ∈ R f are said to be ‘adjacent’, and written as i ∼ f h, if and only if
there exists two databases v, v′ such that f (v) = i and f (v′) = h, and v ∼ v′.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

6 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

0

1

2

n

A count query
f1(v) = count(v, p)

0

12

3

4 n

Query f2(v) =

count(v, p) mod (n + 1)

(0,n) (1,n) (2,n) (n,n)

(0,2) (1,2) (2,2) (n,2)

(0,1) (1,1) (2,1) (n,1)

(0,0) (1,0) (2,0) (n,0)

A 2-count query
f3(v) = (count(v, p1), count(v, p2))

Fig. 1. Examples for the graph structures of different queries

Informally, i, h ∈ R f are adjacent if they discriminate between two adjacent databases.
Using the introduced notion of adjacency between query results, a graph structure can
be used to model these results along with their adjacency relationship. More precisely,
the set of nodes in this graph represents the set of query results R f , while edges repre-
sent the adjacency relationship among them. It is worth noting that this graph structure
of queries have been used also in [8, 1] to analyse the differentially private mechanisms.
Figure 1 shows examples of the graph structures of different queries. In these exam-
ples count(v, p) refers to a counting query which returns the number of records in the
database v which satisfy a certain property p. Other queries in the figure are expressed
using the count function.

Let K be an oblivious mechanism for which X is the underlying noise matrix. It
is intuitive to see that satisfying the indistinguishability between adjacent databases
(i.e. satisfying differential privacy) corresponds to the satisfying indistinguishability
(by means of X) between adjacent query results. Formally,

Lemma 1. Given a noise matrix X, An oblivious mechanism K satisfies ε-differential
privacy if and only if for all query results i, h where i ∼ f h and all outputs o ∈ O, it
holds that xio ≤ eε xho.

Note that Lemma 1 provides an equivalent characterisation for differential privacy in
terms of adjacent query results rather than adjacent databases.

With the graph structure of a query, the ‘distance’ between two query results i, h,
denoted by d(i, h) is defined as the shortest graph distance between i and h. Using this
distance measure, differential privacy constraints can be further lifted from conditions
on pairs of adjacent query results (Lemma 1) to a general condition on any pair of query
results according to the following proposition.

Proposition 1. Given a noise matrix X, the oblivious mechanismK satisfies ε-differential
privacy if and only if for all query results i, h and all outputs o ∈ O, it holds that
xio ≤ eε d(i,h) xho.

That is, the ratio between the probability of reporting an answer o given that the query
result is r and the probability of reporting the same output o given that the query result

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 7

is h does not exceed eε d(i,h). We call the noise matrix that satisfies this condition ε-
differentially private. Note that, while Lemma 1 describes differential privacy in terms
of only adjacent query results, the equivalent characterisation given by Proposition 1
specifies the privacy constraints imposed on any pair of results (whether or not they are
adjacent to each other). This feature abstracts our analysis to arbitrary pairs of graph
nodes rather than reasoning about only adjacent ones.

2.2 Utility model

For an oblivious mechanism K , the objective of the underlying noise matrix X is to
guarantee the differential privacy of the database, while providing the user with ‘useful’
information about the true query result. That is to satisfy a trade-off between the privacy
and utility. For quantifying the utility of K we follow the model adopted in [6]. Given
a query f , let i ∈ R f be the result of executing f on some database. After processing
i by the noise matrix X, let o be the reported output to the user. In practice, the user
may use the output o, to ‘guess’ the value of the real query result. Therefore she may
apply a remap (or guess) function which maps the mechanism output o to a guess
k ∈ R f for the exact query answer. The remap function (or simply ‘remap’) can be
described as a stochastic matrix R, where its entry rok is the probability of guessing k
when the observed mechanism output is o. With this representation, it can be easily seen
that the probabilities of the user’s guesses given individual query results are described
by the matrix product X R. We say here that X is remapped to X R by the remap R.
Note that this remapping procedure models the post-processing done by the user for the
mechanism output o. Now, with the user’s guessed value k, a real-valued gain function
g : (R f × R f)→ R quantifies how informative k is compared to the real result i.

The utility of a given mechanism to the user is described as the expected value
of the gain function g. The evaluation of this expected value depends on the a priori
probability distribution π over the real query results, which models the side knowledge
of the user about the database. The utility of the mechanism depends therefore on the
definition of the gain function g, the mechanism’s underlying noise matrix X, the user’s
remap R, and also the probability distribution π over the real query results.

One choice for the gain function is the binary gain defined as gb(i, j) = 1 iff i = j and
0 otherwise. The binary gain function formalises the requirement of a user to guess the
exact query result using the mechanism output. In the current work we restrict our anal-
ysis to this gain function. An important feature of this function, is that it is applicable
to the ranges of various queries including numerical and non-numerical one. Moreover,
it will be shown that this gain function is strongly connected to the information theo-
retic notions of conditional entropy and information leakage. Hence, our results about
the utility of private mechanism imply corresponding results regarding quantifying in-
formation leaked by these mechanisms. These results go inline with a recent trend of
research aiming at quantifying information leaked by security protocols, and privacy
mechanisms specifically (see e.g. [16, 17, 8, 18]). We leave considering other gain func-
tions to future work.

Now, for formulating the utility we represent the a priori probability distribution
(called the ‘prior’) over the real query results by a row vector π, indexed by R f , where

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

8 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

πi is the probability that the query in hand yields the result i. The prior is therefore
relative to the user and depends on her knowledge. With a generic gain function g, the
utility of a mechanism for a prior π using the remap R is denoted by U(X,π,R), and
defined as follows.

U(X,π,R) = E
[
g(i, k)

]
=

∑
i,k πi (X R)ik g(i, k), (1)

where X is the noise matrix of the given mechanism. In our case, where the binary gain
function gb is used, the utility reduces to a convex combination of the diagonal elements
of X R as follows.

U(X,π,R) =
∑

i πi (X R)ii. (2)

Accordingly, for a given prior π, an oblivious ε-differentially private mechanism, with a
noise matrix X, is said to be optimal if and only if there is a remap R such that the above
function is maximised over all ε-differentially private mechanisms and all remaps 1. As
exemplified in the introduction, the optimality of a mechanism depends, in general, on
the prior (user); that is a mechanism can be optimal for a prior while it is not for another
one. It has been proved by [1] that for arbitrary queries (except the counting ones), there
is no such a mechanism that is optimal for all priors simultaneously. Nevertheless, we
identify in the following section a region of priors, where it is possible to find a single
mechanism which is optimal to all of them.

3 ε-Regular priors

In this section we describe a region of priors, called ‘ε-regular’. These priors are deter-
mined by the given query f and privacy parameter ε. In our way to specify these priors,
we first represent the ε-differential privacy constraints in a matrix form. By Proposition
1, observe that each ε-differential privacy constraint imposed on a noise matrix X can
be written as xio/xho ≥ e−εd(i,h). Since the lower bound e−εd(i,h) depends only on i, h,
all constraints can be described altogether by a square matrix Φ formed by such lower
bounds. We refer to this matrix as the privacy-constraints matrix. Note that the rows,
and also columns of Φ are indexed by the elements of R f , the set of query results.

Definition 4 (privacy-constraints matrix). The privacy-constraints matrixΦ of a query
f with a range R f , and a privacy parameter ε > 0 is a square matrix, indexed by
R f × R f , where φih = e−ε d(i,h) for all i, h ∈ R f .

Note thatΦ is symmetric (φih = φhi) due to the symmetry of the distance function d(i, h).
Observe that when ε → ∞, i.e. exclude privacy at all,Φ converges to the identity matrix
where each diagonal entry is 1 and other entries are zeros. In terms of the privacy-
constraints matrix of a query and ε, we define now the ε-regular priors as follows (note
that we use y ≥ 0 to denote ∀i : yi ≥ 0).

Definition 5 (ε-regular prior). For a given query f and a privacy parameter ε > 0, a
prior π is called ε-regular iff there exists a row vector y ≥ 0 such that π = yΦ.

1 Note that there may exist many optimal mechanism for a given prior.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 9

In the following we describe the common properties of these priors and also give a
geometric characterisation for their region comparing it to the whole prior space. As
the first observation, note that, as privacy is excluded (ε → ∞), this region converges
to the entire prior space. This is because Φ approaches the identity matrix where the
vector y exists for each prior.

An important property of any ε-regular prior is that the ratio between any two of
its entries πi, π j is always bound as follows, depending on ε and the distance d(i, j).
Because of this property, such a prior is called ε-regular.

Proposition 2. Consider a query f and ε > 0. Then for any ε-regular prior π, it holds
for all i, j ∈ R f : πi

/
π j ≤ eε d(i, j).

While the above property restricts the ratio between probabilities of adjacent query re-
sults, this restriction, in practice, holds for a large class of users who have no sharp
information suggesting discrimination between adjacent results. This class is exempli-
fied in the introduction. Note that the above property is not equivalent to Definition 5.
Namely, it is not true that all priors having such a property are ε-regular.

A consequence of the above proposition is that for any ε-regular prior π, the prob-
ability πi associated with any query result i is restricted by upper and lower bounds as
follows.

Proposition 3. Consider a query f and ε > 0. Then for any ε-regular prior π, it holds
for all i ∈ R f that

1
/∑

j∈R f
eε d(i, j) ≤ πi ≤ 1

/∑
j∈R f

e−ε d(i, j).

One implication is that any ε-regular prior must have full support, that is πi > 0 for all
i ∈ R f .

In the following we go further and describe the region of ε-regular priors as a region
of points in the prior space, where each point represents a member in this region. For
doing so, we identify by the following definition a set of priors which describe the
‘corner points’ or vertices of the region.

Definition 6 (corner priors). Given a query f and a privacy parameter ε > 0, then for
each query result i ∈ R f , a corresponding corner prior, denoted by ci, is defined as

ci
j =

φi j∑
k∈R f

φik
∀ j ∈ R f .

Note that the above definition is sound, i.e. ci is a probability distribution. By the above
definition, for a given query with the domain R f of results, the region of ε-regular priors
has |R f | corner priors. Each one corresponds to a query result i ∈ R f . Note that each
corner prior ci is maximally biased (relative to the region) to the query result i; that is the
entry ci

i meets its maximum value given in Proposition 3. It can be seen that each corner
prior is ε-regular. Namely for any corner ci, define the vector y as yi = 1/

∑
k∈R f

φik and
y j = 0 for all j , i; thus it holds that ci = yΦ.

The region of the ε-regular priors can be characterised in terms of the corner priors.
More precisely, this region consists of all priors that can be composed as a convex
combination of the corner priors.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

10 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

(1,0,0)

(0,1,0)

(0,0,1)

c1

c2

c3

e−ε = 0.5
e−ε = 0.2
e−ε = 0

f1

(1,0,0)

(0,1,0)

(0,0,1)

c1

c2

c3

f2

Fig. 2. Regions of ε-regular priors for queries described in Example 1

Proposition 4 (convexity). For a given a query f and privacy parameter ε > 0, a prior
π is ε-regular iff there exist real numbers γi ≥ 0, i ∈ R f such that

π =
∑

i∈R f
γi ci.

It is easy to see that it must hold that
∑

i∈R f
γi = 1 for any ε-regular prior. This is

obtained by summing the components of the π as follows.∑
j∈R f

π j =
∑

i γi
∑

j ci
j and

∑
j π j = 1, ∀π.

From Proposition 4 and the above observation, the region of ε-regular priors is a convex
set, where each point (prior) in this region is a convex combination of the corner priors.
This region is therefore geometrically regarded as a convex polytope in the prior space.
Since the corner points always exists, this region is never empty.

For a prior π in this region, the coefficients γi model the ‘proximity’ of π to each
corner prior ci. Observe that 0 ≤ γi ≤ 1, and γi = 1 iff π = ci. We demonstrate this
geometric interpretation using the following examples.

Example 1. Priors having 3 entries can be represented as points in the 3-dimensional
euclidean space. These priors correspond to queries whose graph structures contain 3
nodes. These nodes can be arranged in either a sequence or a cycle, corresponding to
queries f1 and f2 respectively shown in Figure 1, with n = 2 in both cases. Figure 2
shows - for each of these queries - the region of ε-regular priors. The corner priors of
each region are represented by points c1, c2, c3. For each query in Fig. 2, we depict the
regions for e−ε = 0.5 and e−ε = 0.2. Note that the level of privacy set by ε imposes a
restriction on the region of ε-regular priors. With e−ε = 0.2 (less privacy), this region
is larger than the one with e−ε = 0.5. In fact, as e−ε → 0 (i.e. no privacy), the region
of ε-regular priors converges to the entire region of priors defined by the corner points
{(0, 0, 1), (0, 1, 0), (0, 0, 1)}.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 11

(1,0,0)

(0,1,0)

(0,0,1)

(.6,.1,.1)

(.1,.6,.1)

(.1,.1,.6)

(.4,.2,.2)

(.2,.4,.2)

(.2,.2,.4)

e−ε = 0.5
e−ε = 0.2
e−ε = 0

Fig. 3. Regions of ε-regular priors for the query described in Example 2

Example 2. Let v be database containing at most one record. Consider a bundle of two
counting queries f3 = (count(v, p1), count(v, p2)) which counts the records satisfying
properties p1 and p2 respectively in the database v. The graph structure of this query is
depicted in Figure 1 (with n = 1). Note that in this case the adjacency graph (and also
the set R f of query results) consists of 4 nodes: {(0, 0), (1, 0), (0, 1), (1, 1)}. Any prior
π corresponds therefore to a point in a 4-dimensional space. However, since the 4th
component of the prior is redundant (

∑
i πi = 1), each prior is defined by its ‘projection’

onto the 3- dimensional subspace. Given this observation, Figure 3 shows the projection
of the ε-regular prior region for different values of e−ε . It is again seen that the region is
getting larger as the level of privacy e−ε decreases, and coincides with the full space of
priors when e−ε → 0 (i.e. when no privacy is provided).

4 Upper bounds for utility and min-mutual information

In this section, we further describe the ε-regular priors in terms of the utility that can
be achieved for these priors by ε-differentially private mechanisms. We also describe
the amount of information that can be conveyed by these mechanisms to users with
such priors. More precisely, we identify for any ε-regular prior π upper bounds for the
utility and min-mutual information, considering all ε-differentially private mechanisms
and all possible remaps. These bounds are indeed induced by the privacy constraints
parameterised by ε and the query f as stated by Proposition 1. They also depend on the
given prior π.

4.1 Utility

Given a query f and a privacy parameter ε > 0, let π be a prior on the set R f of the query
results. For any noise matrix X satisfying ε-differential privacy (as in Proposition 1), and
a remap R, we derive in the following a linear algebraic expression for U(X,π,R), the
utility of X for π using the remap R. Such an expression will play the main role in the

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

12 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

subsequent results. We start by observing that the matrix product of the noise matrix
X and the remap R describes an ε-differentially private noise matrix X R : R f → R f .
Hence the entries of X R satisfy (by Proposition 1) the following subset of constraints.

e−ε d(i,k) (X R)kk ≤ (X R)ik

for all i, k ∈ R f . Using Definition 4 of the privacy-constraints matrix Φ, and taking into
account that

∑
k∈R f

(X R)ik = 1 for all i (as both X and R are stochastic), we imply the
following inequalities. ∑

k∈R f
φik (X R)kk ≤ 1, ∀i ∈ R f .

The inequality operators can be replaced by equalities while introducing slack variables
0 ≤ si ≤ 1 for all i ∈ R f . The above inequalities can therefore be written as follows.∑

k∈R f
φik (X R)kk + si = 1, ∀i ∈ R f .

Let the slack variables si form a column vector s indexed by R f . Let also 1 denote
another column vector of the same size having all entries equal to 1. Using these vectors
and the privacy-constraints matrix Φ (for the given query and ε), the above equations
can be rewritten in the following matrix form.

Φ diag(X R) + s = 1, (3)

where diag(X R) is the column vector consisting of the diagonal entries of X R. Now,
for any noise matrix X : R f → O and a remap R : O → R f satisfying Eq. (3), and for a
prior π, we want to refine the generic expression (2) of the utility by taking Eq. (3) into
account. We start by rewriting Eq. (2) in the following matrix form.

U(X,π,R) = π diag(X R). (4)

Now, let y be a row vector such that

π = yΦ. (5)

Note that, the above matrix equation is in fact a system of |R f | linear equations. The
kth equation in this system is formed by the kth column of Φ, and the kth entry of π as
follows.

yΦk = πk ∀k ∈ R f .

Solving this system of equations for the row vector y has the following possible out-
comes: If the matrix Φ is invertible, then, for any prior π, Eq. (5) has exactly one solu-
tion. If Φ is not invertible (i.e. it contains linearly dependent columns), then there are
either 0 or an infinite number of solutions, depending on the prior π: If the entries of
π respect the linear dependence relation then are infinitely many solutions. Otherwise,
the equations are ‘inconsistent’, in which case there are no solutions.

Since the matricesΦ have a precise format, one may wonder whether it could be that
they are all invertible or all non invertible. In fact, this is not the case: In Appendix B

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 13

we show an example of a matrix Φ that, for certain values of ε is invertible, while for
others is non invertible.

Whether Φ is invertible or not, we consider here only the priors where the matrix
equation (5) has at least one solution y. Note that, by definition, all the ε-regular priors
have this property, but there can be others for which the solution y has some negative
components. In some of the results below (in particular in Lemma 2) we consider this
larger class of priors, for the sake of generality.

Multiplying Equation (3) by y yields

yΦ diag(X R) + y s = y 1. (6)

Substituting Equations (5) and (4) in the above equation consecutively provides the
required expression for the utility and therefore proves the following lemma.

Lemma 2. For a given query f and a privacy parameter ε > 0, let π be any prior.
Then for every row vector y satisfying π = yΦ, the utility of any ε-differentially private
mechanism with a noise matrix X for the prior π using a remap R is given by

U(X,π,R) = y 1 − y s, (7)

for a vector s satisfying 0 ≤ si ≤ 1 for all i ∈ R f .

Lemma 2 expresses the utility function for any ε-private noise matrix X for a prior π
with a remap R as a function of the vector y and the slack vector s. Although the ma-
trix X and the remap R do not explicitly appear on the right hand side of Equation (7),
the utility still depends on them indirectly through the vector s. Namely, according to
Equation (3), the choice of X and R determines the slack vector s. The utility function
depends also on the prior π, because the choice of π determines the set of vectors sat-
isfying Eq. (5). Substituting any of these vectors y in Eq. (7) yields the same value for
U(X,π,R).

By Definition 5, of ε-regular priors, the above lemma specifies the utility for any
of them. Therefore, we use Lemma 2, and obtain an upper bound for the utility of ε-
differentially private mechanisms for ε-regular priors.

Theorem 1 (utility upper bound). For a given query f and a privacy parameter ε > 0,
let π be an ε-regular prior and X be an ε-differentially private noise matrix. Then for
all row vectors y ≥ 0 satisfying yΦ = π, it holds for any remap R that

U(X,π,R) ≤
∑

i∈R f
yi, (8)

where the equality holds iff Φ diag(X R) = 1.

The above result can be also seen from the geometric perspective. As shown by Propo-
sition 4, each member in the region of ε-regular priors is described as a convex combi-
nation of the corner priors. That is there are coefficients γi ≥ 0 for i ∈ R which form this
combination. It can be shown (as in the proof of Proposition 4) that γi = yi

(∑
k∈R f

φik

)
.

Hence, the upper bound given by Theorem 1 can be written as follows using the coeffi-
cients γi.

U(X,π,R) ≤
∑
i∈R f

γi∑
k∈R f

φik
.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

14 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

Inspecting the above result for corner priors, recall that for a corner ci, γ j is 1 for j = i
and is 0 otherwise; thus, the utility upper bound for ci is therefore 1/

∑
k φik. Moreover,

the upper bound for each ε-regular prior π can be regarded (according to the above
equation) as a convex combination of the upper bounds for the corner priors. That is,
from the geometric perspective, the utility upper bound for π linearly depends on its
proximity to the corner priors.

4.2 Min-mutual information

In this section, we employ an information-theoretic notion, namely mutual information,
to quantify the amount of information conveyed by a noise matrix X as an information
theoretic channel. We use this notion in two distinct ways: first, mutual information is
used to measure the information conveyed about the result of a specific query, similarly
to the use of “utility” in the previous section. Mutual information and utility (under the
binary gain function) are closely related, which allows us to transfer the bound obtained
in the previous section to the information-theoretic setting.

Second, we use mutual information to quantify the information about the database
that is revealed by a mechanism, a concept known in the area of quantitative informa-
tion flow as “information leakage”. This allows us to obtain bounds on the informa-
tion leaked by any mechanism, even non-oblivious ones, independently from the actual
query. For arbitrary priors, we obtain in a more natural way the bound conjectured in
[18] and proven in [8]. Moreover, if we restrict to specific (ε-regular) priors, then we
are able to provide more accurate bounds.

Following recent works in the are of quantitative information flow ([14–17, 8, 18]),
we adopt Rényi’s min-entropy ([21]) as our measure of uncertainly. The min-entropy
H∞(π) of a prior π, defined asH∞(π) = − log2 maxi πi, measures the user’s uncertainty
about the query result. Then, the corresponding notion of conditional min-entropy, de-
fined as H∞(X,π) = − log2

∑
o maxi πi xio, measures the uncertainty about the query

result after observing the output of the noise matrix X. Finally, subtracting the latter
from the former brings us to the notion of min-mutual information:

L(X,π) = H∞(π) −H∞(X,π)

which measures the amount of information about the query result conveyed by the
noise matrix. In the area of quantitative information flow this quantity is known as
min-entropy leakage; the reader is referred to [14] for more details about this notion.

Min-mutual information is closely related to the notion of utility under the binary
gain function and using an optimal remap. A remap R̂ is optimal for X,π if it gives the
best utility among all possible remaps for this noise matrix and prior. The following
result from [8] connects min-mutual information and utility:

Proposition 5. Given a noise matrix X and a prior π, let R̂ be an optimal remap for
π, X. Then, it holds

L(X,π) = log2
U(X,π, R̂)

maxi πi

This connection allows us to transfer the upper-bound given by Theorem 1 to min-
mutual information.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 15

Proposition 6 (min-mutual information upper bound). Let f be a query, let ε > 0,
let π be an ε-regular prior and let X be the noise matrix of any ε-differentially private
mechanism. Then for all row vectors y ≥ 0 satisfying yΦ = π, it holds that:

L(X,π) ≤ log2

∑
i∈R f

yi

maxi πi
(9)

The above bound holds only for ε-regular priors. However, it is well-known ([15])
that min-mutual information is maximised by the uniform prior u, i.e.L(X,π) ≤ L(X,u)
for all X,π. Thus, in cases when u is ε-regular, we can extend the above bound to any
prior.

Corollary 1. Let f be a query, let ε > 0 such that the uniform prior u is ε-regular, and
let X be the noise matrix of any ε-differentially private mechanism. Then for all row
vectors y ≥ 0 satisfying yΦ = u, and for all priors π, it holds that:

L(X,π) ≤ log2(|R f |
∑

i∈R f
yi)

4.3 Quantifying the leakage about the database

In the previous section we considered the information about the query result conveyed
by an oblivious mechanism. This information was measured by the min-mutual infor-
mation L(X,π), where X is noise matrix, mapping query results R f to outputs.

We now turn our attention to quantifying the information about the database that
is conveyed by the complete mechanism K (even in the case of non-oblivious mecha-
nisms). Intuitively, we wish to minimise this information to protect the privacy of the
users, contrary to the utility which we aim at maximising. Quantifying this information
can be done in a way very similar to the previous section. The only difference is that we
use a stochastic matrix Y that models the mechanism K , mapping databases V = Vu

to outputs (recall that u is the number of individuals in the database and V the set of
possible values for each individual). Moreover, the underlying graph ∼ is the Hamming
graph, induced by the adjacency relation on databases, and ε-regularity concerns priors
π on databases.

In this case, L(Y,π) measures the information about the database conveyed by the
mechanism, which we refer to as “min-entropy leakage”, and the bounds from the pre-
vious section can be directly applied. However, since we now work on a specific graph
(V,∼), we can obtain a closed expression for the bound of Corollary 1. We start by
observing that due to the symmetry of the graph, the uniform prior u is ε-regular for all
ε > 0. More precisely, we can show that the vector y, defined as

yi =

(
eε

|V |(|V | − 1 + eε)

)u

i ∈ V

satisfies yΦ = u and y ≥ 0. Thus, applying Corollary 1 we get the following result.

Theorem 2 (min-entropy leakage upper bound). Let V = Vu be a set of databases,
let ε > 0, and let Y be an ε-differentially private mechanism. Then for all priors π, it
holds that:

L(Y,π) ≤ u log2
|V | eε

|V | − 1 + eε

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

16 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 0.6 0.7 0.8 0.9 1

L
ea
ka
ge

b
ou

n
d
(b
it
s)

Bound for all priors
Bound for π

Fig. 4. Leakage bounds for various values of ε

This bound determines the maximum amount of information that any differentially
privacy mechanism can leak about the database (independently from the underlying
query). The bound was first conjectured in [18] and independently proven in [8]; our
technique gives an alternative an arguably more intuitive proof of this result.

Note that the above bound holds for all priors. If we restrict to a specific ε-regular
prior π, then we can get better results by using the bound of Proposition 6 which de-
pends on the actual prior. This is demonstrated in the following example.

Example 3. Consider a database of 5 individuals, each having one of 4 possible values,
i.e.V = Vu with V = {1, 2, 3, 4} and u = 5. Assume that each individual selects a value
independently from the others, but not all values are equally probable; in particular
the probabilities of values 1, 2, 3, 4 are 0.3, 0.27, 0.23, 0.2 respectively. Let π be the
corresponding prior on V that models this information. We have numerically verified
that for all 0.48 ≤ ε ≤ 1 (with step 0.01) π is ε-regular. Thus we can apply Proposition 6
to get an upper bound of L(Y,π) for this prior.

The resulting bound, together with the general bound for all priors from Theorem 2,
are shown in Figure 4. We see that restricting to a specific prior provides a significantly
better bound for all values of ε. For instance, for ε = 0.5 we get that L(Y,π) ≤ 1.2 for
this π, while L(Y,π) ≤ 2.5 for all priors π.

Note that, in general, the above bounds for the utility and the min-mutual infor-
mation are not tight. For a given query and a privacy parameter ε, there may be no
noise matrix X that meets these bounds. Nevertheless, they provide ultimate limits, in-
duced by the privacy constraints, for all ε-differential private mechanisms and ε-regular
priors. Note also that these bounds are simultaneously tight if the common condition
Φ diag(X R) = 1 is satisfied (note that this condition is independent of the underlying
prior). From this point we investigate the mechanisms that, whenever exist, they satisfy
such a condition and are therefore optimal for the entire class of ε-regular priors.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 17

5 Tight-constraints mechanisms

In this section, we introduce the notion of tight-constraints mechanism. We start by
giving the definition of these mechanisms for a given query f and privacy parameter
ε > 0. Then we describe their properties in terms of privacy guarantees and optimality
for ε-regular priors.

Definition 7 (A tight-constraints mechanism). For a given query f with range R f ,
and a given privacy parameter ε > 0, an oblivious mechanism with a noise matrix X :
R f → R f is called a tight-constraints mechanism iff it satisfies the following conditions
for all i, k ∈ R f .

e−ε d(i,k) xkk = xik. (10)

It is important to note that, in general, there may exist zero, one or more tight-constraints
mechanisms for a given query f and a privacy parameter ε > 0. The above definition
enforces |R f | (|R f | − 1) linearly independent equations, referred to as the ‘tight con-
straints’. Additionally it must also hold that

∑
k∈R f

xik = 1 for all i ∈ R f . Thus we
have, in total, |R f | |R f | equations. If these equations are linearly independent, then they
solve to unique values. If these values are non-negative, then they determine a unique
tight-constraints mechanism. On the other hand, if these equations are not linearly in-
dependent, then there may be multiple solutions with non-negative entries, in which
case we have multiple tight-constraints mechanisms for the given query and privacy
parameter ε.

5.1 Properties

It has been seen from Definition 7, that the choice of a query f and a value ε > 0
correspond to a set of tight-constraints mechanisms. The first important feature of these
mechanisms is that they satisfy ε-differential privacy as confirmed by the following
proposition.

Proposition 7 (differential privacy). For a given query f and a privacy parameter
ε > 0, every tight-constraints mechanism is ε-differentially private.

Thanks to the above fact, we can give a further useful characterisation of the tight-
constraints mechanisms in comparison to other ε-differentially private mechanisms.
More precisely, the following proposition identifies a linear algebraic condition that
is satisfied only by the tight-constraints mechanisms for given f , ε:

Lemma 3 (diagonal characterisation). Let f be a query and let ε > 0. Then for any
oblivious ε-differentially private mechanism K with a noise matrix X : R f → R f , the
following equation holds iff K is a tight-constraints mechanism.

Φ diag(X) = 1. (11)

Observe that the above proposition provides a way to check the existence of, and also
compute, the tight-constraints mechanisms for given f , ε. Since Condition (11) is satis-
fied only by these mechanisms, then there is at least one tight-constraints mechanism if

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

18 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

there is a vector z, with non-negative entries, that satisfies the equation Φ z = 1. In this
case the noise matrix X̂ of a tight-constraints mechanism is obtained by setting its di-
agonal to z, and evaluating the non-diagonal entries from the diagonal using Equations
(10).

Now we turn our attention to the region of ε-regular priors and we identify the
oblivious mechanisms which are optimal wrt both utility and min-mutual information
in this region. It turns out that the set of these optimal mechanisms consists exactly of
all the mechanisms that can be mapped to a tight-constraints mechanism using a remap
R.

Theorem 3 (Optimality). Let f be a query and let ε > 0 such that at least one tight-
constraints mechanism exists. Then any oblivious mechanism K : V → O is optimal
(wrt both utility and min-mutual information) for every ε-regular prior π iff there is a
remap R : O → R f such that K R is a tight-constraints mechanism for f , ε.

Proof. If there exists a tight-constraints mechanism for given f , ε, then its noise matrix
X̂ must satisfy Eq (11). This implies that the upper-bound in Theorem 1 is reachable by
X̂ and the identity remap. Thus that upper-bound, in this case, is tight. By Theorem 1,
a mechanism K with a noise matrix X meets such an upper bound for the utility (and
therefore is optimal) iff it satisfies the condition Φ diag(X R) = 1, with some remap R.
Since any mechanism with noise matrix X R is ε-differentially private, then by Lemma
3, this condition is satisfied iff X R is the noise matrix of a tight-constraints mechanism
(for f , ε). That is iff f X R = K R is a tight-constraints mechanism. Using the relation,
given by Proposition 5, between utility and min-mutual information, the same argument
holds for the latter. ut

Note that tight-constrains mechanisms are themselves optimal as they are mapped
to themselves by the identity remap.

As a consequence of the above general result, we consider the special case of the
uniform prior, denoted by u, where all exact query results in R f are equally likely. Note
that this prior corresponds to users having unbiased knowledge about the query results,
i.e. they assume that all the exact results R f are yielded, by executing the query, with
the same probability. Firstly, the following lemma proves an equivalence between the
existence of at least one tight-constraints mechanism on one hand and the uniform prior
u being ε-regular on the other hand.

Lemma 4. For a given query f and privacy parameter ε > 0, there exists at least one
tight-constraints mechanism iff the uniform prior u is ε-regular.

It is worth noticing that in general the region of ε-regular priors may or may not include
the uniform prior. However, as shown earlier in Section 3, this region is enlarged and
converges to the entire prior space as less privacy is imposed (that is as ε increases). This
means that for the values of ε above certain threshold ε∗, depending on the query, the
region of ε-regular priors accommodates the uniform prior u, and therefore (by Lemma
4), there is at least one tight-constraints mechanism. This provides a design criteria to
select a setting for ε such that we have an optimal mechanism for the whole region.

Using Lemma 4, we can describe the optimal mechanisms for the uniform prior as
a corollary of Theorem 3.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 19

0 1 2 3 4 vu

(a) Sum query

(0,u) (1,u) (2,u) (u,u)

(0,2) (1,2) (2,2) (u,2)

(0,1) (1,1) (2,1) (u,1)

(0,0) (1,0) (2,0) (u,0)

(b) 2-count query

Fig. 5. Adjacency graphs

Corollary 2. Let f be a query and let ε > 0 such that there exists at least one tight-
constrains mechanism. Then a mechanism K : V → O is optimal for the uniform prior
iff K R is a tight-constraints mechanism for some remap R : O → R f .

In fact when we consider arbitrary queries, we find that our specification for the
tight-constraints mechanisms covers other well known differentially-private mecha-
nisms. In particular, when we consider a counting query, we find that a tight-constraints
mechanism for this query is exactly the truncated-geometric mechanism, which is shown
by [6] to be optimal for every prior. Furthermore, we are able to show that this mecha-
nism, as a tight-constraints one, exists for the selected query with any ε > 0.

Another class of queries, studied in [8] are the ones whose graph structures are
either vertex-transitive or distance-regular. The authors in [8] were able to construct a
mechanism which is optimal for the uniform prior for any ε > 0. In the context of our
results, when we consider a query f in this class, it is easy to show that such an optimal
mechanism is in fact a tight-constraints mechanism for f . We can also show that this
tight-constraints mechanism exists for all ε > 0.

6 Case-study: sum and 2-count queries

In this section we show the usefulness of the tight-constraints mechanism by apply-
ing it to two particular families of queries, namely sum and 2-count queries. For each
family, we evaluate the tight-constraint mechanism on databases consisting of u indi-
viduals each having an integer value between 0 and v, and we compare its utility to the
geometric mechanism.

It is well-known that no universally optimal mechanism exists for these families; in
particular, the geometric mechanism, known to be optimal for a single counting query,
is not guaranteed to be optimal for sum or multiple counting queries. On the other hand,
as discussed in the previous section, tight-constraints mechanisms, whenever they exist,
are guaranteed to be optimal within the region of ε-regular priors.

The comparison is made as follows: for each query, we numerically compute the
smallest ε (using a step of 0.01) for which a tight-constraints mechanism exists (i.e.
for which the uniform prior u is ε-regular, see Lemma 4). Then we compute the utility
(using an optimal remap) of both the tight constraints and the geometric mechanisms,

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

20 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.8 0.9 1 1.1 1.2 1.3

U
ti

lit
y

Tight-constraints
Geometric

(a) Sum query

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.9 1 1.1 1.2 1.3

U
ti

lit
y

Tight-constraints
Geometric

(b) 2-count query

Fig. 6. Utility for various values of ε

for a range of ε starting from the minimum one (note that the tight constraint mechanism
exists for any ε greater than the minumum one).

Sum query Let f be the query returning the sum of the value for all individuals, thus it
has range R f = {0, . . . , vu}. By modifying the value of a single individual, the outcome
of the query can be altered by at most v (when changing the value from 0 to v), thus
two elements i, j ∈ R f are adjacent iff |i − j| ≤ v. The induced graph structure on R f is
shown in Figure 5(a) (for the case v = 3).

For our case-study we numerically evaluate this query for u = 150, v = 5 and for the
uniform prior. We found that the minumum ε for which a tight-constraints mechanism
exists (and is in fact unique since Φ is invertible) is 0.8. Figure 6(a) shows the utility of
the tight-constraint mechanism, as well as that of the geometric mechanism, for values
of ε between 0.8 and 1.3, the uniform prior and using and optimal remap. We see that
the tight-constraint mechanism provides significantly higher utility than the geometric
mechanism in this case.

2-count query Consider now the query f consisting of 2 counting queries (i.e. reporting
the number of users satisfying properties p1 and p2), thus it has range R f = {0, . . . , u} ×
{0, . . . , u}. By modifying the value of a single individual, the outcome of each counting
query can be altered by at most 1, thus two anwers (i1, i2), (j1, j2) ∈ R f are adjacent iff
|i1− j1| ≤ 1 and |i2− j2| ≤ 1. The induced graph structure on R f is shown in Figure 5(b).

We evaluate this query for u = 30 and for the uniform prior. We found that the
minumum ε for which a tight-constraints mechanism exists is 0.9. Figure 6(b) shows
the utility of the tight-constraint mechanism, as well as that of the geometric mecha-
nism (applied independently to each counting query), for values of ε between 0.9 and
1.3 and the uniform prior. Similarly to the sum query, we see that the tight-constraint
mechanism provides significantly higher utility than the geometric mechanism in this
case.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 21

7 Conclusion and future work

In this paper we have continued the line of research initiated by [6, 1] about the exis-
tence of universally-optimal differentially-private mechanisms. While the positive re-
sult of [6] (for counting queries) and the negative one of [1] (for essentially all other
queries) answer the question completely, the latter sets a rather dissatisfactory scenario
for differential privacy and the typical mechanisms used in the community, since count-
ing queries are just one of the (infinitely many) kinds of queries one can be interested
in. In practice the result of [1] says that for any query other than counting queries one
cannot devise a mechanism that gives the best trade-off between privacy and utility for
all users. Hence one has to choose: either design a different mechanism for every user,
or be content with a mechanism that, depending on the user, can be far from providing
the best utility. We have then considered the question whether, for a generic query, the
optimality is punctual or can actually be achieved with the same mechanism for a class
of users. Fortunately the answer is positive: we have identified a class of priors, called
ε-regular, and a mechanism which is optimal for all the priors in this class. We have also
provided a complete and effectively checkable characterisation of the conditions under
which such mechanism exists, and an effective method to construct it. As a side result,
we have improved on the existing bounds for the min-entropy leakage induced by dif-
ferential privacy. More precisely, we have been able to give specific and tight bounds
for each ε-regular prior, in general smaller than the bound existing in literature for the
worst-case leakage (achieved by the uniform prior [20]).

So far we have been studying only the case of utility for binary gain functions. In
the future we aim at lifting this limitation, i.e. we would like to consider also other
kinds of gain. Furthermore, we intend to study how the utility decreases when we use
a tight-constraints mechanism outside the class of ε-regular priors. In particular, we
aim at identifying a class of priors, larger than the ε-regular ones, for which the tight-
constraints mechanism is close to be optimal.

The definition of tight-constrains mechanism is related to the connectivity condition
of the column graphs introduced by Kifer and Lin [22, 23]. They show that this property
implies maximality w.r.t. the postprocessing preorder. As pointed out by an anonymous
reviewer, we can probably exploit this result to strengthen our results in Section 5, in
particular Theorem 3.

The negative result of [1] is stated in terms of the graph induced by ∼ f : a universally
optimal mechanism can exist only if such graph is a line. This is the case of counting
queries, but not only: any composition of a counting query with a function that preserves
the graph structure would induce the same kind of graph, and it’s for this reason that the
authors of [1] write “essentially counting queries”. As pointed out by an anonymous
reviewer, we can use the techniques of our paper to prove that a universally optimal
mechanism exists if and only if the query is derivable from a counting query by a
bijection, thus making the result of [1] more precise, and extending the result of [6].

Acknowledgement We would like to thank the anonymous reviewers for their invaluable
recommendations for improving the paper, and their suggestion for future work.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

22 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

References
1. Brenner, H., Nissim, K.: Impossibility of differentially private universally optimal mecha-

nisms. In: Proc. of FOCS, IEEE (2010) 71–80
2. Dwork, C.: Differential privacy. In: Proc. of ICALP. Volume 4052 of LNCS., Springer (2006)

1–12
3. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proc. of STOC, ACM (2009)

371–380
4. Dwork, C.: Differential privacy in new settings. In: Proc. of SODA, SIAM (2010) 174–183
5. Dwork, C.: A firm foundation for private data analysis. Communications of the ACM 54(1)

(2011) 86–96
6. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy

mechanisms. In: Proc. of STOC, ACM (2009) 351–360
7. Gupte, M., Sundararajan, M.: Universally optimal privacy mechanisms for minimax agents.

In: Proc. of PODS, ACM (2010) 135–146
8. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the relation between

Differential Privacy and Quantitative Information Flow. In: Proc. of ICALP. Volume 6756
of LNCS., Springer (2011) 60–76

9. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In:
Proc. of CCS, ACM (2007) 286–296

10. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and polymorphic
types. J. of Logic and Computation 18(2) (2005) 181–199

11. Boreale, M.: Quantifying information leakage in process calculi. In: Proc. of ICALP. Volume
4052 of LNCS., Springer (2006) 119–131

12. Malacaria, P.: Assessing security threats of looping constructs. In: Proc. of POPL, ACM
(2007) 225–235

13. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Inf. and Comp. 206(2–4) (2008) 378–401

14. Smith, G.: On the foundations of quantitative information flow. In: Proc. of FOSSACS.
Volume 5504 of LNCS., Springer (2009) 288–302

15. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try
attacks. In: Proc. of MFPS. Volume 249 of ENTCS., Elsevier (2009) 75–91

16. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryptography
under timing attacks. In: Proc. of CSF, IEEE (2010) 44–56

17. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage of
information-hiding systems. In: Proc. of TACAS. Volume 6015 of LNCS., Springer (2010)
373–389

18. Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mechanisms. In:
Proc. of CSF, IEEE (2011) 191–204

19. Clarkson, M.R., Schneider, F.B.: Quantification of integrity (2011) Tech. Rep.. http://
hdl.handle.net/1813/22012.

20. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential
Privacy: on the trade-off between Utility and Information Leakage. In: Postproceedings of
the 8th Int. Worshop on Formal Aspects in Security and Trust (FAST). Volume 7140 of
LNCS., Springer (2011) 39–54

21. Rényi, A.: On Measures of Entropy and Information. In: Proc. of the 4th Berkeley Sympo-
sium on Mathematics, Statistics, and Probability. (1961) 547–561

22. Kifer, D., Lin, B.R.: Towards an axiomatization of statistical privacy and utility. In: Proc. of
PODS, ACM (2010) 147–158

23. Kifer, D., Lin, B.R.: An axiomatic view of statistical privacy and utility. Journal of Privacy
and Confidentiality 4(1) (2012) 5–49

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 23

Appendix

A Proofs

Proof of Lemma 1:

Proof. Assuming K is oblivious, then by Definition 1, the ε- differential privacy of K
is written as follows.∑

r∈R f
P(r | v) · P(S | r)∑

r∈R f
P(r | v′) · P(S | r)

≤ eε ∀S ⊆ O,∀v, v′ ∈ V such that v ∼ v′. (12)

Since the query f is deterministic, P(r | v) = 1 if r = f (v), and is 0 otherwise. Therefore,
Condition (12) is written as follows.

P(S | f (v))
P(S | f (v′))

≤ eε ∀S ⊆ O,∀v, v′ ∈ V such that v ∼ v′. (13)

Now we express the above condition in terms of adjacent query results instead of adja-
cent databases. For any pair of query results i, h such that i ∼ f h, there exists (by Def.
3) a pair of databases v, v′ such that f (v) = i, f (v′) = h, and v ∼ v′. Applying Condition
(13) to v, v′, we get P(S | i)/P(S | h) ≤ eε . Repeating the same argument for all pairs of
adjacent query results we get

P(S | i)
P(S | h)

≤ eε ∀S ⊆ O,∀i, h ∈ R f such that i ∼ f h. (14)

We also imply Condition (13) from (14) as follows. For any pair of adjacent databases
v, v′, if f (v) , f (v′) then f (v) ∼ f f (v′) (because v ∼ v′), and hence applying Condition
(14) with i = f (v), h = f (v′) yields that P(S | f (v))/P(S | f (v′)) ≤ eε . If otherwise
f (v) = f (v′) then this ratio is 1 which is strictly less than eε . Repeating the same argu-
ment for all pairs of adjacent databases we get Condition (13). It holds therefore that
(13) is equivalent to (14). It remains to show that (14) is equivalent to

P(o | i)
P(o | h)

≤ eε ∀o ∈ O,∀i, h ∈ R f such that i ∼ f h. (15)

For all o ∈ O, applying (14) to the subsets S = {o} , we easily get (15). Now we
consider the other direction of implication. Note that it holds for any subset S ⊆ O and
query result i that P(S | i) =

∑
o∈S P(o | i). If (15) holds. Then it holds for any subset

S and any adjacent query results i, h that P(S | i) ≤ eε
∑

o∈S P(o | h) = eε P(S | h),
and hence (14) is implied by quantifying over all possible subsets and adjacent query
results. ut

Proof of Proposition 1:

Proof. Using the characterisation of ε-differential privacy given by Lemma 1, it is
enough to prove the following equivalence for all outputs o ∈ O.

xio ≤ eε · xho ∀i, h ∈ R f , i ∼ f h ⇔ xio ≤ eε d(i,h) · xho ∀i, h ∈ R f .

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

24 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

The direction ‘⇐’ is proved by restricting the right statement to pairs i, h having distance
d(i, h) = 1. The other implication ‘⇒’ is proved by induction on the distance between
graph nodes: For all i, h where d(i, h) = 1, it holds that

xio ≤ eε d(i,h) · xho ∀o. (16)

Now we set our hypothesis that Inequality (16) holds for all i, h where d(i, h) = d, and
then prove that the hypothesis holds for distance d + 1. For any node u at distance d + 1
from i, there is an adjacent node h (to u) such that d(i, h) = d. Then we have

xio ≤ eε d · xho and xho ≤ eε xuo.

Thus, we obtain
xio ≤ eε (d+1) · xuo

That is, the hypothesis (16) holds for all pairs i, u having distance d(i, u) = d + 1. ut

Proof of Proposition 2:

Proof. By Definition 5, the ratio πi/π j is given by

πi
/
π j =

∑
k ykφki∑
k ykφk j

(17)

where
φk j =

(
e−ε

)d(k, j)
≥

(
e−ε

)d(k,i)+d(i, j)
=

(
e−ε

)d(i, j)
· φki

The above inequality is implied by the triangle inequality, d(k, j) ≤ d(k, i) + d(i, j) and
the fact that e−ε < 1. Since yk ≥ 0 for all k, it holds that∑

k

ykφk j ≥
(
e−ε

)d(i, j)
·
∑

k

ykφki

Substituting the above inequality in Eq. (17) completes the proof. ut

Proof of Proposition 3:

Proof. By Proposition 2, it holds for any pair of entries πi, π j that

π j ≤ eε d(i, j) · πi and e−ε d(i, j) · πi ≤ π j.

Summing the above inequalities over j, we get∑
j

π j ≤ πi ·
∑

j

eε d(i, j) and πi

∑
j

e−ε d(i, j) ≤
∑

j

π j.

Since
∑

j π j = 1, the above inequalities imply the upper and lower bounds for πi. ut

Proof of Proposition 4:

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 25

Proof. By Definition 5, a prior π is ε-differentially informative if and only if there exists
vector y such that π = yΦ and yi ≥ 0 for all i ∈ R f ; that is if and only if there are reals
yi ≥ 0 for all i ∈ R f , such that π can be written as a linear combination Φ’s rows as
follows.

π =
∑
i∈R f

yi Φi,

where Φi is the row of Φ corresponding to the query result i. By Definition 6, observe
that each row Φi is equal to

(∑
k∈R f

φik

)
ci. Now substitute this expression in the above

equation for π, and let γi = yi

(∑
k∈R f

φik

)
. Note that γi ≥ 0 if and only if yi ≥ 0 for all

i ∈ R f . Thus we conclude that the condition given by the proposition is equivalent to
the condition given by Def. 5. ut

Proof of Theorem 1:
Proof. Since π is ε-regular, then it holds π = yΦ for a vector y where yi ≥ 0 for all
i ∈ R f . Applying Lemma 2 and noting that si ≥ 0 for all i ∈ R f , we observe that y s ≥ 0
and hence the utility is upper-bounded by y 1 =

∑
i∈R f

yi. Note also that this bound is
met if and only if all entries of the slack vector s in Eq. (7) are 0, because yi ≥ 0 for all
entries i. By Eq. (3), the condition s = 0 is equivalent to Φ · diag(X · R) = 1. ut

Proof of Proposition 6:
Proof. By Proposition 5, the leakage L(X,π) is monotonically increasing with the util-
ityU(X,π, R̂). By Theorem 1, this utility is upper-bounded by

∑
i∈R f

yi substituting this
upper bound in Proposition 5 yields the inequality (9) where the equality holds if and
only if it also holds in Theorem 1 for X and R̂. That is if and only if Φ diag(X R̂) = 1.
This condition is equivalent to the condition of equality in Proposition 6, because if a
remap R satisfies this latter condition then it must be optimal as the utility with R (by
Theorem 1) is globally maximum, that is no other remap can achieve higher utility. ut

Proof of Proposition 7:
Proof. For the noise matrix X̂ of a tight-constraints mechanism, we want to show (ac-
cording to Proposition 1) that for every pair of query results i, h and every output o, it
holds that

x̂io ≤ eε d(i,h) · x̂ho. (18)

By Definition 7 it holds for every pair of nodes i, h and every output o, that

x̂ho = e−ε d(h,o) · x̂oo and x̂io = e−ε d(i,o) · x̂oo. (19)

If x̂oo = 0 then x̂ho = x̂io = 0. In this case, Condition (18) is satisfied. On the other hand,
if x̂oo , 0, then both x̂ho and x̂io are non-zero, and it follows from Equations (19) that,
for every inputs i and h, and every output o,

x̂ho
/
x̂io = e−ε (d(h,o)−d(i,o)).

By the triangle inequality, it holds that d(h, o) − d(i, o) ≤ d(i, h). Knowing also that
e−ε < 1, it follows from the above inequality that

x̂ho
/
x̂io ≥ e−ε d(i,h).

The above inequality implies Condition (18) of differential privacy. ut

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

26 Ehab ElSalamouny, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

Proof of Lemma 3:

Proof. If a mechanism K is a tight-constraints mechanism, then it holds for its noise
matrix X, by Def. 7 that xik = e−ε d(i,k) xkk for all i, k ∈ R f . It also holds that

∑
k∈R f

xik = 1
for all i ∈ R f . Combining these equations yields∑

k∈R f

e−ε d(i,k) xkk = 1, ∀i ∈ R f .

Using the privacy-constraints matrix Φ, the above equations can be written in the ma-
trix form (11). Now let X be the noise matrix of any ε-differentially private mechanism
K . We prove that if X satisfies Equation (11) then K must be a tight-constraints mech-
anism. Note that if X satisfies Equation (11), then there must be a tight-constraints
mechanism X̂ having the same diagonal as X. Suppose for a contradiction that X devi-
ates from X̂ in the values of non-diagonal entries. Deviating the mechanism X̂, which
satisfies Eqs. (10), to another mechanism X while keeping the same diagonal requires
increasing at least one non-diagonal entry xik to preserve the differential privacy condi-
tion xik ≥ e−ε d(i,k) xkk. This increment of xik has to be deducted from one or more entries
in the same row i. Let xi j be any of these decremented entries. To preserve the privacy
condition xi j ≥ e−ε d(i, j)x j j we have to decrease the diagonal entry x j j. The change of x j j

contradicts that the diagonals of X and X̂ are the same. ut

Proof of Lemma 4:

Proof. By Lemma 3, if there is at least a tight-constraints mechanism, then Eq. (11)
must hold for this mechanism’s noise matrix X̂. Taking the transpose of both sides in
this equation, and noting that Φt = Φ (because Φ is symmetric), then we imply that

(diag(X̂))t ·Φ = 1t.

Scaling the above equation by 1/|R f | yields the row vector u, the uniform prior, on the
right hand side. Thus if a tight-constraints mechanism, with noise matrix X̂, exists then

(1/|R f |) (diag(X̂))t ·Φ = u.

which means (By Def. 5) that u is ε-regular, because the row vector (diag(X̂))t has only
non-negative entries. For the opposite implication, assume that u is ε-regular. Then by
definition there is a row vector y with non-negative entries such that yΦ = u. Taking
the transpose of both sides, and multiplying by |R f |, yields that Eq. (11) is satisfied for
the noise matrix X, whose diagonal is given by diag(X) = |R f | · yt (non-negative). Thus
there exists a tight-constraints mechanism whose noise matrix is X. ut

B On the invertibility of the privacy-constraints matrix

In this section we show that the matrix Φ introduced in Definition 4 can be both invert-
ible or not invertible.

Assume that the set of query results R f , and its adjacency relation, are given by the
graph represented in Fig. 7, which is obtained by the Hamming graph 23 by adding an

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

A differentially private mechanism of optimal utility for a region of priors 27

v0

v4

v7 v6

v5

v3

v1

v2

Fig. 7. The set of query results R f and its adjacency relation

arc between each pair of nodes at distance 3 (thus in the resulting graph the maximal
distance is 2).

Consider the matrix Φ defined by φih = αd(vi,vh), where α = e−ε . It is easy to see
that if α = 1/3, then the matrix is not invertible. In fact, if we denote by ci the row
corresponding to the node vi, we have

c0 + c2 + c4 + c6 = c1 + c3 + c5 + c7

This can be easily proved by observing that for each position of the vectorial sum one
side of the equation is 1 + 3α2 while the other is 4α.

On the other hand, there are values of α for which Φ is invertible. For instance for
α ≤ 1/7 it is possible to show that the columns are linearly independent. Intuitively, this
is because the elements which are not in the diagonal are too small to sum up to the
diagonal. Note also that as α approaches 0 the matrix Φ approaches the identity matrix.

ha
l-0

07
60

73
5,

 v
er

si
on

 2
 -

15
 J

an
 2

01
3

Broadening the scope
of Differential Privacy Using Metrics?

Konstantinos Chatzikokolakis1,2, Miguel E. Andrés2,
Nicolás E. Bordenabe3,2, and Catuscia Palamidessi3,2

1 CNRS
2 LIX, Ecole Polytechnique

3 INRIA

Abstract. Differential Privacy is one of the most prominent frameworks used to
deal with disclosure prevention in statistical databases. It provides a formal pri-
vacy guarantee, ensuring that sensitive information relative to individuals cannot
be easily inferred by disclosing answers to aggregate queries. If two databases
are adjacent, i.e. differ only for an individual, then the query should not allow to
tell them apart by more than a certain factor. This induces a bound also on the
distinguishability of two generic databases, which is determined by their distance
on the Hamming graph of the adjacency relation.
In this paper we explore the implications of differential privacy when the indis-
tinguishability requirement depends on an arbitrary notion of distance. We show
that we can naturally express, in this way, (protection against) privacy threats that
cannot be represented with the standard notion, leading to new applications of
the differential privacy framework. We give intuitive characterizations of these
threats in terms of Bayesian adversaries, which generalize two interpretations of
(standard) differential privacy from the literature. We revisit the well-known re-
sults stating that universally optimal mechanisms exist only for counting queries:
We show that, in our extended setting, universally optimal mechanisms exist for
other queries too, notably sum, average, and percentile queries. We explore vari-
ous applications of the generalized definition, for statistical databases as well as
for other areas, such that geolocation and smart metering.

1 Introduction

Differential privacy [1,2] is a formal definition of privacy which originated from the
area of statistical databases, and it is now applied in many other domains, ranging from
programming languages [3] to social networks [4] and geolocation [5].

Statistical databases are queried by analysts to obtain aggregate information about
individuals. It is important to protect the privacy of the participants in the database,
in the sense that it should not be possible to infer the value of an individual from the
aggregate information. This can be achieved by adding random noise to the answer.

? This work is partially funded by the Inria large scale initiative CAPPRIS, the EU FP7 grant
no. 295261 (MEALS), and the project ANR-12-IS02-001 PACE. Nicolás E. Bordenabe was
partially funded by the French Defense procurement agency (DGA) with a PhD grant.

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Author manuscript, published in "The 13th Privacy Enhancing Technologies Symposium 7981 (2013) 82-102"
 DOI : 10.1007/978-3-642-39077-7

Because of the focus on the single individual as the unit of protection, differen-
tial privacy relies in a crucial way on the notion of two databases being adjacent,
i.e. differing only for an individual. A mechanism K is ε-differentially private if for
any two adjacent databases x, x′, and any property Z, the probability distributions
K(x),K(x′) differ on Z at most by eε, namely, K(x)(Z) ≤ eεK(x′)(Z). For two
non-adjacent databases, there is no requirement other than the one induced by the tran-
sitive application of the property. Note that the set of all possible databases, together
with the adjacency relation, forms a Hamming graph, and the graph distance dh(x, x′)
between x and x′ is exactly the number of individuals in which x and x′ differ. Then,
for any databases x, x′, it is easy to see (by transitivity on a path from x to x′) that
K(x)(Z) ≤ eεdh(x,x′)K(x′)(Z). We can view εdh(x, x

′) as the distinguishability level
between two generic databases x, x′: the smaller εdh(x, x′) is, the more similar the
probability distributions K(x), K(x′) are required to be.

When the sensitive information to be protected is other than the value of a single
individual, it is common to consider different notions of adjacency. For example, in
cases of cohesive groups with highly correlated values, we could consider adjacent
two databases differing in any number of individuals of the same group. Similarly,
when dealing with friendship graphs in social networks, adjacency could be defined
as differing in a single edge.

We argue that in some situations the distinguishability level between x and x′ should
depend not only on the number of different values between x and x′, but also on the
values themselves. We might require, for instance, databases in which the value of an
individual is only slightly modified to be highly indistinguishable, thus protecting the
accuracy by which an analyst can infer an individual’s value.

More generally, we might want to apply differential privacy in scenarios when x, x′

are not databases at all, but belong to an arbitrary domain of secrets X . In such a sce-
nario, there might be no natural notion of adjacency, but it is still reasonable to define
a distinguishability level between secrets, and employ the same principle of differential
privacy – i.e. the smaller the distinguishability level between x, x′ is, the more similar
the probability distributions K(x), K(x′) are required to be – to obtain a meaningful
notion of privacy. For instance, when dealing with geographic locations (aka, geoloca-
tion), it might be acceptable to disclose the fact that an individual is in Paris rather than
in New York. However, disclosing the precise location of the individual within Paris
is likely to be undesired (because, for instance, the individual is currently in Moulin
Rouge rather than in his office in Place d’Italie). Thus it would be useful to have a
distinguishability level that depends on the geographical distance.

In this paper we assume that we have a numeric function ε(x, x′), giving the dis-
tinguishability level between x, x′, which depends on the application at hand and the
privacy guarantees we wish to express. The corresponding notion of privacy is the re-
quirement that for an arbitrary pair x, x′ we have

K(x)(Z) ≤ eε(x,x′)K(x′)(Z)

Note that standard ε-differential privacy is a particular case of this notion, that we obtain
by setting ε(x, x′) = ε dh(x, x

′).
Since ε models distinguishability, there are some properties that it is expected to

satisfy. First, it should be the case that any element is indistinguishable from itself, i.e.

2

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

ε(x, x) = 0. Second, the distinguishability level of x and x′ should be the same as that
of x′ and x, i.e. ε(x, x′) = ε(x′, x) (symmetry). Finally, if x1 and x2 are hardly distin-
guishable from x3, then they should be also hardly distinguishable from each other. In
other words, ε(x1, x2) should be bounded by a function of ε(x1, x3), ε(x2, x3). In this
paper we assume the triangle inequality, namely ε(x1, x2) ≤ ε(x1, x3) + ε(x3, x2),
which means that ε is a metric. We believe that more relaxed notions of distinguisha-
bility could potentially be useful, we leave the investigation of this possibility as future
work.4 In the rest of this paper we use d (for “distance”) instead of ε, and we call the
corresponding privacy notion “d-privacy”.

Similarly to the standard definition, d-privacy does not explicitly talk about the ad-
versary’s gain of knowledge. In order to better understand a privacy property, however,
it is useful to provide interpretations that directly reason about the capabilities of the
adversary. Two such interpretations exist for differential privacy: the first states that,
regardless of side knowledge, the adversary’s gain of knowledge by observing the re-
ported answer is the same whether or not the individual’s data were included in the
database [1,6]. The second states that, an informed adversary who already knows all
values except individual’s i, gains no extra knowledge from the reported answer, re-
gardless of side knowledge about i’s value [2].5

In the case of d-privacy, we provide two results that generalize the above interpre-
tations, showing the privacy guarantees provided by a certain metric d. The first uses
the concept of a hiding function φ : X → X . The idea is that φ can be applied to a
secret x before the mechanism K, so that the latter has only access to a hidden version
φ(x), instead of the real secret x. Then d-privacy implies that the adversary’s conclu-
sions (captured by his posterior distribution) are similar (up to a factor depending on φ)
regardless of whether φ is applied to the secret or not. Moreover, we show that certain
classes of hiding functions are “canonical”, in the sense that if the property holds for
those functions, it must hold in general.

The above characterization compares two posterior distributions and does not im-
ply that the adversary learns no information, but that he learns the same regardless of
whether the secret has been hidden or not. We then give a second characterization, com-
paring the adversary’s conclusions (a posterior distribution) to his initial knowledge (a
prior distribution). Since some information is allowed to be revealed, we cannot expect
the two to be similar. Still, if we restrict to a neighborhood N of secrets that are close
to each other, we can show that d-privacy implies that an informed adversary, knowing
that the secret belongs to N , can gain little more information about the exact secret,
regardless of his prior knowledge within N . Similarly to the previous characterization,
we also show that certain classes of neighborhoods are canonical.

We give examples of privacy problems in various contexts, and show how to define
appropriate metrics. In the context of statistical databases, we consider metrics that

4 Several of our results do not actually depend on ε being a metric.
5 The knowledge increase of a non-informed adversary is not bounded by eε. Recalling the well-

known example from [1], consider the side information that Terry Gross is two inches shorter
than the average Lithuanian woman. Then obtaining the average height (even a noisy one)
gives little additional information about Terry Gross to an informed adversary, but substantial
information to a non-informed one.

3

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

depend not only on the number of different values, but also on the values themselves.
First, a stronger variant of differential privacy is given in which databases differing in
a single individual are hardly distinguishable, but the distinguishability level becomes
even lower when the difference in the values is small. Moreover, this metric can be
relaxed to obtain a privacy notion that focuses on protecting the accuracy of a value.
This can be useful, for instance, in case an individual does not mind disclosing his age
group, but wants to protect his exact birthday date (such precise information could in
principle allow to identify the individual with little margin of error).

Departing from statistical databases, we consider smart meters, and the problem
for privacy that can derive from accurate measurement of energy consumption at high
frequency. Further, we consider the problem of hiding the exact position in location-
based services. In all these examples, besides the proper metric notion, we construct
also the canonical adversary which provides the operational interpretation.

Next, we turn our attention to the notion of utility, namely the accuracy of the re-
ported answer, and in particular the Bayesian notion of utility [7,8], which takes into
account the prior knowledge of the user. In general mechanisms may provide different
degrees of utility for the same level of privacy, and obviously it is desirable to identify
the optimal ones. Of particular interest are the universally optimal mechanisms, which
provide optimal utility for all users (i.e., all priors). There are two well known results
concerning universal optimality: the first [7] establishes that for counting queries the ge-
ometric and the truncated geometric mechanisms are universally optimal. The second
[8] says that for any other kind of query no universally optimal mechanism exists.

We revisit these results in our framework and show that in contrast to the standard
case, d-privacy allows to construct (for certain metrics) universally optimal mechanisms
for many other kinds of queries. More precisely, we show that universally optimal mech-
anisms exist in the cases of (i) the sum, average and percentile queries for the Manhattan
metric, and (ii) the average and percentile queries for the Maximum metric.

We also study the additional noise required to achieve privacy for databases queries,
when we use a finer metric than the Hamming distance. Surprisingly, it turns out that in
the case (i) above, the sensitivity of the queries remains the same as in the standard case.
This means that, a standard ε-differentially private mechanism already incorporates “for
free” the additional protection w.r.t. proximity of values.

Related Work. Several works in the differential privacy literature consider adjacency
relations different than the standard one, effectively using a metric tailored to that ap-
plication. Examples include group privacy [1] and edge privacy for graphs [9].

The generalization of differential privacy to arbitrary metrics was considered also
in [10,3]. In those works, however, the purpose of extending the definition was to ob-
tain compositional methods for proving differential privacy in programming languages,
while in our work we focus on the implications of such extension for the theory of dif-
ferential privacy. Namely, we aim at obtaining new meaningful definitions of privacy
for various contexts through the use of different metrics (cf. the examples of the smart
meters and of geolocation), and at investigating the existence of optimal mechanisms.

Another work closely related to ours is [11] in which an extended definition of
differential privacy is used to capture the notion of fairness in classification. A metric d
is used to model the fact that certain individuals are required to be classified similarly,

4

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

and a mechanism satisfying d-privacy is considered fair, since it produces similar results
for similar individuals. We view fairness as one of the many interesting notions that can
be obtained through the use of metrics in various contexts, thus it encourages our goal of
studying d-privacy. With respect to the actual metrics used in this paper, the difference
is that we consider metrics that depend on the individuals’ values, while [11] considers
metrics between individuals.

Contribution. The main contributions of this paper are summarized below:

– We study d-privacy – an extension of differential privacy to arbitrary domains en-
dowed with a metric d – in the general case, independently from any specific metric.

– We give two operational characterizations of d-privacy that directly constraint the
capabilities of the adversary.

– We show examples of applications of d-privacy to privacy scenarios both in databases
and in other contexts.

– We show that several queries (including the sum, average and percentile) admit uni-
versally optimal mechanisms for certain metrics. This contrasts sharply with stan-
dard differential privacy, where such mechanisms exist only for counting queries.

Plan of the Paper. In the next section we recall some preliminary notions about mech-
anisms, metrics, and differential privacy. Section 3 introduces the notion of d-privacy
and presents two characterization results. In Section 4 we give a sufficient and necessary
condition for the privacy of an oblivious mechanism, we discuss Laplace mechanisms,
and we give sufficient conditions for a mechanism to be optimal. In Sections 5 and 6
we give several examples of applications of our notions, in statistical databases with an
enriched notion of privacy, and in other domains, respectively. We also show how to
construct universally optimal mechanisms for some of those examples in the cases of
sum, average, and percentile queries. Section 7 concludes.

All proofs can be found in the appendix.

2 Preliminaries

Mechanisms. Given two sets X and Z , let FZ be a σ-algebra over Z and let P(Z) be
the set of probability measures over Z . A mechanism from X to Z is a (probabilistic)
function K : X → P(Z). A mechanism K can be described in terms of probability
density functions (pdf’s), that is by a function D : X → D(Z) (where D(Z) denotes
the space of the pdf’s over Z), such that D(x) is the pdf of K(x).

The composition H ◦ f of a deterministic function f : X → Y (called a query)
and a mechanism H : Y → P(Z) is the mechanism K : X → P(Z) defined as
K(x) = (H ◦ f)(x) = H(f(x)). Mechanisms of this form are called oblivious.

Let π be a discrete probability measure on X , called a prior.6 Starting from π and
using Bayes’ rule, each observation Z ∈ Z of a mechanism K : X → P(Z) induces a
posterior measure σ = Bayes(π,K,Z) onX , defined as σ(x) = K(x)(Z)π(x)∑

x′∈X K(x′)(Z)π(x′) .

6 We restrict to discrete priors for simplicity; all results could be carried to the continuous case.

5

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Metrics. A metric on a set X is a function dX : X 2 → [0,∞] such that dX (x, y) = 0 iff
x = y, dX (x, y) = dX (y, x), and dX (x, z) ≤ dX (x, y) + dX (y, x) for all x, y, z ∈ X .
The diameter of A ⊆ X is defined as dX (A) = supx,x′∈A dX (x, x

′).
A sequence x1, . . . , xn is called a chain from x1 to xn and denoted by x̃. The length

dX (x̃) of a chain is defined as dX (x̃) =
∑n−1
i=1 dX (xi, xi+1). If dX (x̃) = dX (x1, xn)

then x̃ is called tight.
Of particular interest are metrics induced by a graph (X ,∼X), where ∼X is the

graph’s adjacency relation. In the induced metric, dX (x, x
′) is the length of the shortest

path from x to x′ (or infinite if no path exists). Of great interest are also the Man-
hattan (or L1), the Euclidean (or L2) and the Maximum (or L∞) metrics, denoted by
d1, d2, d∞ respectively. The numerical distance on the reals (which coincides with all
d1, d2, d∞) will be denoted by dR for clarity. Finally, of great interest is the metric
dP on P(Z) defined as dP(µ1, µ2) = supZ∈FZ

| ln µ1(Z)
µ2(Z) | with the convention that

| ln µ1(Z)
µ2(Z) | = 0 if both µ1(Z), µ2(Z) are zero and∞ if only one of them is zero.

Differential Privacy. We fix a finite domain of values V , called the universe. A database
x ∈ Vn consists of n records from V - each corresponding to an individual - that is x
is a tuple 〈x[1], . . . , x[n]〉, x[i] ∈ V , where x[i] is the value of the i-th individual in the
database. We denote by x[v/i] the database obtained from x by substituting the value v
for individual i. The case when individuals are allowed to be absent from the database
can be modeled by the universe V∅ = V∪{∅}where the null value ∅ denotes absence.

A crucial notion for differential privacy is that of adjacency: two databases x, x′ are
adjacent, written x ∼h x′, if they differ in exactly one element. Let dh be the distance
induced by ∼h (i.e., dh(x, x′) is the number of elements in which x, x′ differ). The
graph (Vn,∼h) is known as Hamming graph, and dh as Hamming distance.

Let Z be a set of query outcomes; a mechanism K : Vn → P(Z) satisfies ε-dif-
ferential privacy if adjacent databases produce answers with probabilities that differ at
most by a factor eε:

K(x)(Z) ≤ eε K(x′)(Z) ∀x ∼h x′ ∈ Vn, Z ∈ FZ (1)

Following [3], the definition can be expressed as dP(K(x),K(x′)) ≤ ε for all x ∼h x′.
Moreover, as explained in the introduction, we can rewrite it in terms of the Hamming
distance: dP(K(x),K(x′)) ≤ εdh(x, x′) for all x, x′ ∈ Vn.

A desirable feature of this definition is that it solely depends on the mechanism it-
self, without explicitly talking about the adversary’s side knowledge, or the information
that he learns from the reported answer. However, in order to get a better understanding
of a privacy definition, it is useful to give an “operational” (or “semantic”) interpre-
tation that directly restricts the abilities of the adversary. To this end, we capture the
adversary’s side knowledge by a prior distribution π on Vn, and his conclusions after
observing Z by the posterior distribution σ = Bayes(π,K,Z).

There are two operational interpretations commonly given to differential privacy.
The first can be informally stated as: “regardless of side knowledge, by observing the
reported answer an adversary obtains the same information whether or not the indi-
vidual’s data were included in the database”. This can be formalized as follows: con-
sider a hiding function φi,v : Vn → Vn replacing i’s value by a fixed value v, i.e.

6

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

φi,v(x) = x[v/i], and let Φh = {φi,v | i ∈ 1..n, v ∈ V} be the set of all such functions.
The mechanism K ◦ φi,v behaves as K after removing i’s value; hence we require the
posterior distributions induced byK,K ◦φi,v to be similar. The resulting notion (called
“semantic privacy” in [6])7 can be shown to be implied by differential privacy.

Theorem 1 ([6]). If a mechanism K : Vn → P(Z) satisfies ε-differential privacy then
for all priors π on Vn, all φ ∈ Φh, and all Z ∈ FZ :

dP(σ1, σ2) ≤ 2ε where σ1 = Bayes(π,K,Z) and σ2 = Bayes(π,K ◦ φ,Z)

Note that the above interpretation compares two posterior measures. This requirement
does not imply that the adversary learns no information, but that he learns the same
regardless of the presence of the individual’s data. Both σ1, σ2 can be very different
than the prior π, as the well-known example of Terry Gross [1] demonstrates.

A different interpretation can be obtained by comparing the posterior σ to the prior
distribution π. Of course, we cannot expect those to be similar, since some information
is allowed to be disclosed. Still, we can require the distributions to be similar when
restricted to the value of a single individual, by assuming an informed adversary who
knows all other values in the database. Let Ni(x) = {x[v/i] | v ∈ V} denote the set of
databases obtained from x by modifying i’s value, and let Nh = {Ni(x) | x ∈ Vn, i ∈
1..n}. Knowing that the database belongs to a set N ∈ Nh means that we know all
values except one. We denote by π|N the distribution obtained from π by restricting to
N , i.e. π|N (x) = π(x|N). Requiring π|N , σ|N to be similar brings us the definition of
“semantic security” from [2], which is a full characterization of differential privacy.

Theorem 2 ([2]). A mechanism K : Vn → P(Z) satisfies ε-differential privacy iff for
all priors π on Vn, all N ∈ Nh, and all Z ∈ FZ :

dP(π|N , σ|N) ≤ ε where σ = Bayes(π,K,Z)

Note that if the adversary does not know N ∈ Nh, then his knowledge can (and will in
most cases) be increased. Note also that the above result does not imply that K allows
the adversary to learn Ni(x)! In fact, this is clearly forbidden since it would violate the
same condition for Nj(x), j 6= i, i.e. it would violate the other individuals’ privacy.

3 Generalized Privacy

As discussed in the introduction, differential privacy can be generalized to the case of
an arbitrary set of secrets X , equipped with a metric dX .

Definition 1. A mechanism K : X → P(Z) satisfies dX -privacy, iff ∀x, x′ ∈ X :
dP(K(x),K(x′)) ≤ dX (x, x

′), or equivalently:

K(x)(Z) ≤ edX (x,x′) K(x′)(Z) ∀Z ∈ FZ
7 The only difference between the semantic privacy of [6] and our formulation is that an “addi-

tive” metric between distributions is used instead of the “multiplicative” dP .

7

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Intuitively, the definition requires that secrets close to each other wrt dX , meaning
hardly distinguishable, should produce outcomes with similar probability. This is the
same core idea as in differential privacy, which can be retrieved as X = Vn, dX = εdh.

Note that Definition 1 contains no ε; the distinguishability level is directly given by
the metric. In practice, the desired metric can be obtained from a standard one by scaling
by a proper factor ε (recall that a scaled metric is also a metric). For instance, in the case
of standard differential privacy, the Hamming distance between adjacent databases is 1,
and we want their distinguishability level to be ε, hence we use the scaled version εdh.

Note also that an extended metric (allowing dX (x, x
′) =∞) can be useful in cases

when we allow two secrets to be completely distinguished. The understanding of Defi-
nition 1 is that the requirement is always satisfied for those secrets. Similarly, pseudo-
metrics (allowing dX (x, x

′) = 0 for x 6= x′) could be useful when we want some
secrets to be completely indistinguishable (forcing K(x) and K(x′) to be identical).
To simplify the presentation, the results of this paper assume an extended metric (but
not pseudo). An approximate version of dX -privacy can be defined, similarly to (α, δ)
differential privacy [13]. We leave the study of such notion as future work.

Different metrics dX , dX
′ on the same set X clearly give rise to different privacy no-

tions. The “strength” of each notion depends on the distinguishability level assigned to
each pair of secrets; dX -privacy and dX

′-privacy are in general incomparable. However,
lower distinguishability level implies stronger privacy.

Proposition 1. If dX ≤ dX
′ (point-wise) then dX -privacy implies dX

′-privacy.

For example, some works consider an adjacency relation ∼r slightly different than
∼h, defined as x ∼r x′ iff x′ = x[∅/i] (or vice versa), i.e. x′ can be obtained from x by
removing one individual. This relation gives rise to a metric dr for which it holds that:
1
2dr ≤ dh ≤ dr. From Proposition 1, the two models are essentially equivalent; one
can obtain εdr-privacy from εdh-privacy by doubling ε and vice versa.

Characterization 1. Similarly to standard differential privacy, dX -privacy does not ex-
plicitly talk about the adversary’s gain of knowledge. To better understand the privacy
guarantees provided by a certain metric dX , it is useful to directly reason about the ca-
pabilities of the adversary. Two such characterizations are given, generalizing the two
interpretations of standard differential privacy (Theorems 1,2).

The first characterization uses the concept of a hiding function φ : X → X . The idea
is that φ can be applied to x before the mechanism K, so that the latter has only access
to a hidden version φ(x), instead of the real secret x. Let dX (φ) = supx∈X dX (x, φ(x))
be the maximum distance between a secret and its hidden version. We can show that
dX -privacy implies that the adversary’s conclusions (captured by his posterior measure)
are the same (up to 2dX (φ)) regardless of whether φ is applied or not. Moreover, we
show that certain classes of hiding functions are “canonical”, in the sense that if the
property holds for those, it must hold in general. We start be defining this class.

Definition 2. Let Φ be a set of functions from X to X , called hiding functions. A chain
x̃ is called a maximal Φ-chain iff for every step i there exists φ ∈ Φ s.t. φ(xi) =
xi+1, φ(xi+1) = xi and dX (xi, xi+1) = dX (φ). Then Φ is called maximally tight wrt
dX iff ∀x, x′ ∈ X there exists a tight maximal Φ-chain from x to x′.

8

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Note that the above property requires hiding functions that swap the secrets xi, xi+1.
This is not satisfied by the hiding functions φi,v introduced in the previous section, but
will be satisfied by more general functions used later in the paper.

Theorem 3. Let Φ be a set of hiding functions. If K satisfies dX -privacy then for all
φ ∈ Φ, all priors π on X , and all Z ∈ FZ :

dP(σ1, σ2) ≤ 2 dX (φ) where σ1 = Bayes(π,K,Z) and σ2 = Bayes(π,K ◦φ,Z)

If Φ is maximally tight then the converse also holds.

The above characterization compares two posterior distributions; hence, it does not
impose that the adversary gains no information, but that this information is the same
regardless of whether φ has been applied to the secret or not.

Characterization 2. A different approach is to compare the adversary’s prior and pos-
terior distributions, measuring how much he learned about the secret. Since we allow
some information to be revealed, we cannot expect these distributions to be similar.
Still, if we restrict to a neighborhood N of secrets that are close to each other, we can
show that dX -privacy implies that an informed adversary, knowing that the secret be-
longs toN , can gain little more information about the exact secret regardless of his side
knowledge about N . Moreover, similarly to the previous characterization, we show that
certain classes of neighborhoods are “canonical”.

Definition 3. Let N ⊆ 2X . The elements of N are called neighborhoods. A chain x̃ is
called a maximalN -chain iff for every step i there existsN ∈ N such that {xi, xi+1} ⊆
N and dX (xi, xi+1) = dX (N). ThenN is called maximally tight wrt dX iff ∀x, x′ ∈ X
there exists a tight maximal N -chain from x to x′.

Theorem 4. Let N ⊆ 2X . If K satisfies dX -privacy then for all N ∈ N , all priors π
on X , and all Z ∈ FZ :

dP(π|N , σ|N) ≤ dX (N) where σ = Bayes(π,K,Z)

If N is maximally tight then the converse also holds.

Using meaningful (and maximally tight) sets Φ,N , and applying the above char-
acterizations, we can get an intuitive understanding of the privacy guarantees offered
by dX -privacy. For example, in the case of databases, it can be shown that Nh is maxi-
mally tight wrt the dh metric, hence the characterization of Theorem 2 can be obtained
as a special case of Theorem 4. Theorem 1 can also be obtained from Theorem 3 (even
though Φh is not maximally tight) since it only states an implication in one direction.

4 Answering Queries

To obtain the answer to a query f : X → Y in a private way, we can compose it
with a mechanism H : Y → P(Z), thus obtaining an oblivious mechanism H ◦ f :

9

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

z1 z2

y1 3/4 1/4

y2 1/2 1/2

y3 1/4 3/4

Fig. 1. Counterexample to the converse of Fact 5. The table represents the distribution H . We
note that H ◦ f satisfies (ln 2)-privacy, and that f is 1-sensitive. However H(y1)(z1) = 3/4 6≤
2H(y3)(z1) = 2 1/4, hence H does not satisfy (ln 2)-privacy.

X → P(Z). In this section, we first state the standard compositionality result about
the privacy of H ◦ f , relying on the notion of ∆-sensitivity (aka Lipschitz continuity),
naturally extended to the case of dX -privacy. Then, we introduce the concept of uniform
sensitivity, and we use it to obtain the converse of the aforementioned compositionality
result, which in turn allows to give optimality results later in the paper.

Definition 4. f is ∆-sensitive wrt dX , dY iff dY(f(x), f(x
′)) ≤ ∆dX (x, x

′) for all
x, x′ ∈ X . The smallest such ∆ (if exists) is called the sensitivity of f wrt dX , dY .

Fact 5. Assume that f is∆-sensitive wrt dX , dY andH satisfies dY-privacy. ThenH ◦f
satisfies ∆dX -privacy.

Note that it is common to define a family of mechanisms Hε, ε > 0, instead of
a single one, where each Hε satisfies privacy for a scaled version εdY of a metric of
interest dY . Given such a family and a query f , we can define a family of oblivious
mechanisms Kε = Hε/∆ ◦ f, ε > 0, each satisfying εdX -privacy (from Fact 5).

The converse of the above result does not hold in general, see Fig. 1 for a coun-
terexample. However, it does hold if we replace the notion of sensitivity by the stronger
notion of uniform sensitivity.

Definition 5. Two elements y, y′ ∈ Y are called∆-expansive iff dY(y, y
′) = ∆dX (x, x

′)
for some x ∈ f−1(y), x′ ∈ f−1(y′). A chain ỹ is ∆-expansive iff all steps yi, yi+1

are ∆-expansive. Finally, f is uniformly ∆-sensitive iff it is ∆-sensitive and for all
y, y′ ∈ Y there exists a tight and ∆-expansive chain from y to y′.

Theorem 6. Assume that f is uniformly ∆-sensitive wrt dX , dY . Then H satisfies dY-
privacy if and only if H ◦ f satisfies ∆dX -privacy.

4.1 Laplace Mechanisms

Adding Laplace noise is the most widely used technique for achieving differentia pri-
vacy. The mechanism can be naturally adapted to any metric, using a variant of the ex-
ponential mechanism [14], by providing a properly constructed scaling function. Note
that in the framework of d-privacy, we can express the privacy of the mechanism itself,
on its own domain, without the need to consider a query or a notion of sensitivity.

10

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

(i) Y ⊂ R, Z = R dY = εdR λε(z) =
ε

2

(ii) Y ⊂ R2, Z = R2 dY = εd2 λε(z) =
ε2

2π

(iii) Y ⊂ R2, Z = R2 dY = εd1 λε(z) =
ε2

4

(iv) Y = Z = q[0..k] dY = εdR λε(z) =

eqε

eqε+1
z ∈ {0, qk}

eqε−1
eqε+1

0 < z < qk

Fig. 2. Instantiations of the Laplace mechanism

Definition 6. LetY,Z be two sets, and let dY be a metric onY∪Z . Let λ : Z → [0,∞)
be a scaling function such that D(y)(z) = λ(z) e−dY(y,z) is a pdf for all y ∈ Y (i.e.∫
Z D(y)(z)dν(z) = 1). Then the mechanism L : Y → P(Z), described by the pdf D,

is called a Laplace mechanism from (Y, dY) to Z .

Fact 7 ([14]). Any Laplace mechanism from (Y, dY) to Z satisfies dY-privacy.

Figure 4.1 provides instantiations of the general definition for various choices of
Y,Z and dY used in the paper, by properly adjusting λ(z). The basic case (i) is that of
the one-dimensional continuous Laplace mechanism. Similarly, we can define a two-
dimensional continuous Laplace mechanism (used in Section 6.2), measuring the dis-
tance between points by either the Euclidean (ii) or the Manhattan (iii) metric. In the
discrete setting, we obtain the Truncated Geometric mechanism TGε [7], given by (iv),
using a quantized set of reals as input. We denote by q[0..k] the set {qi | i ∈ 0..k}, i.e.
the set of k + 1 quantized reals with step size q > 0.

4.2 Mechanisms of Optimal Utility

Answering a query privately is useless if the consumer gets no information about the
real answer, thus it is crucial to analyze the mechanism’s utility. We consider consumers
applying Bayesian inference to map the mechanism’s output to a guess that minimizes
their expected loss. A consumer is characterized by a prior π on the set of secrets, and
a loss function l (assumed to be monotone wrt a metric of reference, which is always
dR for the needs of this paper). The utility U(H,π, l) of a mechanism H for such a
consumer is given by the expected loss (under an optimal remap strategy). This is the
Bayesian notion of utility [7], but our results can be extended to risk-averse consumers.

A natural question to ask, then, is whether, for a given query f , there exists a mech-
anism that universally (i.e. for all priors and loss functions) provides optimal utility. Let
Hf (dX) be the set of all mechanisms H : Y → Z (for any Z) such that H ◦ f satisfies
dX -privacy. All mechanisms in Hf (dX) can be used to answer f privately, hence we
are interested in the one that maximizes utility.

Definition 7. A mechanism H ∈ Hf (dX) is f -dX -optimal iff U(H,π, l) ≥ U(H ′, π, l)
for all H ′ ∈ Hf (dX), all priors π and all loss functions l.

11

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

The existence of (universally) optimal mechanisms is far from trivial. For standard
differential privacy, a well-known result from [7] states that such a mechanism does
exist for counting queries, i.e. those of the form “how many users satisfy property P ”.

Theorem 8 ([7]). Let Y = [0..k] and let f : Vn → Y be a counting query. Then the
TGε mechanism with input Y is f -εdh-optimal for all ε > 0.

On the other hand, a well-known impossibility result [8] states that counting queries
are essentially the only ones for which an optimal mechanism exists. This result is based
on the concept of the induced graph ∼f of a query f : Vn → Y , defined as: y ∼f y′ iff
∃x ∼h x′ s.t. f(x) = y, f(x′) = y′.

Theorem 9 ([8]). Let f : Vn → Y be a query such that ∼f is not a path graph. Then
no f -εdh-optimal mechanism exists for any ε < ln 2.

Thus, most interesting queries, e.g. the sum and average, have no optimal mechanisms.
However, the above negative result and the concept of the induced graph are tied

to the Hamming metric dh. This raises the question of whether this special status of
counting queries holds for any metric dX . To answer this question, we give a sufficient
condition for showing the optimality of TGε for an arbitrary query f and metric dX ,
based on the concept of uniform sensitivity.

Theorem 10. Let Y = q[0..k] and assume that f : X → Y is uniformly ∆-sensitive
wrt dX , dR. Then the TGε mechanism with input Y is f -∆dX -optimal.

In the following sections we show that this condition is indeed satisfied by several
important queries, including the sum and average, for various metrics of interest.

5 Privacy in Statistical Databases

In this section, we investigate privacy notions in the context of statistical databases,
other than the standard differential privacy. In contrast to the Hamming distance, which
can be defined independently from the structure of the universe V , we are interested
in metrics that depend on the actual values and the distance between them. To this
end, we assume that the universe is equipped with a metric dV , measuring how far
apart two values are. When the universe is numeric (i.e. V ⊂ R) then dV = dR is the
natural choice. In the case of null values, we can extend a metric dV from V to V∅ by
considering ∅ to be maximally distant from all other values, that is taking dV(∅, v) =
dV(V), v ∈ V . Note that this construction preserves the maximum distance between
values, i.e. dV(V∅) = dV(V).

The first metric we consider, the normalized Manhattan metric, allows to strengthen
differential privacy, obtaining a notion that not only protects the value of an individual,
but also offers higher protection to small modifications of a value. Then we relax this
metric, to obtain a weaker notion, that only protects the “accuracy” of an individual’s
value, but offers higher utility.

12

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

5.1 The Normalized Manhattan Metric

Differential privacy provides indistinguishability between databases differing in a sin-
gle individual, but the level of distinguishability is independent from the actual value
in those databases. Consider for example a database with salary information, and two
adjacent databases x ∼i x′ (∼i denoting that they differ only in the value of the i-th
individual) with x[i] = v, x′[i] = v′. A differentially private mechanism offers dis-
tinguishability level ε(x, x′) = ε, independently from v, v′. This means that when
v = 0, v′ = 1M, the indistinguishability level between x, x′ will be the same as in
the case v = 20K, v′ = 20.001K.

One might expect, however, to have better protection in the second case, since the
change in the individual’s data is insignificant. Being insensitive to such small changes
seems a reasonable privacy requirement since many queries (e.g. sum, average, etc) are
themselves insensitive to small perturbations. The equal treatment of values is particu-
larly problematic when we are obliged to use a “weak” ε, due to a high sensitivity. In
this case, all values are only guaranteed to be weakly protected, while we could expect
that at least close values would still enjoy high protection.

The normalized Manhattan metric d̃1 expresses exactly this idea. Databases dif-
fering in a single value have distance at most 1, but the distance can be substantially
smaller for small modifications of values, offering higher protection in those cases. The
Manhattan metric d1 on Vn and its normalized version d̃1 are defined as:8 d1(x, x′) =∑n
i=1 dV(x[i], x

′[i]) and d̃1(x, x′) =
d1(x,x

′)
dV(V) . Similarly to differential privacy, we use

a scaled version εd̃1 of the metric, to properly adjust the distinguishability level.
Concerning the operational characterizations of Section 3, the hiding functions and

neighborhoods suitable for this metric are:

φi,w = x[w(x[i])/i] for w : V → V Ni,V (x) = {x[v/i] | v ∈ V }
Φ1 = {φi,w | i ∈ 1..n, w : V → V} N1 = {Ni,V (x) | x ∈ Vn, i ∈ 1..n, V ⊆ V}

A hiding function φi,w replaces the value of individual i by applying an arbitrary sub-
stitution of values w (instead of replacing with a fixed value as φi,v does). Moreover,
for the adversary, knowing Ni,V (x) means that he knows the values of all individuals
in the database but i, and moreover he knows that the value of i lies within V . Note that
Φh ⊂ Φ1 and Nh ⊂ N1. We show that Φ1,N1 are “canonical”.

Proposition 2. Φ1,N1 are maximally tight wrt both d1, d̃1.

From Theorem 3, we conclude that εd̃1-privacy is equivalent to requiring that the
adversary’s posterior distributions with or without hiding i’s value should be at most
2εd̃1(φi,w) distant. Since d̃1(φi,w) ≤ 1, hiding the individual’s value in any way has
small effect on the adversary’s conclusions. But if i’s value is replaced by one close
to it, d̃1(φi,w) can be much lower than 1, meaning that the effect on the adversary’s
conclusions is even smaller.

8 Note that in the differential privacy literature, the d1 distance is often used on histograms.
This metric is closely related to the standard dh distance on Vn (it depends only on the record
counts), and different than d1 on Vn which depends on the actual values.

13

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Then, from Theorem 4 we conclude that εd̃1-privacy is equivalent to requiring that,
for an informed adversary knowing the value of all individuals but i, and moreover
knowing that i’s value lies in V , his conclusions differ from his initial knowledge by
at most εdV(V)

dV(V) . This difference is at most ε, but can be much smaller if values in V
are close to each other, meaning that for an adversary who knows i’s value with high
accuracy, the gain is even smaller.

Intuitively, εd̃1-privacy offers a stronger notion of privacy than εdh-privacy:

Proposition 3. d̃1 ≤ dh, thus εd̃1-privacy implies εdh-privacy.

Since distances in d̃1 can be smaller than those in dh, the sensitivity of a query wrt
d̃1 is in general greater than the sensitivity wrt dh, which means that to achieve εd̃1-
privacy we need to apply more noise. However, for a general class of queries, it turns
out that the two sensitivities coincide.

Definition 8. A query f belongs to the family C iff dR(f(x), f(x′)) ≤ dV(x[i], x
′[i]) for

all i ∈ 1..n, x ∼i x′ ∈ Vn, and moreover ∃x ∼i x′ ∈ Vn such that dR(f(x), f(x′)) =
dV(V).

Proposition 4. Let f ∈ C. The sensitivity of f wrt both dh, dR and d̃1, dR is dV(V).

Intuitively, the class C contains queries for which the sensitivity is obtained for
values that are maximally distant. For those queries, using the Truncated Geometric
mechanism we can achieve a notion of privacy stronger than differential privacy using
the same amount of noise!

Results About Some Common Queries. We now focus to some commonly used queries,
namely the sum, average and p-percentile queries. Note that other commonly used
queries such as the max, min and median queries are specific cases of the p-percentile
query. In the following, we assume that the universe is V = q[0..k]∅ with metric dR,
and take X = Vn \ {〈∅, . . . ,∅〉}, that is we exclude the empty database so that the
queries can be always defined.

For these queries we obtain two results: first, we show that they belong to the C
family, which means that we can achieve εd̃1-privacy via the TGε mechanism, using
the same amount of noise that we would need for standard differential privacy.

Proposition 5. The sum, avg, p-perc queries belong to C.

More interestingly, we can show that the Truncated Geometric mechanism is in fact
universally optimal wrt d̃1 for such queries.

Theorem 11. The sum, avg and p-perc queries are all uniformly qk-sensitive wrt d̃1, dR.

Corollary. TGε/qk is f -εd̃1-optimal for f ∈ {sum, avg, p-perc}, ε > 0.

14

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

5.2 The Manhattan Metric

In the previous section, we used the normalized Manhattan metric εd̃1, obtaining a
strong privacy notion that protects an individual’s value, while offering even stronger
protection for small changes in an individual’s value. This however, requires at least as
much noise as standard differential privacy.

On the other hand, there are applications in which a complete protection of an indi-
vidual’s value is not required. This happens, for instance, in situations when the actual
value is not sensitive, but knowing it with high accuracy might allow an adversary to
identify the individual. Consider for example a database with the individuals’ birth-
day, or the registration date and time to some social network. This information, by
itself, might not be considered private, however knowing such information with minute-
accuracy could easily allow to identify an individual. In such situations we might wish
to protect only the accuracy of the value, thus achieving privacy with less noise and
offering more accurate results.

This can be achieved by the Manhattan metric εd1 (without normalization). This
metric might assign a level of distinguishability higher than ε for adjacent databases,
thus the privacy guarantees could be weaker than those of ε-differential privacy. How-
ever, adjacent databases with small changes in value will be highly protected, thus an
adversary cannot infer an individual’s value with accuracy.

Similarly to the previous section, we can obtain characterizations of εd1-privacy us-
ing the same hiding functions Φ1 and neighborhoods N1. The only difference is that
εd1(φi,w) and εd1(Ni,V) can be now higher than ε, offering weaker protection. How-
ever, when the adversary already knows i’s value with high accuracy, meaning that
values in V are close to each other, it is guaranteed that his knowledge will increase
by a small factor (possibly even smaller than ε), ensuring that he cannot infer the value
with even higher accuracy.

Note that the sensitivity of a query can be substantially lower wrt d1 than wrt dh.
For example, the sum query is 1-sensitive wrt d1 but qr-sensitive wrt dh. This means
that the noise we need to add could be substantially lower, offering better utility at the
expense of lower privacy, but still sufficient for a given application.

Example 1. Consider a database containing the registration date on some social net-
work, expressed as the number of days since Jan 1, 2000. We want to privately release
the earliest registration date among individuals satisfying some criteria. A registration
date itself is not considered sensitive, however from the result of the query it should
be impossible to infer whether a particular individual belongs to that set. Since values
can range between 0 and approximately 5.000, the sensitivity of the min query wrt dh
is 5.000, while wrt d1 it is only 1. By using εdh we protect (up to the intended level ε)
an individual’s registration date within the whole range of values, while by using ε

5d1
we provide the intended protection only within a radius of 5 days. More precisely: in
the first case two adjacent databases will always have distinguishability level ε, while
in the second case such level of protection is guaranteed only if the individual’s reg-
istration date differs by at most 5 days in the two databases (if they differ more the
distinguishability level will increase proportionally). The second case, of course, offers
less privacy, but, depending on the application, confusion within 5 days can be enough

15

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120

1
−

δ

α (days)

ǫ = 0.1
ǫ = 0.2
ǫ = 0.3

(a) ε
5
d1-privacy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20000 40000 60000 80000 100000

1
−

δ

α (days)

ǫ = 0.1
ǫ = 0.2
ǫ = 0.3

(b) εdh-privacy
Fig. 3. Utility for various values of ε

to prevent an individual from being identified. On the other hand, the trade-off with
utility can be much more favorable in the second case: In Figure 1 we show the utility
of a Laplace mechanism for both metrics, in terms of (α, δ)-usefulness (meaning that
the mechanism reports a result within distance α from the real value with probability
at least 1− δ).9 Clearly, ε5d1-privacy gives acceptable utility while εdh-privacy renders
the result almost useless.

Finally, the optimality result from the previous section also holds for d1.

Theorem 12. The sum, avg and p-perc queries are all uniformly 1-sensitive wrt d1, dR.

Corollary. TGε is f -εd1-optimal for f ∈ {sum, avg, p-perc}, ε > 0.

6 Privacy in Other Contexts

6.1 Smart Meters

A smart meter is a device that records the consumption of electrical energy at poten-
tially very short time intervals, and transmits the information to the utility provider, thus
offering him the capability to monitor consumption accurately and almost in real-time.

The Problem. Although smart meters can help improving energy management, they
create serious privacy threats: By analyzing accurate consumption data, thanks to appli-
ance signature libraries it is possible to identify which electric devices are being used
[15]. It has even been shown that, depending on the granularity of measurement and
the resolution of data, it is possible to deduce what TV channels, and which movies are
being watched [16].

Several papers addressed the privacy problems of smart metering in the recent past.
The solution proposed in [17] is based on the use of techniques of (standard) differential
privacy in order to send sanitized sums of the readings over some period of time (e.g.
an hour, a day, a month) to the service provider. Since this solution is tailored to the use
of smart metering for billing purposes, the noise added is assumed to be positive.

9 Using Bayesian utility leads to similar results.

16

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

The Model. For the sake of generality, we assume here that the noise could be of any
kind (not necessarily positive). We can regard the readings over the period [1..n] as
a tuple x ∈ Vn, so that x[i] represents the reading at the time i. Since [17] uses the
standard differential privacy framework, the distinguishability metric on these tuples is
assumed to be the Hamming distance, and therefore the privacy mechanism is tuned
to protect the value of x[i], regardless of whether the variation of this value is small
or large. However, the solution proposed in [17] is general and can be adapted to a
different distinguishability metric.

We argue that for the case of smart meters, the problem that derives from the ex-
treme accuracy of the readings can be addressed with limited noise by adopting a metric
that is sensitive also to the distance between values, and not only to the change of the
value for a reading x[i]. The reason is the same as illustrated in previous section: if
we want to protect small variations in the reading of x[i], it is not a good idea to tune
the sensitivity on the difference between the extremes values, because we would end
up introducing a lot of noise. In fact, the experiments in [16] are performed on actual
smart meters that are in the process of being deployed. These meters send readings to
the service provider every 2 seconds. The solution proposed in [17] offers good privacy
guarantees by completely protecting each measurement. However, such a definition is
too strong if reporting values at short intervals is a requirement. With standard differen-
tial privacy, we cannot hope to fully protect each measurement without introducing too
much noise. On the other hand, using a more relaxed metric, we can at least provide a
meaningful privacy guarantee by protecting the accuracy of the values. Some privacy
will still be lost, but the attacks described above where the individual’s behaviour is
completely disclosed, will be prevented.

The Manhattan distance d1 on Vn, however, is not suitable to model the privacy
problem we have here: in fact d1 is suitable to protect an individual x[i] and its value,
while here we want to protect all the values at the same time. This is because the ad-
versary, i.e., the service provider, already knows an approximation of all values. Note
the difference from the case of Section 5: there, the canonical adversary knows all exact
values except x[i], and for x[i] he only knows an approximate value. (In the case of
standard differential privacy, the canonical adversary knows all values except x[i], and
for x[i] he does not even know an approximate value.)

The suitable distance, in this case, is the maximum distance between components,
d∞. In fact, we should consider x, x′ “indistinguishable enough” (i.e. d(x, x′) ≤ δ,
for a certain δ) if and only if for each component i, x[i], x′[i] are “indistinguishable
enough” (i.e. d(x[i], x′[i]) ≤ δ, for the same δ). It is easy to see that the only distance
that satisfies this property is d(x, x′) = d∞(x, x′) = maxi dV(x[i], x

′[i]).

Example 2. We illustrate the application our method to distort the digital signature of
a tv program. The grey line in Fig. 4(a) represents the energy consumption of the first
5 minutes of Star Trek 11 [15]. The black line is (the approximation of) the signature
produced by a smart meter that reports the true readings every 10 seconds (the samples
are represented by the dots). The blue and the magenta dots in 4(b) are obtained by
adding laplacian noise to the true readings, with ε values .1 and .5 respectively. As we
can see, especially in the case of ε = .5, the signature is not recognizable.

17

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

(a) (b)

Fig. 4. Digital signature of a tv program (a) and its noisy reporting (b).

Concerning the characterization results, we use hiding functions substituting the
value of all readings. Moreover, we use neighborhoods modelling an adversary that
knows all readings with some accuracy, i.e. knows that each reading i lies within Vi.

Φ∞ = {φ1,w1
◦ . . . ◦ φn,wn | wi : V → V ∀i ∈ 1..n}

N{Vi} = {〈v1, . . . , vn〉 | vi ∈ Vi, i ∈ 1..n}
N∞ = {N{Vi} | Vi ⊆ V, i ∈ 1..n}

We can show that Φ∞,N∞ are maximally tight.
Finally, we show that TGε is universally optimal for avg and p-perc.

Theorem 13. The avg and p-perc queries are both uniformly 1-sensitive wrt d∞, dR.

Corollary. TGε is f -εd∞-optimal for f ∈ {avg, p-perc}, ε > 0.

6.2 Geolocation

In this subsection we briefly describe an application of our framework to privacy-aware
location-based systems. We refer to [18] for more details.

Privacy notions have been already studied in previous works. Some of these works
[19,20,21] propose the use of the expectation of distance error of the attacker as the way
to quantify the privacy offered by a mechanism. Others works [22,23,24] rely on the
well-known concept of k-anonymity. The notion of relevance is also used to measure
location privacy in [25]. A strong advantage of the use of d-privacy as privacy notion is
that it abstracts from the side-knowledge of the attacker.

The Problem. In several situations it is desirable to know the location of an individual
or a group of individuals in order to provide a service. For instance: In census-based
statistics, to determine the population density in certain areas, in transportation industry,
to estimate the average number of people who need to travel between two given stations,
and in smartphone applications, to obtain points of interest nearby such as restaurants.

18

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Due to privacy concerns, an individual may refuse to disclose his exact location to
the service provider. Nevertheless, he may be willing to reveal approximate location in-
formation.It is worth noting that for several location-based systems it is usually enough
to obtain an approximate location to be able to provide an accurate service. Note how-
ever, that in order to guarantee a non-negligible level of privacy, the random location
cannot be generated naively. Therefore, if we want to develop a method to randomize
location coordinates, we have to understand what kind of privacy the user expects to
have, and how much information he is willing to reveal.

The Model. In this scenario, the privacy level depends on the accuracy with which an
attacker can guess an individual’s location from the reported one. We will therefore aim
for a distance-dependent notion of privacy, requiring points that are close in distance to
each other to be indistinguishable from the attacker’s point of view. Our method will
still allow the service provider to distinguish between points that are far from each other.

We consider the problem of geolocation on the Euclidean plane, which is a good
approximation of the Earth surface when the area is not “too large”. In this scenario,
possible locations of an individual will be modeled with a set X ⊆ R2, and possible
reported values will be represented by a set Z ⊆ R2. The metric dX used in this context
will be the Euclidean distance d2.

Concerning the characterizations of Section 3, any function φ : R2 → R2 can
be used as a hiding function. Moreover, a neighborhood can be any region N ⊆ R2,
modelling an informed adversary who knows that the user is located within N . Hence
we take Φ2 = R2 → R2 and N2 = 2R

2

, both of which are maximally tight wrt d2.
In order to obtain a mechanism which satisfies εd2-privacy, we can use the Laplace

mechanism Lε on R2 mentioned in Section 4.1, that is, the one described by the pdf
Dε(x)(z) = ε2

2π e
−εd2(x,z) x, z ∈ R2. The results in Section 4.1 ensure that such

mechanism satisfies εd2-privacy.

7 Conclusion

Starting from the observation that differential privacy requires that the distinguishabil-
ity of two databases depends on their Hamming distance, we have explored the conse-
quences of extending this principle to arbitrary metrics. In this way we have obtained a
rich framework suitable to model a large variety of privacy problems, and in domains
other than statistical databases. Furthermore, even in statistical databases applications,
whenever the privacy concern is related to disclosing small variations in the values
of the individuals (rather than large ones), then our framework allows a more precise
calibration of the noise necessary for achieving the intended level of privacy, and this
results, in general, in a better utility than the one achievable under the constraint of
standard differential privacy. We have investigated the trade-off between privacy and
utility in this extended setting, and it turns out changing the metric has considerable
implications on the existence of universally optimal mechanisms. In particular, for the
Manhattan distance, the normalized Manhattan distance, and the max distance it is pos-
sible to define universally optimal mechanisms for several common queries like the

19

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

sum, the average, and the percentile. This contrast sharply with the case of standard dif-
ferential privacy, where universally optimal mechanisms exist only for counting queries.
Finally, we have shown the applicability of our framework to various privacy problems
in different domains, including smart meters and geolocation.

References

1. Dwork, C.: Differential privacy. In: Proc. of ICALP. Volume 4052 of LNCS., Springer
(2006) 1–12

2. Dwork, C., Mcsherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: Proc. of TCC. Volume 3876 of LNCS., Springer (2006) 265–284

3. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential
privacy. In: Proc. of ICFP, ACM (2010) 157–168

4. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proc. of S&P, IEEE
(2009) 173–187

5. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy: Theory
meets practice on the map. In: Proc. of ICDE, IEEE (2008) 277–286

6. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary informa-
tion in data privacy. In: Proc. of KDD, ACM (2008) 265–273

7. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. In: Proc. of STOC, ACM (2009) 351–360

8. Brenner, H., Nissim, K.: Impossibility of differentially private universally optimal mecha-
nisms. In: Proc. of FOCS, IEEE (2010) 71–80

9. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data
analysis. In: Proc. of STOC, ACM (2007) 75–84

10. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning for dif-
ferential privacy. In: Proc. of POPL, ACM (2012)

11. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness.
In: Proc. of ITCS, ACM (2012) 214–226

12. Chatzikokolakis, K., Andrés, Miguel, E., Bordenabe, Nicolás, E., Palamidessi, C.: Broaden-
ing the scope of Differential Privacy using metrics. Tech. rep., INRIA (2012) To appear in
PETS 2013. Available at: http://hal.inria.fr/hal-00767210.

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Pri-
vacy via distributed noise generation. In: Proc. of EUROCRYPT. Volume 4004 of LNCS.,
Springer (2006) 486–503

14. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proc. of FOCS,
IEEE (2007) 94–103

15. Lam, H., Fung, G., Lee, W.: A novel method to construct taxonomy electrical appliances
based on load signatures. IEEE Trans. on Consumer Electronics 53(4) (2007) 653—660

16. Greveler, U., Justus, B., Loehr, D.: Multimedia content identification through smart meter
power use profiles. In: CPDP. (2012)

17. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates. IACR
Cryptology ePrint Archive 2011 (2011) 134

18. Andrés, M., Bordenabe, N., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability:
Differential privacy for location-based systems. CoRR abs/1212.1984 (2012)

19. Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying location pri-
vacy. In: Proc. of S&P, IEEE (2011) 247–262

20. Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.P., Boudec, J.Y.L.: Protecting
location privacy: optimal strategy against localization attacks. In: Proc. of CCS, ACM (2012)
617–627

20

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

21. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: SecureComm,
IEEE (2005) 194–205

22. Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies for
location-based services. In: Proc. of ICDE Workshops. (2005) 1248

23. Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services with sybil-
query. In: Proc. of UbiComp, ACM (2009) 31–40

24. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy.
In: Proc. of PERVASIVE. Volume 3468 of LNCS., Springer (2005) 152–170

25. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.: Location
privacy protection through obfuscation-based techniques. In: Proc. of DAS. Volume 4602 of
LNCS., Springer (2007) 47–60

A Proofs of Section 3

Proposition 1. If dX ≤ dX
′ (point-wise) then dX -privacy implies dX

′-privacy.

Proof. Trivial, since dP(K(x),K(x′)) ≤ dX (x, x
′) ≤ dX

′(x, x′). ut

The following simple lemma states that bounding dP is equivalent to the usual for-
mulation of bounding the ratio between probabilities.

Lemma 1. Let µ1, µ2 be probability measures on Z . Then

dP(µ1, µ2) ≤ b iff ∀Z ∈ FZ : e−bµ2(Z) ≤ µ1(Z) ≤ ebµ2(Z)

Proof. iff) We have | ln µ1(Z)
µ2(Z) | ≤ dP(µ1, µ2) ≤ b, hence −b ≤ ln µ1(Z)

µ2(Z) ≤ b, which

implies e−b ≤ µ1(Z)
µ2(Z) ≤ eb. if) We have that | ln µ1(Z)

µ2(Z) | is bounded from above by b, but
dP(µ1, µ2) is the least such bound hence dP(µ1, µ2) ≤ b. ut

The following Lemma shows the usefulness of tight chains.

Lemma 2. Let x1, . . . , xn be a tight chain. If K satisfies dX -privacy on all adjacent
elements of the chain, then it also satisfies it for x1, xn. That is

dP(K(xi),K(xi+1)) ≤ dX (xi, xi+1) ∀1 ≤ i < n

implies dP(K(x1),K(xn)) ≤ dX (x1, xn).

Proof. Using the fact that dP is itself a metric, we have

dP(K(x1),K(xn)) ≤
∑n−1
i=1 dP(K(xi),K(xi+1)) triangle ineq. for dP

≤∑n−1
i=1 dX (xi, xi+1) hypothesis

= dX (x1, xn) tightness

ut

21

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Theorem 3. Let Φ be a set of hiding functions. If K satisfies dX -privacy then for all
φ ∈ Φ, all priors π on X , and all Z ∈ FZ :

dP(σ1, σ2) ≤ 2 dX (φ) where σ1 = Bayes(π,K,Z) and σ2 = Bayes(π,K ◦φ,Z)

If Φ is maximally tight then the converse also holds.

Proof. Assume that K satisfies dX -privacy and let π be a prior, φ ∈ Φ and Z ∈ FZ .
We need to show that

∀x ∈ X : e−2dX (φ)σ1(x) ≤ σ2(x) ≤ e2dX (φ)σ1(x)

(then conclude by applying Lemma 1). Let x ∈ X , we have:

σ2(x)

=
(K ◦ φ)(x)(Z)π(x)∑

x′∈X (K ◦ φ)(x′)(Z)π(x′)
def. of Bayes

=
K(φ(x))(Z)π(x)∑

x′∈X K(φ(x′))(Z)π(x′)

≤ edX (x,φ(x))K(x)(Z)π(x)∑
x′∈X e

−dX (x′,φ(x′))K(x′)(Z)π(x′)
dX -privacy

≤ edX (φ)K(x)π(x)(Z)

e−dX (φ)
∑
x′∈X K(x′)(Z)π(x′)

dX (x, φ(x)) ≤ dX (φ)

≤ e2dX (φ)σ1(x) def. of Bayes

and symmetrically for σ2(x) ≥ e−2dX (φ)σ1(x).
For the opposite direction, assume thatΦ is maximally tight (Def 2), that dP(σ1, σ2) ≤

2dX (φ) holds for all π, φ, Z, but dX -privacy is violated for some x, x′ ∈ X . From Def 2,
there exist a tight maximal Φ-chain x̃ from x to x′. Then from Lemma 2, we get that
dX -privacy is also violated for some adjacent xi, xi+1 in the chain, that is:

K(xi)(Z) > edX (xi,xi+1)K(xi+1)(Z) for some Z (2)

We fix Z to the one above. Since x̃ is a maximal Φ-chain, there exists φ ∈ Φ such that
φ(xi) = xi+1, φ(xi+1) = xi and dX (xi, xi+1) = dX (φ). Fixing this φ, we define a
function f : P(X)→ R as follows:

f(π) =

∑
x′∈X K(x′)(Z)π(x′)∑

x′∈X K(φ(x′))(Z)π(x′)

Let δ(x) denote the Dirac measure assigning probability 1 to x, from (2) we have that

f(δ(xi)) =
K(xi)(Z)

K(xi+1)(Z)
> e−dX (xi,xi+1)

f(δ(xi+1)) =
K(xi+1)(Z)

K(xi)(Z)
< e−dX (xi,xi+1)

22

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

From the continuity of f on the line between δ(xi) and δ(xi+1), there exists a prior
π = tδ(xi)+(1−t)δ(xi+1), t ∈ (0, 1), such that f(π) = e−dX (xi,xi+1). Note that since
π is distinct from δ(xi), δ(xi+1), it holds that π(xi) > 0, π(xi+1) > 0. By applying the
hypothesis for this π, we get

dP(σ1, σ2) ≤ 2dX (φ) ⇒
σ1(xi) ≤ e2dX (φ)σ2(xi) (Lemma 1)⇒

K(xi)(Z)π(xi)∑
x′∈X K(x′)(Z)π(x′)

≤ e2dX (φ) K(φ(xi))(Z)π(xi)∑
x′∈X K(φ(x′))(Z)π(x′)

(Def. of σ1, σ2)⇒

K(xi)(Z) ≤ e2dX (φ)f(π)K(φ(xi))(Z) (π(xi) > 0)⇒
K(xi)(Z) ≤ edX (xi,xi+1)K(xi+1)(Z)

which contradicts (2). ut

Theorem 4. Let N ⊆ 2X . If K satisfies dX -privacy then for all N ∈ N , all priors π
on X , and all Z ∈ FZ :

dP(π|N , σ|N) ≤ dX (N) where σ = Bayes(π,K,Z)

If N is maximally tight then the converse also holds.

Proof. Assume that K satisfies dX -privacy. We fix some N ∈ N , π ∈ P(X), Z ∈
FZ and let σ = Bayes(π,K,Z). Note that π|N , σ|N are distributions on N . From
Lemma 1 we need to show that

e−dX (N)π|N (x) ≤ σ|N (x) ≤ edX (N)π|N (x) ∀x ∈ N

Fixing some x ∈ N , we have:

σ|N (x) = σ(x|N) def. of σ|N

=
σ(x)∑

x′∈N σ(x
′)

=
π(x)K(x)(Z)∑

x′∈N π(x
′)K(x′)(Z)

def. of Bayes

≤ π(x)K(x)(Z)∑
x′∈N π(x

′)e−dX (x,x′)K(x)(Z)
dX -privacy

≤ edX (N) π(x)∑
x′∈N π(x

′)
dX (x, x

′) ≤ dX (N)

= edX (N)π|N (x)

and symmetrically for σ|N (x) ≥ e−dX (N)π|N (x).
For the opposite direction, assume thatN is maximally tight (Def 3) but dX -privacy

is violated for some x, x′ ∈ X . From Def 3, there exist a tight N -chain x̃ from x to x′.

23

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Then from Lemma 2, we get that dX -privacy is also violated for some adjacent xi, xi+1

in the chain, that is:

K(xi)(Z) > edX (xi,xi+1)K(xi+1)(Z) for some Z (3)

Since x̃ is anN -chain, there existN ∈ N such that {xi, xi+1} ⊆ N and dX (xi, xi+1) =
dX (N). We define a prior distribution πt(x) as

πt(x) =

t x = xi

1− t x = xi+1

0 otherwise

Using that prior for t > 0, we fix some Z ∈ FZ and let σt = Bayes(πt,K, Z). We
have

σt|N (xi) ≤ edX (N)πt|N (xi) (hypoth., Lemma 1)⇒
σt(xi) ≤ edX (N)πt(xi) (πt(N) = σt(N) = 1)⇒

πt(xi)K(xi)(Z)∑
x′∈X πt(x

′)K(x′)(Z)
≤ edX (N)πt(xi) (def. of Bayes)⇒

tK(xi)(Z)

tK(xi)(Z) + (1− t)K(xi+1)(Z)
≤ edX (N)t (def. of πt)⇒

K(xi)(Z)

tK(xi)(Z) + (1− t)K(xi+1)(Z)
≤ edX (N) (t > 0)⇒

K(xi)(Z)

tK(xi)(Z) + (1− t)K(xi+1)(Z)
≤ edX (xi,xi+1) (dX (xi, xi+1) = dX (N))

The above inequality holds for all t > 0. Finally, taking the limt→0 on both sides we
get

K(xi)(Z) ≤ edX (xi,xi+1)K(xi+1)(Z)

which is a contradiction of (3). ut

B Proofs of Section 4

Fact 5. Assume that f is∆-sensitive wrt dX , dY andH satisfies dY-privacy. ThenH ◦f
satisfies ∆dX -privacy.

Proof. Assume that H satisfies dY-privacy and let x, x′ ∈ X . We have:

dP((H ◦ f)(x), (H ◦ f)(x′)) = dP(H(f(x)), H(f(x′)))

≤ dY(f(x), f(x
′)) dY-privacy

≤ ∆dX (x, x
′) ∆-sensitivity

ut

24

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Theorem 6. Assume that f is uniformly ∆-sensitive wrt dX , dY . Then H satisfies dY-
privacy if and only if H ◦ f satisfies ∆dX -privacy.

Proof. The only if part is Fact 5. For the if part, fix some y, y′ ∈ Y and let y1, . . . , yn be
the tight∆-expansive chain from y to y′ guaranteed to exist by the definition of uniform
∆-sensitivity. Then, for all 1 ≤ i < n, since yi, yi+1 are ∆-expansive, there exist

x ∈ f−1(yi), x′ ∈ f−1(yi+1) such that dY(f(x), f(x
′)) = ∆dX (x, x

′)

Hence

dP(H(yi), H(yi+1)) = dP(H(f(x)), H(f(x′)))

≤ ∆dX (x, x
′) ∆dX -privacy of H ◦ f

= dY(yi, yi+1)

So H satisfies dY-privacy for all adjacent elements in the chain, hence from Lemma 2
it also satisfies it for y, y′. ut

The following result is standard, we provide the proof for completeness.

Fact 7 ([14]). Any Laplace mechanism from (Y, dY) to Z satisfies dY-privacy.

Proof. For the pdf describing the mechanism we have:

D(y)(z) = λ(z) e−dY(y,z)

≤ λ(z) e−(dY(y′,z)−dY(y,y′)) triangle ineq.

= edY(y,y′)λ(z) e−εdY(y′,z)

= edY(y,y′)D(y′)(z)

for all y, y′ ∈ Y, z ∈ Z . The above inequality can be directly extended from the pdf to
the measures, thus we conclude that the mechanism satisfies dY-privacy. ut

B.1 Proofs of Section 4.2

To prove our sufficient condition for optimality (Theorem 10), we introduce the concept
of a mechanism being optimal not wrt a specific query, but wrt the metric of its input
domain. Let H(dY) be the set of all mechanisms H : Y → Z (for any Z) satisfying
dY-privacy.

Definition 9. A mechanism H ∈ H(dY) is dY-optimal iff U(H,π, l) ≥ U(H ′, π, l) for
all H ′ ∈ H(dY), all priors π and all loss functions l.

Notice the difference between dY-optimal and f -dX -optimal; the latter refers to a
specific query. The two notions can be related in the case of uniformly sensitive queries
by the following result:

25

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Proposition 6. Assume that f is uniformly ∆-sensitive wrt dX , dY . Then H is f -∆dX -
optimal iff it is dY-optimal.

Proof. From uniform ∆-sensitivity and Theorem 6, we get that H(dY) = Hf (∆dX).
Then the result follows directly from the definition of optimality (Definitions 7,9). ut

The importance of the induced graph ∼f in optimality results comes from the fact
that f is always uniformly sensitive wrt the metric induced by ∼f .

Proposition 7. Let f be a query with induced graph ∼f , and let df be the metric in-
duced by ∼f . Then f is uniformly 1-sensitive wrt dh, df .

Proof. Let x, x′ ∈ X and let n = dh(x, x
′). We first need to show that f is 1-sensitive

wrt dh, df , that is df (f(x), f(x′)) ≤ n. Since dh is induced by ∼h, there exists a ∼h-
path x1 . . . , xn such that x = x1, x

′ = xn. By definition of ∼f we have that f(xi) ∼f
f(xi+1), thus f(x1), . . . , f(xn) is a ∼f -path of length n from f(x) to f(x′). Since
df (f(x), f(x

′)) is the length of the shortest such path, we have that df (f(x), f(x′)) ≤
n.

For the “uniformly” part, let y, y′ ∈ Y and n = df (y, y
′). We need to show that

there exists a tight and 1-expansive chain from y to y′.
Since df is induced by ∼f , there exist a ∼f -path ỹ = y1, . . . , yn such that y =

y1, y
′ = yn This implies that df (yi, yi+1) = 1 and thus df (ỹ) = n = df (y, y

′) so the
chain is tight.

Moreover, from the definition of ∼f we have that there exist x ∼h x′ such that
f(x) = yi, f(x

′) = yi+1, so dh(x, x′) = 1 which means that yi, yi+1 are 1-expansive,
and this happens for all 1 ≤ i < n so the chain is 1-expansive. ut

We can now show the optimality of TGε with input q[0..k] wrt the εdR metric,
independently from any query.

Proposition 8. Let Yq = q[0..k]. The TGε mechanism with input Yq is εdR-optimal for
all ε > 0.

Proof. FixY = 0..k andYq = q[0..k] for some k ∈ N, q > 0, and let TGε(Y), TGε(Yq)
denote the Truncated Geometric mechanisms with input Y,Yq respectively.

From Theorem 8 we known that TGε(Y) is f -εdh-optimal when f is a counting
query. For counting queries, df (the metric that corresponds to their induced graph) and
dR coincide, thus from Prop 7 we get that f is uniformly 1-sensitive wrt dh, dR. Then
from Prop 6 we have that that TGε(Y) is εdR-optimal. This mechanism has pdf

Dε(y)(z) = λε(z) e
−ε dR(y,z) λε(z) =

{
eε

eε+1 z ∈ {0, k}
eε−1
eε+1 0 < z < k

We now show that TGε(Yq) is also εdR-optimal. The metric spaces (Y, εdR) and (Yq, ε 1qdR)
are isometric. So we can obtain a mechanism D′ε with input Yq by replacing i with qi
and εdR with ε 1qdR). The pdf of this mechanism is:

D′ε(y)(z) = λε(z) e
−ε 1

q dR(y,z) λε(z) =

{
eε

eε+1 z ∈ {0, qk}
eε−1
eε+1 0 < z < k

26

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Due to the isometry, Dε satisfies εdR-privacy iff D′ε satisfies ε 1qdR-privacy, thus (from
the optimality of Dε) it follows that D′ε is ε 1qdR-optimal for all ε > 0.

Finally we define:
D′′ε = D′qε

From the optimality of D′ε we get that D′′ε is (qε) 1qdR-optimal, i.e. it is εdR-optimal.
This concludes the proof, since D′′ε is exactly the pdf of TGε(Yq). ut

The results above bring us directly to our sufficient condition.

Theorem 10. Let Y = q[0..k] and assume that f : X → Y is uniformly ∆-sensitive
wrt dX , dR. Then the TGε mechanism with input Y is f -∆dX -optimal.

Proof. Direct corollary of Prop 8 and Prop 6. ut

C Proofs of Section 5

Proposition 2. Φ1,N1 are maximally tight wrt both d1, d̃1.

Proof. We first consider d1. Let x, x′ ∈ Vn, we show that there exist a tight chain from
x to x′ that is both a maximal Φ1-chain and a maximalN1-chain. We recursively create
a chain x1, . . . , xn+1 from x to x′ by modifying one element at a time:

x1 = x

xi+1 = xi[
x′[i]/i] i ∈ 1..n

It is easy to see that d1(x, x′) =
∑n
i=1 d1(xi, xi+1) so the chain is tight wrt d1.

Fix any i ∈ 1..n and let w : V → V defined as:

w(v) =

x′[i] if v = x[i]

x[i] if v = x′[i]

v otherwise

For the hiding function φi,w ∈ Φ1 it holds that

φi,w(xi) = xi+1 φi,w(xi+1) = xi d1(xi, xi+1) = d1(φi,w)

hence the chain is a maximal Φ1-chain.
Moreover, let V = {x[i], x′[i]}. For the neighborhood Ni,V (xi) ∈ N1 it holds that

{xi, xi+1} ⊆ Ni,V (xi) d1(xi, xi+1) = d1(Ni,V (xi))

so the chain is a maximal N1-chain.
The case of d̃1 is similar, since it is a scaled version of d1. ut

Proposition 3. d̃1 ≤ dh, thus εd̃1-privacy implies εdh-privacy.

27

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Proof. Fix x, x′ ∈ Vn and let I = {i ∈ 1..n | x[i] 6= x[i′]}. Then

d̃1(x, x
′) =

∑
i∈I dV(x[i], x[i

′])

dV(V)
≤

∑
i∈I dV(V)
dV(V)

= |I| = dh(x, x
′)

ut

We continue by introducing a relaxed version of the concept of maximalN -tightness
(Def 3), calledN -tightness, by simply dropping the requirement dX (xi, xi+1) = dX (N)
from Def 3.

Definition 10. Let N ⊆ 2X . A chain x̃ is called an N -chain iff for every step i there
exists N ∈ N such that {xi, xi+1} ⊆ N . Then N is called tight wrt dX iff ∀x, x′ ∈ X
there exists a tight N -chain from x to x′.

We can now show the (maximal wrt dh, simple wrt d1, d̃1) tightness of Nh, which
will be useful later on.

Proposition 9. Nh is maximally tight wrt dh and tight wrt both d1, d̃1.

Proof. Let x, x′ ∈ Vn. We need to show that there exists a tight (also maximal in the
case of dh) Nh-chain from x to x′. We recursively create a chain x1, . . . , xn+1 from x
to x′ by modifying one element at a time:

x1 = x

xi+1 = xi[
x′[i]/i] i ∈ 1..n

It is easy to see that d(x, x′) =
∑n
i=1 d(xi, xi+1), for all d ∈ {dh, d1, d̃1}, so the chain

is tight wrt all three metrics. Moreover, we have that {xi, xi+1} ⊆ Ni(xi) so the chain
is an Nh-chain wrt all metrics.

For dh, it also holds that dh(xi, xi+1) = dh(Ni(xi)) = 1, so the chain is a maximal
Nh-chain wrt dh. ut

We continue with a lemma that facilitates proofs of ∆-sensitivity by reducing the
pairs of secrets x, x′ that one needs to check.

Lemma 3. Let N ⊆ 2X be tight (Def 10) and assume:

dY(f(x), f(x
′)) ≤ ∆dX (x, x

′) ∀N ∈ N , x, x′ ∈ N

Then f is ∆-sensitive wrt dX , dY .

Proof. Fix x, x′ ∈ X , we need to show that dY(f(x), f(x
′)) ≤ ∆dX (x, x

′). Since N
is tight there exist a tight N -chain x = x1, . . . , xn = x′, such that each step xi, xi+1

28

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

belongs to some set N ∈ N . We have:

dY(f(x), f(x
′))

≤
n−1∑
i=1

dY(f(xi), f(xi+1)) triangle ineq.

≤ ∆
n−1∑
i=1

dX (xi, xi+1) hypoth., xi, xi+1 ∈ N

= ∆dX (x, x
′) tightness of chain

ut

Proposition 4. Let f ∈ C. The sensitivity of f wrt both dh, dR and d̃1, dR is dV(V).

Proof. Let f ∈ C. We first show that f is dV(V)-sensitive wrt both dh, dR and d̃1, dR.
From Prop 9 together with Theorem 3, we only need to show the sensitivity for databases
x, x′ from some set Ni(x) ∈ Nh, i.e. x ∼i x′.

For dh, we have dh(x, x′) = 1, thus

dY(f(x), f(x
′)) ≤ dV(x[i], x

′[i]) ≤ dV(V)dh(x, x′)

For d̃1 we have:

dY(f(x), f(x
′)) ≤ dV(x[i], x

′[i]) = dV(V)d̃1(x, x′)

Then, for any ∆ < dV(V), f is not ∆-sensitive for neither metric, since from Def 8
there exists x ∼i x′ such that

dY(f(x), f(x
′)) = dV(V) > ∆dh(x, x

′)

and similarly for d̃1. ut

Proposition 5. The sum, avg, p-perc queries belong to C.

Proof. The universe is assumed to be V = q[0..k]∅ for some k ∈ N, q > 0. Let
x ∼i x′ ∈ Vn. We first show that dR(f(x), f(x′)) ≤ dV(x[i], x

′[i]).
For sum, it is easy to see that

|sum(x), sum(x′)| =

dV(x[i], x

′[i]) x[i] 6= ∅, x′[i] 6= ∅
x′[i] x[i] = ∅
x[i] x′[i] = ∅

Note that x′[i] ≤ dV(x[i], x
′[i]) = qr in the case x[i] = ∅ (and similarly for x′[i] =

∅).10

10 It is crucial here that V contains 0, so that v ≤ dV(V) for all non-null v. If 0 6∈ V , we can
achieve a similar result for sum by adapting the way dV treats ∅.

29

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Consider now f ∈ {avg, p-perc}. From Theorem 13 we know that both queries are
1-sensitive wrt d∞, dR. And since d∞(x, x′) = dV(x[i], x

′[i]) we have:

dR(f(x), f(x
′)) ≤ d∞(x, x′) = dV(x[i], x

′[i])

Finally, we need to show that there exist x ∼i x′ ∈ Vn such that dR(f(x), f(x′)) =
dV(V) = qk. We construct x = 〈0,∅, . . . ,∅〉, x′ = 〈qk,∅, . . . ,∅〉. These databases
satisfy dR(f(x), f(x′)) = qk for all queries. ut

Theorem 11. The sum, avg and p-perc queries are all uniformly qk-sensitive wrt d̃1, dR.

Proof. First we have to show that the queries are qk-sensitive wrt d̃1, dR. This comes
from Prop 4 and 5, since all queries belong to the family C.

We now show the uniform sensitivity of sum. Let y, y′ ∈ q[0..nk] and assume that
y ≥ y′. It is easy to see that we can construct databases x, x′ such that sum(x) =
y, sum(x′) = y′ and x[i] ≥ x′[i] for all i ∈ 1..n. For x, x′ we have

d1(x, x
′) =

∑
i |x[i]− x′[i]|

= |∑i x[i]| − |
∑
i x
′[i]| x[i] ≥ x′[i]

= dR(sum(x), sum(x′))

Thus dR(y, y′) = qk d̃1(x, x
′), which means that the chain y, y′ is qk-expansive wrt

d̃1.
Finally, for f ∈ {avg, p-perc} let y, y′ ∈ q[0..k]. We construct two databases x, x′

with a single present individual as follows:

x = 〈y,∅, . . . ,∅〉 x′ = 〈y′,∅, . . . ,∅〉

It is easy to see that f(x) = y, f(x′) = y′ and d1(x, x′) = dR(y, y
′). Thus dR(y, y′) =

qk d̃1(x, x
′) which means that the chain y, y′ is qk-expansive wrt d̃1. ut

Theorem 12. The sum, avg and p-perc queries are all uniformly 1-sensitive wrt d1, dR.

Proof. Direct consequence of Theorem 11, since d1 = qk d̃1. ut

D Proofs of Section 6

Proposition 10. Φ∞,N∞ are maximally tight wrt d∞.

Proof. Let x, x′ ∈ Vn, and consider the trivial 1-step chain x, x′. This chain is trivially
tight, we need to show that it is both a maximal Φ∞-chain and a maximal N∞-chain.

For each i ∈ 1..n we define a function wi : V → V as:

wi(v) =

x′[i] if v = x[i]

x[i] if v = x′[i]

v otherwise

30

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

For the hiding function φ = φ1,w1
◦ . . . ◦ φn,wn we have that φ ∈ Φ∞ and moreover:

φ(x) = x′ φ(x′) = x d∞(x, x′) = d∞(φ)

hence the chain is a maximal Φ∞-chain.
Moreover, let Vi = {x[i], x′[i]}, i ∈ 1..n. For the neighborhood N{Vi} ∈ N∞ it

holds that
{x, x′} ⊆ N{Vi} d∞(x, x′) = d∞(N{Vi})

so the chain is a maximal N∞-chain. ut

Theorem 13. The avg and p-perc queries are both uniformly 1-sensitive wrt d∞, dR.

Proof. The universe is assumed to be V = q[0..k]∅ for some k ∈ N, q > 0. The p-
percentile query (0 ≤ p < 100) is defined as p-perc(x) = sort(x)[l] for l = b p

100m +
1c, where m is the number of non-null values in x and sort returns a sorted version of
x (after removing the null values). We also define I∅(x) = {i ∈ 1..n | x[i] = ∅}.

We fist show that both queries are 1-sensitive wrt d∞, dR. Let x, x′ ∈ Vn. If
I∅(x) 6= I∅(x

′) then x, x′ are maximally distant, i.e. d∞(x, x′) = d∞(Vn) = qk.
Then for both queries it trivially holds that dR(f(x), f(x′)) ≤ qk = d∞(x, x′) since
their range is q[0..k].

It remains to show 1-sensitivity for the case I∅(x) = I∅(x
′) = I . For the average

query we have

dR(avg(x), avg(x
′))

=
1

|I| |(
∑
i∈I x[i])− (

∑
i∈I x

′[i])|

=
1

|I| |
∑
i∈I (x[i]− x′[i])|

≤ 1

|I|
∑
i∈I |x[i]− x′[i]| subadditivity of | · |

≤ 1

|I|
∑
i∈I d∞(x, x′) |x[i]− x′[i]| ≤ d∞(x, x′)

= d∞(x, x′)

For the p-perc query it holds that p-perc(x) = sort(x)[l] and p-perc(x′) = sort(x′)[l]
for the same l (since I∅(x) = I∅(x

′)). Let h, h′ ∈ 1..n such that x[h] = sort(x)[l] and
x′[h′] = sort(x′)[l].

Assume that x[h] ≤ x[h′] (the case x[h] ≥ x[h′] is symmetric). By the definition
of sort, there are at least l elements j ∈ 1..n such that x[j] ≤ x[h] (including h itself).
Moreover, there are at most l − 1 elements j ∈ 1..n such that x′[j] < x′[h′]. Hence,
there exists at least one j ∈ 1..n such that

x[j] ≤ x[h] and x′[j] ≥ x′[h′]

It also holds that |x[i]− x′[i]| ≤ d∞(x, x′), i.e.

x[i]− d∞(x, x′) ≤ x′[i] ≤ x[i] + d∞(x, x′) ∀i ∈ 1..n (4)

31

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

From x[h] ≤ x[h′] and (4) we get

x[h]− d∞(x, x′) ≤ x′[h′]

Moreover, it holds that

x′[h′] ≤ x′[j] ≤ x[j] + d∞(x, x′) ≤ x[h] + d∞(x, x′)

thus
dR(p-perc(x), p-perc(x′)) = |x[h]− x′[h′]| ≤ d∞(x, x′)

For the “uniformly” part, let y, y′ ∈ q[0..k]; we construct x = 〈y,∅, . . . ,∅〉, x′ =
〈y′,∅, . . . ,∅〉, for which it holds that f(x) = y, f(x′) = y′ (for both queries) and
d∞(x, x′) = dR(y, y

′).
Note that for p-perc we can construct x, x′ without ∅ values with the same property.

However, for the avg query this is not possible; its uniform optimality depends on the
fact that ∅ values are allowed. If ∅ 6∈ V then avg is essentially equivalent to sum,
which is not uniformly optimal wrt d∞, dR. ut

32

ha
l-0

07
67

21
0,

 v
er

si
on

 1
 -

17
 M

ay
 2

01
3

Geo-Indistinguishability: Differential Privacy for
Location-Based Systems∗

M. Andrés
LIX, École Polytechnique
gueles@gmail.com

N. Bordenabe
INRIA

LIX, École Polytechnique
nbordenabe@lix.polytechnique.fr

K. Chatzikokolakis
CNRS

LIX, École Polytechnique
kostas@chatzi.org

C. Palamidessi
INRIA

LIX, École Polytechnique
catuscia@lix.polytechnique.fr

ABSTRACT
The growing popularity of location-based systems, allowing un-
known/untrusted servers to easily collect huge amounts of informa-
tion regarding users’ location, has recently started raising serious
privacy concerns. In this paper we study geo-indistinguishability,
a formal notion of privacy for location-based systems that protects
the user’s exact location, while allowing approximate information –
typically needed to obtain a certain desired service – to be released.

Our privacy definition formalizes the intuitive notion of protect-
ing the user’s location within a radius r with a level of privacy that
depends on r, and corresponds to a generalized version of the well-
known concept of differential privacy. Furthermore, we present
a perturbation technique for achieving geo-indistinguishability by
adding controlled random noise to the user’s location. We demon-
strate the applicability of our technique on a LBS application. Fi-
nally, we compare our mechanism with other ones in the literature.
It turns our that our mechanism offers the best privacy guarantees,
for the same utility, among all those which do not depend on the
prior.

1. INTRODUCTION
In recent years, the increasing availability of location informa-

tion about individuals has led to a growing use of systems that
record and process location data, generally referred to as “location-
based systems”. Such systems include (a) Location Based Services
(LBSs), in which a user obtains, typically in real-time, a service
related to his current location, and (b) location-data mining algo-
rithms, used to determine points of interest and traffic patterns.

The use LBSs, in particular, has been has significantly increased
by the growing popularity of mobile devices equipped with GPS
chips, in combination with the increasing availability of wireless
data connections. A resent study in the US shows that 46% of the
adult population of the country owns a smartphone and, further-
more, that 74% of those owners use LBSs [1]. Examples of LBSs
include mapping applications (eg, Google Maps), Points of Inter-
est (POI) retrieval (eg, AroundMe), coupon/discount providers (eg,
GroupOn), GPS navigation (eg, TomTom), and location-aware so-
cial networks (eg, Foursquare).

While location-based systems have demonstrated to provide enor-

∗This work is partially funded by the Inria large scale initiative
CAPPRIS, the EU FP7 grant no. 295261 (MEALS), and the
project ANR-12-IS02-001 PACE. Nicolás E. Bordenabe was par-
tially funded by the French Defense procurement agency (DGA)
with a PhD grant.

mous benefits to individuals and society, the growing exposure of
users’ location information raises important privacy issues. First of
all, location information itself may be considered as sensitive. Fur-
thermore, it can be easily linked to a variety of other information
that an individual usually wishes to protect: by collecting and pro-
cessing accurate location data on a regular basis, it is possible to
infer an individual’s home or work location, sexual preferences,
political views, religious inclinations, etc. In its extreme form,
monitoring and control of an individual’s location has been even
described as a form of slavery [8].

Several notions of privacy for location-based systems have been
proposed in the literature. In Section 2 we give an overview of
such notions, and we discuss their shortcomings in relation to our
motivating LBS application. Aiming at addressing these shortcom-
ings, we propose a formal privacy definition for LSB’s, as well as
a randomized technique that allows a user to disclose enough loca-
tion information to obtain the desired service, while satisfying the
aforementioned privacy notion. Our proposal is based on a gen-
eralization of differential privacy [10] developed in [5]. Like dif-
ferential privacy, our notion and technique abstract from the side
information of the adversary, such as any prior probabilistic knowl-
edge about the user’s actual location.

As a running example, we consider a user located in Paris who
wishes to query an LBS provider for nearby restaurants in a private
way, i.e., by disclosing some approximate information z instead of
his exact location x. A crucial question is: what kind of privacy
guarantee can the user expect in this scenario? To formalize this
notion, we consider the privacy within a radius. We say that the
user enjoys `-privacy within r if, any two locations at distance at
most r produce observations with “similar” distributions, where the
“level of similarity” depends on `. The idea is that ` represents the
user’s level of privacy for that radius: the smaller ` is, the higher is
the privacy.

In order to allow the LSB to provide a useful service, we require
that the (inverse of the) level of privacy ` depend on the radius r.
In particular, we require that it is proportional to r, which brings us
to our definition of geo-indistinguishability:

A mechanism satisfies ε-geo-indistinguishability iff for
any radius r > 0, the user enjoys εr-privacy within r.

This definition implies that the user is protected within any radius
r, but with a level ` = εr that increases with the distance. Within
a short radius, for instance r= 1 km, ` is small, guaranteeing that
the provider cannot infer the user’s location within, say, the 7th ar-
rondissement of Paris. Farther away from the user, for instance for

ar
X

iv
:1

21
2.

19
84

v2
 [

cs
.C

R
]

 2
4

M
ay

 2
01

3

Figure 1: Geo-indistinguishability: privacy varying with r

r=10.000 km, ` becomes large, allowing the LBS provider to infer
that with high probability the user is located in Paris instead of, say,
London. Figure 1 illustrates the idea of privacy levels decreasing
with the radius.

We develop a mechanism to achieve geo-indistinguishability by
perturbating the user’s location x. The inspiration comes from one
of the most popular approaches for differential privacy, namely the
Laplacian noise. We adopt a specific planar version of the Laplace
distribution, allowing to draw points in a geo-indistinguishable way.
Moreover, via a transformation to polar coordinates, we are able to
draw in an efficiently. However, as standard (digital) applications
require a finite representation of locations, it is necessary to add a
discretization step. Such operation jeopardizes the privacy guaran-
tees, for reasons similar to the rounding effects of finite-precision
operations [25]. We show how to preserve geo-indistinguishability,
at the price of a degradation of the privacy level, and how to adjust
the privacy parameters in order to obtain a desired level of privacy.

Finally, we compare our mechanism with other ones in the litera-
ture, using the privacy metric proposed in [32]. It turns our that our
mechanism offers the best privacy guarantees, for the same utility,
among all those which do not depend on the prior knowledge of the
adversary. The advantages of the independence from the prior are
obvious: first, the mechanism is designed once and for all (i.e. it
does not need to be recomputed every time the adversary changes, it
works also in simultaneous presence of different adversaries, etc.).
Second, and even more important, it is applicable also when we do
not know the prior.
Road Map. In Section 2 we discuss notions of location privacy
from the literature and point out their weaknesses and strengths.
In Section 3 we formalize the notion of geo-indistinguishability in
three equivalent ways. We then proceed to describe a mechanism
that provides geo-indistinguishability in Section 4. In Sections 5
we demonstrate the applicability of our approach by a case study
related to LBSs. In Section 6 we compare the privacy guarantees
of our methods with those of two other methods from the literature.
Section 7 discusses related work and Section 8 concludes.

2. EXISTING NOTIONS OF PRIVACY
In this section, we examine various notions of location privacy

from the literature, as well as techniques to achieve them. We con-
sider the motivating example from the introduction, of a user in
Paris wishing to find nearby restaurants with good reviews. To
achieve this goal, he uses a handheld device (eg. a smartphone)
to query a public LBS provider. However, the user expects his lo-
cation to be kept private: informally speaking, the information sent
to the provider should not allow him to accurately infer the user’s
location. Our goal is to provide a formal notion of privacy that ad-
equately captures the user’s expected privacy. From the point of

view of the employed mechanism, we require a technique that can
be performed in real-time by a handheld device, without the need
of any trusted anonymization party.

Expected Distance Error.
Expectation of distance error [31, 32, 19] is a natural way to

quantify the privacy offered by a location-obfuscation mechanism.
Intuitively, it reflects the degree of accuracy by which an adversary
can guess the real location of the user by observing the obfuscated
location, and using the side-information available to him.

There are several works relying on this notion. In [19], a pertur-
bation mechanism is used to confuse the attacker by crossing paths
of individual users, rendering the task of tracking individual paths
challenging. In [32], an optimal location-obfuscation mechanism
(i.e., achieving maximum level of privacy for the user) is obtained
by solving a linear program in which the contraints are determined
by the quality of service and by the user’s profile.

It is worth noting that this privacy notion and the obfuscation
mechanisms based on it are explicitly defined in terms of the adver-
sary’s side information. In contrast, our notion of geo-indistingui-
shability abstracts from the attacker’s prior knowledge, and is there-
fore suitable for scenarios where the prior is unknown, or the same
mechanism must be used for multiple users. A detailed comparison
with the mechanism of [32] is provided in Section 6.

k-anonymity.
The notion of k-anonymity is the most widely used definition of

privacy for location-based systems in the literature. Many systems
in this category [17, 15, 26] aim at protecting the user’s identity,
requiring that the attacker cannot infer which user is executing the
query, among a set of k different users. Such systems are outside
the scope of our problem, since we are interested in protecting the
user’s location.

On the other hand, k-anonymity has also been used to protect
the user’s location (sometimes called l-diversity in this context),
requiring that it is indistinguishable among a set of k points (of-
ten required to share some semantic property). One way to achieve
this is through the use of dummy locations [21, 29]. This tech-
nique involves generating k − 1 properly selected dummy points,
and performing k queries to the service provider, using the real and
dummy locations. Another method for achieving k-anonymity is
through cloaking [3, 9, 34]. This involves creating a cloaking re-
gion that includes k points sharing some property of interest, and
then querying the service provider for this cloaking region.

Even when side knowledge does not explicitly appear in the def-
inition of k-anonymity, a system cannot be proved to satisfy this
notion unless assumptions are made about the attacker’s side infor-
mation. For example, dummy locations are only useful if they look
equally likely to be the real location from the point of view of the
attacker. Any side information that allows to rule out any of those
points, as having low probability of being the real location, would
immediately violate the definition.

Counter-measures are often employed to avoid this issue: for
instance, [21] takes into account concepts such as ubiquity, con-
gestion and uniformity for generating dummy points, in an effort
to make them look realistic. Similarly, [34] takes into account
the user’s side information to construct a cloaking region. Such
counter-measures have their own drawbacks: first, they compli-
cate the employed techniques, also requiring additional data to be
taken into account (for instance, precise information about the envi-
ronment or the location of nearby users), making their application
in real-time by a handheld device challenging. Moreover, the at-
tacker’s actual side information might simply be inconsistent with

the assumptions being made.
As a result, notions that abstract from the attacker’s side informa-

tion, such as differential privacy, have been growing in popularity
in recent years, compared to k-anonymity-based approaches.

Differential Privacy.
Differential Privacy [10] is a notion of privacy from the area of

statistical databases. Its goal is to protect an individual’s data while
publishing aggregate information about the database. Differential
privacy requires that modifying a single user’s data should have a
negligible effect on the query outcome. More precisely, it requires
that the probability that a query returns a value v when applied to
a database D, compared to the probability to report the same value
when applied to an adjacent databaseD′ – meaning thatD,D′ dif-
fer in the value of a single individual – should be within a bound
of eε. A typical way to achieve this notion is to add controlled ran-
dom noise to the query output, for example drawn from a Laplace
distribution. An advantage of this notion is that a mechanism can
be shown to be differentially private independently from any side
information that the attacker might possess.

Differential privacy has also been used in the context of loca-
tion privacy. In [24], it is shown that a synthetic data generation
technique can be used to publish statistical information about com-
muting patterns in a differentially private way. In [18], a quadtree
spatial decomposition technique is used to ensure differential pri-
vacy in a database with location pattern mining capabilities.

As shown in the aforementioned works, differential privacy can
be successfully applied in cases where aggregate information about
several users is published. On the other hand, the nature of this
notion makes it poorly suitable for applications in which a single
individual is involved, such as our motivating scenario. The secret
in this case is the location of a single user. Thus, differential pri-
vacy would require that any change in that location should have
negligible effect on the published output, making it impossible to
communicate any useful information to the service provider.

Other location-privacy metrics.
[7] proposes a location cloaking mechanism, and focuses on the

evaluation of Location-based Range Queries. The degree of privacy
is measured by the size of the cloak (also called uncertainty region),
and by the coverage of sensitive regions, which is the ratio between
the area of the cloak and the area of the regions inside the cloak
that the user considers to be sensitive. In order to deal with the
side-information that the attacker may have, ad-hoc solutions are
proposed, like patching cloaks to enlarge the uncertainty region or
delaying requests. Both solutions may cause a degradation in the
quality of service.

In [2], the real location of the user is assumed to have some level
of inaccuracy, due to the specific sensing technology or to the en-
vironmental conditions. Different obfuscation techniques are then
used to increase this inaccuracy in order to achieve a certain level
of privacy. This level of privacy is defined as the ratio between the
accuracy before and after the application of the obfuscation tech-
niques.

Similar to the case of k-anonymity, both privacy metrics men-
tioned above make implicit assumptions about the adversary’s side
information. This may imply a violation of the privacy definition
in a scenario where the adversary has some knowledge about the
user’s real location.

Transformation-based approaches.
A number of approaches for location privacy are radically differ-

ent from the ones mentioned so far. Instead of cloaking the user’s

location, they aim at making it completely invisible to the service
provider. This is achieved by transforming all data to a different
space, usually employing cryptographic techniques, so that they
can be mapped back to spatial information only by the user [20,
16]. The data stored in the provider, as well as the location send
by the user are encrypted. Then, using techniques from Private In-
formation Retrieval, the provider can return information about the
encrypted location, without ever discovering which actual location
it corresponds to.

A drawback of these techniques is that they are computationally
demanding, making it difficult to implement them in a handheld
device. Moreover, they require the provider’s data to be encrypted,
making it impossible to use providers, such as Google Maps, which
have access to the real data.

3. GEO-INDISTINGUISHABILITY
In this section we formalize our notion of geo-indistinguisha-

bility. As already discussed in the introduction, the main idea be-
hind this notion is that, for any radius r > 0, the user enjoys εr-
privacy within r, i.e. the level of privacy is proportional to the ra-
dius. Note that the parameter ε corresponds to the level of privacy
at one unit of distance. For the user, a simple way to specify his
privacy requirements is by a tuple (`, r), where r is the radius he is
mostly concerned with and ` is the privacy level he wishes for that
radius. In this case, it is sufficient to require ε-geo-indistinguisha-
bility for ε = `/r; this will ensure a level of privacy ` within r, and
a proportionally selected level for all other radii.

So far we kept the discussion on an informal level by avoiding to
explicitly define what `-privacy within r means. In the remaining
of this section we give a formal definition, as well as two charac-
terizations which clarify the privacy guarantees provided by geo-
indistinguishability.

Probabilistic model.
We first introduce a simple model used in the rest of the paper.

We start with a setX of points of interest, typically the user’s possi-
ble locations. Moreover, let Z be a set of possible reported values,
which in general can be arbitrary, allowing to report obfuscated
locations, cloaking regions, sets of locations, etc. However, to sim-
plify the discussion, we sometimes consider Z to also contain spa-
tial points, assuming an operational scenario of a user located at
x ∈ X and communicating to the attacker a randomly selected lo-
cation z ∈ Z (e.g. an obfuscated point).

Probabilities come into place in two ways. First, the attacker
might have side information about the user’s location, knowing,
for example, that he is likely to be visiting the Eiffel Tower, while
unlikely to be swimming in the Seine river. The attacker’s side
information can be modeled by a prior distribution π on X , where
π(x) is the probability assigned to the location x.

Second, the selection of a reported value inZ is itself probabilis-
tic; for instance, z can be obtained by adding random noise to the
actual location x (a technique used in Section 4). A mechanism K
is a probabilistic function for selecting a reported value; i.e. K is
a function assigning to each location x ∈ X a probability distribu-
tion onZ , whereK(x)(Z) is the probability that the reported point
belongs to the set Z ⊆ Z , when the user’s location is x.1 Starting
from π and using Bayes’ rule, each observation Z ⊆ Z of a mech-
anismK induces a posterior distribution σ = Bayes(π,K,Z) on
X , defined as σ(x) = K(x)(Z)π(x)∑

x′ K(x′)(Z)π(x′) .

1For simplicity we assume distributions on X to be discrete, but
allow those onZ to be continuous (c.f. Section 4). All sets to which
probability is assigned are implicitly assumed to be measurable.

We define the multiplicative distance between two distributions
σ1, σ2 on some set S as dP(σ1, σ2) = supS⊆S | ln σ1(S)

σ2(S)
|, with

the convention that | ln σ1(S)
σ2(S)

| = 0 if both σ1(S), σ2(S) are zero
and∞ if only one of them is zero.

3.1 Definition
We are now ready to state our definition of geo-indistinguisha-

bility. Intuitively, a privacy requirement is a constraint on the dis-
tributionsK(x),K(x′) produced by two different points x, x′. Let
d(·, ·) denote the Euclidean metric. Enjoying `-privacy within r
means that for any x, x′ s.t. d(x, x′) ≤ r, the distance dP(K(x),
K(x′)) between the corresponding distributions should be at most
l. Then, requiring εr-privacy for all radii r, forces the two distribu-
tions to be similar for locations close to each other, while relaxing
the constraint for those far away from each other, allowing a service
provider to distinguish points in Paris from those in London.

DEFINITION 3.1 (GEO-INDISTINGUISHABILITY). A mecha-
nism K satisfies ε-geo-indistinguishability iff for all x, x′:

dP(K(x),K(x′)) ≤ εd(x, x′)

Equivalently, the definition can be formulated asK(x)(Z) ≤ eεd(x,x′)
K(x′)(Z) for all x, x′ ∈ X , Z ⊆ Z . Note that for all points x′

within a radius r from x, the definition forces the corresponding
distributions to be at most εr distant.

The above definition is very similar to the one of differential pri-
vacy, which requires dP(K(x),K(x′)) ≤ εdh(x, x′), where dh
is the Hamming distance between databases x, x′, i.e. the number
of individuals in which they differ. In fact, geo-indistinguishability
is an instance of a generalized variant of differential privacy, using
an arbitrary metric between secrets. This generalized formulation
has been known for some time: for instance, [27] uses it to per-
form a compositional analysis of standard differential privacy for
functional programs, while [12] uses metrics between individuals
to define “fairness” in classification. On the other hand, the use-
fulness of using different metrics to achieve different privacy goals
and the semantics of the privacy definition obtained by different
metrics have only recently started to be studied [5]. This paper fo-
cuses on location-based systems and is, to our knowledge, the first
work considering privacy under the Euclidean metric, which is a
natural choice for spatial data.

Note that in our scenario, using the Hamming metric of stan-
dard differential privacy – which aims at completely protecting the
value of an individual – would be too strong, since the only infor-
mation is the location of a single individual. Nevertheless, we are
not interested in completely hiding the user’s location, since some
approximate information needs to be revealed in order to obtain the
required service. Hence, using a privacy level that depends on the
Euclidean distance between locations is a natural choice.

Finally, note that, since ε corresponds to the privacy level for
one unit of distance, it is affected by the unit in which distances
are measured. For instance, assume that ε = 0.1 and distances are
measured in meters. The level of privacy for points one kilometer
away is 1000ε, hence changing the unit to kilometers requires to
set ε = 100 in order for the definition to remain unaffected. In
other words, if r is a physical quantity expressed in some unit of
measurement, then ε has to be expressed in the inverse unit. In this
paper we omit the unit since the choice is orthogonal to our goals.

3.2 Characterizations
In this section we state two characterizations of geo-indistingui-

shability, obtained from the corresponding results of [5] (for gen-

eral metrics), which provide intuitive interpretations of the privacy
guarantees offered by geo-indistinguishability.

Adversary’s conclusions under hiding.
The first characterization uses the concept of a hiding function

φ : X → X . The idea is that φ can be applied to the user’s actual
location before the mechanism K, so that the latter has only access
to a hidden version φ(x), instead of the real location x. A mecha-
nism K with hiding applied is simply the composition K ◦ φ. In-
tuitively, a location remains private if, regardless of his side knowl-
edge (captured by his prior distribution), an adversary draws the
same conclusions (captured by his posterior distribution), regard-
less of whether hiding has been applied or not. However, if φ
replaces locations in Paris with those in London, then clearly the
adversary’s conclusions will be greatly affected. Hence, we require
that the effect on the conclusions depends on the maximum distance
d(φ) = supx∈X d(x, φ(x)) between the real and hidden location.

THEOREM 3.1. A mechanism K satisfies ε-geo-indistinguisha-
bility iff for all φ : X → X , all priors π on X , and all Z ⊆ Z:

dP(σ1, σ2) ≤ 2εd(φ) where σ1 = Bayes(π,K,Z)

σ2 = Bayes(π,K ◦ φ,Z)

Note that this is a natural adaptation of a well-known interpreta-
tion of standard differential privacy, stating that the attacker’s con-
clusions are similar, regardless of his side knowledge, and regard-
less of whether an individual’s real value has been used in the query
or not. This corresponds to a hiding function φ removing the value
of an individual.

Note also that the above characterization compares two poste-
rior distributions. Both σ1, σ2 can be substantially different than
the initial knowledge π, which means that an adversary does learn
some information about the user’s location.

Knowledge of an informed attacker.
A different approach is to measure how much the adversary learns

about the user’s location, by comparing his prior and posterior dis-
tributions. However, since some information is allowed to be re-
vealed by design, these distributions can be far apart. Still, we can
consider an informed adversary who already knows that the user is
located within a set N ⊆ X . Let d(N) = supx,x′∈N d(x, x′)
be the maximum distance between points in x. Intuitively, the
user’s location remains private if, regardless of his prior knowl-
edge within N , the knowledge obtained by such an informed ad-
versary should be limited by a factor depending on d(N). This
means that if d(N) is small, i.e. the adversary already knows the
location with some accuracy, then the information that he obtains is
also small, meaning that he cannot improve his accuracy. Denoting
by π|N the distribution obtained from π by restricting to N (i.e.
π|N (x) = π(x|N)), we obtain the following characterization:

THEOREM 3.2. A mechanism K satisfies ε-geo-indistinguisha-
bility iff for all N ⊆ X , all priors π on X , and all Z ⊆ Z:

dP(π|N , σ|N) ≤ εd(N) where σ = Bayes(π,K,Z)

Note that this is a natural adaptation of a well-known interpre-
tation of standard differential privacy, stating that in informed ad-
versary who already knows all values except individual’s i, gains
no extra knowledge from the reported answer, regardless of side
knowledge about i’s value [13].

Abstracting from side information.

A major difference of geo-indistinguishability, compared to sim-
ilar approaches from the literature, is that it abstracts from the side
information available to the adversary, i.e. from the prior distribu-
tion. This is a subtle issue, and often a source of confusion, thus we
would like to clarify what “abstracting from the prior” means. The
goal of a privacy definition is to restrict the information leakage
caused by the observation. Note that the lack of leakage does not
mean that the user’s location cannot be inferred (it could be inferred
by the prior alone), but instead that the adversary’s knowledge does
not increase due to the observation.

However, in the context of LBSs, no privacy definition can en-
sure a small leakage under any prior, and at the same time allow
reasonable utility. Consider, for instance, an attacker who knows
that the user is located at some airport, but not which one. The at-
tacker’s prior knowledge is very limited, still any useful LBS query
should reveal at least the user’s city, from which the exact location
(i.e. the city’s airport) can be inferred. Clearly, due to the side
information, the leakage caused by the observation is high.

So, since we cannot eliminate leakage under any prior, how can
we give a reasonable privacy definition without restricting to a par-
ticular one? First, we give a formulation (Def 3.1) which does not
involve the prior at all, allowing to verify it without knowing the
prior. At the same time, we give two characterizations which ex-
plicitly quantify over all priors, shedding light on how the prior
affects the privacy guarantees.

Finally, we should point out that differential privacy abstracts
from the prior in exactly the same way. Contrary to what is some-
times believed, the user’s value is not protected under any prior
information. Recalling the well-known example from [10], if the
adversary knows that Terry Gross is two inches shorter than the av-
erage Lithuanian woman, then he can accurately infer the height,
even if the average is release in a differentially private way (in fact
no useful mechanism can prevent this leakage). Differential pri-
vacy does ensure that her risk is the same whether she participates
in the database or not, but this might me misleading: it does not
imply the lack of leakage, only that it will happen anyway, whether
she participates or not!

3.3 Protecting location sets
So far, we have assumed that the user has a single location that

he wishes to communicate to a service provider in a private way
(typically his current location). In practice, however, it is common
for a user to have multiple points of interest, for instance a set of
past locations or a set of locations he frequently visits. In this case,
the user might wish to communicate to the provider some informa-
tion that depends on all points; this could be either the whole set of
points itself, or some aggregate information, for instance their cen-
troid. As in the case of a single location, privacy is still a require-
ment; the provider is allowed to obtain only approximate informa-
tion about the locations, their exact value should be kept private. In
this section, we discuss how ε-geo-indistinguishability extends to
the case where the secret is a tuple of points x = (x1, . . . , xn).

Similarly to the case of a single point, the notion of distance
is crucial for our definition. We define the distance between two
tuples of points x = (x1, . . . , xn),x′ = (x′1, . . . , x

′
n) as:

d∞(x,x′) = maxi d(xi, x
′
i)

Intuitively, the choice of metric follows the idea of reasoning within
a radius r: when d∞(x,x′) ≤ r, it means that all xi, x′i are within
distance r from each other. All definitions and results of this section
can be then directly applied to the case of multiple points, by using
d∞ as the underlying metric. Enjoying `-privacy within a radius
r means that two tuples at most r away from each other, should

produce distributions at most εr apart.

Reporting the whole set.
A natural question then to ask is how we can obfuscate a tuple

of points, by independently applying an existing mechanism K0

to each individual point, and report the obfuscated tuple. Starting
from a tuple x = (x1, . . . , xn), we independently apply K0 to
each xi obtaining a reported point zi, and then report the tuple z =
(z1, . . . , zn). Thus, the probability that the combined mechanism
K reports z, starting from x, is the product of the probabilities to
obtain each point zi, starting from the corresponding point xi, i.e.
K(x)(z) =

∏
iK0(xi)(zi).

The next question is what level of privacy does K satisfy. For
simplicity, consider a tuple of only two points (x1, x2), and assume
thatK0 satisfies ε-geo-indistinguishability. At first look, one might
expect the combined mechanism K to also satisfy ε-geo-indistin-
guishability, however this is not the case. The problem is that the
two points might be correlated, thus an observation about x1 will
reveal information about x2 and vice versa. Consider, for instance,
the extreme case in which x1 = x2. Having two observations about
the same point reduces the level of privacy, thus we cannot expect
the combined mechanism to provide the same level of privacy.

Still, if K0 satisfies ε-geo-indistinguishability, then K can be
shown to satisfy nε-geo-indistinguishability, i.e. a level of privacy
that scales linearly with n. Due to this scalability issue, the tech-
nique of independently applying a mechanism to each point is only
useful when the number of points is small. Still, this is sufficient
for some applications, such as the case study of Section 5. Note,
however, that this technique is by no means the best we can hope
for: similarly to standard differential privacy [4, 28], better results
could be achieved by adding noise to the whole tuple x, instead
of each individual point. We believe that using such techniques
we can achieve geo-indistinguishability for a large number of lo-
cations with reasonable noise, leading to practical mechanisms for
highly mobile applications. We have already started exploring this
direction of future work.

Reporting an aggregate location.
Another interesting case is when we need to report some aggre-

gate information obtained by x, for instance the centroid of the
tuple. In general we might need to report the result of a query
f : Xn → X . Similarly to the case of standard differential privacy,
we can compute the real answer f(x) and the add noise by apply-
ing a mechanism K to it. If f is ∆-sensitive wrt d, d∞, meaning
that d(f(x), f(x′)) ≤ ∆d∞(x,x′) for all x,x′, and K satisfies
geo-indistinguishability, then the composed mechanism K ◦ f can
be shown to satisfy ∆ε-geo-indistinguishability.

Note that when dealing with aggregate data, standard differen-
tial privacy becomes a viable option. However, one needs to also
examine the loss of utility caused by the added noise. This highly
depends on the application: differential privacy is suitable for pub-
lishing aggregate queries with low sensitivity, meaning that changes
in a single individual have a relatively small effect on the outcome.
On the other hand, location information often has high sensitiv-
ity. A trivial example is the case where we want to publish the
complete tuple of points. But sensitivity can be high even for ag-
gregate information: consider the case of publishing the centroid
of 5 users located anywhere in the world. Modifying a single user
can hugely affect their centroid, thus achieving differential privacy
would require so much noise that the result would be useless. For
geo-indistinguishability, on the other hand, one needs to consider
the distance between points when computing the sensitivity. In the
case of the centroid, a small (in terms of distance) change in the

tuple has a small effect on the result, thus geo-indistinguishability
can be achieved with much less noise.

4. A MECHANISM
In this section we present a method to generate a noise satis-

fying geo-indistinguishability. We model the location domain as
a discrete2 Cartesian plane with the standard notion of Euclidean
distance. This model can be considered a good approximation of
the Earth surface when the area of interest is not too large.

(a) First, we define a geo-indistinguishable, continuous mecha-
nism for the ideal case of the continuous plane.

(b) Then, we discretized the mechanism by remapping each point
generated according to (a) to the closest point in the discrete
domain.

(c) Finally, we truncate the mechanism, so to report only points
within the limits of the area of interest.

4.1 A mechanism for the continuous plane
Following the above plan, we start by defining a geo-indistinguishable

mechanism on the continuous plane. The idea is that whenever the
actual location is x0 ∈ R2, we report, instead, a point x ∈ R2 gen-
erated randomly according to the noise function. The latter needs
to be such that the probabilities of reporting a point in a certain (in-
finitesimal) area around x, when the actual locations are x0 and x′0
respectively, differs at most by a multiplicative factor e−ε d(x0,x

′
0).

We can achieve this property by requiring that the probability
of generating a point in the area around x decreases exponentially
with the distance from the actual location x0. In a linear space this
is exactly the behavior of the Laplace distribution, whose proba-
bility density function (pdf) is ε/2 e−ε |x−µ|. This distribution has
been used in the literature to add noise to query results on statistical
databases, with µ set to be the actual answer, and it can be shown
to satisfy ε-differential privacy [11].

There are two possible definitions of Laplace distribution on higher
dimensions (multivariate Laplacians). The first one, investigated in
[23], and used also in [13], is obtained from the standard Lapla-
cian by replacing |x−µ| with d(x, µ). The second way consists in
generating each Cartesian coordinate independently, according to
a linear Laplacian. For reasons that will become clear in the next
paragraph, we adopt the first approach.

The probability density function.
Given the parameter ε ∈ R+, and the actual location x0 ∈ R2,

the pdf of our noise mechanism, on any other point x ∈ R2, is:

Dε(x0)(x) =
ε2

2π
e−ε d(x0,x) (1)

where ε2/2π is a normalization factor. We call this function planar
Laplacian centered in x0. The corresponding distribution is illus-
trated in Figure 2. It is possible to show that (i) the projection of a
planar Laplacian on any vertical plane passing by the center gives
a (scaled) linear Laplacian, and (ii) the corresponding mechanism
satisfies ε-geo-indistinguishability. These two properties would not
be satisfied by the second approach to the multivariate Laplacian.

2For applications with digital interface the domain of interest is
discrete, since the representation of the coordinates of the points is
necessarily finite.

Figure 2: The pdf’s of two planar Laplacians, centered in
(−2,−4) and in (5, 3) respectively, with ε = 1/5.

(a) (b)

Figure 3: Gamma distribution: pdf and cdf for various ε.

Drawing a random point.
We illustrate now how to draw a random point from the pdf de-

fined in (1). First of all, we note that the pdf of the planar Laplacian
depends only on the distance from x0. It will be convenient, there-
fore, to switch to a system of polar coordinates with origin in x0. A
point x will be represented as a point (r, θ), where r is the distance
of x from x0, and θ is the angle that the line xx0 forms with re-
spect to the horizontal axis of the Cartesian system. Following the
standard transformation formula, the pdf of the polar Laplacian
centered in the origin (x0) is:

Dε(r, θ) =
ε2

2π
r e−ε r (2)

We note now that the polar Laplacian defined above enjoys a
property that is very convenient for drawing in an efficient way: the
two random variables that represent the radius and the angle are
independent. Namely, the pdf can be expressed as the product of
the two marginals. In fact, let us denote these two random variables
by R (the radius) and Θ (the angle). The two marginals are:

Dε,R(r) =
∫ 2π

0
Dε(r, θ) dθ = ε2 r e−ε r

Dε,Θ(θ) =
∫∞

0
Dε(r, θ) dr = 1

2π

Hence we have Dε(r, θ) = Dε,R(r) Dε,Θ(θ).
Note thatDε,R(r) corresponds to the pdf of the gamma distribu-

tion with shape 2 and scale 1/ε. Figure 3 shows the graph of this
function for various values of ε.

Thanks to the fact thatR and Θ are independent, in order to draw
a point (r, θ) from Dε(r, θ) it is sufficient to draw separately r and
θ from Dε,R(r) and Dε,Θ(θ) respectively.

Since Dε,Θ(θ) is constant, drawing θ is easy: it is sufficient to
generate θ as a random number in the interval [0, 2π) with uniform
distribution.

We now show how to draw r. Following standard lines, we con-

Drawing a point (r, θ) from the polar Laplacian
1. draw θ uniformly in [0, 2π)
2. draw z uniformly in [0, 1) and set r = C−1

ε (z)

Figure 4: Method to generate Laplacian noise.

sider the cumulative distribution function (cdf) Cε(r):

Cε(r) =

∫ r

0

Dε,R(ρ)dρ = 1− (1 + ε r) e−ε r

Intuitively, Cε(r) (Fig 3(b)) represents the probability that the ra-
dius of the random point falls between 0 and r. Finally, we generate
a random number z with uniform probability in the interval [0, 1),
and we set r = C−1

ε (z). Note that

C−1
ε (z) = − 1

ε

(
W−1(z−1

e
) + 1

)

where W−1 is the Lambert W function (the −1 branch), which can
be computed efficiently.

4.2 Discretization
We discuss now how to approximate the Laplace mechanism on

a grid G of discrete Cartesian coordinates. Let us recall the points
(a) and (b) of the plan, in light of the development so far: Given the
actual location x0, report the point x in G obtained as follows:

(a) first, draw a point (r, θ) following the method in Figure 4,

(b) then, remap (r, θ) to the closest point x on G.

We will denote by Kε : G → P(G) the above mechanism. In
summary, Kε(x0)(x) represents the probability of reporting the
point x when the actual point is x0.

It is not obvious that the discretization preserves geo-indistingui-
shability, due to the following problem: In principle, each point x
in G should gather the probability of the set of points for which x
is the closest point in G, namely

R(x) = {y ∈ R2 | ∀x′ ∈ G. d(y, x′) ≤ d(y, x′)}
However, due to the finite precision of the machine, the noise gen-
erated according to (a) is already discretized in accordance with
the polar system. LetW denote the discrete set of points actually
generated in (a). Each of those points (r, θ) is drawn with the prob-
ability of the area between r, r+ δr , θ and θ+ δθ , where δr and δθ
denote the precision of the machine in representing the radius and
the angle respectively. Hence, step (b) generates a point x in G with
the probability of the set RW(x) = R(x) ∩ W . This introduces
some irregularity in the mechanism, because the region associated
to RW(x) has a different shape and area depending on the position
of x relatively to x0. The situation is illustrated in Figure 5 with
R0 = RW(x0) and R1 = RW(x1).

Geo-indistinguishability of the discretized mechanism.

We now analyze the privacy guarantees provided by our dis-
cretized mechanism. We show that the discretization preserves
geo-indistinguishability, at the price of a degradation of the privacy
parameter ε.

For the sake of generality we do not require the step units along
the two dimensions of G to be equal. We will call them grid units,
and will denote by u and v the smaller and the larger unit, respec-
tively. We recall that δθ and δr denote the precision of the machine
in representing θ and r, respectively. We assume that δr ≤ rmaxδθ .

Figure 5: Remapping the points in polar coordinates to points
in the grid.

Figure 6: The relation between ε and ε′ for various precisions,
and rmax = 102 Km.

The following theorem states the geo-indistinguishability guaran-
tees provided by our mechanism: Kε′ satisfies ε-geo-indistingui-
shability, within a range rmax, provided that ε′ is chosen in a suit-
able way that depends on ε, on the length of the step units of G, and
on the precision of the machine.

THEOREM 4.1. Assume rmax < u/δθ, and let q = u/rmaxδθ.
Let ε, ε′ ∈ R+ such that

ε′ +
1

u
ln
q + 2 eε

′u

q − 2 eε′u
≤ ε

Then Kε′ provides ε-geo-indistinguishability within the range of
rmax. Namely, if d(x0, x), d(x′0, x) ≤ rmax then:

Kε′(x0)(x) ≤ eε d(x0,x′0)Kε′(x
′
0)(x).

The difference between ε′ and ε represents the extra noise needed
to compensate the effect of discretization. Figure 6 shows that the
needed extra noise can vary a lot depending on the precision of the
machine, and that for double precision it is rather minor.

Note that in Theorem 4.1 the restriction about rmax is crucial.
Namely, ε-geo-indistinguishability does not hold for arbitrary dis-
tances for any finite ε. Intuitively, this is because the step units of
W (see Figure 5) become larger with the distance r from x0. The
step units of G, on the other hand, remain the same. When the
steps inW become larger than those of G, some x’s have an empty
RW(x). Therefore when x is far away from x0 its probability may
or may not be 0, depending on the position of x0 in G, which means
that geo-indistinguishability cannot be satisfied.

4.3 Truncation
In practical applications we are typically interested in locations

within a certain region. The Laplacian mechanisms described in
previous sections, however, has the potential to generate points ev-
erywhere in the plane. If the user knows that the actual location

Sanitizing Algorithm for a Location – NoisyPt
Input: x // point to sanitize

ε // privacy parameter
u, v, δθ , δr // precision parameters – Section 4.2
A // region of acceptable locations – Section 4.2

Output: Sanitized version x′ of input x
1. q = u/Aδθ ;
2. ε′ = safe_ε(ε, u, v, q); // Theorem 4.2
3. Draw angle θ ∼ Uniform(2π); // Figure 4
4. Draw radius r ∼ gamma(2, 1/ε′); // Figure 4
5. x′ = Pt(x, ρ, θ); // sanitized location
6. if x′ 6∈A then x′=closestP t(A, x, ρ, θ); // truncation
7. return x′;

Figure 7: Our sanitizing algorithm for a location.

is situated within a certain region, it is desirable that the reported
location lies within the same region as well. To this purpose we
propose a variant of the discrete Laplacian described in previous
section, which generates points only within a specified region.

We assume that the specified regionA of acceptable report points
is a circle centered in o, and diameter diam(A). This region A is
fixed, i.e. it does not depend on the actual location x0. Our trun-
cated mechanism KT

ε′ : A → P(A∩ G) works like the discretized
Laplacian of previous section, with the difference that, whenever
the point generated in step (a) lies outside A, we remap it to the
closest point in A ∩ G (which necessarily will be on the perimeter
of A, modulo discretization).

We are now going to show that this new method satisfies geo-
indistinguishability on allA, provided that rmax is not smaller than
diam(A).

THEOREM 4.2. Let rmax, ε and ε′ satisfy the premise of Theo-
rem 4.1. If rmax ≥ diam(A), thenKT

ε′ provides ε-geo-indistingui-
shability within A.

In the following we generally assume A = rmax.

5. ENHANCING LBSS WITH PRIVACY
In this section we present a case study of our privacy mecha-

nism in the context of LBSs. We assume a simple client-server
architecture where users communicate via a trusted mobile appli-
cation (the client – typically installed in a smart-phone) with an
unknown/untrusted LBS provider (the server – typically running
on the cloud). Hence, in contrast to other solutions proposed in the
literature, our approach does not rely on trusted third-party servers.

In the following we distinguish between mildly-location-sensitive
and highly-location-sensitive LBS applications.

The former category corresponds to LBS applications offering
a service that does not heavily rely on the precision of the loca-
tion information provided by the user. Examples of such applica-
tions are weather forecast applications and LBS applications for
retrieval of certain kind of POI (like gas stations). Enhancing this
kind of LBSs with geo-indistinguishability is relatively straightfor-
ward. It requires to implement the location perturbation mechanism
presented in Section 4 on the client party of the LBS application
and then report the sanitized location (instead of the real location)
to the LBS server party. Figure 7 delineates a location sanitizing
algorithm based on the techniques described in Section 4.2.

Our running example lies within the second category: For the
user sitting at Café Les Deux Magots, information about restau-
rants nearby Champs Élysées is considerably less valuable than in-
formation about restaurants around his location. Enhancing highly-

Figure 8: Retrieval information situation for private LBS

location-sensitive LBSs with privacy guarantees is considerably more
challenging. Our approach is the following:

1. The algorithm illustrated in Figure 7 should be implemented
on the client application in order to report to the LBS server
party the user’s approximate location z rather than his real
location x.

2. Due to the fact that the information retrieved from the server
is about POI nearby z, the area of POI information retrieval
should be increased. In this way, if the user wishes to ob-
tain information about POI within, say, 300 meters of x,
the client application should request information about POI
within, say, 1 km of z. Figure 8 illustrates the situation. We
will refer to the blue circle as area of interest and to the grey
circle as area of retrieval.

3. Finally, the client application should filter the retrieved POI
information (depicted by the pins within the area of retrieval
in Figure 8) in order to provide to the user with the desired
information (depicted by pins within the user’s area of inter-
est in Figure 8).

Clearly, for our approach it is crucial that the area of interest
is fully contained in the area of retrieval. However, the latter de-
pends on a randomly generated location, hence such condition can-
not be guaranteed. The client application could dynamically adjust
the area of retrieval in order to ensure that it always contains the
area of interest. However, this approach would jeopardize the pri-
vacy guarantees: on the one hand, the size of the area of retrieval
would leak information about the user’s real location and, on the
other hand, the LBS provider would know with certainty that the
user is located within the retrieval area. In order to provide geo-
indistinguishability, the area of retrieval should be defined inde-
pendently from the randomly generated location.

Our approach consists on statically defining the area of retrieval
as a function of the security parameters (we use here ` and r, where
` = ε r) and of the area of interest. Our goal is to define an area of
retrieval as small as possible (in order to avoid unnecessary band-
width usage) in a way that the area of interest is contained in it
with probability as high as possible. To this purpose, we adapt the
notion of (α, δ)-usefulness [4] to our setting.

5.1 Usefulness of our mechanisms
A location perturbation mechanism K is (α, δ)-useful if for ev-

ery location x, with probability at least 1− δ, the reported location
z = K(x) satisfies d(x, z) ≤ α. In the case of our mechanism,
δ can be computed using the cdf of the Gamma distribution from
which the radius is drawn. Figure 9 illustrates how our mecha-
nism behaves with respect to (α,δ)-usefulness when providing ε-

Figure 9: (α, δ)-usefulness for r = 0.2 and various values of `.

geo-indistinguishability for r = 0.2 (as in our running example)
and several values of `.

It follows from the information in Figure 9, that a mechanism
providing the privacy guarantees specified in our running example
(ε-geo-indistinguishability, with ` = ln(4) and r = 0.2) generates
an approximate location z falling within 1 km of the user’s location
x with probability 0.99, falling within 690 meters with probability
0.95, falling within 560 meters with probability 0.9, and falling
within 390 meters with probability 0.75.

We now have all the necessary ingredients to define an area of
retrieval containing the area of interest with a given probability.
Note that an area of retrieval with radius, say, rA contains the area
of interest with radius say, rI , with probability at least 1− δ if the
mechanism used to generate the reported location is (α,δ)-useful,
for an α ≤ rA − rI .

Therefore, by setting rA to 1 km in our running example and
since our mechanism is (0.69, 0.05)-useful, it is guaranteed that
the retrieval area contains the area of interest with probability at
least 0.95.

5.2 Further challenges: using a LBS multiple
times

As discussed in Section 3.3, geo-indistinguishability can be nat-
urally extended to multiple locations. In short, the idea of being
`-private within r remains the same but for all locations simulta-
neously. In this way the locations, say, x1, x2 of a user employing
the LBS twice remain indistinguishable from all pair of locations at
(point-wise) distance at most r (ie, from all pairs x′1, x′2 such that
d(x1, x

′
1) ≤ r and d(x2, x

′
2) ≤ r).

A simple way of obtaining geo-indistinguishability guarantees
when performing multiple queries is to employ our technique for
protecting single locations to independently generate approximate
locations for each of the user’s locations. In this way, a user per-
forming n queries via a mechanism providing ε-geo-indistinguishability
enjoys nε-geo-indistinguishability (see Section 3.3).

This solution might be satisfactory when the number of queries
to perform remains fairly low, but in other cases impractical, due to
the privacy degradation. It is worth noting that the canonical tech-
nique for achieving standard differential privacy (based on adding
noise according to the Laplace distribution) suffers of the same pri-
vacy degradation problem (ε increases linearly on the number of
queries). Several articles in the literature focus on this problem
(see [28] for instance). We believe that the principles and tech-
niques used to deal with this problem for standard differential pri-
vacy could be adapted to our scenario (either directly or motiva-
tionally).

6. COMPARISON WITH OTHER METHODS
In this section we compare the privacy of our mechanism with

that of others proposed in the literature. Of course it is not inter-
esting to make a comparison in terms of geo-indistinguishability,
since other mechanisms usually do not satisfy this property. We

will consider, instead, the rather natural Bayesian notion of privacy
proposed in [32]. In order to make a fair comparison, we will tune
the parameters so to obtain the same quality of service, measured
according to [32], and also in terms of the notion of usefulness [4]
used in the previous section.

We consider the obfuscation mechanism over “regions” presented
in [32], which gives optimal privacy for a given quality of service,
and a given prior of the adversary modeling his side knowledge.
The authors of [32] have actually provided a tool, which produces
the optimal mechanism. This tool needs the map to be divided into
a finite number of regions. We will experiment with a map divided
in 81 square regions of 100m of side length, forming a 9× 9 grid.

Note that the construction of the mechanism is done assuming
a specific prior, and that in presence of a different adversary the
optimality is not guaranteed. This dependency on the prior is a key
difference with respect to our approach, which abstracts from the
adversary’s side information.

The other method that we will compare to ours is a simple cloak-
ing one, in which the area of interest is divided in zones, and we
report the zone in which the real location is situated. This sim-
ple cloaking satisfies k-anonymity where k is the number of loca-
tions within each zone. We will consider, for simplicity, a division
shaped as a (larger) grid. Figure 10 illustrates the setting: the small
squares with black borders are the regions considered for the ap-
plication of the tool in [32]. The larger squares with blue borders
are the zones considered in this second method. For instance, any
point situated in one of the regions 1, 2, 3, 10, 11, 12, 19, 20 or 21,
would be reported as zone 1.

Privacy Metric.
As already stated, we will use the privacy metric proposed in

[32], which is called LP (Location Privacy) and defined as the ex-
pected estimation error of an optimal adversary. Namely:

LP =
∑

r,r′,r̂∈R
π(r)K(r)(r′)h(r̂|r′)d(r̂, r)

where R is the set of regions, π is the prior distribution of the user
over the regions,K is the mechanism, i.e. K(r)(r′) gives the prob-
ability that the real region r is reported as r′, h is the optimal remap
for the adversary, representing the probability that the reported re-
gion is remapped into r̂, and d is the distance between regions.
Calculating LP is relatively easy, which makes it a suitable option
for the comparison. However, we need to assume that that the map
is divided into a finite number of regions, hence also for our mech-
anism and the cloaking mechanism we consider the area of interest
as divided into a 9× 9 grid of 100m of side length.

Setting and results.
Our mechanism is already tuned to be mapped into a discrete

grid (see Section 4). Let us make more precise the way we proceed
in order to compute LP:

1. When obfuscating a region r, we considered the location to
be the center of that region.

2. We then apply our usual mechanism to this location, and get
an obfuscated location as result.

3. Finally, we remap this obfuscated location to the closest re-
gion r′ of the grid, and report r′ as the obfuscated region.

For the cloaking mechanism, we consider the map to be divided
into a grid of 3× 3 zones, where each zone contains 9 regions (cfr.
Figure 10). When obfuscating a region r, the mechanism reports

Figure 10: The division of the map into regions and zones.

(a) (b) (c)

Figure 11: Priors considered for the experiments

the region at the center of its corresponding zone. For instance, for
any of the regions 1, 2, 3, 10, 11, 12, 19, 20 or 21, the reported
region would be 11.

In order to perform a fair comparison, it is important that the
parameters of each mechanism are set in such a way that the Ser-
vice Quality Loss (SQL) is the same for each of them. The SQL
is defined as the expected distance between the reported point and
the real one [32]. It is worth noting that for the optimal mecha-
nism in [32] SQL and LP coincide (when the mechanism is used
in presence of the same adversary for which it has been designed),
i.e. the adversary does not need to make any remapping. It turns
out that this is the case also for our mechanism and for the cloak-
ing mechanism, when the adversary’s prior is the uniform one. For
our experiments, we fix the value of SQL to the one of the cloaking
mechanism, i.e. 107.03m. We find that in order to obtain such SQL
for our mechanism we need to set ε = 0.0162 (the difference with
ε′ in this case is negligible).

Figure 11 illustrates the priors that we consider: in each case, the
probability distribution is accumulated in the regions in the purple
area, and distributed uniformly over them. Note that it is not in-
teresting to consider the uniform distribution over the whole map,
since, as explained before, on that prior all the mechanisms under
consideration give the same result.

Figure 12 illustrates the results we obtain in terms of LP, where
(a), (b) and (c) refer to the priors in Figure 11. The optimal mech-
anism is considered in two instances: the one designed exactly for
the prior for which it is used (optimal rp – rp stands for real prior),
and the one designed for the uniform distribution on all the map
(optimal unif. – which is not necessarily optimal for the priors con-
sidered here). As we can see, our method offers the best LP among
the mechanisms which do not depend on the prior, or are designed
with a fixed prior (optimal unif.). When the prior has a more cir-
cular symmetry the performance approaches the one of optimal rp
(the optimal mechanism).

Finally, we compare our mechanism to the cloaking mechanism
using the notion of usefulness of [4], as it seems a very natural
notion for the case of LBS applications. We cannot compare the
optimal method of [32] because its construction is tied to the SQL
(and there is no 1-1 correspondence between usefulness and SQL).

(a) (b) (c)

Figure 12: Location Privacy for SQL = 107.03m.

(a) (b) (c)

Figure 13: Location Privacy for α = (
√

2 ·150)m and δ = 0.01.

We fix rI and rA to be 200m and (
√

2 · 150 + 200)m respectively,
and δ = 0.01. It turns out that with such parameters ε must be
0.016. Figure 13 illustrates the values of SQL for the two mech-
anisms, with the same three priors as before. As we can see, our
mechanism outperforms the cloaking mechanism in all the three
cases.

7. RELATED WORK
Much of the related work has been already discussed in Sec-

tion 2, here we only mention the works that were not reported there.
There are excellent works and surveys [33, 22, 30]) that summarize
the different threats, methods, and guarantees in the context of lo-
cation privacy.

LISA [6] provides location privacy by preventing an attacker
from relating any particular point of interest (POI) to the user’s lo-
cation. That way, the attacker cannot infer which POI the user will
visit next. The privacy metric used in this work ism-unobservability.
The method achieves m-unobservability if, with high probability,
the attacker cannot relate the estimated location to at least m dif-
ferent POIs in the proximity.

SpaceTwist [35] reports a fake location (called the “anchor”) and
queries the geolocation system server incrementally for the nearest
neighbors of this fake location until the k-nearest neighbors of the
real location are obtained.

In a recent paper [25] it has been shown that, due to finite preci-
sion and rounding effects of floating-point operations, the standard
implementations of the Laplacian mechanism result in an irregu-
lar distribution which causes the loss of the property of differential
privacy. In [14] the study has been extended to the planar Lapla-
cian, and to any kind of finite-precision semantics. The same paper
proposes a solutions for the truncated version of the planar lapla-
cian, based on a snapping meccanism, which maintains the level of
privacy at the cost of introducing an additional amount of noise.

8. CONCLUSION AND FUTURE WORK

In this paper we have presented a framework for achieving pri-
vacy in location-based applications, taking into account the desired
level of protection as well as the side-information that the attacker
might have. The core of our proposal is a new notion of privacy,
that we call geo-indistinguishability, and a method, based on a bi-
variate version of the Laplace function, to perturbate the actual
location. We have put a strong emphasis in the formal treatment
of the privacy guarantees, both in giving a rigorous definition of
geo-indistinguishability, and in providing a mathematical proof that
our method satisfies such property. We also have shown how geo-
indistinguishability relates to the popular notion of differential pri-
vacy. Finally, we have illustrated the applicability of our method on
a POI-retrieval service, and we have compared it with other mecha-
nisms in the literature, showing that it outperforms those which do
not depend on the prior.

In the future we aim at extending our method to cope with more
complex applications, possibly involving the sanitization of several
(potentially related) locations. One important aspect to consider
when generating noise on several data is the fact that their corre-
lation may degrade the level of protection. We aim at devising
techniques to control the possible loss of privacy and to allow the
composability of our method.

9. REFERENCES
[1] Pew Internet & American Life Project.

www.pewinternet.org.
[2] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C.

di Vimercati, and P. Samarati. Location privacy protection
through obfuscation-based techniques. In Proc. of DAS,
volume 4602 of LNCS, pages 47–60. Springer, 2007.

[3] B. Bamba, L. Liu, P. Pesti, and T. Wang. Supporting
anonymous location queries in mobile environments with
privacygrid. In Proc. of WWW, pages 237–246. ACM, 2008.

[4] A. Blum, K. Ligett, and A. Roth. A learning theory approach
to non-interactive database privacy. In Proc. of STOC, pages
609–618. ACM, 2008.

[5] K. Chatzikokolakis, E. Andrés, Miguel, E. Bordenabe,
Nicolás, and C. Palamidessi. Broadening the scope of
Differential Privacy using metrics. In Proc. of PETS. IEEE,
2013. To appear. Tech. Rep. available at:
http://hal.inria.fr/hal-00767210.

[6] Z. Chen. Energy-efficient Information Collection and
Dissemination in Wireless Sensor Networks. PhD thesis,
University of Michigan, 2009.

[7] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving
user location privacy in mobile data management
infrastructures. In Privacy Enhancing Technologies, 6th Int.
Workshop, PET 2006, Cambridge, UK, June 28-30, 2006,
Revised Selected Papers, volume 4258 of LNCS, pages
393–412. Springer, 2006.

[8] J. E. Dobson and P. F. Fisher. Geoslavery. Technology and
Society Magazine, IEEE, 22(1):47–52, 2003.

[9] M. Duckham and L. Kulik. A formal model of obfuscation
and negotiation for location privacy. In Proc. of PERVASIVE,
volume 3468 of LNCS, pages 152–170. Springer, 2005.

[10] C. Dwork. Differential privacy. In Proc. of ICALP, volume
4052 of LNCS, pages 1–12. Springer, 2006.

[11] C. Dwork. A firm foundation for private data analysis.
Communications of the ACM, 54(1):86–96, 2011.

[12] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S.
Zemel. Fairness through awareness. In Proc. of ITCS, pages
214–226. ACM, 2012.

[13] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proc. of TCC,
volume 3876 of LNCS, pages 265–284. Springer, 2006.

[14] I. Gazeau, D. Miller, and C. Palamidessi. Preserving
differential privacy under finite-precision semantics. In Proc.
of QAPL, 2013. To appear.

[15] B. Gedik and L. Liu. Location privacy in mobile systems: A
personalized anonymization model. In Proc. of ICDCS,
pages 620–629. IEEE, 2005.

[16] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and
K.-L. Tan. Private queries in location based services:
anonymizers are not necessary. In Proc. of SIGMOD, pages
121–132. ACM, 2008.

[17] M. Gruteser and D. Grunwald. Anonymous usage of
location-based services through spatial and temporal
cloaking. In Proc. of MobiSys. USENIX, 2003.

[18] S.-S. Ho and S. Ruan. Differential privacy for location
pattern mining. In Proc. of SPRINGL, pages 17–24. ACM,
2011.

[19] B. Hoh and M. Gruteser. Protecting location privacy through
path confusion. In SecureComm, pages 194–205. IEEE,
2005.

[20] A. Khoshgozaran and C. Shahabi. Blind evaluation of
nearest neighbor queries using space transformation to
preserve location privacy. In Proc. of SSTD, volume 4605 of
LNCS, pages 239–257. Springer, 2007.

[21] H. Kido, Y. Yanagisawa, and T. Satoh. Protection of location
privacy using dummies for location-based services. In Proc.
of ICDE Workshops, page 1248, 2005.

[22] J. Krumm. A survey of computational location privacy.
Personal and Ubiquitous Computing, 13(6):391–399, 2009.

[23] K. Lange and J. S. Sinsheimer. Normal/independent
distributions and their applications in robust regression. J. of
Comp. and Graphical Statistics, 2(2):175–198, 1993.

[24] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map. In
Proc. of ICDE, pages 277–286. IEEE, 2008.

[25] I. Mironov. On significance of the least significant bits for
differential privacy. In Proc. of CCS, pages 650–661. ACM,
2012.

[26] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper:
Query processing for location services without
compromising privacy. In Proc. of VLDB, pages 763–774.
ACM, 2006.

[27] J. Reed and B. C. Pierce. Distance makes the types grow
stronger: a calculus for differential privacy. In Proc. of ICFP,
pages 157–168. ACM, 2010.

[28] A. Roth and T. Roughgarden. Interactive privacy via the
median mechanism. In Proc. of STOC, pages 765–774, 2010.

[29] P. Shankar, V. Ganapathy, and L. Iftode. Privately querying
location-based services with sybilquery. In Proc. of
UbiComp, pages 31–40. ACM, 2009.

[30] K. G. Shin, X. Ju, Z. Chen, and X. Hu. Privacy protection for
users of location-based services. IEEE Wireless Commun,
19(2):30–39, 2012.

[31] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P.
Hubaux. Quantifying location privacy. In Proc. of S&P,
pages 247–262. IEEE, 2011.

[32] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux,
and J.-Y. L. Boudec. Protecting location privacy: optimal
strategy against localization attacks. In Proc. of CCS, pages

Figure 14: Bounding the probability of x in the discrete Lapla-
cian.

617–627. ACM, 2012.
[33] M. Terrovitis. Privacy preservation in the dissemination of

location data. SIGKDD Explorations, 13(1):6–18, 2011.
[34] M. Xue, P. Kalnis, and H. Pung. Location diversity:

Enhanced privacy protection in location based services. In
Proc. of LoCA, volume 5561 of LNCS, pages 70–87.
Springer, 2009.

[35] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist:
Managing the trade-offs among location privacy, query
performance, and query accuracy in mobile services. In Proc.
of ICDE, pages 366–375. IEEE, 2008.

APPENDIX
In this appendix we provide the technical details that have been
omitted from the main body of the paper.

THEOREM 4.1. Assume rmax < u/δθ, and let q = u/rmaxδθ.
Let ε, ε′ ∈ R+ such that

ε′ +
1

u
ln
q + 2 eε

′u

q − 2 eε′u
≤ ε

Then Kε′ provides ε-geo-indistinguishability within the range of
rmax. Namely, if d(x0, x), d(x′0, x) ≤ rmax then:

Kε′(x0)(x) ≤ eε d(x0,x′0)Kε′(x
′
0)(x).

PROOF. The case in which x0 = x′0 is trivial. We consider
therefore only the case in which x0 6= x′0. Note that in this case
d(x0, x

′
0) ≥ u. We proceed by determining an upper bound on

Kε′(x0)(x) and a lover bound on Kε′(x
′
0)(x) for generic x0, x′0

and x such that d(x0, x), d(x′0, x) ≤ rmax. Let S be the set of
points for which x is the closest point in G, namely:

S = R(x) = {y ∈ R2 | ∀x′ ∈ G. d(y, x′) ≤ d(y, x′)}
Ideally, the points remapped in x would be exactly those in S.
However, due to the finite precision of the machine, the points ac-
tually remapped in x are those of RW(x) (see Section 4.2). Hence
the probability of x is that of S plus or minus the small rectangles3

W of size δr × r δθ at the border of S, where r = d(x0, x), see
Figure 14. Let us denote by SW the total area of these small rect-
angles W on one of the sides of S. Since d(x0, x) ≤ rmax < u/δθ,
and δr < rmaxδθ , we have that SW is less than 1/q of the area of
S, where q = u/rmaxδθ. The probability density on this area differs
at most by a factor eε

′u from that of the other points in S. Finally,
note that on two sides of S the rectangles W contribute positively
3W is actually a fragment of a circular crown, but since δθ is
very small, it approximates a rectangle. Also, the side of W is
not exactly r δθ , it is a number in the interval [(r − u/

√
2) δθ, (r +

u/
√

2) δθ]. However u/√2 δθ is very small with respect to the other
quantities involved, hence we consider negligible this difference.

o

A

r

x0

S
x

Figure 15: Probability of x in the truncated discrete laplacian.

toKε′(x0)(x), while on two sides they contribute negatively. Sum-
marizing, we have:

Kε′(x0)(x) ≤ (1 +
2 eε

′u

q
)

∫

S

Dε′(x0)(x1)ds (3)

and

(1− 2 eε
′u

q
)

∫

S

Dε′(x
′
0)(x1)ds ≤ Kε′(x

′
0)(x) (4)

Observe now that

Dε′(x0)(x1)

Dε′(x′0)(x1)
= e−ε

′(d(x0,x1)−d(x′0,x1))

By triangular inequality we obtain

Dε′(x0)(x1) ≤ eε′ d(x0,x′0)Dε′(x
′
0)(x1)

from which we derive
∫

S

Dε′(x0)(x1)ds ≤ eε′ d(x0,x′0)

∫

S

Dε′(x
′
0)(x1)ds (5)

from which, using (3), (5), and (4), we obtain

Kε′(x0)(x) ≤ eε′ d(x0,x′0) Kε′(x
′
0)(x)

q + 2 eε
′u

q − 2 eε′u
(6)

Assume now that

ε′ +
1

u
ln
q + 2 eε

′u

q − 2 eε′u
≤ ε

Since we are assuming d(x0, x
′
0) ≥ u, we derive:

eε
′ d(x0,x′0) q + 2 eε

′u

q − 2 eε′u
≤ eε d(x0,x′0) (7)

Finally, from (6) and (7), we conclude.

THEOREM 4.2. Let rmax, ε and ε′ satisfy the premise of Theo-
rem 4.1. If rmax ≥ diam(A), thenKT

ε′ provides ε-geo-indistingui-
shability within A.

PROOF. The proof proceeds like the one for Theorem 4.1, ex-
cept when R(x) is on the border of A. In this latter case, the prob-
ability on x is given not only by the probability on R(x) (plus or
minus the small rectangles W – see the proof of Theorem 4.1), but
also by the probability of the part C of the cone determined by o,
R(x), and lying outside A (see Figure 15). Following a similar
reasoning as in the proof of Theorem 4.1 we get

KT
ε′ (x0)(x) ≤ (1 +

2 eε
′u

q
)

∫

S∪C
Dε′(x0)(x1)ds

and

(1− 2 eε
′u

q
)

∫

S∪C
Dε′(x

′
0)(x1)ds ≤ KT

ε′ (x
′
0)(x)

The rest follows as in the proof of Theorem 4.1.

Checking Equality and Regularity
for Normed BPA with Silent Moves?

Yuxi Fu

BASICS, Department of Computer Science, Shanghai Jiao Tong University
MOE-MS Key Laboratory for Intelligent Computing and Intelligent Systems

Abstract. The decidability of weak bisimilarity on normed BPA is a
long standing open problem. It is proved in this paper that branching
bisimilarity, a standard refinement of weak bisimilarity, is decidable for
normed BPA and that the associated regularity problem is also decidable.

1 Introduction

In [BBK87] Baeten, Bergstra and Klop proved a surprising result that strong
bisimilarity between context free grammars without empty production is decid-
able. The decidability is in sharp contrast to the well known fact that language
equivalence between these grammars is undecidable. After [BBK87] decidability
and complexity issues of equivalence checking of infinite systems à la process
algebra have been intensively investigated. As regards BPA, Hüttel and Stir-
ling [HS91] improved Baeten, Bergstra and Klop’s proof by a more straight-
forward one using tableau system. Hüttel [Hüt92] then repeated the tableau
construction for branching bisimilarity on totally normed BPA processes. Later
Hirshfeld [Hir96] applied the tableau method to the weak bisimilarity on the
totally normed BPA. An affirmative answer to the decidability of the strong
bisimilarity on general BPA is given by Christensen, Hüttel and Stirling by ap-
plying the technique of bisimulation base [CHS92].

The complexity aspect of BPA has also been investigated over the years. Bal-
cazar, Gabarro and Santha [BGS92] pointed out that strong bisimilarity is P-
hard. Huynh and Tian [HT94] showed that the problem is in Σp

2 , the second level
of the polynomial hierarchy. Hirshfeld, Jerrum and Moller [HJM96] completed
the picture by offering a remarkable polynomial algorithm for the strong bisimi-
larity of normed BPA. For the general BPA, Burkart, Caucal and Steffen [BCS95]
showed that the strong bisimilarity problem is elementary. They claimed that
their algorithm can be optimized to get a 2-EXPTIME upper bound. A further
elaboration of the 2-EXPTIME upper bound is given in [Jan12] with the intro-
duction of infinite regular words. The current known best lower bound of the
problem, EXPTIME, is obtained by Kiefer [Kie13], improving both the PSPACE
lower bound result and its proof of Srba [Srb02]. Much less is known about the
weak bisimilarity on BPA. Stř́ıbrná’s PSPACE lower bound [Stř98] is subsumed

? F.V. Fomin et al. (Eds.): ICALP 2013, Part II, LNCS 7966, pp. 244-255, 2013.

by both the result of Srba [Srb02] and that of Mayr [May03], all of which are
subsumed by Kiefer’s recent result. A slight modification of Mayr’s proof shows
that the EXPTIME lower bound holds for the branching bisimilarity as well.

It is generally believed that weak bisimilarity, as well as branching bisim-
ilarity, on BPA is decidable. There has been however a lack of technique to
resolve the difficulties caused by silent transitions. This paper aims to advance
our understanding of the decidability problems of BPA in the presence of silent
transitions. The main contributions of the paper are as follows:

– We introduce branching norm, which is the least number of nontrivial actions
a process has to do to become an empty process. With the help of this concept
one can carry out a much finer analysis on silent actions than one would have
using weak norm. Branching norm turns out to be crucial in our approach.

– We reveal that in normed BPA the length of a state preserving silent tran-
sition sequence can be effectively bounded. As a consequence we show that
branching bisimilarity on normed BPA processes can be approximated by a
sequence of finite branching bisimulations.

– We establish the decidability of branching bisimilarity on normed BPA by
constructing a sound and complete tableau system for the equivalence.

– We demonstrate how to derive the decidability of the associated regularity
problem from the decidability of the branching bisimilarity of normed BPA.

The result of this paper is significantly stronger than previous decidability
results on the branching bisimilarity of totally normed BPA [Hüt92,CHT95]. It is
easy to derive effective size bound for totally normed BPA since a totally normed
BPA process with k variable occurrences has a norm at least k. For the same
reason right cancellation property holds. Hence the decidability. The totality
condition makes the branching bisimilarity a lot more like strong bisimilarity.

2 Branching Bisimilarity for BPA

A basic process algebra (BPA for short) Γ is a triple (V,A, ∆) where V =
{X1,Xn} is a finite set of variables, A = {a1,am} ∪ {τ} is a finite set of
actions ranged over by `, and ∆ is a finite set of transition rules. The special sym-
bol τ denotes a silent action. A BPA process defined in Γ is an element of the set
V∗ of finite string of element of V. The set V will be ranged over by capital letters
and V∗ by lower case Greek letters. The empty string is denoted by ε. We will

use = for the grammar equality on V∗. A transition rule is of the form X
`−→ α,

where ` ranges over A. The transitional semantics is closed under composition

in the sense that Xγ
`−→ αγ for all γ whenever X

`−→ α. We shall assume that
every variable of a BPA is defined by at least one transition rule and every action
in A appears in some transition rule. Accordingly we sometimes refer to a BPA
by its set of transition rules. We write −→ for

τ−→ and =⇒ for the reflexive
transitive closure of

τ−→. The set A∗ will be ranged over by `∗. If `∗ = `1 . . . `k

for some k ≥ 0, then α
`∗−→ α′ stands for α

`1−→ α1 . . .
`k−1−→ αk−1

`k−→ α′ for some

α1, . . . , αk−1. We say that α′ is a descendant of α if α
`∗−→ α′ for some `∗.

A BPA process α is normed if there are some actions `1, . . . `j such that

α
`1−→ . . .

`j−→ ε. A process is unnormed if it is not normed. The norm of a BPA

process α, denoted by ‖α‖, is the least k such that α
`1−→ . . .

`k−→ ε for some
`1, . . . `k. A normed BPA, or nBPA, is one in which every variable is normed.

For each given BPA ∆, we introduce the following notations:

– m∆ is the number of transition rules; and n∆ is the number of variables.

– r∆ is max
{
|γ|
∣∣∣ X λ−→ γ ∈ ∆

}
, where |γ| denotes the length of γ.

– ‖∆‖ is max {‖Xi‖ | 1 ≤ i ≤ n∆ and Xi is normed}.
Each of m∆, n∆, r∆ and ‖∆‖ can be effectively calculated from ∆.

2.1 Branching Bisimilarity

The idea of the branching bisimilarity of van Glabbeek and Weijland [vGW89]
is that not all silent actions can be ignored. What can be ignored are those that
do not change system states irreversibly. For BPA we need to impose additional
condition to guarantee congruence. In what follows xRy stands for (x, y) ∈ R.

Definition 1. A symmetric relation R on BPA processes is a branching bisim-
ulation if the following statements are valid whenever αRβ:

1. If βRα `−→ α′ then one of the following statements is valid:
(i) ` = τ and α′Rβ.

(ii) β =⇒ β′′Rα for some β′′ such that β′′
`−→ β′Rα′ for some β′.

2. If α = ε then β =⇒ ε.

The branching bisimilarity ' is the largest branching bisimulation.

The branching bisimilarity ' satisfies the standard property of observational
equivalence stated in the next lemma [vGW89].

Lemma 1. Suppose α0
τ−→ α1

τ−→ . . .
τ−→ αk ' α0. Then α0 ' α1 ' . . . ' αk.

Using Lemma 1 it is easy to show that ' is a congruence and that whenever

β ' α
`−→ α′ is simulated by β

τ−→ β1
τ−→ β2 . . .

τ−→ βk
`−→ β′ such that

βk ' α and β′ ' α′ then β ' β1 ' . . . ' βk.
Having defined an equality for BPA, we can formally draw a line between the

silent actions that change the capacity of systems and those that do not. We say
that a silent action α

τ−→ α′ is state preserving if α ' α′; it is a change-of-state
if α 6' α′. We will write α→ α′ if α

τ−→ α′ is state preserving and α
ι−→ α′ if it

is a change-of-state. The reflexive and transitive closure of → is denoted by →∗.
Since both external actions and change-of-state silent actions must be explicitly

bisimulated, we let range over the set (A\{τ})∪{ι}. So α
−→ α′ means either

α
a−→ α′ for some a 6= τ or α

ι−→ α′.
Let’s see an example.

Example 1. The BPA Γ1 is defined by the following transition rules:

A
a−→ A, A

τ−→ ε, B
b−→ B, B

τ−→ ε, C
a−→ C, C

b−→ C, C
τ−→ ε.

Clearly AC ' BC, although A 6' B. In this example all variables are normed.

2.2 Bisimulation Base

An axiom system B is a finite set of equalities on nBPA processes. An element
α = β of B is called an axiom. Write B ` α = β if the equality α = β can be
derived from the axioms of B by repetitive use of any of the three equivalence
rules and two congruence rules. For our purpose the most useful axiom systems
are those that generate branching bisimulations. These are bisimulation bases
originally due to Caucal. The following definition is Hüttel’s adaptation to the
branching scenario [Hüt92].

Definition 2. A finite axiom system B is a bisimulation base if the following
bisimulation base property hold for every axiom (α0, β0) of B:

1. If β0 −→ β1 −→ . . . −→ βn
`−→ β′ then there are α1, . . . , αn, α

′ such that
B ` β1 = α1, . . . , B ` βn = αn, B ` β′ = α′ and the following hold:
(i) For each i with 0 ≤ i < n, either αi = αi+1, or αi −→ αi+1, or there

are α1
i , . . . , α

ki
i such that αi −→ α1

i −→ . . . −→ αkii −→ αi+1 and

B ` βi = α1
i , . . . , B ` βi = αkii .

(ii) Either ` = τ and αn = α′, or αn
`−→ α′, or there are α1

n, . . . , α
kn
n

such that αn −→ α1
n −→ . . . −→ αknn

`−→ α′ and B ` βn = α1
n, . . . ,

B ` βn = αknn .
2. If β0 = ε then either α0 = ε or α0 −→ α1 −→ . . . −→ αk −→ ε for some

α1, . . . , αk with k ≥ 0 such that B ` α1 = ε, . . . , B ` αk = ε.
3. The conditions symmetric to 1 and 2.

The next lemma justifies the above definition [Hüt92].

Lemma 2. If B is a bisimulation base then B` = {(α, β) | B ` α = β} ⊆ '.

Proof. If B ` α = β, then an inductive argument shows that there exist γ1δ1λ1,
γ2δ2λ2, γ3δ3λ3, . . . , γk−1δk−1λk−1, γkδkλk and δ′1, . . . , δ

′
k for k ≥ 1 such that α =

γ1δ1λ1, γkδ
′
kλk = β and γ1δ1λ1 B γ1δ′1λ1 = γ2δ2λ2 B γ2δ′2λ2 = . . . γk−1δ′k−1λk−1

= γkδkλk B γkδ′kλk. The transitive closure makes it easy to see that B` satisfies
the bisimulation base property. Consequently it is a branching bisimulation. ut

3 Approximation of Branching Bisimilarity

To look at the algebraic property of the branching bisimilarity ' more closely,
we introduce a notion of normedness appropriate for the equivalence.

Definition 3. The branching norm of an nBPA process α is the least number

k such that ∃1 . . . k.∃α1 . . . αk.α →∗ 1−→ α1 →∗ 2−→ . . . αk−1 →∗ k−→ αk →∗ ε.
The branching norm of α is denoted by ‖α‖b.

For example the branching norm of B defined by {B a−→ B,B
τ−→ ε} is 1. It is

easy to prove that if α ' β then ‖α‖b = ‖β‖b and that if ‖α‖b = 0 then α ' ε.
It follows that ‖α′‖b = ‖α‖b whenever α→∗ α′. Also notice that ‖α‖b ≤ ‖α‖.

An important property of branching norm is stated next.

Lemma 3. Suppose α is normed. Then α ' δα if and only if ‖α‖b = ‖δα‖b.

Proof. If ‖α‖b = ‖δα‖b then every silent action sequence from δα to α must
contain only state preserving silent transitions according to Lemma 1. Moreover
there must exist such a silent action path for otherwise ‖α‖b < ‖δα‖b. ut

It does not follow from α ' δα that δ ' ε. A counter example is given by the
BPA defined in Example 1. One has AC ' C ' BC. But clearly ε 6' A 6' B 6' ε.
To deal with situations like this we need the notion of relative norm.

Definition 4. The relative norm ‖α‖σb of α with respect to σ is the least k such

that ασ →∗ 1−→ α1σ . . . αk−1σ →∗ k−→ αkσ →∗ σ for some 1, . . . , k, α1, . . . , αk.

Obviously 0 ≤ ‖α‖σb ≤ ‖α‖b. Returning to the BPA Γ1 defined in Example 1,
we see that ‖A‖Bb = 1 and ‖A‖Cb = 0. Using the notion of relative norm we may
introduce the following terminologies:

– A transition Xσ
`−→ ησ is norm consistent if either ‖η‖σb = ‖X‖σb and ` = τ

or ‖η‖σb = ‖X‖σb − 1 and ` 6= τ ∨ ` = ι.
– If Xσ −→ ησ is norm consistent with ‖X‖σb > 0, then it is norm splitting if

at least two variables in η have (smaller) nonzero relative norms in ησ.

For an nBPA ∆ no silent transition sequence contains more than ‖∆‖b norm
splitting transitions, where ‖∆‖b is max{‖Xi‖b | 1 ≤ i ≤ n∆ and Xi is normed}.

The crucial property about relative norm is described in the following lemma.

Lemma 4. Let α, β, δ, γ be normed with ‖α‖γb = ‖β‖δb. If αγ ' βδ then γ ' δ.

Proof. Suppose ‖α‖γb = ‖β‖δb . Now ‖α‖γb + ‖γ‖b = ‖αγ‖b = ‖βδ‖b = ‖β‖δb +

‖δ‖b. Therefore ‖γ‖b = ‖δ‖b. A norm consistent action sequence αγ →∗ 1−→
. . . →∗ k−→→∗ γ must be matched up by βδ →∗ 1−→ . . . →∗ k−→ β′δ for some β′.
Clearly ‖β′δ‖b = ‖γ‖b = ‖δ‖b. It follows from Lemma 3 that δ ' β′δ ' γ. ut

Lemma 4 describes a weak form of left cancelation property. The general left
cancelation property fails. Fortunately there is a nice property of nBPA that
allows us to control the size of common suffix of a pair of bisimilar processes.

Definition 5. A process α is irredundant over γ if ‖α‖γb > 0. It is redundant
over γ if ‖α‖γb = 0. A process α is head irredundant if either α = ε or α = Xα′

for some X,α′ such that α 6' α′. It is head redundant otherwise. We write
Hirred(α) to indicate that α is head irredundant. A process α is completely
irredundant if every suffix of α is head irredundant. We write Cirred(α) to
mean that α is completely irredundant.

If α is normed, then α is irredundant over γ if and only if αγ 6' γ. In nBPA
a redundant process consists solely of redundant variables.

Lemma 5. Suppose X1, . . . , Xk, σ are normed. Then X1 . . . Xk is redundant
over σ if and only if Xi is redundant over σ for every Xi ∈ {X1, . . . , Xk}.

Proof. Suppose X1, . . . , Xk, σ are normed and X1 . . . Xk is redundant over σ.
Then X1 . . . Xkσ =⇒ X2 . . . Xkσ =⇒ . . . =⇒ Xkσ =⇒ σ ' X1 . . . Xkσ. It
follows from Lemma 1 that X1 . . . Xkσ ' X2 . . . Xkσ ' . . . ' Xkσ ' σ. We are
done by using the congruence property. ut

For each σ, let the redundant set Rσ of σ be {X | Xσ ' σ}. Let V(α) be the
set of variables appearing in α. We have two useful corollaries.

Corollary 1. Suppose α, σ are normed. Then ασ ' σ if and only if V(α) ⊆ Rσ.

Corollary 2. Suppose α, β, σ0, σ1 are defined in an nBPA and Rσ0
= Rσ1

.
Then ασ0 ' βσ0 if and only if ασ1 ' βσ1.

Proof. SupposeRσ0 = Rσ1 . Let S be {(ασ0, βσ0) | ασ1 ' βσ1}. It is not difficult
to see that S ∪ ' is a branching bisimulation. ut

We now take a look at the state preserving transitions of nBPA processes.
We are particularly interested in knowing if the quotient set {θ | α →∗ V θ}/'
of the equivalence classes is finite for every nBPA process α and every variable
V . It turns out that all such sets are finite with effective size bound.

Lemma 6. For each nBPA process α = Xω, there is an effective bound Hα,
uniformly computable from α, satisfying the following: If α→∗ V θ then α→∗ V η
for some η such that θ ' η and the length of α→∗ V η is no more than Hα.

Proof. The basic idea is to show that in an effectively bounded number of steps
α can reach, via norm consistent and norm splitting silent transitions, terms V θ
with all possible variable V and all possible relative norm of V . We then apply
Lemma 4. The bound Hα is computed from |α| and the transition system. ut

Under the assumption γ 6' βγ we can repeat the proof of Lemma 6 for βγ in
a way that γ is not affected. Hence the next corollary.

Corollary 3. Suppose α, βγ are nBPA processes and γ 6' βγ. If βγ ' α −→ α′,
then there is a transition sequence βγ →∗ β′′γ −→ β′γ with its length bounded
by Hβ such that β′′γ ' α and β′γ ' α′.

We are now in a position to prove the following.

Proposition 1. The relation 6' on nBPA processes is semi-decidable.

Proof. We define 'k, the branching bisimilarity up to depth k, by exploiting
Corollary 3. The inductive definition is as follows:

– α '0 β for all α, β.
– α 'i+1 β if the following condition and its symmetric version hold: If α 'i
β

`−→ β′ then one of the following statements is valid:
(i) ` = τ and α 'i β′.
(ii) α =⇒ α′′ 'i β for some α′′ such that α′′

`−→ α′ 'i β′ for some α′ and
the length of α =⇒ α′′ is bounded by Hα.

Each 'k is decidable. Using Corollary 3 one easily sees that ' ⊆ ⋂k∈ω 'k. The
proof of the converse inclusion is standard. ut

4 Equality Checking

A straightforward approach to proving an equality between two processes is
to construct a finite bisimulation tree for the equality. A tree of this kind has
been called a tableau system [HS91,Hüt92]. To apply this approach we need to
make sure that the following properties are satisfied: (i) Every tableau for an
equality α = β is finite. (ii) The set of tableaux for an equality α = β is finite.
We can achieve (i) by using Corollary 2 and Corollary 3. This is because if σ
is long enough then according to Corollary 2 it can be decomposed into some
σ0σ1σ2 such that Rσ1σ2

= Rσ2
. Then λσ0σ1σ2 ' γσ0σ1σ2 can be simplified to

λσ0σ2 ' γσ0σ2. The equivalence provides a method to control the size of labels
of a tableau. Now (ii) is a consequence of (i), Corollary 3 and König lemma.

The building blocks for tableaux are matches. Suppose α0α 6' α and β0β 6' β.
A match for the equality α0α = β0β over (α, β) is a finite symmetric relation
{γiα = λiβ}ki=1 containing only those equalities accounted for in the following

condition: For each transition α0α
`−→ α′α, one of the following holds:

– ` = τ and α′α = β0β ∈ {γiα = λiβ}ki=1;

– there is a sequence β0β
τ−→ β1β

τ−→ . . .
τ−→ βnβ

`−→ β′β, for n < Hβ0
, such

that {α0α = β1β, . . . , α0α = βnβ, α
′α = β′β} ⊆ {γiα = λiβ}ki=1.

If α0σ 6' σ 6' β0σ, a match for α0σ = β0σ over (σ, σ) is said to be a match for
α0σ = β0σ over σ. The computable bound Hβ0

, given by Corollary 3, guarantees
that the number of matches for α0α = β0β is effectively bounded.

Suppose α0, β0 are nBPA processes. A tableau for α0 = β0 is a tree with each
of its nodes labeled by an equality between nBPA processes. The root is labeled
by α0 = β0. We shall distinguish between global tableau and local tableau. The
global tableau is the overall tableau whose root is labeled by the goal α0 = β0.
It is constructed from the rules given in Fig. 1. Decmp rule decomposes a goal
into several subgoals. We shall find it useful to use SDecmp, which is a stronger
version of Decmp. The side condition of SDecmp ensures that it is unnecessary
to apply it consecutively. When applying Decmp rule we assume that an equality
γσ = σ, respectively σ = γσ, is always decomposed in the following manner

γσ = σ

σ = σ {V σ = σ}V ∈V(γ)
respectively

σ = γσ

σ = σ {V σ = σ}V ∈V(γ)
.

Accordingly γ = ε, respectively ε = γ, is decomposed in the following fashion

γ = ε

ε = ε {V = ε}V ∈V(γ)
respectively

ε = γ

ε = ε {V = ε}V ∈V(γ)
.

SubstL and SubstR allow one to create common suffix for the two processes in
an equality. ContrL and ContrR are used to remove a redundant variable inside
a process. In the side conditions of these two rules, α0, β0 are the processes
appearing in the root of the global tableau. ContrC deletes redundant variables
from the common suffix of a node label whenever the size of the common suffix

Decmp
γα = λβ

α = β {Uα = α}U∈V(γ) {V β = β}V ∈V(λ)

|γ|+ |λ| > 0,
∀U ∈ V(γ).U =⇒ ε,
∀V ∈ V(λ).V =⇒ ε.

SDecmp
γα = λβ

α = β {Uα = α}U∈V(γ) {V β = β}V ∈V(λ)

|γ|+ |λ| > 0,
Hirred(α), Hirred(β),
∀U ∈ V(γ).U =⇒ ε,
∀V ∈ V(λ).V =⇒ ε.

Match
γα = λβ

α1α = β1β . . . αkα = βkβ

γα 6' α, λβ 6' β, and {αiα = βiβ}ki=1

is a match for γα = λβ over (α, β).

SubstL
γα = λβ

γδβ = λβ
α = δβ is the residual.

SubstR
γα = λβ

γα = λδα
δα = β is the residual.

ContrL
γZδ = λ

γδ = λ Zδ = δ
Hirred(δ), Z =⇒ ε and |γZδ| > max{|α0|, |β0|}‖∆‖.

ContrR
γ = λZδ

γ = λδ Zδ = δ
Hirred(δ), Z =⇒ ε and |λZδ| > max{|α0|, |β0|}‖∆‖.

ContrC
γσ′σ0σ1 = λσ′σ0σ1

γσ′σ1 = λσ′σ1 {V σ1 = σ1}V ∈V(σ0)

|σ′σ0σ1| > 2n∆ , |σ0| > 0,
Hirred(σ1),
∀V ∈ V(σ0).V =⇒ ε.

Fig. 1. Rules for Global Tableaux

is over limit. Notice that all the side conditions on the rules are semi-decidable
due to the semi-decidability of 6'. So we can effectively enumerate tableaux.

In what follows a node Zη = Wκ to which Match rule is applied with the
condition Zη 6' η ∧Wκ 6' κ is called an M-node. A node of the form Zσ = σ
with σ being head irredundant is called a V-node. We now describe how a global
tableau for α0 = β0 is constructed. Assuming α0 = γXα1 and β0 = λY β1 such
that Xα1 6' α1 and Y β1 6' β1, we apply the following instance of SDecmp rule:

γXα1 = λY β1
Xα1 = Y β1 {UXα1 = Xα1}U∈V(γ) {V Y β1 = Y β1}V ∈V(λ)

.

By definition Xα1 = Y β1 is an M-node and {UXα1 = Xα1}U∈V(γ) ∪ {V Y β1 =
Y β1}V ∈V(λ) is a set of V-nodes. These nodes are the roots of new subtableaux.
Starting from Xα1 = Y β1 we apply Match rule under the condition that neither
α1 nor β1 is affected. The application of Match rule is repeated to grow the
subtableau rooted at Xα1 = Y β1. The construction of the tree is done in a
breadth first fashion. So the tree grows level by level. At some stage we apply
Decmp rule to all the current leaves. This particular application of Decmp must
meet the following conditions: (i) Both α1 and β1 must be kept intact in all the
current leaves; (ii) Either α1 or β1 is exposed in at least one current leaf. Choose
a leaf labeled by either α1 = δ1β1 for some δ1 or by δ′1α1 = β1 for some δ′1 and
call it the residual node or R-node. Suppose the residual node is α1 = δ1β1. All
the other current leaves, the non-residual nodes, must be labeled by an equality
of the form γ1α1 = λ1β1. A non-residual node with label γ1α1 = λ1β1 is then

Localization
γσ′σ0σ1 = λσ′σ0σ1

γσ′σ1 = λσ′σ1

{Xiσ1 = σ1}i∈I
{Xiσ0σ1 = σ0σ1}i∈I

|γ| > 0 and |λ| > 0; |σ′σ0σ1| > 2n∆ ,
2n∆ ≥ |σ1| > 0 and |σ0| > 0;
Cirred(σ′σ0σ1) and Cirred(σ′σ1);
γσ′σ0σ1 6' σ′σ0σ1, γσ

′σ1 6' σ′σ1;
λσ′σ0σ1 6' σ′σ0σ1, λσ

′σ1 6' σ′σ1;
I ∩ J = ∅, I ∪ J = {1, . . . , n∆};
∀j ∈ J. Xjσ0σ1 6'σ0σ1 and Xjσ1 6'σ1;
Xi =⇒ ε for all i ∈ I.

Fig. 2. Rule for Local Tableaux

attached with a single child labeled by γ1δ1β1 = λ1β1. This is an application of
SubstL rule. Now we can recursively apply the global tableau construction to
γ1δ1β1 = λ1β1 to produce a new subtableau. The treatment of a V-node child,
say UXα1 = Xα1, is similar. We keep applying Match rule over α1 as long as
the side condition is met. At certain stage we apply Decmp rule to all the leaves.
The application should meet the following conditions: (i) No occurrence of α1 is
affected; (ii) There is an application of Decmp that takes the following shape

γ1α1 = λ1α1

α1 = α1 {V α1 = α1}V ∈V(γ1) {V α1 = α1}V ∈V(λ1)

.

We then recursively apply the tableau construction to create new subtableaux.
In the above construction the R-node α1 = δ1β1 can be the root of a new

subtableau, which might contain another R-node. In fact a chain of R-nodes is
possible. ContrL/ContrR is used to control the size of R-nodes.

After an application of SubstL/SubstR rule we may get a C-node α′σ′σ0σ1 =
β′σ′σ0σ1 if ContrC rule is applicable. Once a C-node appears, we immediately
apply ContrC rule to reduce the size of its common suffix. Intuitively we should
apply ContrC rule sufficiently often so that the common suffix becomes com-
pletely irredundant. Eventually either the length of the common suffix has be-
come no more than 2n∆ , in which case we continue to build up the global tableau,
or Localization rule as defined in Fig. 2 is applicable, in which case we get an
L-node. The soundness of Localization rule is guaranteed by Corollary 2.

Suppose Localization rule is applied to an L-node α′σ′σ0σ1 = β′σ′σ0σ1:

α′σ′σ0σ1 = β′σ′σ0σ1
{Xiσ1 = σ1}i∈I α′σ′σ1 = β′σ′σ1 {Xiσ0σ1 = σ0σ1}i∈I

.

The node α′σ′σ1 = β′σ′σ1 is a new L-node. We call {Xi | i ∈ I} the R-set of the
new L-node. If the size of the common suffix of α′σ′σ1 = β′σ′σ1 is still larger
than 2n∆ , we continue to apply Localization rule. Otherwise we get an L-root,
which is the root of a local tableau. Now suppose α′σ′σ1 = β′σ′σ1 is an L-root.
The construction of the local tableau should stick to two principles described
as follows: (I) Locality. No application of Decmp, SDecmp, SubstL, SubsR and
ContrC should ever affect σ′σ1 or any suffix of σ′σ1. Notice that applications of

SubstL or SubstR can never affect σ′σ1 or any suffix of σ′σ1. (II) Consistency.
Suppose γα = λβ is a node to which Match rule is applied using a match over
(α, β). Then either σ′σ1 is a suffix of both α and β, or α = β = σ′′σ1 for some
σ′′ satisfying the following: (i) σ′′ is a proper suffix of σ′; (ii) γ = UZ and λ = Z
such that Zσ′′ is a suffix of σ′; and (iii) the match is over σ′′σ1. The locality
and consistency conditions basically say that choices made in the construction
of the local tableau should not contradict to the fact that σ′σ1 is completely
irredundant.

The construction of a path in a tableau ends with a leaf. A successful leaf is
either a node labeled by ς = ς for some ς, or a node labeled by ε = V (V = ε) with
V ' ε, or a node that has the same label as one of its ancestors. An unsuccessful
leaf is produced if the node is either labeled by ε = V (V = ε) with V 6' ε,
or labeled by some ς = ς ′ with distinct ς, ς ′ such that no rule is applicable to
ς = ς ′. A local tableau has additionally two new kind of successful/unsuccessful
leaves: (i) An L-root is a successful leaf if it shares the same label with one
of its ancestors that is also an L-root. (ii) Suppose α′σ′σ0σ1 = β′σ′σ0σ1 is an
L-node and its child α′σ′σ1 = β′σ′σ1 is an L-root. In the local tableau rooted
at α′σ′σ1 = β′σ′σ1, a node of the form Zσ1 = σ1 is deemed as a leaf. It is
a successful leaf if Z is in the R-set of the L-root; it is an unsuccessful leaf
otherwise.

Tableau constructions always terminate. In fact we have the following.

Lemma 7. The size of every tableau for an equality is effectively bounded. The
number of tableaux for an equality is effectively bounded.

A tableau is successful if all of its leaves are successful. Successful tableaux
generate bisimulation bases.

Proposition 2. Suppose Xα, Y β are nBPA processes. Then Xα ' Y β if and
only if there is a successful tableau for Xα = Y β.

Proof. If Xα ' Y β we can easily construct a tableau using the bisimulation
property, Corollary 2 and Corollary 3. Conversely suppose there is a successful
tableau T for Xα = Y β. Let A = Ab ∪ Az ∪ Al. The set Ab of basic axioms is
given by {γ = λ | γ = λ is a label of a node in T}. The set Az is defined by

Az =

{
V σ = θσ, θσ = σ

∣∣∣∣
V σ = σ is in Ab, and V

τ
=⇒ θ

τ
=⇒ ε

is a chosen shortest path from V to ε.

}
.

Suppose γσ′σ1 = λσ′σ1 is an L-root and γσ′σ0σ1 = λσ′σ0σ1 is its parent. A
node ησ′σ1 = κσ′σ1 in the local tableau rooted at γσ′σ1 = λσ′σ1 must be lifted
to ησ′σ0σ1 = κσ′σ0σ1 in order to show that γσ′σ0σ1 = λσ′σ0σ1 satisfies the
bisimulation base property. Since local tableaux may be nested, the node might
have several lifted versions. The set Al is defined to be the collection of all such
lifted pairs. We can prove by induction on the nodes of the tableau, starting with
the leaves, that A is a bisimulation base. Hence Xα ' Y β by Lemma 2. ut

Our main result follows from Proposition 1, Lemma 7 and Proposition 2.

Theorem 1. The branching bisimilarity on nBPA processes is decidable.

5 Regularity Checking

Regularity problem asks if a process is bisimilar to a finite state process. For
strong regularity problem of nBPA, Kučera [Kuč96] showed that it is decidable
in polynomial time. Srba [Srb02] observed that it is actually NL-complete. The
decidability of strong regularity problem for the general BPA was proved by
Burkart, Caucal and Steffen [BCS95,BCS96]. It was shown to be PSPACE-hard
by Srba [Srb02]. The decidability of almost all weak regularity problems of pro-
cess rewriting systems [May00] are unknown. The only exception is Jancar and
Esparza’s undecidability result of weak regularity problem of Petri Net and its
extension [JE96]. Srba [Srb03] proved that weak regularity is both NP-hard and
co-NP-hard for nBPA. Using a result by Srba [Srb03], Mayr proved that weak
regularity problem of nBPA is EXPTIME-hard [May03].

The present paper improves our understanding of the issue by the following.

Theorem 2. The regularity problem of ' on nBPA is decidable.

Proof. One proves by a combinatorial argument that, in the transition tree of

an infinite state BPA process, (i) a path V0σ0
`∗1−→ V1σ1

`∗2−→ V2σ2 . . .
`∗m−→ Vmσm

exists such that (ii) |σ0| < |σ1| < |σ2| < . . . < |σm| and (iii) ‖V0σ0‖b < ‖V1σ1‖b <
‖V2σ2‖b < . . . < ‖Vmσm‖b. We can choose m large enough such that 0 ≤ i <
j ≤ m for some i, j satisfying Vi = Vj and Rσi = Rσj . Let σj = σσi for some
σ. Clearly ‖σi‖b < ‖σj‖b. Using Corollary 2 one can prove by induction that
σiσi 6' σjσi whenever i 6= j. It is semi-decidable to find (i) with properties (ii,iii).
The converse implication is proved by a tree construction using Theorem 1. ut

6 Remark

For parallel processes (BPP/PN) with silent actions, the only known decidability
result on equivalence checking is due to Czerwiński, Hofman and Lasota [CHL11].
This paper provides the analogous decidability result for the sequential processes
(BPA/PDA) with silent actions. For further research one could try to apply the
technique developed in this paper to general BPA and normed PDA.

Acknowledgement. I am indebted to He, Huang, Long, Shen, Tao, Yang, Yin
and the anonymous referees. The support from NSFC (60873034, 61033002, ANR
61261130589) and STCSM (11XD1402800) is gratefully acknowledged.

References

[BBK87] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence
for processes generating context-free languages. In PARLE’87, pages 94–113.
Lecture Notes in Computer Science 259, 1987.

[BCS95] O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision
procedure for arbitrary context free processes. In MFCS’95, pages 423–433.
Lecture Notes in Computer Science 969, Springer, 1995.

[BCS96] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the pro-
cess taxonomy. In CONCUR’96, pages 247–262. Lecture Notes in Computer
Science 1119, Springer, 1996.

[BGS92] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is p-complete.
Formal Aspects of Computing, 4:638–648, 1992.

[CHL11] W. Czerwiński, P. Hofman, and S. Lasota. Decidability of branching bisimu-
lation on normed commutative context-free processes. In CONCUR’11, pages
528–542. Lecture Notes in Computer Science 6901, Springer, 2011.

[CHS92] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decid-
able for all context-free processes. In CONCUR’92, pages 138–147. Lecture
Notes in Computer Science 630, Springer, 1992.

[CHT95] D. Caucal, D. Huynh, and L. Tian. Deciding branching bisimilarity of normed
context-free processes is in σp2 . Information and Computation, 118:306–315,
1995.

[Hir96] Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimulations.
Electronic Notes in Theoretical Computer Science, 5:2–13, 1996.

[HJM96] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimilarity of normed context free processes. Theoretical Computer Science,
158(1-2):143–159, 1996.

[HS91] H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimi-
larity for context-free processes. In LICS’91, pages 376–386, 1991.

[HT94] T. Huynh and L. Tian. Deciding bisimilarity of normed context free processes
is in σp2 . Theoretical Computer Science, 123:83–197, 1994.

[Hüt92] H. Hüttel. Silence is golden: Branching bisimilarity is decidable for context
free processes. In CAV’91, pages 2–12. Lecture Notes in Computer Science
575, Springer, 1992.

[Jan12] P. Jančar. Bisimilarity on basic process algebra is in 2-exptime. 2012.
[JE96] P. Jančar and J. Esparza. Deciding finiteness of petri nets up to bisimula-

tion. In ICALP’96, pages 478–489. Lecture Notes in Computer Science 1099,
Springer, 1996.

[Kie13] S. Kiefer. Bpa bisimilarity is exptime-hard. Information Processing Letters,
113:101–106, 2013.

[Kuč96] A. Kučera. Regularity is decidable for normed bpa and normed bpp pro-
cesses in polynomial time. In SOFSEM’96, pages 377–384. Lecture Notes in
Computer Science 1175, Springer, 1996.

[May00] R. Mayr. Process rewrite systems. Information and Computation, 156:264–
286, 2000.

[May03] R. Mayr. Weak bisimilarity and regularity of bpa is exptime-hard. In EX-
PRESS’03, 2003.

[Srb02] J. Srba. Strong bisimilarity and regularity of basic process algebra is pspace-
hard. In ICALP’02, pages 716–727. Lecture Notes in Computer Science 2380,
Springer, 2002.

[Srb03] J. Srba. Complexity of weak bisimilarity and regularity for BPA and BPP.
Mathematical Structures in Computer Science, 13:567–587, 2003.

[Stř98] J. Stř́ıbrná. Hardness results for weak bisimilarity of simple process algebras.
Electronic Notes in Theoretical Computer Science, 18:179–190, 1998.

[vGW89] R. van Glabbeek and W. Weijland. Branching time and abstraction in
bisimulation semantics. In Information Processing’89, pages 613–618. North-
Holland, 1989.

Well-Structured Pushdown Systems, Part I:

Decidable classes for Coverability⋆

Xiaojuan Cai1 and Mizuhito Ogawa2

1 BASICS Lab, Shanghai Jiao Tong University, China
cxj@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology, Japan
mizuhito@jaist.ac.jp

Abstract. Pushdown systems (PDSs) nicely model single-thread re-
cursive programs, and well-structured transition systems (WSTS), such
as vector addition systems, are useful to represent non-recursive multi-
thread programs. Our goal is to investigate well-structured pushdown

systems (WSPDSs), pushdown systems with well-quasi-ordered control
states and stack alphabet, to combine these ideas.
This paper focuses on decidable classes of coverability and extends P-
automata techniques for configuration reachability of PDSs to those
for coverability of WSPDSs, in forward and backward ways. A Post

∗-
automata (resp. Pre

∗-automata) construction is combined with Karp-
Miller acceleration (resp. ideal representation) to characterize the set
of successors (resp. predecessors) of given configurations. We show de-
cidability results of coverability, which include recursive vector addition

system with states [1], multi-set pushdown systems [2, 3], and a WSPDS
with finite control states and well-quasi-ordered stack alphabet.

1 Introduction

There are two directions of infinite (discrete) state systems. A pushdown sys-
tem (PDS) consists of finite control states and finite stack alphabet, where a
stack stores the context. It nicely models single-thread recursive programs.Well-
structured transition systems (WSTS) [4, 5] consists of a well-quasi-ordered set of
states, in which Vector addition system (VAS, or Petri Net) is a typical example.
It often works for modeling dynamic thread creation of multi-thread program [6].
Our naive motivation comes from what happens when we combine them as a
general framework for modeling recursive multi-thread programs.

Ramalingam [7] showed that a 3-thread recursive program with synchroniza-
tion mechanism can solve Post-correspondence-problem. This is a natural result
since a 2-stack PDS is Turing complete. Roughly speaking, there are two sources
to be Turing complete in a 2-stack PDS. i) the depth of both stacks is unbounded.
ii) the interleaving between two stacks can be arbitrarily many. By restricting i),

⋆ This work is supported by the NSFC-JSPS joint project (61011140074) and NSFC
projects (61003013,61100052)

2

Qadeer an Rehof proposed context-bounded pushdown model [8], in which the
number of context switching is bounded. The idea is after a bounded number of
context switching, only one stack can work, so that it is simulated by a single
stack. Atig, et.al. further extended with dynamic thread creation [6].

By restricting ii), Sen et. al. [2] proposed Multi-set pushdown systems (Multi-
set PDSs) to model multi-thread asynchronous programs, and Bouajjani and
Emmi [1] proposed a Recursive Vector Addition System with States (RVASS)
to model multi-thread programs with fork/join synchronizations. They showed
decidability of the coverability and the state reachability, respectively. Note that
the coverability lies between the configuration reachability and the state reacha-
bility. They are single stack PDSs with infinite control states and stack alphabet,
which are beyond ordinary PDSs with finite control states and stack alphabet.

The configuration reachability, i.e., to determine whether a target configura-
tion is reachable from an initial configuration, is decidable for ordinary PDSs. In
implementation, P-automata construction is a popular technique, which can be
tracked back to Büchi’s seminal work [9], and has been clarified in [10–12]. There
are two kinds of P-automata constructions. A P ost∗ automaton computes the set
of successor configurations from an initial configuration, and a P re∗ automaton
computes the set of predecessor configurations from a target configuration.

Different from PDSs, a popular property of WSTSs is coverability, which is
reachability from an initial configuration to a certain configuration that covers
the target configuration. There are also forward and backward proof techniques.
For instance, in case of VASs, Karp-Miller acceleration [13] is a typical instance
of the former, which was generalized in [14, 15]. For the latter, an ideal (i.e.,
an upward closed set) representation is a typical technique [4, 5]. Note that the
reachability is hard for WSTSs. For instance, the reachability of VASs stays
decidable, but its proof requires deep insight on Presburger arithmetic [16, 17].

Our ultimate goal is to investigate well-structured pushdown systems (WSPDSs),
pushdown systems with well-quasi-ordered control states and stack alphabet, to
combine PDSs and WSTSs. This paper focuses on decidable classes of coverabil-
ity and extends P-automata techniques for configuration reachability of PDSs
to those for coverability of WSPDSs, in forward and backward ways. P ost∗-
automata (resp. P re∗-automata) construction is combined with Karp-Miller ac-
celeration (resp. ideal representation) to characterize the set of successors (resp.
predecessors) of given configurations. We show decidability results of coverabil-
ity, which include RVASSs [1], Multi-set PDSs [2, 3], and a WSPDS with finite
control states and WQO stack alphabet. The first one extends the decidability
of the state reachability of RVASSs [1] to that of the coverability.

Related Work

Combining PDSs and VASs is not new. Process rewrite system (PRS) [18] is a
pioneer work on such combination. A PRS is a(n AC) ground term rewriting
system, consisting of the sequential composition “.”, the parallel composition
“|| ”, and finitely many constants, which can be regarded as a PDS with finite
control states and vector stack alphabet. The decidability of the reachability

3

between ground terms was shown based on the reachability of a VAS. However,
a PRS is rather weak to model multi-thread programs, since it cannot describe
vector additions between adjacent stack frames during push/pop operations.

An RVASS [1], in which we are inspired, allows vector additions during pop
rules. The state reachability was shown by reduction of an RVASS into a Branch-
ing VASS [19]. Our WSPDS framework extends the decidability result to the
coverability. A more general framework is a WQO automaton [20], which is a
WSTS with auxiliary storage (e.g., stacks and queues). Although in general un-
decidable, its coverability becomes decidable under the compatibility of rank
functions with a WQO. An Multi-set PDS [3, 2] is such a instance.

To sum up, our contribution is a simplified framework, which has more focus
on well-quasi-ordered stack alphabet, and a unified proof methodology based on
extensions of P-automata techniques.

2 Preliminaries

2.1 Well-structured transition system

A quasi-order (D,≤) is a reflexive transitive binary relation on D. An upward
closure of X ⊆ D, denoted by X↑, includes all elements in D larger than elements
in X, i.e., X↑ = {d ∈ D | ∃x ∈ X.x ≤ d}). A subset I is an ideal if I = I↑.
Similarly, a downward closure of X ⊆ D is denoted by X↓ = {d ∈ D | ∃x ∈
X.x ≥ d}. We denote the set of all ideals by I(D). A quasi-order (D,≤) is a
well-quasi-order (WQO) if, for each infinite sequence a1, a2, a3, · · · in D, there
exist i, j with i < j and ai ≤ aj .

Definition 1. A well-structured transition system (WSTS) is a triplet M =
〈(P,�), ∆〉 where (P,�) is a WQO, and ∆ ⊆ P × P is the set of transitions.
We write p → q if (p, q) ∈ ∆.

M is monotonic if, for each p1, q1, p2 ∈ P , p1 → q1 ∧ p1 � p2 implies
∃q2 . p2 → q2 ∧ q1 � q2.

Given two states p, q ∈ P , the coverability problem is to determine whether
there exists some q′ � q and p →∗ q′.

Vector addition systems (VAS) (equivalently, Petri net) are WSTSs, with
vectors as states and additions as transition rules. The reachability problem
of VAS is decidable [16, 17]. It is elegant, but too difficult to implement. The
coverability also attracts attentions and is implemented, such as in Pep. Karp-
Miller acceleration is an efficient technique for the coverability. If there is a
descendant vector (wrt transitions) strictly larger than one of its ancestors on
some coordinates, values at these coordinates are accelerated to ω.

There is an alternative backward method to decide coverability for a WSTS,
beyond VASs. Starting from an ideal {q}↑, where q is the target state to be
covered, its predecessors are repeatedly computed. Note that, for a monotonic
WSTS and an ideal I(⊆ P), the predecessor set pre(I) = {p ∈ P | ∃q ∈ I.p → q}
is also an ideal. Its termination is obtained by the following lemma.

4

Lemma 1. [5] (D,≤) is a WQO, if, and only if, any infinite sequence I0 ⊆
I1 ⊆ I2 ⊆ · · · in I(D) eventually stabilize.

From now on, we denote N (resp. Z) for the set of natural numbers (resp.
integers), and N

k (resp. Zk) is the set of k-dimensional vectors over N (resp. Z).
As notational convention, n,m are for vectors in N

k, z, z′ are for vectors in Z
k,

ñ, m̃ are for sequences of vectors.

2.2 Pushdown system

We define a pushdown system (PDS) with extra rules, simple-push and nonstandard-
pop. These extra rules do not appear in the standard definition, but they can be
encoded into standard rules. For example, a non-standard pop rule (p, αβ → q, γ)
can be split into (p, α → pα, ǫ) and (pα, β → q, γ) by adding an intermediate
state pα. However, later we will consider a PDS with infinite stack alphabet,
and this encoding may change the context. For instance, when a PDS has finite
states and infinite stack alphabet, the encoding of nonstandard pop rules make
a PDS with both infinite states and stack alphabet.

Definition 2. A pushdown system (PDS) is a triplet 〈P, Γ, ∆〉 where

– P is a finite set of states,
– Γ is finite stack alphabet, and
– ∆ ⊆ P × Γ≤2 × P × Γ≤2 is a finite set of transitions, where (p, v, q, w) ∈ ∆

is denoted by (p, v → q, w).

We use α, β, γ, · · · to range over Γ , and w, v, · · · over words in Γ ∗. A configu-
ration 〈p, w〉 is a pair of a state p and a stack content (word) w. As convention,
we denote configurations by c1, c2, · · ·. One step transition →֒ between configu-
rations is defined as follows. →֒∗ is the reflexive transitive closure of →֒.

inter
(p, γ → p′, γ′) ∈ ∆

〈p, γw〉 →֒ 〈p′, γ′w〉
push

(p, γ → p′, αβ) ∈ ∆

〈p, γw〉 →֒ 〈p′, αβw〉
pop

(p, γ → p′, ǫ) ∈ ∆

〈p, γw〉 →֒ 〈p′, w〉

simple-push
(p, ǫ → p′, α) ∈ ∆

〈p, w〉 →֒ 〈p′, αw〉
nonstandard-pop

(p, αβ → p′, γ) ∈ ∆

〈p, αβw〉 →֒ 〈p′, γw〉

A PDS enjoys decidable reachability, i.e., given configurations 〈p, w〉, 〈q, v〉 with
p, q ∈ P and w, v ∈ Γ ∗, decide whether 〈p, w〉 →֒∗ 〈q, v〉.

3 WSPDS and P-automata technique

3.1 P-automaton

P-automaton is an automaton which exactly accepts the reachable configurations
of some PDS. Distinguished by the forward and backward of transitions, P-
automata are classified into P ost∗-automata and P re∗-automata.

Nested Timed Automata

Guoqiang Li1, Xiaojuan Cai1, Mizuhito Ogawa2, and Shoji Yuen3

1 School of Software, Shanghai Jiao Tong University, China
{li.g, cxj}@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology, Japan
mizuhito@jaist.ac.jp

3 Graduate School of Information Science, Nagoya University, Japan
yuen@is.nagoya-u.ac.jp

Abstract. This paper proposes a new timed model named nested timed
automata (NeTAs). A NeTA is a pushdown system whose stack symbols
are timed automata (TAs). It either behaves as the top TA in the stack,
or switches from one TA to another by pushing, popping, or chang-
ing the top TA of the stack. Different from existing component-based
context-switch models such as recursive timed automata and timed re-
cursive state machines, when time passage happens, all clocks of TAs in
the stack elapse uniformly. We show that the safety property of NeTAs
is decidable by encoding NeTAs to the dense timed pushdown automa-
ta. NeTAs provide a natural way to analyze the recursive behaviors of
component-based timed systems with structure retained. We illustrate
this advantage by the deadline analysis of nested interrupts.

1 Introduction

Due to the rapid development of large and complex timed systems, require-
ments to model and analyze complex real-time frameworks with recursive context
switches have been stresses. Difficulty comes from two dimensions of infinity, a
stack with unbounded number of symbols, and clocks recording dense time.

Timed automata (TAs) [1] are a finite automaton with a finite set of clocks
that grow uniformly. A typical timed model with context switches is timed push-
down automata (TPDAs) [2], equipped with an unbounded stack, where clocks
are not updated in the stack. This limitation is found unnatural in analyzing
the timed behavior of programs since clock values should be updated in suspen-
sion. Recently, a new timed pushdown model, dense timed pushdown automata
(DTPDAs) [3] has been proposed, where each symbol in the stack is equipped
with local clocks named “ages”, and all ages in the stack are updated uniformly
for time passage. Reachability problem of DTPDAs is in EXPTIME [3].

This paper proposes a new timed model named nested timed automata (Ne-
TAs). A NeTA is a pushdown system whose stack symbols are TAs. It either
behaves as the top TA in the stack, or switches from one TA to another following
three kinds of transitions: pushing a new TA, popping the current TA when ter-
minates, or replacing the top TA of the stack. This hierarchical design captures
the dynamic feature of functionally independent component-based structure of
timed systems. The existing models, such as recursive timed automata [4], and

2 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

timed recursive state machines [5] do not update clocks in the stack when time
passage happens, while in NeTAs, all clocks elapse uniformly. When a TA is
pushed into the stack, a set of fresh local clocks is introduced to the system. In
this respect, NeTAs may have to handle an unbounded number of local clocks.
NeTAs are shown to be encoded to DTPDAs preserving the state reachability.
All transitions of NeTAs are simulated by DTPDAs, and vice versa. We illustrate
that NeTAs are adopted to analyze the timely deadline of nested interrupts.

The rest of the paper is organized as follows. Section 2 gives an introduction
of TAs and DTPDAs. Section 3 gives the formal definition and semantics of
NeTAs. Section 4 presents an encoding method from NeTAs to DTPDAs, and
proves its correctness. Section 5 illustrates the usages of NeTAs by an application
example. Section 6 gives the related work and Section 7 concludes the paper.

Due to the lack of space, we omit proofs of theorems, detailed explanations
and nations, which can be found in its extended version [6].

2 Preliminaries

Let R≥0 and N denote the sets of non-negative real numbers and natural
numbers, respectively. We define Nω := N∪{ω}, where ω is the first limit ordinal.
Let I denote the set of intervals. An interval is a set of numbers, written as (a, b),
[a, b], [a, b) or (a, b], where a ∈ N and b ∈ Nω. For a number r ∈ R≥0 and an
interval I ∈ I, we use r ∈ I to denote that r belongs to I.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R≥0,
assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to
zero. Given a clock valuation ν and a time t ∈ R≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X. A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if
x = y, and ν(x) otherwise.

2.1 Timed Automata

A timed automaton is an automaton augmented with a finite set of clocks [1,
7]. Time can elapse in a location, while switches are instantaneous.

Since we focus on the safety properties (i.e., emptiness problem of a TA, or
reachability problem of a timed transition system), we omit input symbols for
all concerned automata, following the formalization in [3].

We adopt the TA definition style from that in [3], which looks different from
the one in [1, 7]. The main difference is that we do not adopt invariant, a time
constraint assigned to each control location. The reason lies that invariants cause
time lock problems. When context switches back, it may occur that the system
can neither stay in the current control location since the invariant is violated nor
transit to other control location since all constraints on transitions are violated.
Nondeterministic clock updates are also taken from [9] with interval tests as
diagonal free time constraints where decidability results are not affected.

Definition 1 (Timed Automata). A timed automaton is a tuple A = (Q, q0,
F,X, ∆) ∈ A , where

– Q is a finite set of control locations, with the initial location q0 ∈ Q,

Nested Timed Automata 3

– F ⊆ Q is the set of final locations,
– X is a finite set of clocks,
– ∆ ⊆ Q × O × Q, where O is a set of operations. A transition δ ∈ ∆ is a

triplet (q1, ϕ, q2), written as q1
ϕ−→ q2, in which ϕ is either of

Local ϵ, an empty operation,
Test x ∈ I? where x ∈ X is a clock and I ∈ I is an interval, and
Assignment x← I where x ∈ X and I ∈ I.
Given a TA A ∈ A , we use Q(A), q0(A), F (A), X(A) and ∆(A) to represent

its set of control locations, initial location, set of final locations, set of clocks and
set of transitions, respectively. We will use similar notations for other models.

Definition 2 (Semantics of TAs). Given a TA A = (Q, q0, F, X,∆), a con-
figuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν on
X. The transition relation of the TA is represented as follows,

– Progress transition: (q, ν)
t−→A (q, ν + t), where t ∈ R≥0.

– Discrete transition: (q1, ν1)
ϕ−→A (q2, ν2), if q1

ϕ−→ q2 ∈ ∆, and one of the
following holds,
• Local ϕ = ϵ, then ν1 = ν2.
• Test ϕ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment ϕ = x← I, ν2 = ν1[x← r] where r ∈ I.

The initial configuration is (q0, ν0). The transition relation is → and we define

→=
t−→A ∪ ϕ−→A , and define →∗ to be the reflexive and transitive closure of →.

Remark 1 (Sound Simulation). The TA definition in Definition 1 follows the
style in [3]. In [1], a TA allows a logical connection of several constraint tests,
e.g. x ≤ 15∧ y > 20, and several resets operations of different clocks during one
discrete transition. Only one test or assignment (a generalization of the reset) is
allowed during one discrete transition in the definition. Since a discrete transition
is followed by a progress transition where time elapses, the main ambiguity of
two definitions is whether a conjunction of two tests can be checked one by one,
between which the time elapses. It is shown that TA with our definition soundly
simulates the timed traces in the original definition, as follows,

For ≥ or >, c
x∈[a,+∞)?−−−−−−−→A c′

t−→A c′ is safely converted to c
t−→A c

[a,+∞)?−−−−−→A

c′, for some configurations c and c′.

For ≤ or <, c
t−→A c

x∈[0,a]?−−−−−→A p′ is safely converted to c
x∈[0,a]?−−−−−→A c′

t−→A c′,
for some configurations c and c′.

For test transitions, a general simulation strategy is, firstly, checking the ≥,
and > one by one, then check ≤ and < later. If there exists a “=” constraint,

decomposed it into ≥ ∧ ≤. For example, a transition p
x≤15∧y>20−−−−−−−−→ q in the

original definition is simulated by two transitions p
y∈(20,+∞)?−−−−−−−−→ p′

x∈[0,15]?−−−−−−→ q
under the new definition, where p′ is a fresh control location.

For reset transitions, a group of clocks are reset simultaneously can be sim-
ulated by resetting clocks one by one, with a zero test of the first reset clock on

the tail. For example, a transition p
{x,y}−−−→ q, resetting x and y simultaneously, in

4 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

the original definition is simulated by p
x←[0,0]−−−−−→ p′

y←[0,0]−−−−−→ p′′
x∈[0,0]?−−−−−→ q, where

p′, p′′ are fresh control locations.
If a transition contains both test and reset operations, we firstly simulate

test operation, then reset operation, following the above rules.

2.2 Dense Timed Pushdown Automata

Dense Timed Pushdown Automata (DTPDAs) [3] extend TPDAs with time
update in the stack. Each symbol in the stack is equipped with a local clock
named age, and all ages in the stack elapse uniformly.

Definition 3 (Dense Timed Pushdown Automata). A dense timed push-
down automaton is a tuple D = ⟨S, s0, Γ, C, ∆⟩ ∈ D , where

– S is a finite set of states with the initial state s0 ∈ S,
– Γ is a finite stack alphabet,
– C is a finite set of clocks, and
– ∆ ⊆ S ×O × S is a finite set of transitions.

A transition δ ∈ ∆ is a triplet (s1, ϕ, s2), written as s1
ϕ−→ s2, in which ϕ is

either of

– Local ϵ, an empty operation,
– Test x ∈ I?, where x ∈ X is a clock and I ∈ I is an interval,
– Assignment x← I where x ∈ C and I ∈ I,
– Push push(γ, I), where γ ∈ Γ is a stack symbol and I ∈ I. It pushes γ to

the top of the stack, with the age in the interval I.
– Pop pop(γ, I), where γ ∈ Γ and I ∈ I. It pops the top-most stack symbol

provided that this symbol is γ, and its age belongs to I.
– PushA push(γ, x), where γ ∈ Γ is a stack symbol and x ∈ C, and
– PopA pop(γ, x), where γ ∈ Γ is a stack symbol and x ∈ C.

Definition 4 (Semantics of DTPDAs). For a DTPDA ⟨S, s0, Γ, C, ∆⟩, a
configuration is a triplet (s, w, ν) with s ∈ S, w ∈ (Γ × R≥0)∗, and a clock
valuation ν on X. Time passage of the stack w + t = (γ1, t1 + t). · · · .(γn, tn + t)
for w = (γ1, t1). · · · .(γn, tn).

The transition relation of the DTPDA is defined as follows:

– Progress transition: (s, w, ν)
t−→D (s, w + t, ν + t), where t ∈ R≥0.

– Discrete transition: (s1, w1, ν1)
ϕ−→D (s2, w2, ν2), if s1

ϕ−→ s2, and one of the
following holds,
• Local ϕ = ϵ, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment ϕ = x← I, then w1 = w2, ν2 = ν1[x← r] where r ∈ I.
• Push ϕ = push(γ, I), then ν1 = ν2, and w2 = (γ, r).w1 for some r ∈ I.
• Pop ϕ = pop(γ, I), then ν1 = ν2, and w1 = (γ, r).w2 for some r ∈ I.
• PushA ϕ = push(γ, x), then ν1 = ν2, and w2 = (γ, ν1(x))w1.
• PopA ϕ = pop(γ, x), then ν2 = ν1[x← t], and w1 = (γ, t)w2.

Nested Timed Automata 5

The initial configuration κ0 = (q0, ϵ, ν0). We use ↪−→ to range over these tran-
sitions, and ↪−→∗ is the transitive closure of ↪−→, conventionally.

Example 1. Fig. 1 shows transitions between configurations of a DTPDA con-
sisting of a singleton state set S = {•} (omitted in the figure), clocks C =
{x1, x2, x3}, and stack symbols Γ = {a, b, d}. From κ1 to κ2, a discrete transi-
tion push(d, x3) pushes (d, 2.3) into the stack. A time transition from κ2 to κ3

elapses 2.6 time units, and each value grows older for 2.6. From κ3 to κ4, the
value of x2 is reset to 3.8, which lies in the interval (2, 5], and the last transition
pops (d, x1) and resets x1 to 4.9.

(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,2.3)
(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,4.9)
(a,4.5)
(b,9.3)
(a,5.7)
(d,6.8)

x1 ← 3.1
x2 ← 6.5
x3 ← 4.9

(d, 4.9)
(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 4.9
x2 ← 3.8
x3 ← 4.9

κ1
push(d,x3)−−−−−−−−−→D κ2

2.6−−−−−−−−→D κ3
x2←(2,5]−−−−−−−−−→D κ4

pop(d,x1)−−−−−−−−→D κ5

Fig. 1. An Example of DTPDA

Remark 2. Definition 3 extends the definition in [3] by adding PushA and PopA,
which stores and recovers from clocks to ages and vice versa. This extension does
not destroy decidability of state reachability of DTPDAs [8], since its symbolic
encoding is easily modified to accept PushA and PopA. For instance, PushA is
encoded similar to Push, except for the definition on Reset [3]. Reset(R)[a← I]
symbolically explores all possibility of the fraction of an instance in I. Instead,
Reset(R)[a ← x] will assign the same integer and fraction parts to x, which
means an age is simply placed at the same position to x in the region.

3 Nested Timed Automata

Nested Timed Automata (NeTAs) aim to give an operation strategy to a
group of TAs, in which a TA is able to preempt the other ones. All clocks in a
NeTA are local clocks, with the scope of their respective TAs. These clocks in the
stack elapse simultaneously. An unbounded number of clocks may be involved
in one NeTA, due to recursive preemption loops.

Definition 5 (Nested Timed automata). A nested timed automaton is a
triplet N = (T,A0,∆) ∈ N , where

– T is a finite set of timed automata, with the initial timed automaton A0 ∈ T .

6 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

– ∆ ⊆ T×P×(T∪{ε}), where P = {push, pop, internal}. A rule (Ai, Φ,Aj) ∈
∆ is written as Ai

Φ−→ Aj, where

Push Ai
push−−−→ Aj,

Pop Ai
pop−−→ ε, and

Internal Ai
internal−−−−−→ Aj.

The initial state of NeTAs is the initial location in A0, s.t. q0(A0). We also
assume that X(Ai) ∩ X(Aj) = ∅, and Q(Ai) ∩ Q(Aj) = ∅ for Ai,Aj ∈ T and
i ̸= j.

The operational semantics of NeTAs is informally summarized as follows. It
starts with a stack with the only symbol of the initial TA. The system has the
following four behaviors: when there exists time passage, all clocks in the stack
elapse simultaneously; it is able to behave like the top TA in the stack; when
there exists a push transition from the top TA of the stack to the other TA, a
new instance of the latter TA is pushed into the stack at any time and executed,
while the suspended location of the former TA is recorded in the stack; when
the top TA in the stack reaches the final location and a pop transition happens,
it will be popped from the stack, and the system will run the next TA beginning
with the suspended location; if an internal transition from the top TA to the
other TA occurs, the top TA in the stack will be changed to a new instance of
the latter TA when it reaches some final location.

Definition 6 (Semantics of NeTAs). Given a NeTA (T,A0,∆), a configura-
tion is a stack, and the stack alphabet is a tuple ⟨A, q, ν⟩, where A ∈ T is a timed
automaton, q is the current running control location where q ∈ Q(A), and ν is
the clock valuation of X(A). For a stack content c = ⟨A1, q1, ν1⟩⟨A2, q2, ν2⟩ . . .
⟨An, qn, νn⟩, let c + t be ⟨A1, q1, ν1 + t⟩⟨A2, q2, ν2 + t⟩ . . . ⟨An, qn, νn + t⟩.

The transition of NeTAs is represented as follows:

– Progress transitions: c
t−→N c + t.

– Discrete transitions: c
ϕ−→N c′ is defined as a union of the following four

kinds of transition relations,

• Intra-action ⟨A, q, ν⟩c ϕ−→N ⟨A, q′, ν′⟩c, if q
ϕ−→ q′ ∈ ∆(A), and one of

the following holds,
∗ Local ϕ = ϵ, then ν = ν′.
∗ Test ϕ = x ∈ I?, ν = ν′ and ν′(x) ∈ I holds.
∗ Assignment ϕ = x← I, ν′ = ν[x← r] where r ∈ I.

• Push ⟨A, q, ν⟩c push−−−→N ⟨A′, q0(A′), ν′0⟩⟨A, q, ν⟩c, if A push−−−→ A′, and
q ∈ Q(A).

• Pop ⟨A, q, ν⟩c pop−−→N c, if A pop−−→ ε, and q ∈ F (A).

• Inter-action ⟨A, q, ν⟩c internal−−−−−→N ⟨A′, q0(A′), ν′0⟩c, if A internal−−−−−→ A′,
and q ∈ F (A).

The initial configuration c0 = ⟨A0, q0(A0), ν0⟩. We use −→ to range over these
transitions and −→∗ is the transitive closure of −→, conventionally.

In followings, we focus on the state reachability that is regarded as the most
important property in modelling software behavior.

Nested Timed Automata 7

Definition 7 (Safety Property). A safety property of NeTAs is defined as
the state reachability problem: Given a NeTA N = (T,A0, ∆), and a control
location pf ∈ Q(A) for some A ∈ T , decide whether there exists a configuration
c of N and a clock valuation ν, such that c0 −→∗ ⟨A, pf , ν⟩c.
Example 2. We take a simple example to show the usage of NeTAs. Assume that
two processes access a shared buffer. One is to read from the buffer periodically
each 4 time units. It accomplishes after it reads one or more data. The other is to
write to the buffer periodically. The execution time is between 3 and 5 time units.
It will return after writes one or more data. The writing process may overtake the
reading process which initially starts running. The NeTA is shown in Fig. 2, with
three TAs. A0 is an empty TA for the idle state. A1 and A2 are for reading and

writing processes, respectively. We have three transition rules: A0
internal−−−−−→ A1,

A1
push−−−→ A2, and A2

pop−−→ ε. The pop transition is not explicitly represented in
the figure. We use dash-line frames to represent the border of TAs in the NeTA,
double-line arrows to indicate the initial location/TA, and double-line circles to
represent the final locations of TAs.

q1
0

q1
1

q1
r

x
←

[0
,0

]

x
∈

(0
,4

]?

x
←

[0
,0

]

idle

idle

wt

y
←

[0
,2

]

y
∈

(0
,5

]?

y
←

[0
,2

]

internal

push

A1 A2

A0

Fig. 2. An Example of NeTA

Remark 3 (Composition with timed automata). A NeTA is composed with a TA
by synchronization with shared actions in Σ, where we are allowed to add input
symbols as actions on transitions of NeTA. A composed TA presents behavioral
properties independent of recursive context switches such as the environment.
Although this extension does not increase the expressiveness of NeTAs, it is very
useful to model and analyze the behavioral properties in the component-based
manner [10, 11]. A formal definition of the parallel composition, between a NeTA
N and a TA A, written as N∥A, is formally defined in [6].

4 Decidability of Safety Property

In this section we prove the safety property problem of NeTAs is decidable
by encoding it into DTPDAs, of which state reachability is decidable.

8 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

4.1 Encoding NeTA to DTPDA

The idea to encode a NeTA to a DTPDA is straightforward, dealing with
multiple clocks at push and pop operations. We adopt extra fresh locations and
transitions to check whether a group of push/pop actions happens instantly.

Given a NeTA N = (T,A0, ∆), we define E(N) = ⟨S, s0, Γ, C,∇⟩ as the
target of DTPDA encoding of N . Each element is described as,

The set of states S = SN ∪ Sinter, where SN =
∪
Ai∈T Q(Ai) is the set of

all locations of TAs in T (N). Sinter is the set of intermediate states during the
simulation of push, pop, and internal rules of NeTAs. We assume that SN and
Sinter are disjoint.

Let n = |T | and mi = |X(Ai)| for each Ai ∈ T . Sinter is

Sinter = (
∪

Ai∈T

Si
reset) ∪ (

∪

Ai
push−→Aj∈∆

Si,j
push) ∪ {o}

– For every Ai ∈ T , we define Si
reset = (

∪
k∈{1···mi+1} ri

k) ∪ ti. ri
k ∈ Si

reset is

the start state of a transition to initialize the k-th clock of Ai to 0. ti is the
start state of a testing transition to make sure that no time is elapsed during
the sequence of initializing transitions.

– For every push rule Ai
push−→ Aj , we define Si,j

push =
∪

k∈{1···mi+1} pi,j
k . pi,j

k

is the start state of a push transition that push the pair of the k-th clock
of Ai and its value. After all clock values are stored in the stack, the last
destination is the initial state q0(Aj) of Aj .

– o is a special state for repeat popping.

The initial state s0 = q0(A0) is the initial location of the initial TA of N .
The set of clocks C = {d} ∪ ∪

A∈T X(A) consists of all clocks of TA in
T (N) and the special dummy clock d only to fulfill the field of push and pop
rules, like push(q, d) and pop(q, d). (The value of d does not matter.)

The stack alphabet Γ = C ∪ SN .
The set of transitions∇ is the union of

∪
Ai∈T ∆(Ai) (as Local transitions

of E(N)) and the set of transitions described in Fig. 3. For indexes, we assume
0 ≤ i, j ≤ n− 1 and 1 ≤ k ≤ mi (where i is specified in a context).

Local pi,j
mi+1

ϵ−→ rj
1, ri

mi+1
ϵ−→ ti, qi

ϵ−→ rj
1, qi

ϵ−→ o for qi ∈ F (Ai).

Test ti xi
1∈[0,0]?−−−−−−→ q0(Ai).

Assignment ri
k

xi
k←[0,0]−−−−−−→ ri

k+1.

Push qi
push(qi,d)−−−−−−−→ pi,j

1 , pi,j
k

push(xi
k,xi

k)−−−−−−−−→ pi,j
k+1 if k ≤ mi, for qi ∈ Q(Ai).

Pop o
pop(x,x)−−−−−→ o, o

pop(q,d)−−−−−→ q forall x ∈ X(Ai). q ∈ Q(Ai).

Fig. 3. Transition Rules ∇ of E(C)

Nested Timed Automata 9

Definition 8. For a NeTA N = (T,A0,∆), its encoding into a DTPDA E(N)
is as follows.

Ai
push−→ Aj qi

push(qi,d)−−−−−−→ pi,j
1

push(xi
1,xi

1)−−−−−−−−→ · · · pi,j
mi

push(xi
mi

,xi
mi

)
−−−−−−−−−−→ pi,j

mi+1
ϵ−→

rj
1

xj
1←[0,0]−−−−−→ rj

2 · · · rj
mj+1

ϵ−→ tj
xj
1∈[0,0]?−−−−−−→ q0(Aj)

Ai
pop−→ ϵ qi

ϵ−→ o
pop(xi

mi+1,xi
mi+1)−−−−−−−−−−−−→ · · · pop(xi

1,xi
1)−−−−−−−→ o

pop(q,d)−−−−−→ q

Ai
internal−→ Aj qi

ϵ−→ rj
1

xj
1←[0,0]−−−−−→ rj

2 · · · rj
mj+1

ϵ−→ tj
xj
1∈[0,0]?−−−−−−→ q0(Aj)

For a push transition Ai
push−→ Aj , E(N) simulates, by storing current state

of Ai into the stack, pushing each clock with its current value as an age, and
switching to the initial configuration of Aj (which consists of initializing each
clock x ∈ X(Aj), testing that no timed transitions interleaved, and move to the
initial state q0(Aj)).

For a pop transition Ai
pop−→ ϵ, Ai has finished its run at a final state and

restores the previous context. E(N) simulates, first popping and setting each
clock (of E(N)), and set a state to q being stored in the stack.

Note that clocks of E(N) are used for currently running TA (at the top of
the stack), and ages are used to store values of clocks of suspended TAs.

Example 3. A NeTA is shown in Fig. 4, which includes two TAs A1 and A2.
p1, p2 ∈ Q(A1), x1, x2 ∈ X(A1), q1, q2 ∈ Q(A2), and y1, y2 ∈ X(A2), respective-
ly. A push transition from A1 to A2 occurs at the location p2, and the value of
x1 and x2 are 2.9 and 3.3, respectively. After pushing, y1 and y2 are reset to
zero, and the system begins with q1. The encoding DTPDA is shown in Fig. 5.
p2 is firstly pushed into the stack, and afterwards, x1 and x2 in A1 is pushed
into the stack one by one, with the initial value of the age as their respective
value. Then after y1 and y2 in A2 are reset to 0 through the states r2

1, r2
2, and

r2
3, the system moves to q1 provided the value of y1 is kept as 0.

p1 p2

x1 ← 2.9
x2 ← 3.3

push−−→N

q1 q2

y1 ← 0
y2 ← 0

p1 p2 x1 ← 2.9
x2 ← 3.3

Fig. 4. A Push Transition on a Nested Timed Automaton

Example 4. The NeTA in Fig. 2 is encoded into a DTPDA in Fig. 6.

10 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

p2

x1 ← 2.9
x2 ← 3.3
y1 ← 4.1
y2 ← 0.5

push(p2,d)−−−−−−−−−−→D p1,2
1

x1 ← 2.9
x2 ← 3.3
y1 ← 4.1
y2 ← 0.5 (p2, 0)

push(xi,xi)−−−−−−−−−−→
∗
D

r2
1

y1 ← 4.1
y2 ← 0.5
x1 ← 2.9
x2 ← 3.3

(x2,3.3)
(x1,2.9)
(p2, 0)

y1←[0,0]−−−−−−−−−→D r2
2

y1 ← 0
y2 ← 0.5
x1 ← 2.9
x2 ← 3.3

(x2, 3.3)
(x1, 2.9)
(p2, 0)

y2←[0,0]−−−−−−−−→D

r2
3

y1 ← 0
y2 ← 0

x1 ← 2.9
x2 ← 3.3

(x2, 3.3)
(x1, 2.9)
(p2, 0)

y1∈[0,0]?−−−−−−−−→
∗
D q1

y1 ← 0
y2 ← 0

x1 ← 2.9
x2 ← 3.3

(x2, 3.3)
(x1, 2.9)
(p2, 0)

Fig. 5. Encoding the Push Transition in DTPDA

– The larger circles are the original states from the NeTA, while the smaller
ones are intermediate states.

– Since A0
internal−−−−−→ A1, before q0

0 connects to q1
0 , all clocks in A1 are reset to

zero and kept uniformly. q0
0 firstly is connected to r1

1. r1
1 and r1

2 reset clocks
and t1 tests the uniformity of clocks.

– Since A1
push−−−→ A2, each state in A1 connects to p1,2

1 by a transition to push

itself. p1,2
1 and p1,2

2 push each clock in A1. Before connecting to q2
0 ∈ A2, all

clocks in A2 are similarly reset and tested, through r2
1, r2

2 and t2.

– Since A2
pop−−→ ε, after some final state of A2 is reached, each clock in the

stack should be popped, through an extra state o. After that, o will connect
each state in A1, by which the respective suspended state is popped.

4.2 Correctness of the Encoding

To reduce state reachability problem of NeTAs to that of DTPDAs, we show
that transitions are preserved and reflected by the encoding.

Definition 9 (Encoded Configuration). For a NeTA N = (T,A0,∆), its
DTPDA encoding E(N) = ⟨S, s0, Γ, C,∇⟩. and a NeTA configuration

c = ⟨A1, q1, ν1⟩⟨A2, q2, ν2⟩ . . . ⟨An, qn, νn⟩
let chd = ⟨A1, q1, ν1⟩ and ctl = ⟨An, qn, νn⟩. A clock valuation of c, ν(c) : C →
R≥0 is defined as ν(c)(x) = ν1(x) if x ∈ X(A1), and any, otherwise. 1 Let
w(c) = w1 · · ·wn, where wi = (xi

mi
, νi(x

i
mi

)) · · · (xi
1, νi(x

i
1))(qi, 0).

1 any means any value, since except for a clock in the top stack frame of a nested
timed automaton, its value does not matter.

Nested Timed Automata 11

q
1
0

q
1
1

q
1
2

x
←

[0
,
0
]

x
∈

(0
,
4
]?

x
←

[0
,
0
]

q
0
0

q
2
0

q
2
1

q
3
1

y
←

[0
,
2
]

y
∈

(0
,
5
]?

y
←

[0
,
2
]

r1

1

r1

2

t1

x
←

[0
,
0
]

ǫ

x
∈

[0
,
0
]?

ǫ
r2

1

r2

2

t2

y
←

[0
,
0
]

ǫ

y
∈

[0
,
0
]?

p
1,2

1
p
1,2

2

o

push(q1

0
, d)

p
u
s
h
(q

1
1

,
d
)

p
u
s
h
(q

2

1
,
d
)

push(x, x)

ǫ

ǫ

pop(y, y)

p
o
p
(q

10
,
d
)

pop(q 1

1 , d)

pop(q1

2
, d)

Fig. 6. Encoding the NeTA to DTPDA

We denote a configuration (q1, w(ctl), ν(c)) of E(N) by JcK. A configuration
κ of DTPDA with some c and κ = JcK is called an encoded configuration.

Lemma 1. Given a NeTA N , its encoding E(N), and configurations c, c′ of N .

– (Preservation) if c −→ c′, then JcK ↪−→∗ Jc′K;
– (Reflection) if JcK ↪−→∗ κ,

1. there exists c′ such that κ = Jc′K and c −→∗ c′, or
2. κ is not an encoded configuration, and there exists c′ such that κ ↪−→∗

Jc′K by discrete transitions (of E(N)) and c −→∗ c′.

From Lemma 1, we have the decidability of the safety property of NeTAs.

Theorem 1. The state reachability problem of NeTAs is decidable.

Remark 4 (Global clocks). We can assign a disjoint finite set of global clocks
to a NeTA. These global clocks are tested and reassigned during push, pop
and internal transitions, to control time conditions for push, pop and internal
actions. Global clocks do not affect the safety property of a NeTA, since during
the encoding to DTPDA, we just include these clocks to the set of clocks in
DTPDA, keeping the copies of global clocks for all stack elements.

Fact 1 A parallel composition of a NeTA and a TA can be encoded into a NeTA
with global clocks by forgetting the synchronizing actions.

Remark 5 (Encode DTPDAs into NeTAs). We can also encode a DTPDA into
a NeTA with global clocks by regarding each state of the DTPDA as a TA with
only one (local) clock. These TAs and their respective clocks can thus be used
to represent pairs of stack symbols and ages.

12 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

5 Deadline Analysis for Nested Interrupts

Timely interrupt handling is part of correctness for real-timed, interrupt-
driven system. It is vital for a deadline analysis [12, 13] in such systems to check
that all specified deadlines for interrupt handling will be met. Such analysis is
a daunting task because of large number of different possible interrupt arrival
scenarios. An interrupt signal from outside transfers the control to an interrup-
t handler deferring the interrupted execution. When there are more than one
interrupts, an interrupt controller provides priorities for them according to ur-
gency of each interrupt. An interrupt handler is suspended by another handler
with higher priority. After the high priority handler is done, the previous handler
is resumed. In the followings NeTA combined with TA is shown to be useful for
deadline analysis with such nested interrupt handling.

The time and frequency of interrupt signals can be represented by a TA,
with input actions as events that trigger interrupt handlers. For instance, Fig.
7 gives an example of a TA that trigger three interrupt handlers, by comingP ,
comingQ, and comingR, respectively.

C
om

in
g
P
, x
←

[0, 1)

y
∈
[45,+
∞
)? x ∈ (15,+∞)?

comingQ, x← [0, 1)

x ∈ (12,+∞)?

comingR, x← [0, 1)
ComingP , x← [0, 1)

y
∈
[6
0,
+
∞
)?

Fig. 7. A Timed Automata as an Environment

Assume a finite set of interrupt handler specifications H . Each handler is
specified by P (A, D), where A is a TA to describe its behavior, and D is its
relative deadline. A system should guarantee that each executed handler p of
P (A, D) is executed as A and reached to some final location of A within D time
units. If the handler misses the deadline, it raises an error.

An interrupt handler with relative deadline D is transformed from A to an-
other TA with error location. Guarded : H → A is defined by Guarded(P (A, D)) =
(QG, qG

0 , FG, XG,∆G). Each element is shown as follows,

– QG = Q(A) ∪Q∆ ∪ {qerr}, where Q∆ = {qδ | for each δ ∈ ∆(A)}.
– qG

0 = q0(A), and FG = F (A).
– XG = X(A) ∪ {xsch}.
– ∆G = ∆sch ∪∆err, where

• ∆sch = {q o−→ qδ, qδ
xsch∈[0,D]?−−−−−−−−→ q′ | δ = (q, o, q′) ∈ ∆(A)}.

• ∆err = {q xsch∈(D,+∞)?−−−−−−−−−−→ qerr | q ∈ Q(A) ∪Q∆}.

Nested Timed Automata 13

Given a finite set of handler specifications H , a priority policy is described
by a relation ≺ on H . For instance, the most common policy is fixed priority
strategy (FPS), where ≺ is a strict partial order (irreflexive, asymmetric and
transitive). An interrupt controller Sch(H ,≺) with ≺ as a FPS is defined by a
nested timed automaton (T,A0,∆) over a set of input symbols Σ where,

– Σ = {ComingP | for each P ∈H }.
– T = {Guarded(P) | for each P ∈ H } ∪ {Aidle}, where Aidle is a singleton

timed automaton without any transitions.
– A0 = Aidle.
– ∆ is defined by ∆idle ∪∆push ∪∆pop ∪∆internal, where

• ∆idle = {Aidle
ComingP ,push−−−−−−−−→ A | ∀P ∈H ,A = guarded(P)}.

• ∆push = {A ComingP ′ ,push−−−−−−−−−→ A′ | ∀P, P ′ ∈H , P ≺ P ′∧A = guarded(P)∧
A′ = guarded(P ′)}.

• ∆pop = {A pop−−→ ε | ∀P ∈H ,A = guarded(P)}.
• ∆internal = {A ComingP ′ ,internal−−−−−−−−−−−→ A′ | ∀P, P ′ ∈H , P ̸≺ P ′∧P ̸≻ P ′∧A =
guarded(P) ∧ A′ = guarded(P ′)}.

After performing parallel composition with a TA as an environment, we are
allowed to check the deadline of each interrupt handler Pi through the reacha-
bility problem on the error location in Guarded(Pi), considering the fact that a
finite number of interrupt handlers are effectively invoked.

6 Related Work

After TAs [1] had been proposed, lots of researches were intended timed
context switches. TPDAs were firstly proposed in [2], which enjoys decidability of
reachability problem. Dang proved in [14] the decidability of binary reachability
of TPDAs. All clocks in TPDAs were treated globally, which were not effected
when the context switches.

Our model relied heavily on a recent significant result, named dense timed
pushdown automata (DTPDAs) [3]. The difference between DTPDAs and Ne-
TAs was the hierarchical feature. In NeTAs, a finite set of local clocks were
pushed into the stack at the same time. When a pop action happens, the val-
ues of clocks belonging to popped TA were popped simultaneously and reused.
This feature eased much for modelling the behavior of time-aware software. In
DTPDAs, local clocks must be dealt within some proper bookkeeping process,
which was not essential part of the analysis. In [15], a discrete version of DTP-
DAs, named discrete timed pushdown automata was introduced, where time was
incremented in discrete steps and thus the ages of clocks and stack symbols are
in the natural numbers. This made the reachability problem much simpler, and
easier for efficient implementation.

Based on recursive state machines [16], two similar timed extensions, timed
recursive state machines (TRSMs) [5] and recursive timed automata (RTAs) [4],
were given independently. The main differences from NeTAs were, the two models
had no stack time-update during progress transitions, and the number of clocks
was essentially finite. The hierarchical timed automata (HTAs) [17] kept the

14 Guoqiang Li, Xiaojuan Cai, Mizuhito Ogawa, Shoji Yuen

similar structure of clocks, where only a bounded number of levels were treated,
while NeTAs treated an unbounded number of levels.

The class of extended timed pushdown automata (ETPDAs) was proposed
in [5]. An ETPDA was a pushdown automaton enriched with a set of clocks,
with an additional stack used to store/restore clock valuations. Two stacks were
independently. ETPDAs have the same expressiveness with TRTMs via weak
timed bisimulation. The reachability problem of ETPDAs was undecidable, while
the decidability held with a syntactic restriction on the stack.

Controller automata (CAs) [18, 11], was proposed to analyze interrupts. In
a CA, a TA was assigned to each state. A TA at a state may be preempted by
another state by a labeled transition. The number of clocks of CAs were finite,
and thus when existing preemption loop, only the newest timed context were
kept. Given a strict partial order over states, an ordered controller automaton
was able to be faithfully encoded into a TA, and thus safety property of the
restrictive version was preserved.

The updatable timed automata (UTAs) [9] proposed the possibility of up-
dating the clocks in a more elaborate way, where the value of a clock could be
reassigned to a basic arithmetic computation result of values of other clocks.
UTAs raised up another way to accumulate time when timed context switches,
and thus updatable timed pushdown automata (UTPDAs) could be an interesting
extension.

7 Conclusion

This paper proposed a timed model called nested timed automata (NeTAs).
A NeTA was a pushdown system with a finite set of TAs as stack symbols. All
clocks in the stack elapse uniformly, capable to model the timed behavior of the
suspended components in the stack. The safety property of NeTAs was shown to
be decidable by encoding NeTAs to DTPDAs. As an example of its application,
behavior of multi-level interrupt handling is concisely modelled and its deadline
analysis is encoded as a safety property.

We are planning to develop a tool based on NeTAs. Instead of general NeTAs,
we will restrict a class such that a pop action occurs only with an integer-valued
age. We expect this subclass of NeTAs can be encoded into updatable TPDAs
(without local age), which would be more efficiently implemented.

Acknowledgements This work is supported by the NSFC-JSPS bilateral joint
research project (61011140074), NSFC(61100052, 61003013, 61033002, 6126113
0589), and JSPS KAKENHI Grant-in-Aid for Scientific Research(B) (23300008
and 25280023).

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126 (1994) 183–235

Nested Timed Automata 15

2. Bouajjani, A., Echahed, R., Robbana, R.: On the Automatic Verification of Sys-
tems with Continuous Variables and Unbounded Discrete Data Structures. In:
Proceedings of the International Conference on Hybrid Systems: Computation and
Control. LNCS 999, Springer-Verlag (1994) 64–85

3. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-Timed Pushdown Automata. In:
Proceedings of the LICS’12, IEEE Computer Society (2012) 35–44

4. Trivedi, A., Wojtczak, D.: Recursive Timed Automata. In: Proceedings of the
ATVA’10. LNCS 6252, Springer-Verlag (2010) 306–324

5. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of Timed Recursive State Ma-
chines. In: Proceedings of the TIME’10, IEEE Computer Society (2010) 61–68

6. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested Timed Automata. Technical Report
IS-RR-2013-004, JAIST (2013)

7. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time Systems. Information and Computation 111 (1994) 193–244

8. Ogawa, M., Cai, X.: On Reachability of Dense Timed Pushdown Automata. Tech-
nical Report IS-RR-2013-005, JAIST (2013)

9. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable Timed Automata. The-
oretical Computer Science 321 (2004) 291–345

10. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Lecture Notes on Concurrency and Petri Nets. LNCS 3098, Springer-Verlag (2004)
87–124

11. Li, G., Yuen, S., Adachi, M.: Environmental Simulation of Real -Time Systems
with Nested Interrupts. In: Proceedings of the TASE’09, IEEE Computer Society
(2009) 21–28

12. Brylow, D., Palsberg, J.: Deadline Analysis of Interrupt-Driven Software. IEEE
Transactions on Software Engineering (TSE) 30 (2004) 634–655

13. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task Automata: Schedulability,
Decidability and Undecidability. Information and Computation 205 (2007) 1149–
1172

14. Dang, Z.: Pushdown Timed Automata: a Binary Reachability Characterization
and Safety Verification. Theoretical Computer Science 302 (2003) 93–121

15. Abdulla, P.A., Atig, M.F., Stenman, J.: The Minimal Cost Reachability Problem
in Priced Timed Pushdown Systems. In: Proceedings of the LATA’12. LNCS 7183,
Springer-Verlag (2012) 58–69

16. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T.W., Yannakakis,
M.: Analysis of Recursive State Machines. ACM Transactions on Programming
Languages and Systems (TOPLAS) 27 (2005) 786–818

17. David, A., Möller, M.O.: From HUPPAAL to UPPAAL - A Translation from
Hierarchical Timed Automata to Flat Timed Automata. Technical Report RS-01-
11, BRICS (2001)

18. Li, G., Cai, X., Yuen, S.: Modeling and Analysis of Real-Time Systems with Mutex
Components. International Journal of Foundations of Computer Science (IJFCS)
23 (2012) 831–851

Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Well-Structured Pushdown Systems, Part 2: On

Reachability of Dense Timed Pushdown Automata

Author(s) Ogawa, Mizuhito; Cai, Xiaojuan

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2013-005: 1-18

Issue Date 2013-08-19

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/11446

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Well-Structured Pushdown Systems, Part 2:
On Reachability of Dense Timed Pushdown Automata.

Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology

Xiaojuan Cai

BASICS Lab, Shanghai Jiotong University

August 19, 2013

IS-RR-2013-005

Well-structured pushdown system, Part 2:
On Reachability of Dense Timed Pushdown

Automata ?

Mizuhito Ogawa1 and Xiaojuan Cai2

1 Japan Advanced Institute of Science and Technology
mizuhito@jaist.ac.jp

2 Shanghai Jiao Tong University, China
cxj@sjtu.edu.cn

Abstract. This paper investigates a general framework of a pushdown
system with well-quasi-ordered states and stack alphabet to show de-
cidability of reachability. As an instance, an alternative proof of the de-
cidability of the (configuration) reachability for dense-timed pushdown
system (in P.A. Abdulla, M.F. Atig, F. Stenman, Dense-Timed Push-
down Automata, IEEE LICS 2012) is presented.

1 Introduction

Infinite state transition systems appear in many places still keeping certain de-
cidable properties, e.g., pushdown systems (PDS), timed automata [3], and vec-
tor addition systems (VAS, or Petri nets). Well-structured transition systems
(WSTSs) [2, 11] are one of successful general frameworks to reason about decid-
ability (except for PDSs). The coverability of VASs, the reachability of commu-
nicating finite state machines with lossy channels [11], and the inclusion problem
between timed automata with single clocks [15] are beginning of a long list.

A natural extension of WSTS is to associate a stack. It is tempting to apply
Higman’s lemma on stacks. However this fails immediately, since the monotonic-
ity of transitions with respect to the embedding on stacks hardly holds.

This paper investigates a general framework for PDSs with well-quasi-ordered
states and stack alphabet, well-structured pushdown systems. Well-quasi-orderings
(WQOs) over states and stack alphabet are extended to configurations by the
element-wise comparison. Note that this extension will not preserve WQO (nor
well founded). By combining classical Pre∗-automaton technique [5, 12, 10], we
reduce the argument on stacks to that on stack symbols, and similar to WSTS,
finite convergence of antichain techniques during Pre∗-automata saturation is
guaranteed by a WQO.

When the set P of states is finite, we have decidability of coverability [6].
When P is infinite (but equipped with WQO), we can state decidability of quasi-
coverability only. To compensate, we introduce a well-formed projection ⇓Υ ,

? JAIST Research Report IS-RR-2013-005, August 19th 2013

which extracts a core shape from the stack related to pushdown transitions. If
we find ⇓Υ such that, for configurations c, c′ with c ↪→ c′,

– compatibility: ⇓Υ (c) ↪→⇓Υ (c′), and

– stability: c ∈ Υ if, and only if, c′ ∈ Υ , where Υ = {c | c =⇓Υ (c)},

the quasi-coverability leads the configuration reachability. The compatibility
strengthens the quasi-coverability to the coverability, and the stability boosts
the coverability to the configuration reachability.

As an instance, we encode a dense-timed pushdown automaton (DTPDA) [1]
into a snapshot PDS, inspired by the digitization techniques in [15]. A snapshot
PDS has the set of snapshot words as stack alphabet. A snapshot word is essen-
tially a region construction of the dimension equal to its size. Since a snapshot
PDS contains non-standard pop rules (i.e., (p, γγ′) → (q, γ′′)), by associating a
top stack symbol to a state, it is encoded as a PDS with WQO states and stack
alphabet. Our general framework shows an alternative decidability proof of the
reachability of a DTPDA, which has shown in [1].3

Our contribution is not on logically difficult proofs, but clarifying the proof
structure behind theorems. Different from [1], our encoding idea into a snapshot
PDS is inspired by [15].

Related Work

There are lots of works with context-sensitive infinite state systems. A pro-
cess rewrite systems combines a PDS and a Petri net, in which vector addi-
tions/subtractions between adjacent stack frames during push/pop operations
are prohibited [14]. With this restrictions, its reachability becomes decidable. A
WQO automaton [7], is a WSTS with auxiliary storage (e.g., stacks and queues).
It proves that the coverability is decidable under compatibility of rank functions
with a WQO, of which an Multiset PDS is an instance. A timed pushdown
automaton is a timed extension of a pushdown automaton. It has only global
clocks, and the region construction [3] encodes it to a standard PDS [4, 8, 9].
DTPDA [1] firstly introduces local ages, which are stored with stack symbols
when pushed, and never reset. DTPDA utilizes them to check whether an age
in a stack frame satisfies constraints when pop occurs.

A WSPDS is firstly introduced in [6]. It focuses on WSPDSs with finite con-
trol states (and well-quasi-ordered stack alphabet), whereas the paper explores
WSPDSs with well-quasi-ordered control states at the cost of weakening the
target decidable property from the coverability to the quasi-coverability. The
well-formed projection (Section 4), if exists, strengthens it again to the configu-
ration reachability.

3 In [1], only the state reachability is mentioned, but the proof is applied also for the
configuration reachability.

Paper construction

The rest of the paper is constructed as follows. Section 2 briefly reviews a
DTPDA [1]. Section 3 introduces P-automaton techniques for reachability of a
pushdown system (PDS), which are extended to the coverability and the quasi-
coverability. Note that we discuss on their correctness (at the limit), without
assuming finite convergence. Section 4 proposes a well-formed projection. If we
can find it, the quasi-coverability is lifted up to the configuration reachabil-
ity. Section 5 introduces a Well-Structured Pushdown System (WSPDS) [6] and
shows that the backward saturation of P-automaton (with upward ideals, in Sec-
tion 3.3) finitely converges. Section 6 proposes snapshot words, which summarize
and discretize the stack content as a (top) stack symbol. Section 7 presents the
decidability of the reachability of a DTPDA, by encoding it into a WSPDS
and finding a well-formed projection ⇓Υ for snapshot words. Finally, Section 8
concludes the paper.

2 Dense-Timed Pushdown Automata

Dense-timed pushdown automaton (DTPDA) extends timed pushdown automa-
ton (TPDA) with local ages [1]. A local age in each context is set when a push
transition occurs, and restricts a pop transition only when the value of a local
age meets the condition. The values of local ages proceed synchronously to global
clocks, and they are never reset. Following [1], we omit input alphabet, since our
focus is on reachability (regardless of an input word).

As notational convention, Section 2 and 7.2 use I for an interval (obeying to
[1]), whereas Section 5 used I for an ideal.

Definition 1. A DTPDA is a tuple 〈S, sinit, Γ, C, ∆〉, where

– S is a finite set of states with the initial state sinit ∈ S,
– Γ is a finite stack alphabet,
– C is a finite set of clocks, and
– ∆ is a finite set of transitions.

A transition t ∈ ∆ is a triplet (s, op, s′) in which s, s′ ∈ S and op is either of

– Local nop, a state transition in S,
– Assignment x← I, assign a clock x ∈ C to an arbitrary value in I,
– Test x ∈ I?, test whether the value of a clock x ∈ C is in I,
– Push push(γ, I), push γ on a stack associated with a local age of an arbitrary

value in I, and
– Pop pop(γ, I), pop γ on a stack if the associated age a is in I.

where I is an interval bounded by natural numbers (i.e., [l, h], (l, h], [l, h), (l, h)
for l, h ∈ N ∪ {ω} with l ≤ h).

If each I in Push and Pop rules is [0,∞) (i.e., no conditions on local ages),
we say simply a Timed Pushdown Automaton.

Definition 2. For a DTPDA 〈S, sinit, Γ, C, ∆〉, a configuration is a triplet (s, ν, w)
with s ∈ S, a clock valuation ν : C → R≥0, and w ∈ (Γ × R≥0)∗. We refer s in
a configuration c = (s, ν, w) by state(c). For t ∈ R≥0, we denote

– ν0(x) = 0 for x ∈ C,
– νx←t(x) = t and νx←t(y) = ν(y) if y 6= x,
– (ν + t)(x) = ν(x) + t for x ∈ C, and
– w + t = (γ1, t1 + t). · · · .(γk, tk + t) for w = (γ1, t1). · · · .(γk, tk).

There are two types of transitions, timed
t−→Time and discrete transitions

op−→Disc.

Semantics of a timed transition is (s, ν, w)
t−→Time (s, ν+t, w+t), and a discrete

transitions (s, op, s′) is either

– Local (s, ν, w)
nop−−→Disc (s′, ν, w),

– Assignment (s, ν, w)
x←I−−−→Disc (s′, νx←t, w) for t ∈ I,

– Test (s, ν, w)
x∈I?−−−→Disc (s′, ν, w) if ν(x) ∈ I,

– Push (s, ν, w)
push(γ,I)−−−−−−→Disc (s′, ν, (γ, t).w) for t ∈ I, and

– Pop (s, ν, (γ, t).w)
pop(γ,I)−−−−−→Disc (s′, ν, w) if t ∈ I.

We assume that the initial configuration is (sinit, ν0, ε).

Example 1. The figure shows transitions between configurations in which S =
{•} (omitted), C = {x1, x2, x3}, and Γ = {a, b, d}. From c1 to c2, a discrete
transition push(d, [1, 3]) pushes (d, 2.6) into the stack. At the timed transition
from c2 to c3, 2.6 time units have elapsed, and each value grows older by 2.6.
From c3 to c4, the value of x2 is assigned to 3.8, which lies in the interval (2, 5],
and the last transition pops (d, 5.2) after testing that its local age lies in [4, 6].

(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,2.6)
(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,5.2)
(a,4.5)
(b,9.3)
(a,5.7)
(d,6.8)

x1 ← 3.1
x2 ← 6.5
x3 ← 4.9

(d, 5.2)
(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

c1
push(d,[1,3])−−−−−−−−→Disc c2

2.6−−−−−→Time c3
x2←(2,5]−−−−−−−→Disc c4

pop(d,[4,6])−−−−−−−→Disc c5

3 P-automaton

A textbook standard technique to decide the emptiness of a pushdown au-
tomaton is, first converting it to context free grammar (with cubic explosion),
and then applying CYK algorithm, which is a well-known dynamic program-
ming technique. A practical alternative (with the same complexity) is a P-
automaton [12, 10]. Starting from a regular set C of initial configurations (resp.

target configurations) Post∗ (resp. Pre∗) saturation procedure is applied on
an initial P-automaton (which accepts C) until convergence. The resulting P-
automaton accepts the set of all successors (resp. predecessors) of C. In litera-
ture, this technique is applied only for PDSs with finite control states and stack
alphabet. We confirm that it works for PDSs without finite restriction (ignoring
finite convergence), and extend it to the coverability and the quasi-coverability.

3.1 P-automaton for reachability of pushdown system

In the standard definition, a pushdown system (PDS) has a finite set of states
and finite stack alphabet. We will consider a PDS with an infinite set of states
and infinite stack alphabet. For (possibly infinitely many) individual transition
rules, we introduce a partial function ψ to describe a pattern of transitions. We
denote the set of partial functions from X to Y by PFun(X,Y).

Definition 3. A pushdown system (PDS)M = 〈P, Γ,∆〉 consists of a finite set
∆ ⊆ PFun(P×Γ, P×Γ 2)∪PFun(P×Γ, P×Γ)∪PFun(P×Γ, P) of transition
rules. We say that ψ ∈ ∆ is a push, internal, and pop rule if ψ ∈ PFun(P ×
Γ, P ×Γ 2), ψ ∈ PFun(P ×Γ, P ×Γ), and ψ ∈ PFun(P ×Γ, P), respectively. A
configuration 〈p, w〉 consists of p ∈ P and w ∈ Γ ∗. For a transition rule ψ ∈ ∆,
a transition is 〈p, γw〉 ↪→ 〈p′, vw〉 for (p′, v) = ψ(p, γ)

Remark 1. Often in multi-thread program modelings and in snapshot PDSs (Sec-
tion 7.2) for discretizing DTPDAs, PDSs are defined with finite control states,
but with non-standard pop rules, like 〈p, γ1γ2〉 ↪→ 〈q, γ〉 ∈ PFun(P ×Γ 2, P ×Γ)
with |P | < ∞. This can be encoded into PDSs in Definition 3 by associating a
top stack symbol to a state, like 〈(p, γ1), γ2〉 ↪→ 〈(q, γ), ε〉 ∈ PFun(P ′ × Γ, P ′)
with P ′ = P × Γ , at the cost that the set P ′ of control states becomes infinite.

We use c1, c2, · · · to range over configurations. ↪→∗ is the reflexive transitive
closure of ↪→. There are two kinds of reachability problems.

– Configuration reachability : Given configurations 〈p, w〉, 〈q, v〉 with p, q ∈
P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

– State reachability : Given a configuration 〈p, w〉 and a state q with p, q ∈ P
and w ∈ Γ ∗, decide whether there exists v ∈ Γ ∗ with 〈p, w〉 ↪→∗ 〈q, v〉.
Given a set of configurations C, we write pre∗(C) (resp. post∗(C)) for the set

{c′ | c′ ↪→∗ c ∧ c ∈ C} (resp. {c′ | c ↪→∗ c′ ∧ c ∈ C}). The reachability problem
from 〈p, w〉 to 〈q, v〉 is reduced to whether c ∈ pre∗({c′}) (or c′ ∈ post∗({c})).

Definition 4. A Pre∗-automaton A is a quadruplet (S, Γ,∇, F) with F ⊆ S
and ∇ ⊆ S × Γ × S. A Pre∗-automaton is initial if each state in S ∩ P has no
incoming transitions and S is finite. A accepts a configuration 〈p, w〉 with p ∈ P
and w ∈ Γ ∗, if w is accepted starting from p (as an initial state).

The set of configurations accepted by A is denoted by L(A). When (p, γ, q) ∈
∇, we denote p

γ7→ q. For w = γ1 . . . γk ∈ Γ ∗, p
γ17→ · . . . γk7→ q is denoted by

p
w7→∗ q ∈ ∇∗. If k = 0 (i.e., p

ε7→ q), we assume p = q.

Starting from an initial Pre∗-automatonA0 that accepts C (i.e., C = L(A0)),
the repeated (possibly infinite) applications of saturation rules

(S, Γ,∇, F)

(S ∪ {p′}, Γ,∇∪ {p′ γ7→ q}, F)
if p

w7→∗ q ∈ ∇∗ and ψ(p′, γ) = (p, w) for ψ ∈ ∆

converges to Pre∗(A0). Note that saturation rules never eliminate transitions,

but monotonically enlarge. When (p, γ, q) ∈ ∇, we denote p
γ7→ q.

Theorem 1. [12, 10] (Theorem 1 in [6]) For a PDS, pre∗(C) = L(Pre∗(A0)).
where C = L(A0).

Example 2. Let 〈{pi}, {γi}, ∆〉 be a pushdown system with i = 0, 1, 2 and ∆
given below. The saturation A of Pre∗-automata started from A0 accepting
C = {〈p0, γ0γ0〉}. L(A) coincides pre∗(C).

Example 2. Let �{pi}, {γi},∆� be a pushdown system with i = 0, 1, 2 and ∆
given below. The saturation A of pre∗-automata started from A0 accepting C =
{�p0, γ0γ0�}. L(A) coincides pre∗(C).

(1). �p0, γ0� → �p1, γ1γ0�
(2). �p1, γ1� → �p2, γ2γ0�
(3). �p2, γ2� → �p0, γ1�
(4). �p0, γ1� �→ �p0, ��

A0 : p0
γ0 �� s1

γ0 �� s2

A : p0
γ0 ��

γ0
(1)

��
γ1

(4)
��

s1
γ0 �� s2

p1

(2)
γ1

��

(2) γ1

��

p2
(3)

γ2

��

{Mizuhito: Add a figure of A0}

Remark 1. Since the saturation procedure monotonically extends a pre∗-automaton,
even if a PDS has an infinite set of states and infinite stack alphabet, it will con-
verge (after infinite steps of the saturation), and still pre∗(C) = L(pre∗(A0))
holds.

3.2 P-automata minimization and coverability of PDS

We will consier a PDS with (possibly infinite) ordered stack alphabet, and its
coverability. For (possibly infinitely many) individual transition rules, we intro-
duce a partial function ψ to describe a pattern of transitions.

Let (Γ,≤) be a quasi-order (i.e., a reflexive transitive binary relation on Γ).
For X ⊆ Γ , we denote a upward closure of X by X↑, i.e., X↑ = {d ∈ Γ | ∃x ∈
X.x ≤ d}. An ideal I is an upward closed subset of (Γ,≤) (i.e., I = I↑). The set
of all ideals is denoted by I(Γ). The set of all subsets of (Γ,≤) is denoted by
P(Γ).

Definition 6. Let (D,≤) be a QO, and let w1 = α1α2 · · ·αn and w2 = β1β2 · · ·βm

be words in D∗.

– Element-wise comparison w1 � w2 if m = n and ∀i ∈ {1 · · · n}.αi ≤ βi.
– Embedding w1 � w2 if there is an order-preserving injection f from [0..n]

to [0..m] with ai ≤ bf(i) for each i ∈ [0..n].

A partial function ψ is monotonic if γ ≤ γ� and γdom(ψ) imply ψ(γ)� ψ(γ)
and γ�dom(ψ) for each γ, γ� ∈ (Γ,≤). We denote the set of partial functions from
X to Y by PFun(X, Y)

Definition 7. A PDS with ordered stack alphabet (OPDS) M = �P, (Γ,≤),∆�
is obtained by extending a PDS in Definition 4 with

– (Γ,≤) is quasi-ordered stack alphabet, and
– ∆ ⊆ P × P × PFun(Γ,Γ≤2) is a finite set of transition rules.

We denote a transition (p, p�,ψ) ∈ ∆ by �p, γ� → �p�,ψ(γ)�. M is monotonic if,
in each transition rule (p, p�,ψ), the partial function ψ is monotonic.

Remark 2. Since the saturation procedure monotonically extends Pre∗-automaton,
even if a PDS has an infinite set of states / stack alphabet and the initial Pre∗-
automaton A0 has infinite states, it converges (after infinite many saturation
steps), and pre∗(C) = L(Pre∗(A0)) holds.

3.2 P-automata for coverability of OPDS

A quasi-ordering (QO) is a reflexive transitive binary relation. We denote the
upward (resp. downward) closure of X by X↑ (resp. X↓), i.e., X↑ = {y | ∃x ∈
X.x ≤ y} (resp. X↓ = {y | ∃x ∈ X.y ≤ x}).

For a PDSM = 〈P, Γ,∆〉, we introduce QOs (P,�) and (Γ,≤) on P and Γ ,
respectively. We call M = 〈(P,�), (Γ,≤), ∆〉 an ordered PDS (OPDS).

Definition 5. For w1 = α1α2 · · ·αn, w2 = β1β2 · · ·βm ∈ Γ ∗, let

– Element-wise comparison w1 � w2 if m = n and ∀i ∈ [1..n].αi ≤ βi.
– Embedding w1 4 w2 if there is an order-preserving injection f from [0..n]

to [0..m] with αi ≤ βf(i) for each i ∈ [0..n].

We extend � on configurations such that (p, w)� (q, v) if p � q and w � v.
A partial function ψ ∈ PFun(X,Y) is monotonic if γ ≤ γ′ and γ ∈ dom(ψ)

imply ψ(γ)� ψ(γ′) and γ′ ∈ dom(ψ) for each γ, γ′ ∈ Γ . We say that an OPDS
M = 〈(P,�), (Γ,≤), ∆〉 is monotonic if ψ is monotonic for each ψ ∈ ∆.

– Coverability : Given configurations (p, w), (q, v) with p, q ∈ P and w, v ∈
Γ ∗, decide whether there exists v′ ∈ Γ ∗ with v � v′ and (p, w) ↪→∗ (q, v′).

Coverability is reduced to whether (p, w) ∈ pre∗({(q, v)}↑). For coverability, we
restrict saturation rules of Pre∗-automata.

(S, Γ,∇, F)

(S ∪ {p′}, Γ,∇⊕ {p′ γ7→ q}, F)

if p
w7→∗ q ∈ ∇∗ and

ψ(p′, γ) ∈ {(p, w)}↑ for ψ ∈ ∆

where ∇⊕ {p′ γ7→ q} is
{
∇ if there exists {p′′ γ

′
7→ q} ∈ ∇ with p′′ � p′ and γ′ ≤ γ

∇∪ {p′ γ7→ q} otherwise.

Theorem 2. (Theorem 3 in [6]) For a monotonic OPDS, pre∗(C↑) = L(Pre∗(A0))↑.
where C↑ = L(A0).

3.3 P-automata for quasi-coverability of OPDS

– Quasi-coverability. Given configurations 〈p, w〉, 〈q, v〉, decide whether there
exist 〈p′, w′〉 and 〈q′, v′〉 such that 〈p, w〉 � 〈p′, w′〉, 〈q, v〉 � 〈q′, v′〉, and
〈p′, w′〉 ↪→∗ 〈q′, v′〉.
Quasi-coverability is reduced to whether 〈p, w〉 ∈ pre∗({(q, v)}↑)↓. For quasi-

coverability, we further restrict saturation rules of Pre∗-automata.

(S, Γ,∇, F)

(S ∪ {p′}, Γ,∇⊕ {p′ γ7→ q}, F)

if p
w7→∗ q ∈ ∇∗ and

ψ(p′, γ) ∈ {(p, w)}↑ for ψ ∈ ∆

where ∇⊕ {p′ γ7→ q} is

∇ if there exists {p′′ γ
′
7→ q} ∈ ∇ with p′′ � p′ and γ′ ≤ γ

∇∪ {p′′ γ7→ q} if there exists p′′ ∈ S ∩ P with p′′ � p′
∇∪ {p′ γ7→ q} otherwise.

The second condition (illustrated in the figure below) suppresses adding new
states in Pre∗-automata, and the first condition gives a termination condition
for adding new edges.

p q
w

p’

p”
≺

pq’ q

Proof ideaSaturation rule
(second case)

γ

γ

Pre*-automaton

w

p”q’

p’q”

γ

γ
∃

Not added

I.H.

≺ ≺growing.

Definition 6. An OPDSM = 〈(P,�), (Γ,≤), ∆〉 is growing if, for each ψ(p, γ) =
(q, w) with ψ ∈ ∆ and (q′, w′)� (q, w), there exists (p′, γ′) with (p′, γ′)� (p, γ)
such that ψ(p′, γ′)� (q′, w′).

Lemma 1 is obtained by induction on steps of Pre∗-automata saturation, of
which the proof idea is illustrated in the figure above.

Lemma 1. Assume p
w7−→∗ s in Pre∗(A0). For each (p′, w′)� (p, w),

– If s ∈ P , there exist (p′′, w′′)� (p′, w′) and q′ � s with 〈p′′, w′′〉 ↪→∗ 〈q′, ε〉.
– If s ∈ S \ P , there exist (p′′, w′′)� (p′, w′), q

v7−→∗ s in A0 with q ∈ P , and
〈q′, v′〉 � 〈q, v〉 such that 〈p′′, w′′〉 ↪→∗ 〈q′, v′〉.

For simplicity, we say “c0 covers c1” to mean that there exists c′1 � c1 with
c0 ↪→∗ c′1. The next Claim is easily proved by induction on the steps of ↪→.

Claim For a monotonic and growing OPDS, if 〈p, w〉 ↪→∗ 〈q, v〉, then for any
(q′, v′)� (q, v), there exists (p′, w′)� (p, w) such that 〈p′, w′〉 covers 〈q′, v′〉.

Proof. By induction on steps of the Pre∗ saturation procedure A0,A1,A2, · · · .
For A0, the statements hold immediately. Assume the statements hold for Ai,
and Ai+1 is constructed by adding new transition p0

γ07→ q0.

(S, Γ,∇, F)

(S ∪ {p0}, Γ,∇⊕ {p0 γ07→ q0}, F)

if p1
w17→∗ q0 ∈ ∇∗ and

ψ(p0, γ0) ∈ {(p1, w1)}↑ for ψ ∈ ∆

We give a proof only for the first statement. The second statement is similarly
proved. According to the definition of ⊕, there are three cases:

– There exists {p′0
γ′
07→ q0} ∈ ∇ with p′0 � p0 and γ′0 ≤ γ0. Nothing added.

– There exists p′0 in S ∩ P and p′0 � p0. Then, p′0
γ07→ q0 is added.

– Otherwise. p0
γ07→ q0 is added.

The second case is the most complex, and we focus on it. Assume that a path

p
w7−→∗ q contains p′0

γ07→ q0 k-times. We apply (nested) induction on k, and we

focus on its leftmost occurrence. Let w = wlγ0wr and p
wl7−→∗ p′0

γ07→ q0
wr7−→∗ q.

For each p′ � p, w′l � wl, w
′
r � wr and γ′0 ≥ γ0:

1. By induction hypothesis on p
wl7−→∗ p′0, there exists (p′′, w′′l) � (p′, w′l) such

that 〈p′′, w′′l 〉 covers 〈p′0, ε〉.
2. By the definition of saturation rules, there exist p′1 � p1 and w′1 � w1 such

that 〈p0, γ0〉 ↪→ 〈p′1, w′1〉.
3. By induction hypothesis on p1

w1wr7−→ ∗ q, there exist p′′1 � p′1 and w′′1w
′′
r �

w′1w
′
r such that 〈p′′1 , w′′1w′′r 〉 covers 〈q, ε〉.

4. By the growing property, there exist p′′0 � p0 � p′0 and γ′′0 ≥ γ′0 such that
〈p′′0 , γ′′0 〉 covers 〈p′′1 , w′′1 〉.

By Claim and 1., there exists (p′′′, w′′′l) � (p′′, w′′l) � (p′, w′l) such that
〈p′′′, w′′′l 〉 covers 〈p′′0 , ε〉. Put all these together, for each (p′, w′lγ

′
0w
′
r)� (p, wlγ0wr),

there exists (p′′′, w′′′l γ
′′
0w
′′
r) � (p′, w′lγ

′
0w
′
r). Therefore, each of 〈p′′′, w′′′l γ′′0w′′r 〉,

〈p′′0 , γ′′0w′′r 〉, 〈p′′1 , w′′1w′′r 〉, and 〈q, ε〉 covers the next. �
From Lemma 1, Theorem 3 is immediate.

Theorem 3. For a monotonic and growing OPDS, pre∗(C↑)↓ = (L(Pre∗(A0))↑)↓.
where C↑ = L(A0).

4 Well-formed projection and well-formed constraint

Definition 7. For an OPDS M , a pair (Υ,⇓Υ) of a set Υ ⊆ P × Γ ∗ and a
projection function ⇓Υ : P × Γ ∗ → (P × Γ ∗) ∪ {#} is a well-formed projection
if, for configurations c, c′ with c ↪→ c′,

– c ∈ Υ if, and only if c′ ∈ Υ ,
– ⇓Υ (c) ↪→⇓Υ (c′),
– ⇓Υ (c)� c, and
– c1 � c2 implies either ⇓Υ (c1) =⇓Υ (c2) or ⇓Υ (c1) = #,

where # is added to P ×Γ ∗ as the least element (wrt �) and Υ = {c ∈ P ×Γ ∗ |
c =⇓Υ (c)}. Υ is called a well-formed constraint. (# represents failures of ⇓Υ .)

Lemma 2. For a monotonic OPDS M with a well-formed projection ⇓Υ , as-
sume C ⊆ Υ . Then, pre∗(C) = pre∗(C↑)↓ ∩ Υ .

Proof. From C ⊆ Υ , pre∗(C) ⊆ pre∗(C↑)↓∩Υ is obvious, For the opposite direc-
tion, we first show ⇓Υ (pre∗(C↑)) ⊆ pre∗(C). Since c ∈ pre∗(C↑) is equivalent
to ∃c′ ∈ C↑.c ↪→∗ c′, we have ⇓Υ (c) ↪→∗⇓Υ (c′) ∈ C. Since C ⊆ Υ implies
⇓Υ (c′) ∈ C, ⇓Υ (c) ∈ pre∗(C) is obtained. For pre∗(C) ⊇ pre∗(C↑)↓ ∩ Υ ,

pre∗(C↑)↓ ∩ Υ =⇓Υ (pre∗(C↑)↓ ∩ Υ) ⊆⇓Υ (pre∗(C↑)↓) =⇓Υ (pre∗(C↑)) ∪ {#}.
From ⇓Υ (pre∗(C↑)) ⊆ pre∗(C), ⇓Υ (pre∗(C↑)) ∪ {#} ⊆ pre∗(C) ∪ {#}. Thus,
pre∗(C↑)↓ ∩ Υ ⊆ (pre∗(C) ∪ {#}) ∩ Υ = pre∗(C).

From Theorem 3 and Lemma 2, Theorem 4 is immediate, which strengthens
the quasi-coverability to the configuration reachability, and the decidability is
reduced to finite convergence of L(Pre∗(A0)).

Theorem 4. Let C be a regular set of configurations with a P-automaton A0)
with C↑ = L(A0). For a monotonic and growing OPDS and a well-formed con-
straint Υ , pre∗(C) = L(Pre∗(A0))↓ ∩ Υ .

Example 3. In Example 4, let Υ be
{
〈p0, (n, n) · · · (0, 0)〉, 〈p2, (n, n) · · · (0, 0)〉
〈p1, (n, n− 2)(n− 1, n− 1) · · · (0, 0)〉, | n ≥ m ≥ 0

}

It is easy to see that Υ is compatible. Since both 〈p0, (0, 0)〉 and 〈p2, (0, 0)〉 are in
Υ and {〈p, (0, 0)〉}↑∩Υ = {〈p, (0, 0)〉}, we conclude that 〈p0, (0, 0)〉 ↪→∗ 〈p2, (0, 0)〉
by Theorem 4.

5 Finite convergence of Pre∗-automata

Definition 8. A QO ≤ is a well-quasi-ordering (WQO) if, for each infinite
sequence a1, a2, · · · , there exist i, j with i < j and ai ≤ aj.

A QO ≤ is a WQO, if, and only if each upward closed set X↑ has finite
basis (i.e., minimal elements). Note that � may be no longer a WQO (nor well
founded), while the embedding (Γ ∗,4) stays a WQO by Higman’s lemma.

Lemma 3. Let (D,≤) and (D′,≤′) be WQOs.

– (Dickson’s lemma) (D ×D′,≤ × ≤′) is a WQO.
– (Higman’s lemma) (D∗,4) is a WQO, where 4 is the embedding.

For a monotonic OPDS, if (P,�), (Γ,≤) are WQOs, we call it a Well-Structured
PDS (WSPDS). For a WSPDS ((P,�), (Γ,≤), ∆), ψ−1({(p, w)}↑) is upward-
closed and has finite basis (i.e., finitely many minimal elements). In the Pre∗

saturation rule of Section 3.3, its side condition contains ψ(p′, γ) ∈ {(p, w)}↑ for
ψ ∈ ∆, which allows arbitrary choices of (p′, γ). For a WSPDS, we focus only
on finite basis of upward-closed sets (p′, γ) ∈Min(ψ−1({(p, w)}↑)).

We assume that such finite basis are computable for each ψ ∈ ∆, and the
initial Pre∗-automaton has finitely many states S0.

Theorem 5. For a WSPDS ((P,�), (Γ,≤), ∆), if (i) (P,�), (Γ,≤) are com-
putable WQOs, and (ii) a finite basis of ψ−1({(p, w)}↑) is computable for each
ψ ∈ ∆ and 〈p, w〉 ∈ P × Γ≤2, Pre∗(A0) finitely converges.

Proof. (Sketch) Starting from a WQO over S such that � over S0 ∩ P and
= on S0 \ P , the set S of states of the Pre∗-automaton make a bad sequence,
since saturation rules in Section 3.3 do not add larger states. For each pair
(p, q) of states, they also do not add larger stack symbols as labels of Pre∗

automaton transitions p
γ7→ q. Thus, during the saturation procedure, a sequence

of added edges p1
γ17→ q1, p2

γ27→ q2, · · · is bad. Thus, it finitely terminates. Since
∆ has finitely many transition rules (i.e., partial functions), dependency during
generation of Pre∗ automaton transitions is finitely branching. Thus, by König’s
lemma, Pre∗(A0) finitely converges. �

Example 4. Let M = 〈{pi},N2, ∆〉 be a monotonic OPDS with vectors in N2

as a stack alphabet and ∆ consists of four rules given in the figure. The figure
illustrates a Pre∗-automaton construction starting from initial A0 that accepts
C = 〈p2, (0, 0)↑〉. For v ∈ N2, we abbreviate {v}↑ by v↑. Note that N2 is WQO
by the element-wise comparison. A is the saturation of the Pre∗-automaton.

For instance, when m = 2, p0
(2,2)↑7→ p1 in A is generated from p1

(2,0)↑7→ p1 by

ψ3. By repeating application of ψ1 twice to p0
(2,2)↑7→ p1

(2,0)↑7→ p1, we obtain p0
(2,0)↑7→

p1. Then, applying ψ1 to p0
(2,0)↑7→ p1

(1,0)↑7→ p2, we obtain p0
(1,0)↑7→ p2. p0

(1,2)↑7→ p2

is also generated from p1
(1,0)↑7→ p2 by ψ3 (since ψ−13 ({(1, 0)}↑) = {(1, 2)}↑), but

it will not affect.

Example 3. Let M = �{pi}, N2,∆� be a monotonic OPDS with vectors in N2

as a stack alphabet and ∆ consists of four rules given in the figure. The figure
illustrates a pre∗-automaton construction starting from initial A0 that accepts
C = p2 × Γ ∗. We abbreviate {v}↑ for v ∈ N2 by ≥ v. Note that N2 is WQO by
the element-wise comparison. A1 is a pre∗-automaton applied each rule exactly

once. For instance, p0
≥(1,2)�→ p2 in A1 is generated from p1

≥(1,0)�→ p2 by ψ3 (since

ψ−1
3 ({(1, 0)}↑) = {(1, 2)}↑). p0

≥(0,0)�→ p1 in A is obtained by applying ψ1 twice
on A1, e.g.,

1. p0
≥(0,2)�→ p1

≥(0,0)�→ p1 leads p0
≥(0,1)�→ p1 (since ψ−1

1 ({(0, 2)(0, 0)}↑) = {≥ (0, 1)}↑).
2. p0

≥(0,1)�→ p1
≥(0,0)�→ p1 leads p0

≥(0,0)�→ p1 (since ψ−1
1 ({(0, 1)(0, 0)}↑) = {≥ (0, 0)}↑).

By Lemma ??, we obtain

pre∗(C) = L(A) = {�p2, {(0, 0)∗}↑�, �p1, {(0, 0)∗(1, 0)(0, 0)∗}↑�, �p0, {(0, 0)+}↑�}.

A0 : p2

(0,0)↑

��
f

ψ1 : �p0, v� → �p0, (v + (1, 1))v�
ψ2 : �p1, v� → �p1, �� if v ≥ (m, 0)
ψ3 : �p0, v� → �p1, v − (0, 2)� if v ≥ (0, 2)
ψ4 : �p1, v� → �p2, �� if v ≥ (1, 0)

A :
(m = 2)

p1
(1,0)↑ψ4 ��

(2,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(0,0)↑ψ1

��

(1,1)↑
ψ1,3

��

(2,0)↑

ψ1,3

��

f

A� :
(m = 3)

p1
(1,0)↑ψ4 ��

(3,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(2,1)↑ ∪ (1,2)↑

ψ1,3

��

(3,0)↑

ψ1,3

��

(1,0)↑ ∪ (0,1)↑ψ1

�� f

4.2 Compatible constraint

When encoding a computational model into a monotonic PDS with WQO stack
alphabet, transitions are sometimes conditional. For instance, a pop rule �p, γ� →
�q, �� can lead a transition �p, γw� �→ �q, w� only when γ holds certain relation
with (the top stack symbol of) w. We formalize this situation with a compatible
constraint Υ on stack contents, which is preserved during transitions.

Definition 11. A constraint Υ on stack contents is compatible if, for each tran-
sition �p, w� �→ �q, v� in a PDS, w ∈ Υ implies v ∈ Υ .

Theorem 4. For a monotonic OPDS and a compatible constraint Υ , assume
that w ∈ Υ (⊆ Γ ∗) implies {w}↑ ∩ Υ = {w}. If �p, w� ∈ pre∗({(q, v)}↑) (i.e.,
�p, w� covers �q, v�), �p, w� �→∗ �q, v� (i.e., �p, w� is reachable to �q, v�)).
Example 4. In Example ??, let Υ = {(n, mn)(n − 1, mn−1) · · · (1, m1)(0, m0) |
∀n ≥ 0, ∀i.mi ≥ 0}, i.e. in each word we restrict the first coordinate to be de-
creased by 1 until reaching 0. Therefore (2, 0)(1, 0)(0, 3) is in Υ , but (1, 0)(1, 0)(0, 0)
is not. It is easy to check that Υ is compatible. Thus, {Mizuhito: to be filled.}

By Theorem 2, we obtain

pre∗(C) = {〈p2, (0, 0)↑〉, 〈p1, ((2, 0)↑)∗(1, 0)↑(0, 0)↑〉,
〈p0, (0, 0)↑〉, 〈p0, (1, 1)↑(0, 0)↑〉, 〈p0, ((2, 0)↑)+(1, 0)↑(0, 0)↑〉}

Thus, 〈p0, (0, 0)〉 covers 〈p2, (0, 0)〉. Actually,

〈p0, (0, 0))〉↪→ 〈p0, (1, 1)(0, 0)〉 ↪→ 〈p0, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p1, (2, 0)(1, 1)(0, 0)〉
↪→ 〈p1, (1, 1)(0, 0)〉 ↪→ 〈p2, (0, 0)〉

Note that if we change the condition of ψ2 from v ≥ (2, 0) to v ≥ (3, 0), the sat-
urated Pre∗-automaton becomes A′, and 〈p0, (0, 0)〉 no more covers 〈p2, (0, 0)〉,
though 〈p0, (0, 0)〉 is reachable to p2. Actually,

〈p0, (0, 0))〉↪→ 〈p0, (1, 1)(0, 0)〉 ↪→ 〈p0, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p0, (3, 3)(2, 2)(1, 1)(0, 0)〉
↪→ 〈p1, (3, 1)(2, 2)(1, 1)(0, 0)〉 ↪→ 〈p1, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p2, (1, 1)(0, 0)〉

To detect the state reachability, instead of A0, we can start with an initial
automaton A′0 that accepts p2 × Γ ∗ = {〈p2, ((0, 0)↑)∗}.

6 Snapshot Word

In a DTPDA, the stack content is a sequence of pairs of stack symbols and local
ages. When a DTPDA is encoded into a discrete WSPDS, it can operate only
the top stack symbol. Such a target WSPDS is a snapshot PDS (Section 7.2),
of which stack symbols are snapshot words. A snapshot word summarizes the
ordering of fractions of all local ages and global clocks in the stack, after applying
the digitization technique in [15], whereas the encoding in [1] summarizes global
clocks and an age in the top stack frame and copies of global clocks in the next
stack frame. Then, a snapshot PDS handles all timed behavior at the top stack
symbol, and left untouched inside the stack. When a pop occurs, time progress
recorded at the top stack symbol is propagated to the next stack symbol after
finding a permutation (of time progress) by matching via markings ρ1 and ρ2.

6.1 Snapshot word

As notational convention, let MP(D) be the set of finite multisets over D. We
regard a finite set as a multiset in which the multiplicity of each element is 1.
For a finite word w = a1a2 · · · ak, we denote w(j) = aj

Let 〈S, sinit, Γ, C, ∆〉 be a DTPDA, and let n be the largest integer (except
for ∞) that appears in ∆. For v ∈ R≥0, proj(v) = ri if v ∈ ri ∈ Intv(n) and

Intv(n) =

r2i = [i, i] if 0 ≤ i ≤ n
r2i+1 = (i, i+ 1) if 0 ≤ i < n
r2n+1 = (n,∞)

Definition 9. Let frac(x, t) = t− floor(t) for (x, t) ∈ (C ∪Γ)×R≥0. A digiti-
zation digi :MP((C∪Γ)×R≥0)→ (MP((C∪Γ)×Intv(n)))∗ is as follows. For
X ∈ MP((C ∪ Γ)× R≥0), let X1, · · · , Xk be multisets that collect (x, proj(t))’s
in X having the same frac(x, t). We assume that Xi’s are sorted by the increas-
ing order of frac(x, t) (i.e., , frac(x, t) < frac(x′, t′) for (x, proj(t)) ∈ Xi and
(x′, proj(t′)) ∈ Xi+1). Then, digi(X) is a word X1 · · ·Xk.

Example 5. In Example 1, n = 6 and we have 13 intervals illustrated below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

From the configuration c1 in Example 1, the clock information is extracted from
the stack content of c1 as a multiset

X = {(a, 1.9), (b, 6.7), (a, 3.1), (d, 4.2), (x1, 0.5), (x2, 3.9), (x3, 2.3)}

and digi(X) = {(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}.
For instance, The value of the clock x2 and the age of the top stack frame
(a, 1.9) have the same fraction 0.9, thus they are packed into the same multiset
{(x2, r7), (a, r3)}, and placed at the last since their fraction is the largest.

Definition 10. A word γ̄ ∈ (MP((C ∪ Γ) × Intv(n)))∗ is a snapshot word if
it has two pointers ρ1, ρ2 such that ρ1(γ̄), ρ2(γ̄) point to different elements of
Γ × Intv(n) appearing in γ̄. We denote the set of snapshot word by sw(C, Γ, n),
and γ̄|Γ is obtained by removing all elements in C × Intv(n) from γ̄.

Example 6. From digi(X) in Example 5, by adding ρ1 and ρ2 (marked with
overline and underline), which point to (a, r3) and (b, r13), respectively, we have

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}

and digi(X)|Γ = {(a, r7)}{(d, r9)}{(b, r13)}{(a, r3)}.

Definition 11. For snapshot words γ̄ = X1 · · ·Xm and γ̄′ = Y1 · · ·Yn with
Xi, Yj ∈MP((C ∪Γ)× Intv(n)), we define the embedding γ̄ v γ̄′, if there exists
a monotonic injection f : [1..m]→ [1..n] such that

– Xk ⊆ Yf(k) for each k ∈ [1..m],
– ρi(γ̄) ∈ Xj implies ρi(γ̄

′) ∈ Yf(j) for i = 1, 2 and j ∈ [1..m], and
– ρi(γ̄) = ρi(γ̄

′) for i = 1, 2.

Since Γ and C are finite, v is a WQO over sw(C, Γ, n) by Higman’s lemma.

Definition 12. Let c = (s, ν, w) be a configuration of a DTPDA with s ∈ S,
w ∈ (Γ ×R≥0)∗, and ν : C → R≥0, and let mp(w, ν) = w∪{(x, ν(x)) | x ∈ C} by
regarding w as a multiset (i.e., ignore the ordering). snap(c) is a snapshot word
obtained by adding ρ1, ρ2 to digi(mp(w, ν)) as:

ρ1, ρ2 are left undefined if w = ε
ρ1(snap(c)) = (γ, proj(t)), ρ2 is left undefined if w = (γ, t)
ρ1(snap(c)) = (γ, proj(t)), ρ2(snap(c)) = ρ1(snap((s, ν, w′))) if w = (γ, t)w′

Example 7. For c2 in Example 1, snap(c1) is digi(X) (with ρ1 and ρ2) in Ex-
ample 6. ρ1 and ρ2 point to the top and second stack frames (a, 1.9), (b, 6.7).

Definition 13. For a configuration c = (s, ν, w) of a DTPDA, a snapshot con-
figuration Snap(c) = (s, w̃) with stack alphabet sw(C, Γ, n)∗ is with

w̃ = snap(s, ν, w[m]) snap(s, ν, w[m− 1]) · · · snap(s, ν, w[1]) snap(s, ν, ε)

where w = (am, tm) · · · (a1, t1) ∈ (Γ × R≥0)∗ and w[i] = (ai, ti) · · · (a1, t1).

Example 8. For c1 in Example 1 (with ν(x1) = 0.5, ν(x2) = 3.9, ν(x3) = 2.3),
Snap(c1) is shown below. The top snapshot word in the stack summarizes a
current time sequence of values of all clocks and ages.

(a, 1.9)

(b, 6.7)

(a, 3.1)

(d, 4.2)

⊥

⇒

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7)}

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(x2, r7)}
{(d, r9)}{(x3, r5)}{(x1, r1)}{(x2, r7)}
{(x3, r5)}{(x1, r1)}{(x2, r7)}

Stack of c1 Stack of Snap(c1)

6.2 Operations on snapshot words

Definition 14. Let γ̄ = X1 · · ·Xm ∈ (MP((C ∪ Γ)× Intv(n)))∗ be a snapshot
word and let γ ∈ Γ ∪ C. We define operations as follows.

– Insert γ̄′ = insert(γ̄, (δ, rk)) is obtained from γ̄ by inserting (δ, rk)
{

either into Xj, or between Xj and Xj+1 for some j ∈ [0..m] if k is odd
into X1, if each ri in X1 has an even index; before X1, o.w. if k is even

and setting ρ1(γ̄′) = (δ, rk) and ρ2(γ̄′) = ρ1(γ̄).

– DeleteΓ γ̄′ = deleteΓ (γ̄) is obtained from γ̄ by deleting ρ1(γ̄) and setting
ρ1(γ̄′) = ρ2(γ̄) and ρ2(γ̄′) left undefined.

– DeleteC For x ∈ C, deleteC(γ̄, x) is obtained from γ̄ by deleting (x, r) (and
ρ1, ρ2 are kept unchanged).

– Assignment For x ∈ C, r ∈ Intv(n), assign(γ̄, x, r) = insert(deleteC(γ̄, x), (x, r)).
– Permutation Let i ∈ [1..m] and 0 ≤ k ≤ n. Permutation σ(γ̄) is either
σ̇i,k(γ̄) or σ̈i,k(γ̄), defined by

{
σ̇i,k(γ̄) = (Xi+̇2k + 2)(Xi+1+̇2k + 2) · · · (Xm+̇2k + 2)(X1+̇2k) · · · (Xi−1+̇2k)
σ̈i,k(γ̄) = (Xi+̈2k + 2)(Xi+1+̇2k + 2) · · · (Xm+̇2k + 2)(X1+̇2k) · · · (Xi−1+̇2k)

where, for y ∈ C ∪Γ , Xi+̇j updates each (y, rl) ∈ Xi with (y, rmin(l+j,2n+1))
if l is odd, and (y, rmin(l+j+1,2n+1)) if l is even. Xi+̈j updates each (y, rl) ∈
Xi with (y, rmin(l+j,2n+1)) if i = 1 and l is even; with (y, rmin(l+j−1,2n+1)),
otherwise.

– Propagate propagate(γ̄, γ̄′) is obtained from deleteΓ (γ̄) by assigning σ(ρ2(γ̄′))
to ρ2(deleteΓ (γ̄)) for a permutation σ with γ̄|Γ = σ(γ̄′)|Γ .

Example 9. Consider snap(ci) in Example 7 for c1 in Example 1.

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}

– insert(snap(c1), (d, r5)) has lots of choices, e.g.,

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1), (d, r5)}{(b, r13)}{(x2, r7), (a, r3)},
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}, {(d, r5)}, {(b, r13)}{(x2, r7), (a, r3)}, · · ·
The transition from c1 to c2 in Example 1 is simulated by pushing the second
one (say, γ̄2) to Snap(c1) in Example 8.

– For c2
2.6→Time c3, the permutation σ̇4,2(γ̄2) results in γ̄3 below.

{(x1, r7)}, {(d, r11)}, {(b, r19)}{(x2, r13), (a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.
If a timed transition is c2

2.5→Time c3 (in time elapses 2.5 such that the fraction
of ν(x1) becomes 0), σ̈4,2(γ̄2) simulates it as

{(x1, r6)}, {(d, r11)}, {(b, r19)}{(x2, r13), (a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.

Propagate is used with deleteΓ to simulate a pop transition. Since time
progress is recorded only at the top stack frame (including updates on clock
values), after deleteΓ is applied to the top stack frame, the second stack frame
is replaced with the top. Lacking information is a pointer ρ2, which is recovered
from the second stack frame. This will be illustrated in Example 11.

7 Decidability of reachability of DTPDA

7.1 Well-formed projection on snapshot configurations

Let 〈s, γ̄k · · · γ̄2γ̄1〉 be a snapshot configuration for s ∈ S and γ̄i ∈ (MP((C ∪
Γ) × Intv(n)))∗ (regarding γ̄k as a top stack symbol). A marking completion
marks elements in Γ × Intv(n) that relate to pushdown transitions.

Definition 15. For γ̄k · · · γ̄2γ̄1 with γ̄i ∈ (MP((C∪Γ)×Intv(n)))∗, the marking
completion comp inductively marks elements in γ̄i|Γ for each i.

{
comp(γ̄1) = add marking on ρ1(γ̄1)
comp(γ̄k · · · γ̄2γ̄1) = γ̄′k · · · γ̄′2γ̄′1

where γ̄′k−1 · · · γ̄′2γ̄′1 = comp(γ̄k−1 · · · γ̄2γ̄1) and γ̄′k is obtained from γ̄k by marking

– ρ1(γ̄k), and
– each element in deleteγ(γ̄k)|Γ corresponding to a marked element in γ̄′k−1|Γ

by a permutation σ satisfying σ(γ̄k−1)|Γ = deleteγ(γ̄k)|Γ .

If such σ does not exist, comp(γ̄k · · · γ̄2γ̄1) = #.

We define a well-formed projection ⇓Υ (s, γ̄k · · · γ̄2γ̄1) by removing all un-
marked elements of Γ × Intv(n) in each γ̄i in (s, comp(γ̄k · · · γ̄2γ̄1)), and left s as
is. A snapshot configuration (s, γ̄k · · · γ̄2γ̄1) is well-formed if ⇓Υ (s, γ̄k · · · γ̄2γ̄1) =
(s, γ̄k · · · γ̄2γ̄1) (ignoring markings), and Υ is the set of well-formed snapshot con-
figurations.

Example 10. In Example 8, γ̄5 is well-formed (i.e., (a, r7), (d, r9), (b, r13), (b, r13)
are all marked). For instance, a marking on (a, r7) succeeds the pointer ρ1 of γ̄3.

7.2 Snapshot PDS

Definition 16. Let 〈S, sinit, Γ, C, ∆〉 be a DTPDA and let n be the largest in-
teger in ∆. A snapshot PDS is a PDS S = 〈S, sw(C, Γ, n), ∆〉. We assume that
its initial configuration is 〈sinit, {(x, r0) | x ∈ C}〉.

Transition rule to simulate timed transitions 〈s, γ̄〉 t−→S 〈s, σ(γ̄)〉,
where σ is either σ̇i,m or σ̈i,m with m = floor(t) and 1 ≤ i ≤ length(γ̄)

Transition rules to simulate discrete transitions (s, op, s′)

– Local 〈s, ε〉 nop−−→S 〈s′, ε〉,
– Assignment 〈s, γ̄〉 x←I−−−→S 〈s′, assign(γ̄, x, r)〉 for r ⊆ I,

– Test 〈s, γ̄〉 x∈I?−−−→S 〈s′, γ̄〉 if r ⊆ I for (x, r) in γ̄.

– Push 〈s, γ̄〉 push(γ′,I)−−−−−−−→S 〈s′, insert(γ̄, (γ′, r)) γ̄〉 for r ⊆ I, and

– Pop 〈s, γ̄ γ̄′〉 pop(γ′,I)−−−−−−→S 〈s′, propagate(deleteΓ (γ̄), γ̄′)〉.

By induction on the number of steps of transitions, complete and sound
simulation between a DTPDA and a snapshot PDS is observed. Note that the
initial clock valuation of a DTPDA to be set ν0 is essential.

Lemma 4. Let us denote c0 and c (resp. 〈sinit, γ̄0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a DTPDA T (resp. its snapshot PDS S).

1. If c0 ↪→∗ c then there exists 〈s, w̃〉 such that 〈sinit, γ̄0〉 ↪→
Υ

∗
S
〈s, w̃〉, s =

state(c), and w̃ is well-formed.

2. If 〈sinit, γ̄0〉 ↪→
Υ

∗
S
〈s, w̃〉 and w̃ is well-formed. there exists c such that c0 ↪→∗ c,

s = state(c), and Snap(c)" w̃.

Example 11. We show how a snapshot PDS simulates a DTPDA in Example 1,
as continuation to Example 9 (which shows transitions from c1 to c3).

– c3
x2←(2,5]−−−−−−→Disc c4 is simulated by assign(deleteC(snap(c3), x2), x2, r7) at

the top stack frame, since ν(x2) = 3.8 ∈ r7. There are several choices of
assign(deleteC(snap(c3), x2), x2, r7). Among them,
{(x1, r7)}, {(d, r11)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.
corresponds to 3.8. A different value, e.g., ν(x2) = 3.3, corresponds to
{(x1, r7)}, {(d, r11)}, {(x2, r7), (b, r19)}{(a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.

– c4
pop(d,[4,6])−−−−−−−→Disc c5 is simulated by propagate(deleteΓ (snap(c4)), snap(c1)).

Note that a snapshot PDS does not change anything except for the top stack
frame. Thus, the second stack frame is kept unchanged from snap(c1). First,
deleteΓ removes the element pointed by ρ1, which results in
{(x1, r7)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.

snap(c1) = {(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
and, by pattern matching between ρ2 in the former and ρ1 in the latter,
σ̇4,2 (which is used in the timed transition from c2 to c3 in Example 9) is
found. Then ρ1 is updated with the current ρ2 and ρ2 is recovered by σ as
{(x1, r7)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.

It is not difficult to see that ⇓Υ satisfies Definition 7. A snapshot PDS has
finite states and WQO stack alphabet. By applying the encoding in Remark 1,
we obtain our main result from Theorem 3, 5, Lemma 2, and 4.

Corollary 1. The (configuration) reachability of a DTPDA is decidable.

7.3 Comparison among discretizations

In [13], we apply slight extensions of a DTPDA to make it able to set the value
of an age to that of a clock when a push occurs, and set the value of a clock to
that of an age when a pop occurs. They are easily encoded into snapshot words.

– Push-set push(γ, x), push γ on a stack associated with a local age of the
value of a clock x ∈ C, and

– Pop-set pop(γ, x), pop γ on a stack and set the value of a clock x ∈ C to
the value of the associated age a.

When we consider extensions of DTPDA [1] with such operations, we see the
difference between the original discretization [1] and ours as a snapshot PDS.
Note that our snapshot word encoding summarizes the ordering of fractions of all
local ages and global clocks in the stack, whereas the encoding in [1] summarizes
boundedly many information, i.e., global clocks and an age in the top stack frame
and copies of global clocks in the next stack frame.

Example 12. The encoding in [1] does not contain x• for x ∈ C, which represents
the position of the value of a clock x in the previous stack frame. Our encoding
of a DTPDA as a snapshot word PDS is quite equivalent to an extension of that
in [1] with x• for c ∈ C. With and without x• are different when we consider an
extension of DTPDA, e.g., that with

– Compare compare∼(x) for a clock x ∈ C and ∼∈ {≥, >,≤, <,=}, which
compares values between an age in the top stack frame and a clock x by ∼.

compare∼(x) is a quite strong operator. It enables us to define

– Push-set push(γ, x), push γ on a stack associated with a local age of the
value of a clock c ∈ C, and

– Push-set+ push+(γ, x), push γ on a stack associated with a local age whose
value is between the value of c and its ceiling value.

– Push-set− push+(γ, x), push γ on a stack associated with a local age whose
value is between the value of c and its floor value.

Similar for Pop-set. With a fresh clock y prepared as a stop watch, we can
encode these operations with compare∼(x) as follows.

– Push-set push(γ, x) is encoded as
y ← [0, 0]; push(γ, [0,∞)); compare=(x); y ∈ [0, 0]?;.

– Push-set+ push+(γ, x) is encoded as
y ← [0, 0];x ∈ (j, j + 1)?; push(γ, (j, j + 1)); compare>(x); y ∈ [0, 0]?;.

– Push-set− push+(γ, x) is encoded as
y ← [0, 0];x ∈ (j, j + 1)?; push(γ, (j, j + 1)); compare<(x); y ∈ [0, 0]?;.

Note that these operations enables us to prepare an operation that compares
values of ages in different stack frames. For instance, a sequence

push+(γ, x); (push)∗; push−(γ′, x); (x← [0,∞)); pop(γ′, y); (pop)∗; compare<(y);

compares ages in the different stack frames containing γ and γ′.
Note that the original encoding in [1] cannot decide compare<(y). With x•,

it can correctly decide that compare<(y) interrupts transitions.

8 Conclusion

This paper investigated a general framework of pushdown systems with well-
quasi-ordered control states and stack alphabet, well-structured pushdown sys-
tems, to show decidability of the reachability. This extends the decidability re-
sults on a pushdown system with finite control states and well-quasi-ordered
stack alphabet [6]. The ideas behind are,

– combining WSTS [2, 11] and classical Pre∗-automaton technique [5, 12, 10],
which enables us to reduce arguments on stacks to on stack symbols, and

– introduction of a well-formed projection ⇓Υ , which extracts the shape of
reachable configurations.

As an instance, an alternative decidability proof of the reachability for dense-
timed pushdown system [1] was shown. Note that the original encoding [1] cannot
handle the extension with compare∼(x) (which compares values of a local age in
the top stack frame and a clock x). The encoding is inspired by the digitization
techniques in [15].

Acknowledgements

The authors would like to thank Shoji Yuen, Yasuhiko Minamide, Tachio Ter-
auchi, and Guoqiang Li for valuable comments and discussions. This work is sup-
ported by the NSFC-JSPS bilateral joint research project (61011140074), NSFC
projects (61003013,61100052,61033002), NSFC-ANR joint project (61261130589),
and JSPS KAKENHI Grant-in-Aid for Scientific Research(B) (23300008).

References

1. P.A. Abdulla, M.F. Atig, and F. Stenman. Dense-Timed Pushdown Automata.
IEEE LICS 2012, pages 35–44, 2012.

2. P.A. Abdulla, K. Cerans, C. Jonsson, and T. Yih-Kuen. Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation, 160(1–
2):109–127, 2000.

3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4. A. Bouajjani, R. Echahed, and R. Robbana On the Automatic Verification of Sys-
tems with Continuous Variables and Unbounded Discrete Data Structures. Hybrid
Systems II, LNCS 999, pages 64–85, 1995.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. CONCUR 1997, LNCS 1243, pages 135–
150, 1997.

6. X. Cai and M. Ogawa. Well-Structured Pushdown Systems. CONCUR 2013, LNCS
8052 (2013), 121–136. Long version: JAIST Research Report IS-RR-2013-001.

7. R. Chadha and M. Viswanathan. Decidability results for well-structured transition
systems with auxiliary storage. CONCUR 2007, LNCS 4703, pages 136–150, 2007.

8. Z. Dang. Pushdown timed automata:a binary reachability characterization and
safety verification. Theoretical Computer Science, 302:93–121, 2003.

9. M. Emmi and R. Majumdar. Decision Problems for the Verification of Real-Time
Software. HSCC’06, LNCS 3927, pages 200–211, 2006.

10. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. CAV 2000, LNCS 1855, pages 232–247, 2000.

11. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

12. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems (extended abstract). INFINITY’97, ENTCS 9. 1997.

13. G. Li, X. Cai, M. Ogawa, and S. Yuen. Nested Timed Automata. FORMATS
2013, LNCS 8503, pages 168–182, 2013.

14. R. Mayr. Process rewrite systems. Information and Computation, 156:264–286,
1999.

15. J. Ouaknine and J. Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. IEEE LICS 2004, pages 54–63, 2004.

Kleene Algebra with Tests
and Coq Tools for While Programs

Damien Pous

CNRS – LIP, ENS Lyon, UMR 5668

Abstract We present a Coq library about Kleene algebra with tests,
including a proof of their completeness over the appropriate notion of
languages, a decision procedure for their equational theory, and tools for
exploiting hypotheses of a certain kind in such a theory.

Kleene algebra with tests make it possible to represent if-then-else state-
ments and while loops in most imperative programming languages. They
were actually introduced by Kozen as an alternative to propositional
Hoare logic.

We show how to exploit the corresponding Coq tools in the context of
program verification by proving equivalences of while programs, correct-
ness of some standard compiler optimisations, Hoare rules for partial cor-
rectness, and a particularly challenging equivalence of flowchart schemes.

Introduction

Kleene algebra with tests (KAT) have been introduced by Kozen [19], as an
equational system for program verification. A Kleene algebra with tests is a
Kleene algebra (KA) with an embedded Boolean algebra of tests. The Kleene
algebra component deals with the control-flow graph of the programs—sequential
composition, iteration, and branching—while the Boolean algebra component
deals with the conditions appearing in if-then-else statements, while loops, or
pre- and post-assertions.

This formalism is both concise and expressive, which allowed Kozen and oth-
ers to give detailed paper proofs about various problems in program verification
(see, e.g., [3, 19, 21, 23]). More importantly, the equational theory of KAT is de-
cidable and complete over relational models [24], and hypotheses of a certain
kind can moreover be eliminated [11,15]. This suggests that a proof using KAT
should not be done manually, but with the help of a computer. The goal of the
present work is to give this possibility, inside the Coq proof assistant.

The underlying decision procedure cannot be formulated, a priori, as a simple
rewriting system: it involves automata algorithms, it cannot be defined in Ltac,
at the meta-level, and it does not produce a certificate which could easily be
checked in Coq, a posteriori. This leaves us with only one possibility: defining a
reflexive tactic [1,8,14]. Doing so is quite challenging: we basically have to prove
completeness of KAT axioms w.r.t. the model of guarded string languages (the

natural generalisation of languages for KA, to KAT), and to provide a provably
correct algorithm for language equivalence of KAT expressions.

The completeness theorem is far from trivial; we actually have to formalise
a lot of preliminary material: finite sums, finite sets, unique decomposition of
Boolean expressions into sums of atoms, regular expression derivatives, expan-
sion theorem for regular expressions, matrices, automata. . . As a consequence,
we only give here a high-level overview of the involved mathematics, leaving
aside standard definitions, technical details, or secondary formalisation tricks.
The interested reader can consult the library, which is documented [30].

Outline. We first present KAT and its models (§1). We then sketch the complete-
ness proof (§2), the decision procedure (§3), and the method used to eliminate
hypotheses (§4). We finally illustrate the benefits of our tactics on several case-
studies (§5), before discussing related works (§6), and concluding (§7).

1 Kleene Algebra with Tests

A Kleene algebra with tests consists of:

– a Kleene algebra 〈X, ·,+, ·?, 1, 0〉 [18], i.e., an idempotent semiring with a
unary operation, called “Kleene star”, satisfying an axiom: 1 + x · x? ≤ x?

and two inference rules: y · x ≤ x entails y? · x ≤ x and the symmetric one.
(The preorder (≤) being defined by x ≤ y , x+ y = y.)

– a Boolean algebra 〈B,∧,∨,¬,>,⊥〉;
– a homomorphism from 〈B,∧,∨,>,⊥〉 to 〈X, ·,+, 1, 0〉, that is, a function

[·] : B → X such that [a∧ b] = [a] · [b], [a∨ b] = [a]+ [b], [>] = 1, and [⊥] = 0.

The elements of the set B are called “tests”; we denote them by a, b. The elements
of X, called “Kleene elements”, are denoted by x, y, z. We usually omit the
operator “·” from expressions, writing xy for x · y. The following (in)equations
illustrate the kind of laws that hold in all Kleene algebra with tests:

[a ∨ ¬a] = 1 [a ∧ (¬a ∨ b)] = [a][b] = [¬(¬a ∨ ¬b)]

x?x? = x? (x+ y)? = x?(yx?)? (x+ xxy)? ≤ (x+ xy)?

[a]([¬a]x)? = [a] [a]([a]x[¬a] + [¬a]y[a])?[a] ≤ (xy)?

The laws from the first line come from the Boolean algebra structure, while
the ones from the second line come from the Kleene algebra structure. The two
laws from the last line are more interesting: their proof must mix both Boolean
algebra and Kleene algebra reasoning. They are left to the reader as a non-trivial
exercice; the tools we present in this paper allow one to prove them automatically.

1.1 The model of binary relations

Binary relations form a Kleene algebra with tests; this is the main model we are
interested in, in practice. The Kleene elements are the binary relations over a

2

given set S, the tests are the predicates over this set, and the star of a relation
is its reflexive transitive closure:

X = P (S × S)

x · y = {(p, q) | ∃r, (p, r) ∈ x ∧ (r, q) ∈ y}
x+ y = x ∪ y
x? = {(p0, pn) | ∃p1 . . . pn−1,∀i < n, (pi, pi+1) ∈ x}
1 = {(p, p) | p ∈ S}
0 = ∅ [a] = {(p, p) | p ∈ a}

B = P (S)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = S \ a
> = S

⊥ = ∅

The laws of a Kleene algebra are easily proved for these operations; note however
that one needs either to restrict to decidable predicates (i.e., to take S → bool

or {p: S → Prop | forall p, S p ∨¬S p} for B), or to assume the law of excluded
middle: B must be a Boolean algebra, so that negation has to be an involution.
This choice for B is left to the user of the library.

This relational model is typically used to interpret imperative programs:
such programs are state transformers, i.e., binary relations between states, and
the conditions appearing in these programs are just predicates on states. These
conditions are usually decidable, so that the above constraint is actually natural.

The equational theory of Kleene algebra with tests is complete over the rela-
tional model [24]: any equation x = y that holds universally in this model can be
proved from the axioms of KAT. We do not need to formalise this theorem, but
it is quite informative in practice: by contrapositive, if an equation cannot be
proved from KAT, then it cannot be universally true on binary relations, meaning
that proving its validity for a particular instantiation of the variables necessarily
requires one to exploit additional properties of this particular instance.

1.2 Other models

We describe two other models in the sequel: the syntactic model (§1.3) and the
model of guarded string languages (§1.4); these models have to be formalised to
build the reflexive tactic we aim at.

There are other important models of KAT. First of all, any Kleene algebra
can be extended into a Kleene algebra with tests by embedding the two-element
Boolean lattice. We also have traces models (where one keeps track of the whole
execution traces of the programs rather than just their starting and ending
points), matrices over a Kleene algebra with tests, but also models inherited
from semirings like min-plus and max-plus algebra. The latter models have a de-
generate Kleene star operation; they become useful when one constructs matrices
over them, for instance to study shortest path algorithms.

Also note that like for Kleene algebra [9, 20, 29], KAT admits a natural
“typed” generalisation, allowing for instance to encompass heterogeneous bi-
nary relations and rectangular matrices. Our Coq library is actually based on
this generalisation, and this deeply impacts the whole infrastructure; we however
omit the corresponding details and technicalities here, for the sake of clarity.

3

1.3 KAT expressions

Let p, q range over a set Σ of letters (or actions), and let a1, . . . , an be the
elements of a finite set Θ of primitive tests. Boolean expressions and KAT ex-
pressions are defined by the following syntax:

a, b ::= ai ∈ Θ | a ∧ a | a ∨ a | ¬a | > | ⊥ (Boolean expressions)

x, y ::= p ∈ Σ | [a] | x · y | x+ y | x? | 1 | 0 . (KAT expressions)

Given a Kleene algebra with tests K = 〈X,B, [·]〉, any pair of maps θ : Θ →
B and σ : Σ → X gives rise to a KAT homomorphism allowing to interpret
expressions in K. Given two such expressions x and y, the equation x = y
is a KAT theorem, written KAT ` x = y, when the equation holds in any
Kleene algebra with tests, under any interpretation. One checks easily that KAT
expressions quotiented by the latter relation form a Kleene algebra with tests;
this is the free Kleene algebra with tests over Σ and Θ. (We actually use this
impredicative encoding of KAT derivability in the Coq library.)

1.4 Guarded strings languages

Guarded string languages are the natural generalisation of string languages for
Kleene algebra with tests. We briefly define them.

An atom is a function from elementary tests (Θ) to Booleans; it indicates
which of these tests are satisfied. We let α, β range over atoms, the set of which is
denoted by At. (Technically, we represent elementary tests as finite ordinals of a
given size n (Θ = ord n), and we encode atoms as ordinals (At = ord 2n). This
allows us to avoid functional extensionality problems.) We let u, v range over
guarded strings: alternating sequences of atoms and letters, which both start
and end with an atom:

α1, p1, . . . , αn, pn, αn+1 .

The concatenation u ∗ v of two guarded strings u, v is a partial operation: it
is defined only if the last atom of u is equal to the first atom of v; it consists in
concatenating the two sequences and removing one copy of the shared atom in
the middle.

The Kleene algebra with tests of guarded string languages is obtained by
considering sets of guarded strings for X and sets of atoms for B:

X = P ((At×Σ)? ×At)
x · y = {u ∗ v | u ∈ x ∧ v ∈ y}
x+ y = x ∪ y
x? = {u1 ∗ · · · ∗ un | ∃u1 . . . un,∀i ≤ n, ui ∈ x}
1 = {α | α ∈ At}
0 = ∅ [a] = {α | α ∈ a}

B = P (At)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = At \ a
> = At

⊥ = ∅
Note that we slightly abuse notation by letting α denote either an atom, or a
guarded string reduced to an atom. Also note that the set B = P (At) has to be
represented by the Coq type At→ bool, to get a Boolean algebra on it.

4

2 Completeness

Let G be the unique homomorphism from KAT expressions to guarded string
languages such that

G(ai) = {α | α(ai) is true} G(p) = {αpβ | α, β ∈ At}

Completeness of KAT over guarded string languages can be stated as follows.

Theorem 1. For all KAT expressions x, y, G(x) = G(y) entails KAT ` x = y.

This theorem is central to our development: it allows us to prove (in)equations in
arbitrary models of KAT, by resorting to an algorithm deciding guarded string
language equivalence (to be described in §3).

We closely follow Kozen and Smith’ proof [24]. This proof relies on the com-
pleteness of Kleene algebra over languages, which we thus need to prove first.

2.1 Completeness of Kleene algebra axioms

Let R be the Kleene algebra homomorphism from regular expressions to (plain)
string languages mapping a letter p to the language consisting of the single-letter
word p. KA completeness over languages can be stated as follows [18]:

Theorem 2. For all regular expressions x, y, R(x) = R(y) entails KA ` x = y.

(Like for KAT, the judgement KA ` x = y means that x = y holds in any Kleene
algebra, under any interpretation.) We already presented a Coq formalisation of
this theorem [9], but our development was over-complicated. We re-proved it
from scratch here, following a simpler path which we now describe.

The main idea of Kozen’s proof consists in replaying automata algorithms
algebraically, using matrices to encode automata. The key insight that allowed
us to considerably simplify the corresponding formalisation is that the algorithm
used for this proof need not be the same as the one to be executed by the reflexive
tactic we eventually define. Indeed, we can take the simplest possible algorithm
to prove KA completeness, ignoring all complexity aspects, thus allowing us to
focus on conciseness and mathematical simplicity. In contrast, the algorithm to
be executed by the final reflexive tactic should be relatively efficient, but we do
not need to prove it complete, nor to replay its correctness algebraically: we only
need to prove its correctness w.r.t. languages, which is much easier.

A preliminary step for the proof consists in proving that matrices over a
Kleene algebra form a Kleene algebra. The Kleene star for matrices is non-trivial
to define and to prove correct, but this can be done with a reasonable amount of
efforts once appropriate lemmas and tools for block matrices have been set up.

A finite automaton can then be represented using three matrices (u,M, v)
over regular expressions, where u is a (1, n)-matrix, M is a (n, n)-matrix, and
v is a (n, 1)-matrix, n being the number of states of the automaton. Such a
“matricial automaton” can be evaluated into a regular expression by taking the

5

product u ·M? · v, which is a scalar. The various classes of automata can be
recovered by imposing conditions on the coefficients of the three matrices. For
instance, a non-deterministic finite automaton (NFA) is such that u and v are
01-vectors and the coefficients of M are sums of letters.

Given a regular expression x, we construct a deterministic finite automaton
(DFA) (u,M, v) such that KA ` x = uM?v, as follows.

1. First construct a NFA with epsilon transitions (u′′,M ′′, v′′), such that KA `
x = u′′M ′′?v′′. This is easily done by induction on x, using Thompson con-
struction [31] (which is compositional, unlike the construction we used in [9]).

2. Remove epsilon transitions to obtain a NFA (u′,M ′, v′) such that KA `
u′′M ′′?v′′ = u′M ′?v′. We do it purely algebraically, in one line. In particular
the transitive closure of epsilon transitions is computed using Kleene star on
matrices. (Unlike in [9] we do not need a dedicated algorithm for this.)

3. Use the powerset construction to convert this NFA into a DFA (u,M, v) such
that KA ` u′M ′?v′ = uM?v. Again, this is done algebraically, and we do
not need to perform the standard ‘accessible subsets’ optimisation.

We can prove that for any DFA (u,M, v), R(uM?v) is the language recognised
by the DFA. Therefore, to obtain Theorem 2, it suffices to prove that if two DFA
(u,M, v) and (s,N, t) recognise the same language, then KA ` uM?v = sN?t.
For this last step, it suffices to exhibit a Boolean matrix that relates exactly
those states of the two DFA that recognise the same language. We need for
that an algorithm to check language equivalence of DFA states; we reduce the
problem to DFA emptiness, and we perform a simple reachability analysis.

All in all, the KA completeness proof itself only requires 124 lines of specifi-
cations, and 119 lines of proofs (according to coqwc).

2.2 Completeness of KAT axioms

To obtain KAT completeness (Theorem 1), Kozen and Smith [24] define a func-
tion ·̂ on KAT expressions that expands the expressions in such a way that we
have KAT ` x = y iff KA ` x̂ = ŷ. While this function can be thought as
a reduction of KAT to KA, it cannot be used in practice: it produces expres-
sions that are almost systematically exponentially larger than the given ones.
It is however sufficient to establish completeness; as explained earlier, we defer
actual computations to a completely different algorithm (§3).

More precisely, the function ·̂ is defined in such a way that we have:

KAT ` x̂ = x (i)

G(x̂) = R(x̂) (ii)

6

We deduce KAT completeness as follows:

G(x) = G(y)

⇔ G(x̂) = G(ŷ) (G is a KAT morphism, and (i))

⇔ R(x̂) = R(ŷ) (by (ii))

⇒ KA ` x̂ = ŷ (KA completeness)

⇒ KAT ` x̂ = ŷ (any KAT is a KA)

⇔ KAT ` x = y (by (i))

(Note that the last equation entails the first one, so that all these statements
are in fact equivalent.)

The function ·̂ is defined recursively over KAT expressions, using an inter-
mediate datastructure: formal sums of externally guarded terms (i.e., either an
atom, or a product of the form αxβ). The case of a starred expression x? is
quite involved: x̂? is defined by an internal recursion on the length of the formal
sum corresponding to x̂. The proof of the first equation (i) is not too difficult to
formalise, using appropriate tools for finite sums (i.e., a simplified form of big
operators [7], which we actually use a lot in the whole development). The second
one (ii) is more cumbersome, notably because we must deal with the two implicit
coercions appearing in its statement: formally, it has to be stated as follows:

i(G(x̂)) = R(j(x̂)) ,

where i takes a guarded string language and returns a finite word language on
the alphabet Σ] Θ] Θ, and j takes a KAT expression and returns a regular
expression over this extended alphabet, by pushing all negations to the leaves.

Apart from the properties of these coercion functions, the proof of (ii) mainly
consists in rather technical arguments about regular and guarded string lan-
guages concatenation. All in all, once KA completeness has been proved, KAT
completeness requires us 278 lines of specifications, and 360 lines of proofs.

3 Decision procedure

To check whether two expressions denote the same language of guarded strings,
we use an algorithm based on a notion of partial derivatives for KAT expressions.
Derivatives were introduced by Brzozowski [10] for regular expressions; they
make it possible to define a deterministic automaton where the states of the
automaton are the regular expressions themselves.

Derivatives can be extended to KAT expressions in a very natural way [22]: we
first define a Boolean function εα, that indicates whether an expression accepts
the single atom α; this function is then used to define the derivation function
δα,p, that intuitively returns what remains of the given expression after reading
the atom α and the letter p. These two functions make it possible to give a

7

δ′α,p(x+ y) = δ′α,p(x) ∪ δ′α,p(y)

δ′α,p(xy) =

{
δ′α,p(x)y ∪ δ′α,p(y) if εα(x)

δ′α,p(x)y otherwise

δ′α,p(x
?) = δ′α,p(x)x?

δ′α,p(q) =

{
{1} if p = q

∅ otherwise

δ′α,p([a]) = ∅

Figure1. Partial derivatives for KAT expressions

coalgebraic characterisation of the function G, which underpins the correctness
of the algorithm we sketch below:

G(x)(α) = εα(x) G(x)(αpu) = G(δα,p(x))(u) .

Like with standard regular expressions, the set of derivatives of a given KAT
expression (i.e., the set of expressions that can be obtained by repeatedly deriv-
ing w.r.t. arbitrary atoms and letters) can be infinite. To recover finiteness, we
switch to partial derivatives [4]. Their generalisation to KAT should be folklore;
we define them in Fig. 1. We use the notation Xy to denote the set {xy | x ∈ X}
when X is a set of expressions and y is an expression. The partial derivation
function δ′α,p returns a (finite) set of expressions rather than a single one; this
corresponds to the fact that we build a non-deterministic automaton. Still abus-
ing notations, by letting a set of expressions denote the sum of its elements, we
prove that KAT ` δα,p(x) = δ′α,p(x).

Now call bisimulation any relation R between sets of expressions such that
whenever X R Y , we have

– ε(X) = ε(Y) and
– ∀α ∈ At, ∀p ∈ Σ, δ′α,p(X) R δ′α,p(Y).

We show that if there is a bisimulation R such that X R Y , then G(X) = G(Y)
(the converse also holds). This gives us an algorithm to decide language equiva-
lence of two KAT expressions x, y: it suffices to try to construct a bisimulation
that relates the singletons {x} and {y}. This algorithm terminates because the
set of partial derivatives reachable from a pair of expressions is finite (we do not
need to formalise this fact since we just need the correctness of this algorithm).

There is a lot of room for optimisation in our implementation—for instance,
we use unordered lists to represent binary relations. An important point in our
design is that such optimisations can be introduced and proved correct indepen-
dently from the completeness proof for KAT, which gives us much more flexibility
than in our previous work on Kleene algebra [9].

3.1 Building a reflexive tactic

Using standard methodology [1, 8, 14], we finally pack the previous ingredients
into a Coq reflexive tactic called kat, allowing us to close automatically any goal
which belongs to the equational theory of KAT.

8

The tactic works on any model of KAT: those already declared in the library
(relations, languages, matrices, traces), but also the ones declared by the user.
The reification code is written in OCaml; it is quite complicated for at least two
reasons: KAT is a two-sorted structure, and we actually deal with “typed” KAT,
as explained in §1.2, which requires us to work with a dependently typed syntax.

For the sake of simplicity, the Coq algorithm we implemented for KAT does
not produce a counter-example in case of failure. To be able to give such a
counter-example to the user, we actually run an OCaml copy of the algorithm
first (extracted from Coq, and modified by hand to produce counter-examples).
This has two advantages: the tactic is faster in case of failure, and the counter-
example—a guarded string—can be pretty-printed in a nicer way.

4 Eliminating hypotheses

The above kat tactic works for the equational theory of KAT, i.e., the (in)equations
that hold in any model of KAT, under any interpretation. In particular, this tac-
tic does not make use of any hypothesis which is specific to the model or to the
interpretation. Some hypotheses can however be exploited [11,15]: those having
one of the following shapes.

(i) x = 0;
(ii) [a]x = x[b], [a]x ≤ x[b], or x[b] ≤ [a]x;

(iii) x ≤ [a]x or x ≤ x[a]
(iv) a = b or a ≤ b;
(v) [a]p = [a] or p[a] = [a], for atomic p (p ∈ Σ);

Equations of the first kind (i) are called “Hoare” equations, for reasons to
become apparent in §5.2. They can be eliminated using the following implication:

{
x+ uzu = y + uzu

z = 0
entails x = y . (†)

This implication is valid for any term u, and the method is complete [15] when
u is taken to be the universal KAT expression, Σ?. Intuitively, for this choice
of u, uzu recognizes all guarded strings that contain a guarded string of z as
a substring. Therefore, when checking that x + uzu = y + uzu are language
equivalent rather than x = y, we rule out all counter-examples to x = y that
contain a substring belonging to z: such counter-examples are irrelevant since z
is known to be empty.

Equations of the shape (iii) and (iv) are actually special cases of those of
the shape (ii), which are in turn equivalent to Hoare equations. For instance,
we have [a]x ≤ x[b] iff [a]x[¬b] = 0. Moreover, two hypotheses of shape (i) can
be merged into a single one using the fact that x = 0 ∧ y = 0 iff x + y = 0.
Therefore, we can aggregate all hypotheses of shape (i-iv) into a single one (of
shape (i)), and use the above technique just once.

9

Hypotheses of shape (v) are handled differently, using the following equivalence:

[a]p = [a] iff p = [¬a]p+ [a] , (‡)
This equivalence allows us to substitute [¬a]p+[a] for p in the considered goal—
whence the need for p to be atomic. Again, the method is complete [15], i.e.,

KAT ` ([a]p = [a]⇒ x = y) iff KAT ` xθ = yθ (θ = {p 7→ [¬a]p+ [a]})

4.1 Automating elimination of hypotheses in Coq

The previous techniques to eliminate some hypotheses in KAT can be easily
automated in Coq. We first prove once and for all the appropriate equivalences
and implications (the tactic kat is useful for that). We then define some tactics
in Ltac that collect hypotheses of shape (i-iv), put them into shape (i), and ag-
gregate them into a single one which is finally used to update the goal according
to (†). Separately, we define a tactic that rewrites in the goal using all hypothe-
ses of shape (v), through (‡). Finally, we obtain a tactic called hkat, that just
preprocesses the conclusion of the goal using all hypotheses of shape (i-v) and
then calls the kat tactic. Note that the completeness of this method [15] is a
meta-theorem; we do not need to formalise it.

5 Case studies

We now present some examples of Coq formalisations where one can take ad-
vantage of our library.

5.1 Bigstep semantics of ‘while’ programs

The bigstep semantics of ‘while’ programs is taught in almost every course on
semantics and programming languages. Such programs can be embedded into
KAT in a straightforward way [21], thus providing us with proper tools to reason
about them. Let us formalise such a language in Coq.

Assume a type state of states, a type loc of memory locations, and an update

function allowing to update the value of a memory location. Call arithmetic
expression any function from states to natural numbers, and Boolean expression
any function from states to Booleans (we use a partially shallow embedding).
The ‘while’ programming language is defined by the inductive type below:

Variable loc, state: Set.
Variable update: loc → nat → state → state.

Definition expr := state → nat.
Definition test := state → bool.

Inductive prog :=
| skp

| aff (l: loc) (e: expr)
| seq (p q: prog)
| ite (b: test) (p q: prog)
| whl (b: test) (p: prog).

The bigstep semantics of such programs is given as a “state transformer”, i.e.,
a binary relation between states. Following standard textbooks, one can define
this semantics in Coq using an inductive predicate:

10

Inductive bstep: prog → rel state state :=
| s_skp: ∀ s, bstep skp s s

| s_aff: ∀ l e s, bstep (aff l e) s (update l (e s) s)
| s_seq: ∀ p q s s’ s’’, bstep p s s’ → bstep q s’ s’’ → bstep (seq p q) s s’’
| s_ite_ff: ∀ b p q s s’, ¬ b s → bstep q s s’ → bstep (ite b p q) s s’
| s_ite_tt: ∀ b p q s s’, b s → bstep p s s’ → bstep (ite b p q) s s’
| s_whl_ff: ∀ b p s, ¬ b s → bstep (whl b p) s s

| s_whl_tt: ∀ b p s s’, b s → bstep (seq p (whl b p)) s s’ → bstep (whl b p) s s’.

Alternatively, one can define this semantic through the relational model of KAT,
by induction over the program structure:

Fixpoint bstep (p: prog): rel state state :=
match p with

| skp ⇒ 1
| seq p q ⇒ bstep p·bstep q

| aff l e ⇒ upd l e

| ite b p q ⇒ [b]·bstep p+ [¬b]·bstep q

| whl b p ⇒ ([b]·bstep p)?·[¬b]
end.

(Notations come for free since binary relations are already declared as a model of
KAT in our library.) The ‘skip’ instruction is interpreted as the identity relation;
sequential composition is interpreted by relational composition. Assignments are
interpreted using an auxiliary function, defined as follows:

Definition upd l e: rel state state := fun s s’ ⇒ s’ = update l (e s) s.

For the ‘if-then-else’ statement, the Boolean expression b is a predicate on states,
i.e., a test in our relational model of KAT; this test is used to guard both branches
of the possible execution paths. Accordingly for the ‘while’ loop, we iterate the
body of the loop guarded by the test, using Kleene star. We make sure one cannot
exit the loop before the condition gets false by post-guarding the iteration with
the negation of this test.

This alternative definition is easily proved equivalent to the previous one.
Its relative conciseness makes it easier to read; more importantly, this definition
allows us to exploit all theorems and tactics about KAT, for free. For instance,
suppose that one wants to prove some program equivalences. First define pro-
gram equivalence, through the bigstep semantics:

Notation "p ∼ q" := (bstep p == bstep q).

(The “==” symbol denotes equality in the considered KAT model; in this case,
relational equality.) The following lemmas about unfolding loops and dead code
elimination, can be proved automatically.

Lemma two_loops b p: whl b (whl b p) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(([b]·bstep p)?·[¬b]))?·[¬b] == ([b]·bstep p)?·[¬b] *)

Lemma fold_loop b p: whl b (p ; ite b p skp) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(bstep p·([b]·bstep p+ [¬b]·1)))?·[¬b] == ([b]·bstep p)?·[¬b] *)

11

Lemma dead_code a b p q r: whl (a∨ b) p ; ite b q r ∼ whl (a∨ b) p ; r.
Proof. simpl. kat. Qed.
(* ([a∨ b]·bstep p)?·[¬(a∨ b)]·([b]·bstep q+ [¬b]·bstep r)

== ([a∨ b]·bstep p)?·[¬(a∨ b)]·bstep r *)

(The semicolon in program expressions is a notation for sequential composition;
the comments below each proof show the intermediate goal where the bstep

fixpoint has been simplified, thus revealing the underlying KAT equality.)
Of course, the kat tactic cannot prove arbitrary program equivalences: the

theory of KAT only deals with the control-flow graph of the programs and with
the Boolean expressions, not with the concrete meaning of assignments or arith-
metic expressions. We can however mix automatic steps with manual ones. Con-
sider for instance the following example, where we prove that an assignment can
be delayed. Our tactics cannot solve it automatically since some reasoning about
assignments is required; however, by asserting manually a simple fact (in this
case, an equation of shape (ii)), the goal becomes provable by the hkat tactic.

Definition subst l e (b: test): test := fun s ⇒ b (update l (e s) s).
Lemma aff_ite l e b p q: (l←e; ite b p q) ∼ (ite (subst l e b) (l←e; p) (l←e; q)).
Proof.
simpl. (* upd l e·([b]·bstep p+ [¬b]·bstep q) ==

[subst l e b]·(upd l e·bstep p)·[¬subst l e b]·(upd l e·bstep q) *)

assert (upd l e·[b] == [subst l e b]·upd l e) by (cbv; firstorder; subst; eauto).
hkat.

Qed.

5.2 Hoare logic for partial correctness

Hoare logic for partial correctness [16] is subsumed by KAT [21]. The key in-
gredient in Hoare logic is the notion of a “Hoare triple” {A} p {B}, where p is
a program, and A,B are two formulas about the memory manipulated by the
program, respectively called pre- and post-conditions. A Hoare triple {A} p {B}
is valid if whenever the program p starts in some state s satisfying A and termi-
nates in a state s′, then s′ satisfies B. Such a statement can be translated into
KAT as a simple equation:

[A]p[¬B] = 0

Indeed, [A]p[¬B] = 0 precisely means that there is no execution path along
p that starts in A and ends in ¬B. Such equations are Hoare equations (they
have the shape (i) from §4), so that they can be eliminated automatically. As
a consequence, inference rules of Hoare logic can be proved automatically using
the hkat tactic. For instance, for the ‘while’ rule, we get the following script:

Lemma rule_whl A b p: {A∧ b} p {A} → {A} whl b p {A∧¬b}.
Proof. simpl. hkat. Qed.
(* [A∧ b]·bstep p·[¬A] == 0 → [A]·(([b]·bstep p)?·[¬b])·[¬(A∧¬b)] == 0 *)

12

5.3 Compiler optimisations

Kozen and Patron [23] use KAT to verify a rather large range of standard
compiler optimisations, by equational reasoning. Citing their abstract, they
cover “dead code elimination, common subexpression elimination, copy propaga-
tion, loop hoisting, induction variable elimination, instruction scheduling, alge-
braic simplification, loop unrolling, elimination of redundant instructions, array
bounds check elimination, and introduction of sentinels”. They cannot use au-
tomation, so that the size of their proofs ranges from a few lines to half a page
of KAT computations.

We formalised all those equational proofs using our library. Most of them can
actually be solved instantaneously, by a simple call to the hkat tactic. For the
few remaining ones, we gave three to four line proofs, consisting of first rewriting
using hypotheses that cannot be eliminated, and then a call to hkat.

The reason why hkat performs so well is that most assumptions allowing to
optimise the code in these examples are of the shape (i-v). For instance, to state
that an instruction p has no effect when [a] is satisfied, we use an assumption
[a]p = [a]. Similarly, to state that the execution of a program x systematically
enforces [a], we use an assumption x = x[a]. The assumptions that cannot be
eliminated are typically those of the shape pq = qp: “the instructions p and q
commute”; such assumptions have to be used manually.

5.4 Flowchart schemes

The last example we discuss here is due to Paterson, it consists in proving the
equivalence of two flowchart schemes (i.e., goto programs—see Manna’s book [26]
for a complete description of this model). The two schemes are given in Ap-
pendix A; Manna proves their equivalence using several successive graph transor-
mations. His proof is really high-level and informal; it is one page long, plus three
additional pages to draw intermediate flowcharts schemes. Angus and Kozen [3]
give a rather detailed equational proof in KAT, which is about six pages long.
Using the hkat tactic together with some ad-hoc rewriting tools, we managed to
formalise Angus and Kozen’s proof in three rather sparse screens.

Like in Angus and Kozen’s proof, we progressively modify the KAT expres-
sion corresponding to the first schema, to make it evolve towards the expression
corresponding to the second schema. Our mechanised proof thus roughly con-
sists in a sequence of transitivity steps closed by hkat, allowing us to perform
some rewriting steps manually and to move to the next step. This is illustrated
schematically by the code presented in Fig. 2.

Most of our transitivity steps (the yi’s) already appear in Angus and Kozen’s
proof; we can actually skip a lot of their steps, thanks to hkat. Some of these
simplifications can be spectacular: for instance, they need one page to justify
the passage between their expressions (24) and (27), while a simple call to hkat

does the job; similarly for the page they need between their steps (38) and (43).

13

Lemma Paterson: x_1 == z.
Proof.
transitivity y_1. hkat. (* x_1 == y_1 *)

a few rewriting steps transforming y_1 into x_2.
transitivity y_2. hkat. (* x_2 == y_2 *)

a few rewriting steps transforming y_2 into x_3.
(* ... *)

transitivity y_12. hkat. (* x_12 == y_12 *)

a few rewriting steps transforming y_12 into x_13.
hkat. (* x_13 == z *)

Qed.

Figure2. Squeleton for the proof of equivalence of Paterson’s flowchart schems

6 Related works

Several formalisations of algorithms and results related to regular expressions
and languages have been proposed since we released our Coq reflexive decision
procedure for Kleene algebra [9]: partial derivatives for regular expressions [2],
regular expression equivalence [6, 12, 25, 27], regular expression matching [17].
None of these works contains a formalised proof of completeness for Kleene
algebra, so that they cannot be used to obtain a general tactic for KA (note
however that Krauss and Nipkow [25] obtain an Isabelle/HOL tactic for binary
relations using a nice trick to sidestep the completeness proof—but they cannot
deal with other models of KA).

On the more algebraic side, Struth et al. [5, 13] showed how to formalise
and use relation algebra and Kleene algebra in Isabelle/HOL; they exploit the
automation tools provided by this assistant, but they do not try to define decision
procedures specific to Kleene algebra, and they do not prove completeness.

To the best our knowledge, the only formalisation of KAT prior to the present
work is due to Pereira and Moreira [28], in Coq. They state all axioms of KAT,
derive some simple consequences of these axioms (e.g., Boolean disjunction dis-
tribute over conjunction, Kleene star is monotone), and use them to manually
prove the inference rules of Hoare logic, as we did automatically in §5.2. They
do not provide models, automation tools, or completeness proof.

7 Conclusion

We presented a rather exhaustive Coq formalisation of Kleene algebra with tests:
axiomatisation, models, completeness proof, decision procedure, elimination of
hypotheses. We then showed several use-cases for the corresponding library:
proofs about while programs and Hoare logic, certification of standard compiler
optimisations, and equivalence of flowchart schemes.

Most of the theoretical material is due to Kozen et al. [3, 15, 18–24], so that
our contribution mostly lies in the Coq mechanisation of these ideas. The com-
pleteness proof was particularly challenging to formalise, and lots of aspects of

14

this work could not be explained in this extended abstract: how to encode the
algebraic hierarchy, how to work efficiently with finite sets and finite sums, how
to exploit symmetry arguments, reflexive normalisation tactics, tactics about
lattices, finite ordinals and encodings of set-theoretic constructs in ordinals. . .

The Coq library is available online [30]; it is documented and axiom-free; its
overall structure is given in Appendix B. This library actually has a larger scope
than what we presented here: our long-term goal is to formalise and automate
other fragments of relation algebra (residuated structures, Kleene algebra with
converse, allegories. . .), so that the library is designed to allow for such exten-
sions. For instance normalisation tactics and an ad-hoc semi-decision procedures
are already defined for algebraic structures beyond Kleene algebra and KAT.

According to coqwc, the library consists of 4377 lines of specifications and
3020 lines of proofs, that distribute as follows. Overall, this is slightly less than
our previous library for KA [9] (5105+4315 lines), and we do much more: not
only we handle KAT, but we also lay the ground for the mechanisation of other
fragments of relation algebra, as explained above.

specifications proofs comments
ordinals, comparisons, finite sets. . . 674 323 225
algebraic hierarchy 490 374 216
models (languages, relations, expressions. . .) 1279 461 404
linear algebra, matrices 534 418 163
completeness, decisions procedure, tactics 1400 1444 740

The resulting theorems and tactics allowed us to shorten significantly a
number of paper proofs—those about Hoare logic, compiler optimisations, and
flowchart schemes. Getting a way to guarantee that such proofs are correct is
important: although mathematically simple, they tend to be hard to proofread
(we invite the skeptical reader to check Angus and Kozen’s paper proof of Pater-
son example [3]). Moreover, automation greatly helps when searching for such
proofs: being able to get either a proof or a counter-example for any proposed
equation is a big plus: it makes it much easier to progress in the overall proof.

References

1. S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The semantics of
reflected proof. In Proc. LICS, pages 95–105. IEEE Computer Society, 1990.

2. J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa. Partial derivative
automata formalized in Coq. In Proc. CIAA, volume 6482 of LNCS, pages 59–68.
Springer, 2010.

3. A. Angus and D. Kozen. Kleene algebra with tests and program schematology.
Technical Report TR2001-1844, CS Dpt, Cornell University, July 2001.

4. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. TCS, 155(2):291–319, 1996.

5. A. Armstrong and G. Struth. Automated reasoning in higher-order regular algebra.
In Proc. RAMiCS, volume 7560 of LNCS, pages 66–81. Springer, 2012.

15

6. A. Asperti. A compact proof of decidability for regular expression equivalence. In
Proc. ITP, volume 7406 of LNCS, pages 283–298. Springer, 2012.

7. Y. Bertot, G. Gonthier, S. O. Biha, and I. Pasca. Canonical big operators. In
TPHOLs, volume 5170 of LNCS, pages 86–101. Springer, 2008.

8. R. Boyer and J. Moore. Metafunctions: proving them correct and using them
efficiently as new proof procedures. In The Correctness Problem in Computer
Science. NY: Academic Press, 1981.

9. T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras. In
Proc. 1st ITP, volume 6172 of LNCS, pages 163–178. Springer, 2010.

10. J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
11. E. Cohen. Hypotheses in Kleene algebra. Technical report, Bellcore, Morristown,

N.J., 1994.
12. T. Coquand and V. Siles. A decision procedure for regular expression equivalence

in type theory. In Proc. CPP, volume 7086 of LNCS. Springer, 2011.
13. S. Foster and G. Struth. Automated analysis of regular algebra. In Proc. IJCAR,

volume 7364 of LNCS, pages 271–285. Springer, 2012.
14. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right

in Coq. In Proc. TPHOL, volume 3603 of LNCS, pages 98–113. Springer, 2005.
15. C. Hardin and D. Kozen. On the elimination of hypotheses in Kleene algebra with

tests. Technical Report TR2002-1879, CS Dpt, Cornell University, October 2002.
16. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.
17. V. Komendantsky. Reflexive toolbox for regular expression matching: verification

of functional programs in Coq+ssreflect. In Proc. PLPV, pages 61–70. ACM, 2012.
18. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular

events. Inf. and Comp., 110(2):366–390, 1994.
19. D. Kozen. Kleene algebra with tests. Transactions on Programming Languages

and Systems, 19(3):427–443, May 1997.
20. D. Kozen. Typed Kleene algebra, 1998. TR98-1669, CS Dpt. Cornell University.
21. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.

Log., 1(1):60–76, 2000.
22. D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Technical Re-

port http://hdl.handle.net/1813/10173, CIS, Cornell University, March 2008.
23. D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene

algebra with tests. In Proc. CL2000, volume 1861 of LNAI, pages 568–582.
Springer, 2000.

24. D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability.
In Proc. CSL, volume 1258 of LNCS, pages 244–259. Springer, September 1996.

25. A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation
algebra. JAR, 49(1):95–106, 2012.

26. Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.
27. N. Moreira, D. Pereira, and S. M. de Sousa. Deciding regular expressions

(in-)equivalence in Coq. In Proc. RAMiCS, volume 7560 of LNCS, pages 98–113.
Springer, 2012.

28. D. Pereira and N. Moreira. KAT and PHL in Coq. Comput. Sci. Inf. Syst.,
5(2):137–160, 2008.

29. D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic
linear logic. In Proc. CSL, volume 6247 of LNCS, pages 484–498. Springer, 2010.

30. D. Pous. RelationAlgebra: Coq library containing all material presented in this
paper. http://perso.ens-lyon.fr/damien.pous/ra, December 2012.

31. K. Thompson. Regular expression search algorithm. C. ACM, 11:419–422, 1968.

16

A Paterson’s flowchart schemes

Here are the two flowchart schemes we proved equivalent (§5.4), they appear
in [26, pages 254 and 258].

Schema S6A Schema S6E

Following Angus and Kozen’s notations [3], these two schemes can be converted
into the following KAT expressions:

S6A = x1p41p11q214q311 ([¬a1]p11q214q311)
?

[a1]p13(
([¬a4] + [a4]([¬a2]p22)?[a2 ∧ ¬a3]p41p11) q214q311 ([¬a1]p11q214q311)

?
[a1]p13

)?

[a4] ([¬a2]p22)
?

[a2 ∧ a3]z2

S6E = x1[a1]q111 ([¬a1]r11[a1]q111)
?

[a1]z1 ,

where the tests and actions are interpreted as follows:

xi , yi ← x zi , z ← yi ai , P (yi)

pij , yi ← f(yj) qijk , yi ← g(yj , yk) rij , yi ← f(f(yj))

(Note that we actually renamed the local variable y from schema S6E into y1,
for the sake of uniformity.)

17

B Overall structure of the library

Here is a succinct description of each module from the library:

Utilities
common: basic tactics and definitions used throughout the library
comparisons: types with decidable equality and ternary comparison function
positives: simple facts about binary positive numbers
ordinal: finite ordinals, finite sets of finite ordinals
pair: encoding pairs of ordinals as ordinals
powerfix: simple pseudo-fixpoint iterator
lset: sup-semilattice of finite sets represented as lists

Algebraic hierarchy
level: bitmasks allowing us to refer to an arbitrary point in the hierarchy
lattice: “flat” structures, from preorders to Boolean lattices
monoid: typed structures, from po-monoids to residuated Kleene lattices
kat: Kleene algebra with tests
kleene: Basic facts about Kleene algebra
normalisation: normalisation and semi-decision tactics for relation algebra

Models
prop: distributive lattice of propositions
boolean: Boolean trivial lattice, extended to a monoid.
rel: heterogeneous binary relations
lang: word languages
traces: trace languages
atoms: atoms of the free Boolean lattice over a finite set
glang: guarded string languages
lsyntax: free lattice (Boolean expressions)
syntax: free relation algebra
regex: regular expressions
gregex: KAT expressions (typed—for KAT completeness)
ugregex: untyped KAT expressions (untyped—for KAT decision procedure)

Untyping theorems
untyping: untyping theorem for structures below KA with converse
kat_untyping: untyping theorem for guarded string languages

Linear algebra
sups: finite suprema/infima (a la bigop, from ssreflect)
sums: finite sums
matrix: matrices over all structures supporting this construction
matrix_ext: additional operations and properties about matrices
rmx: matrices of regular expressions
bmx: matrices of Booleans

Automata, completeness
dfa: deterministic finite state automata, decidability of language inclusion
nfa: matricial non-deterministic finite state automata
ugregex_dec: decision of language equivalence for KAT expressions
ka_completeness: (untyped) completeness of Kleene algebra
kat_completeness: (typed) completeness of Kleene algebra with tests
kat_reification: tools and definitions for KAT reification
kat_tac: decision tactics for KA and KAT, elimination of hypotheses

18

Here are the dependencies between these modules:

atoms

booleanlsyntax

monoid prop

sups

positives

bmx

matrix

normalisationsums

lattice

ordinal lset

common

comparisons

denum

dfa

pair

glang

kat

traces kleene

gregex

ka_completeness

nfa

rmx

kat_completeness

untyping

syntax

kat_reification

kat_tac

kat_untyping ugregex_dec

ugregex

powerfixlang

level

matrix_ext

regexrel

19

Logical Methods in Computer Science
Vol. 9(1:09)2013, pp. 1–27
www.lmcs-online.org

Submitted Jun. 16, 2011
Published Mar. 4, 2013

GENERALIZING DETERMINIZATION FROM AUTOMATA TO

COALGEBRAS

ALEXANDRA SILVA a, FILIPPO BONCHI b, MARCELLO BONSANGUE c, AND JAN RUTTEN d

a Radboud University Nijmegen and Centrum Wiskunde & Informatica
e-mail address: ams@cwi.nl

b ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)
e-mail address: filippo.bonchi@ens-lyon.fr

c LIACS - Leiden University
e-mail address: marcello@liacs.nl

d Centrum Wiskunde & Informatica and Radboud University Nijmegen
e-mail address: janr@cwi.nl

Abstract. The powerset construction is a standard method for converting a nondeter-
ministic automaton into a deterministic one recognizing the same language. In this paper,
we lift the powerset construction from automata to the more general framework of coal-
gebras with structured state spaces. Coalgebra is an abstract framework for the uniform
study of different kinds of dynamical systems. An endofunctor F determines both the type
of systems (F -coalgebras) and a notion of behavioural equivalence (∼F) amongst them.
Many types of transition systems and their equivalences can be captured by a functor F .
For example, for deterministic automata the derived equivalence is language equivalence,
while for non-deterministic automata it is ordinary bisimilarity.

We give several examples of applications of our generalized determinization construc-
tion, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic
automata, and, somewhat surprisingly, even pushdown automata. To further witness the
generality of the approach we show how to characterize coalgebraically several equivalences
which have been object of interest in the concurrency community, such as failure or ready
semantics.

2012 ACM CCS: [Theory of computation]: Models of computation—Abstract machines & Formal
languages and automata theory—Formalisms—Algebraic language theory & Semantics and reasoning—
Program semantics—Categorical semantics.

Key words and phrases: Coalgebras, Powerset Construction, Linear Semantics.
a The work of Alexandra Silva is partially funded by the ERDF through the Programme COMPETE and

by the Portuguese Foundation for Science and Technology, project ref. PTDC/EIA-CCO/122240/2010 and
SFRH/BPD/71956/2010.

b The work of Filippo Bonchi is supported by the CNRS PEPS project CoGIP and the project ANR
12IS02001 PACE.
c,d The research of Marcello Bonsangue and Jan Rutten has been carried out under the Dutch NWO project
CoRE: Coinductive Calculi for Regular Expressions., dossier number 612.063.920.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(1:09)2013

c© A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten
CC© Creative Commons

2 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

Introduction

Coalgebra is by now a well established general framework for the study of the behaviour
of large classes of dynamical systems, including various kinds of automata (deterministic,
probabilistic etc.) and infinite data types (streams, trees and the like). For a functor
F : Set → Set, an F -coalgebra is a pair (X, f), consisting of a set X of states and a function
f : X → F (X) defining the observations and transitions of the states. Coalgebras generally
come equipped with a standard notion of equivalence called F -behavioural equivalence that
is fully determined by their (functor) type F . Moreover, for most functors F there exists
a final coalgebra into which any F -coalgebra is mapped by a unique homomorphism that
identifies all F -equivalent states.

Much of the coalgebraic approach can be nicely illustrated with deterministic automata
(DA), which are coalgebras of the functor D(X) = 2 × XA. In a DA, two states are D-
equivalent precisely when they accept the same language. The set 2A∗

of all formal languages
constitutes a final D-coalgebra, into which every DA is mapped by a homomorphism that
sends any state to the language it accepts.

It is well-known that non-deterministic automata (NDA) often provide more efficient
(smaller) representations of formal languages than DA’s. Language acceptance of NDA’s is
typically defined by turning them into DA’s via the powerset construction. Coalgebraically
this works as follows. NDA’s are coalgebras of the functor N(X) = 2 × Pω(X)A, where
Pω is the finite powerset. An N -coalgebra (X, f : X → 2 × Pω(X)A) is determinized by
transforming it into a D-coalgebra (Pω(X), f ♯ : Pω(X) → 2 × Pω(X)A) (for details see
Section 2). Then, the language accepted by a state s in the NDA (X, f) is defined as the
language accepted by the state {s} in the DA (Pω(X), f ♯).

For a second variation on DA’s, we look at partial automata (PA): coalgebras of the
functor P (X) = 2× (1+ X)A, where for certain input letters transitions may be undefined.
Again, one is often interested in the DA-behaviour (i.e., language acceptance) of PA’s.
This can be obtained by turning them into DA’s using totalization. Coalgebraically, this
amounts to the transformation of a P -coalgebra (X, f : X → 2×(1+X)A) into a D-coalgebra
(1 + X, f ♯ : 1 + X → 2 × (1 + X)A).

Although the two examples above may seem very different, they are both instances of
one and the same phenomenon, which it is the goal of the present paper to describe at a
general level. Both with NDA’s and PA’s, two things happen at the same time: (i) more
(or, more generally, different types of) transitions are allowed, as a consequence of changing
the functor type by replacing X by Pω(X) and (1+X), respectively; and (ii) the behaviour
of NDA’s and PA’s is still given in terms of the behaviour of the original DA’s (language
acceptance).

For a large family of F -coalgebras, both (i) and (ii) can be captured simultaneously
with the help of the categorical notion of monad, which generalizes the notion of algebraic
theory. The structuring of the state space X can be expressed as a change of functor type
from F (X) to F (T (X)). In our examples above, both the functors T1(X) = Pω(X) and
T2(X) = 1 + X are monads, and NDA’s and PA’s are obtained from DA’s by changing the
original functor type D(X) into N(X) = D(T1(X)) and P (X) = D(T2(X)). Regarding (ii),
one assigns F -semantics to an FT -coalgebra (X, f) by transforming it into an F -coalgebra
(T (X), f ♯), again using the monad T . In our examples above, the determinization of NDA’s
and the totalization of PA’s consists of the transformation of N - and P -coalgebras (X, f)
into D-coalgebras (T1(X), f ♯) and (T2(X), f ♯), respectively.

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 3

We shall investigate general conditions on the functor types under which the above
constructions can be applied: for one thing, one has to ensure that the FT -coalgebra map
f : X → F (T (X)) induces a suitable F -coalgebra map f ♯ : T (X) → F (T (X)). Our results
will lead to a uniform treatment of all kinds of existing and new variations of automata,
that is, FT -coalgebras, by an algebraic structuring of their state space through a monad
T . Furthermore, we shall prove a number of general properties that hold in all situations
similar to the ones above. For instance, there is the notion of N -behavioural equivalence
with which NDA’s, being N -coalgebras, come equipped. It coincides with the well-known
notion of Park-Milner bisimilarity from process algebra. A general observation is that if two
states in an NDA are N -equivalent then they are also D- (that is, language-) equivalent.
For PA’s, a similar statement holds. One further contribution of this paper is a proof of
these statements, once and for all for all FT -coalgebras under consideration.

Coalgebras of type FT were studied in [29, 4, 22]. In [4, 22] the main concern was
definitions by coinduction, whereas in [29] a proof principle was also presented. All in all,
the present paper can be seen as the understanding of the aforementioned papers from a new
perspective, presenting a uniform view on various automata constructions and equivalences.

The structure of the paper is as follows. After preliminaries (Section 1) and the details
of the motivating examples above (Section 2), Section 3 presents the general construction
as well as many more examples, including the coalgebraic chracterisation of pushdown
automata (Section 3.2). In Section 4, a large family of automata (technically: functors)
is characterised to which the constructions above can be applied. Section 5 contains the
application of the framework in order to recover several interesting equivalences stemming
from the world of concurrency, such as failure and ready semantics. Section 6 discusses
related work and presents pointers to future work.

This paper is an extended version of [43]. Compared to the conference version, we
include the proofs and more examples. More interestingly, the characterisation of pushdown
automata coalgebraically (Section 3.2) and the material in Section 5 are original.

1. Background
In this section we introduce the preliminaries on coalgebras and algebras. First, we fix

some notation on sets. We will denote sets by capital letters X,Y, . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is the cartesian product of X and
Y (with the usual projection maps π1 and π2), X + Y is the disjoint union (with injection
maps κ1 and κ2) and XY is the set of functions f : Y → X. The collection of finite subsets
of X is denoted by Pω(X), while the collection of full-probability distributions with finite
support is Dω(X) = {f : X → [0, 1] | f finite support and

∑
x∈X f(x) = 1}. For a set of

letters A, A∗ denotes the set of all words over A; ǫ the empty word; and w1 ·w2 (and w1w2)
the concatenation of words w1, w2 ∈ A∗.

1.1. Coalgebras. A coalgebra is a pair (X, f : X → F (X)), where X is a set of states and
F : Set → Set is a functor. The functor F , together with the function f , determines the
transition structure (or dynamics) of the F -coalgebra [37].

An F -homomorphism from an F -coalgebra (X, f) to an F -coalgebra (Y, g) is a function
h : X → Y preserving the transition structure, i.e., g ◦ h = F (h) ◦ f .

4 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

An F -coalgebra (Ω, ω) is said to be final if for any F -coalgebra (X, f) there exists a
unique F -homomorphism [[−]]X : X → Ω. All the functors considered in examples in this
paper have a final coalgebra.

Let (X, f) and (Y, g) be two F -coalgebras. We say that the states x ∈ X and y ∈ Y
are behaviourally equivalent, written x ∼F y, if and only if they are mapped into the same
element in the final coalgebra, that is [[x]]X = [[y]]Y .

For weak pullback preserving functors, behavioural equivalence coincides with the usual
notion of bisimilarity [37].

1.2. Algebras. Monads can be thought of as a generalization of algebraic theories. A
monad T = (T, µ, η) is a triple consisting of an endofunctor T on Set and two natural
transformations: a unit η : Id ⇒ T and a multiplication µ : T 2 ⇒ T . They satisfy the
following commutative laws

µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ.

Sometimes it is more convenient to represent a monad T, equivalently, as a Kleisli triple
(T, ()♯, η) [31], where T assigns a set T (X) to each set X, the unit η assigns a function
ηX : X → T (X) to each set X, and the extension operation ()♯ assigns to each f : X → T (Y)
a function f ♯ : T (X) → T (Y), such that,

f ♯ ◦ ηX = f (ηX)♯ = idT (X) (g♯ ◦ f)♯ = g♯ ◦ f ♯ ,

for g : Y → T (Z). Monads are frequently referred to as computational types [32]. We list
now a few examples. In what follows, f : X → T (Y) and c ∈ T (X).

Nondeterminism. T (X) = Pω(X); ηX is the singleton map x 7→ {x}; f ♯(c) =
⋃

x∈c f(x).

Partiality. T (X) = 1 + X where 1 = {∗} represents a terminating (or diverging) compu-
tation; ηX is the injection map κ2 : X → 1 + X; f ♯(κ1(∗)) = κ1(∗) and f ♯(κ2(x)) = f(x).

Further examples of monads include: exceptions (T (X) = E + X), side-effects (T (X) =
(S × X)S), interactive output (T (X) = µv.X + (O × v) ∼= O∗ × X) and full-probability
(T (X) = Dω(X)). We will use all these monads in our examples and we will define ηX and
f ♯ for each later in Section 3.1.

A T-algebra of a monad T is a pair (X,h) consisting of a set X, called carrier, and a
function h : T (X) → X such that h ◦ µX = h ◦ Th and h ◦ ηX = idX . A T -homomorphism
between two T-algebras (X,h) and (Y, k) is a function f : X → Y such that f ◦ h = k ◦ Tf .
T-algebras and their homomorphisms form the so-called Eilenberg-Moore category SetT.
There is a forgetful functor UT : SetT → Set defined by

UT((X,h)) = X and UT(f : (X,h) → (Y, k)) = f : X → Y .

The forgetful functor UT has left adjoint X 7→ (T (X), µX : TT (X) → T (X)), map-
ping a set X to its free T-algebra. If f : X → Y with (Y, h) a T-algebra, the unique
T-homomorphism f ♯ : (T (X), µX) → (Y, h) with f ♯ ◦ ηX = f is given by

f ♯ : T (X)
Tf

// T (Y)
h // Y .

The function f ♯ : (T (X), µX) → (T (Y), µY) coincides with function extension for a
Kleisli triple. For the monad Pω the associated Eilenberg-Moore category is the category
of join semi-lattices, whereas for the monad 1 + − is the category of pointed sets.

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 5

2. Motivating examples
In this section, we introduce two motivating examples. We will present two constructions,
the determinization of a non-deterministic automaton and the totalization of a partial au-
tomaton, which we will later show to be an instance of the same, more general, construction.

2.1. Non-deterministic automata. A deterministic automaton (DA) over the input al-
phabet A is a pair (X, 〈o, t〉), where X is a set of states and 〈o, t〉 : X → 2×XA is a function
with two components: o, the output function, determines if a state x is final (o(x) = 1)
or not (o(x) = 0); and t, the transition function, returns for each input letter a the next
state. DA’s are coalgebras for the functor 2 × IdA. The final coalgebra of this functor is
(2A∗

, 〈ǫ, (−)a〉) where 2A∗
is the set of languages over A and 〈ǫ, (−)a〉, given a language L,

determines whether or not the empty word is in the language (ǫ(L) = 1 or ǫ(L) = 0, resp.)
and, for each input letter a, returns the derivative of L: La = {w ∈ A∗ | aw ∈ L}. From
any DA, there is a unique map l into 2A∗

which assigns to each state its behaviour (that is,
the language that the state recognizes).

X
l //❴❴❴❴❴❴❴❴❴

〈o,t〉
��

2A∗

〈ǫ,(−)a〉
��

2 × XA

id×lA
//❴❴❴❴❴❴ 2 × (2A∗

)A

A non-deterministic automaton (NDA) is similar to a DA but the transition function gives a
set of next-states for each input letter instead of a single state. Thus, an NDA over the input
alphabet A is a pair (X, 〈o, δ〉), where X is a set of states and 〈o, δ〉 : X → 2 × (Pω(X))A is
a pair of functions with o as before and where δ determines for each input letter a a set of
possible next states. In order to compute the language recognized by a state x of an NDA
A, it is usual to first determinize it, constructing a DA det(A) where the state space is
Pω(X), and then compute the language recognized by the state {x} of det(A). Next, we
describe in coalgebraic terms how to construct the automaton det(A).

Given an NDA A = (X, 〈o, δ〉), we construct det(A) = (Pω(X), 〈o, t〉), where, for all
Y ∈ Pω(X), a ∈ A, the functions o : Pω(X) → 2 and t : Pω(X) → Pω(X)A are

o(Y) =

{
1 ∃y∈Y o(y) = 1

0 otherwise
t(Y)(a) =

⋃

y∈Y

δ(y)(a).

(Observe that these definitions exploit the join-semilattice structures of 2 and Pω(X)A).
The automaton det(A) is such that the language l({x}) recognized by {x} is the same

as the one recognized by x in the original NDA A (more generally, the language recognized
by state X of det(A) is the union of the languages recognized by each state x of A).

6 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

We summarize the situation above with the following commuting diagram:

X

〈o,δ〉

��

{·}
// Pω(X)

〈o,t〉
||②②
②②
②②
②②
②②
②②
②②

l //❴❴❴❴❴ 2A∗

〈ǫ,(−)a〉

��

2 × Pω(X)A
id×lA

//❴❴❴❴❴❴❴❴❴ 2 × (2A∗
)A

We note that the language semantics of NDA’s, presented in the above diagram, can also
be obtained as an instance of the abstract definition scheme of λ-coinduction [4, 22].

2.2. Partial automata. A partial automaton (PA) over the input alphabet A is a pair
(X, 〈o, ∂〉) consisting of a set of states X and a pair of functions 〈o, ∂〉 : X → 2 × (1 + X)A.
Here o : X → 2 is the same as with DA. The second function ∂ : X → (1+X)A is a transition
function that sends any state x ∈ X to a function ∂(x) : A → 1 + X, which for any input
letter a ∈ A is either undefined (no a-labelled transition takes place) or specifies the next
state that is reached. PA’s are coalgebras for the functor 2 × (1 + Id)A. Given a PA A, we
can construct a total (deterministic) automaton tot(A) by adding an extra sink state to
the state space: every undefined a-transition from a state x is then replaced by a a-labelled
transition from x to the sink state. More precisely, given a PA A = (X, 〈o, ∂〉), we construct
tot(A) = (1 + X, 〈o, t〉), where

o(κ1(∗)) = 0
o(κ2(x)) = o(x)

t(κ1(∗))(a) = κ1(∗)
t(κ2(x))(a) = ∂(x)(a)

(Observe that these definitions exploit the pointed-set structures of 2 and 1 + X).
The language l(x) recognized by a state x will be precisely the language recognized by

x in the original partial automaton. Moreover, the new sink state recognizes the empty
language. Again we summarize the situation above with the help of following commuting
diagram, which illustrates the similarities between both constructions:

X

〈o,∂〉

��

κ2 // 1 + X

〈o,t〉
||①①
①①
①①
①①
①①
①①
①①
①

l //❴❴❴❴❴ 2A∗

〈ǫ,(−)a〉

��

2 × (1 + X)A
id×lA

//❴❴❴❴❴❴❴❴❴ 2 × (2A∗
)A

3. Algebraically structured coalgebras

In this section we present a general framework where both motivating examples can be
embedded and uniformly studied. We will consider coalgebras for which the functor type FT
can be decomposed into a transition type F specifying the relevant dynamics of a system
and a monad T providing the state space with an algebraic structure. For simplicity, we fix
our base category to be Set.

We study coalgebras f : X → FT (X) for a functor F and a monad T such that FT (X)
is a T-algebra, that is FT (X) is the carrier of a T-algebra (FT (X), h). In the motivating

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 7

examples, F would be instantiated to 2 × IdA (in both) and T to Pω, for NDAs, and to
1 + − for PAs. The condition that FT (X) is a T-algebra would amount to require that
2 × Pω(X)A is a join-semilattice, for NDAs, and that 2 × (1 + X)A is a pointed set, for
PAs. This is indeed the case, since the set 2 can be regarded both as a join-semilattice
(2 ∼= Pω(1)) or as a pointed set (2 ∼= 1 + 1) and, moreover, products and exponentials
preserve the algebra structure.

The inter-play between the transition type F and the computational type T (more
precisely, the fact that FT (X) is a T-algebra) allows each coalgebra f : X → FT (X) to be
extended uniquely to a T -algebra morphism f ♯ : (T (X), µX) → (FT (X), h) which makes
the following diagram commute.

X

f

��

ηX
// T (X)

f♯

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

FT (X)

f ♯ ◦ ηX = f

Intuitively, ηX : X → T (X) is the inclusion of the state space of the coalgebra f : X →
FT (X) into the structured state space T (X), and f ♯ : T (X) → FT (X) is the extension of
the coalgebra f to T (X).

Next, we study the behaviour of a given state or, more generally, we would like to say
when two states x1 and x2 are equivalent. The obvious choice for an equivalence would be
FT -behavioural equivalence. However, this equivalence is not exactly what we are looking
for. In the motivating example of non-deterministic automata we wanted two states to be
equivalent if they recognize the same language. If we would take the equivalence arising
from the functor 2 × Pω(Id)A we would be distinguishing states that recognize the same
language but have difference branching types, as in the following example.

•
a
��

•
a

��
❃❃

❃❃
❃❃a

��✁✁
✁✁
✁

c

��
❃❃

❃❃
❃

b

��✁✁
✁✁
✁

b
��

c
��• • • •

We now define a new equivalence, which absorbs the effect of the monad T .
We say that two elements x1 and x2 in X are F -equivalent with respect to a monad

T, written x1 ≈T
F x2, if and only if ηX(x1) ∼F ηX(x2). The equivalence ∼F is just F -

behavioural equivalence for the F -coalgebra f ♯ : T (X) → FT (X).
If the functor F has a final coalgebra (Ω, ω) , we can capture the semantic equivalence

above in the following commuting diagram

X

f

��

ηX
// T (X)

f♯

yyss
ss
ss
ss
ss
ss
ss
ss

[[−]]
//❴❴❴❴❴❴❴ Ω

ω

��

FT (X)
F [[−]]

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ F (Ω)

(3.1)

8 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

Returning to our first example, two states x1 and x2 of an NDA (in which T is instantiated
to Pω and F to 2 × IdA) would satisfy x1 ≈T

F x2 if and only if they recognize the same

language (recall that the final coalgebra of the functor 2 × IdA is 2A∗
).

It is also interesting to remark the difference between the two equivalences in the case
of partial automata. The coalgebraic semantics of PAs [39] is given in terms of pairs of
prefix-closed languages 〈V,W 〉 where V contains the words that are accepted (that is, are
the label of a path leading to a final state) and W contains all words that label any path
(that is all that are in V plus the words labeling paths leading to non-final states). We
describe V and W in the following two examples, for the states s0 and q0:

W = c∗ + c∗b + c∗ab∗

V = c∗ab∗
s0

b
!!❈

❈❈
a //

c

�� GFED@ABC?>=<89:;s1

b

TT

s2

q0
a //

c

�� GFED@ABC?>=<89:;q1

b

TT

W = c∗ + c∗ab∗

V = c∗ab∗

Thus, the states s0 and q0 would be distinguished by FT -equivalence (for F = 2 × IdA and
T = 1 + −) but they are equivalent with respect to the monad 1 + −, s0 ≈T

F q0, since they
accept the same language.

We will show in Section 4 that the equivalence ∼FT is always contained in ≈T
F .

3.1. Examples. In this section we show more examples of applications of the framework
above.

3.1.1. Partial Mealy machines. A partial Mealy machine is a set of states X together with
a function t : X → (B × (1 + X))A, where A is a set of inputs and B is a set of output
values. We assume that B has a distinguished element ⊥ ∈ B. For each state x and for
each input a the automaton produces an output value and either terminates or continues to
a next state. Applying the framework above we will be totalizing the automaton, similarly
to what happened in the example of partial automata, by adding an extra state to the state
space which will act as a sink state. The behaviour of the totalized automaton is given
by the set of causal functions from Aω (infinite sequences of A) to Bω, which we denote
by Γ(Aω, Bω) [38]. A function f : Aω → Bω is causal if, for σ ∈ Aω, the n-th value of the
output stream f(σ) depends only on the first n values of the input stream σ. In the diagram
below, we define the final map [[−]] : 1 + X → Γ(Aω, Bω):

X

t

��

κ2 // 1 + X

t♯

}}④④
④④
④④
④④
④④
④④
④④
④④
④

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴

[[κ1(∗)]](σ) = (⊥, ⊥, . . .)
[[κ2(x)]](a : τ) = b : ([[z]](τ))

where t(x)(a) = 〈b, z〉

Γ(Aω, Bω)

��

(B × (1 + X))A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ (B × Γ(Aω, Bω))A

Here ∗ ∈ 1, x ∈ X, a ∈ A, b ∈ B, σ ∈ Aω, z ∈ 1 + X, and a:τ denotes the prefixing of the
stream τ ∈ Aω with the element a.

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 9

3.1.2. Structured Moore automata. In the following examples we look at the functor

F (X) = T (B) × XA

for arbitrary sets A and B and an arbitrary monad T = (T, η, (−)♯). The coalgebras
of F represents Moore automata with outputs in T (B) and inputs in A. Since T (B) is
a T-algebra, T (X)A is a T-algebra and the product of T-algebras is still a T-algebra,
then FT (X) is a T-algebra. For this reason, the (pair of) functions o : X → T (B) and
t : X → T (X)A lift to a (pair of) functions

o♯ : T (X) → T (B) t♯ : T (X) → T (X)A

The final coalgebra of F is T (B)A
∗
. We can characterize the final map [[−]] : T (X) →

T (B)A
∗
, for all m ∈ T (X), a ∈ A and w ∈ A∗, by

X

〈o,t〉

��

ηX
// T (X)

[[m]](ǫ) = o♯(m)
[[m]](a · w) = [[t♯(m)(a)]](w)

〈o♯,t♯〉

{{①①
①①
①①
①①
①①
①①
①①
①

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴ T (B)A

∗

〈ǫ,(−)a〉

��

T (B) × T (X)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ T (B) × (T (B)A
∗
)A

Below we shall look at various concrete instances of this scheme, for different choices of the
monad T .

Moore automata with exceptions. Let E be an arbitrary set, the elements of which we
think of as exceptions. We consider the exception monad T (X) = E + X which has the
function η(x) = κ2(x) as its unit. We define the lifting f ♯ : T (X) → T (Y), for any function
f : X → T (Y), by f ♯ = [id , f].

An FT -coalgebra 〈o, t〉 : X → (E + B) × (E + X)A will associate with every state x an
output value (either in B or an exception in E) and, for each input a, a next state or an
exception. The behaviour of a state x, given by [[η(x)]], will be a formal power series over
A with output values in E + B; that is, a function from A∗ to E + B. The final map is
defined as follows, for all e ∈ E, x ∈ X, a ∈ A, and w ∈ A∗:

X

〈o,t〉

��

κ2 // E + X

〈o♯,t♯〉

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴

[[κ1(e)]](w) = κ1(e)
[[κ2(x)]](ǫ) = o(x)
[[κ2(x)]](a · w) = [[t(x)(a)]](w)

(E + B)A
∗

��

(E + B) × (E + X)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ (E + B) × ((E + B)A
∗
)A

Moore automata with side effects. Let S be an arbitrary set of so-called side-effects. We
consider the monad T (X) = (S × X)S , with unit η defined, for all x ∈ X and s ∈ S, by
η(x)(s) = 〈s, x〉. We define the lifting f ♯ : T (X) → T (Y) of a function f : X → T (Y) by
f ♯(g)(s) = f(x)(s′), for any g ∈ T (X) and s ∈ S, and with g(s) = 〈s′, x〉.

Consider an FT -coalgebra 〈o, t〉 : X → (B × S)S × ((S × X)S)A and let us explain
the intuition behind this type of automaton type. The set S × X can be interpreted as
the configurations of the automaton, where S contains information about the state of the
system and X about the control of the system. Using the isomorphism X → (S × B)S ∼=

10 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

S ×X → S ×B, we can think of o : X → (S ×B)S as a function that for each configuration
in S × X provides an output in B and the new state of the system in S. The transition
function t : X → ((S × X)S)A gives a new configuration for each input letter and current
configuration, using again the fact that X → ((S × X)S)A ∼= S × X → (S × X)A. In all of
this, a concrete instance of the set of side-effects could be, for example, the set S = V L of
functions associating memory locations to values.

The behaviour of a state x ∈ X will be given by [[η(x)]], where the final mapping is as
follows. For all g ∈ (S × X)S , s ∈ S, a ∈ A and w ∈ A∗, and with g(s) = 〈s′, x〉, we have

X

〈o,t〉

��

η
// (S × X)S

〈o♯,t♯〉

yyrr
rr
rr
rr
rr
rr
rr
rr
rr
r

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴❴

[[g]](ǫ)(s) = o(x)(s′)
[[g]](a · w) = [[λs.t(x)(a)(s′)]](w)

((B × S)S)A
∗

��

(B × S)S × ((S × X)S)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ (B × S)S × (((B × S)S)A
∗
)A

Moore automata with interactive output. Let O be an arbitrary set of outputs. Consider the
interactive output monad defined by the functor T (X) = µv.X +(O×v) ∼= O∗×X together
with the natural transformation ηX = λx ∈ X.〈ǫ, x〉, and for which the lifting f ♯ : T (X) →
T (Y) of a function f : X → T (Y) is given by f ♯(〈w, x〉) = 〈ww′, y〉 with f(x) = 〈w′, y〉. We
consider FT -coalgebras

〈o, t〉 : X → (O∗ × B) × (O∗ × X)A

For B = 1, the above coalgebras coincide with (total) subsequential transducers [17]: o : X →
O∗ is the final output function; t : X → (O∗ × X)A is the pairing of the output function
and the next state-function.

The behaviour of a state x will be given by [[η(x)]] = [[〈ǫ, x〉]], where, for every 〈w, x〉 ∈
O∗ × X, [[〈w, x〉]] : A∗ → O∗, is given by

[[〈w, x〉]](ǫ) = w · o(x) [[〈w, x〉]](aw1) = w · ([[t(x)(a)]](w1))

Probabilistic Moore automata. Consider the monad of probability distributions defined, for
any set X, by

T (X) = Dω(X)

Its unit is given by the Dirac distribution, defined for x, x′ ∈ X by

η(x)(x′) =

{
1 x = x′

0 otherwise

The lifting f ♯ : T (X) → T (Y) of a function f : X → T (Y) is given, for any distribution
c ∈ Dω(X) and any y ∈ Y , by

f ♯(c)(y) =
∑

d∈Dω(Y)

 ∑

x∈f−1(d)

c(x)

 × d(y)

We will consider FT -coalgebras

〈o, t〉 : X → Dω(B) × Dω(X)A

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 11

More specifically, we take B = 2 which implies Dω(2) ∼= [0, 1]. For this choice of B, the
above FT -coalgebras are precisely the (Rabin) probabilistic automata [36]. Each state x has
an output value in o(x) ∈ [0, 1] and, for each input a, t(x)(a) is a probability distribution
of next states. The behaviour of a state x is given by [[η(x)]] : A∗ → [0, 1], defined below.
Intuitively, one can think of [[η(x)]] as a probabilistic language: each word is associated with
a value p ∈ [0, 1]. The final mapping

X

〈o,t〉

��

η
// Dω(X)

〈o♯,t♯〉

||②②
②②
②②
②②
②②
②②
②②
②②

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴ [0, 1]A

∗

��

[0, 1] × Dω(X)A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ [0, 1] × ([0, 1]A
∗
)A

is given, for any d ∈ Dω(X), x ∈ X, a ∈ A, and w ∈ A∗, by

[[d]](ǫ) =
∑

b∈[0,1]
(

∑
o(x)=b

d(x)) × b

[[d]](aw) = [[λx′.
∑

c∈Dω(X)

(
∑

b=t(x)(a) d(x)) × c(x′)]](w)

It is worth noting that this exactly captures the semantics of [36], while the ordinary
∼FT coincides with probabilistic bisimilarity of [28]. Moreover ≈T

F coincides with the trace
semantics of probabilistic transition systems defined in [19] (see Section 7.2 of [23]).

3.2. Pushdown automata, coalgebraically. Recursive functions in a computer program
lead naturally to a stack of recursive function calls during the execution of the program. In
this section, we provide a coalgebraic model of automata equipped with a stack memory. A
pushdown machine is a tuple (Q,A,B, δ), where Q is set of control locations (states), A is a
set of input symbols, B is a set of stack symbols, and δ is finite subset of Q×A×B×Q×B∗,
called the set of transition rules. Note that we do not insist on the sets Q, A and B to be
finite and consider only realtime pushdown machines, i.e. without internal transitions (also
called ǫ-transitions) [21]. A configuration k of a pushdown machine is a pair 〈q, β〉 denoting
the current control state q ∈ Q and the current content of the stack β ∈ B∗. In denoting the
stack as a string of stack symbols we assume that the topmost symbol is written first. There

is a transition 〈q, bβ〉 a−→ 〈q′, αβ〉 if 〈q′, α〉 ∈ δ(q, a, b). A convenient notation is to introduce
for any string w ∈ A∗ the transition relation on configurations as the least relation such
that

(1) k
ǫ−→ k

(2) k
aw−−→ k′ if and only if k

a−→ k′′ and k′′ w−→ k′.
A pushdown automaton (pda) is a pushdown machine together with an initial configuration
k0 and a set K of accepting configurations. The sets of accepting configurations usually
considered are (1) the set F × B∗, where F ⊆ Q is called the set of accepting states, or (2)
Q × {ǫ}, but also (3) F × {ǫ} for F ⊆ Q, or (4) Q × B′B∗ for B′ a subset of B. A word

w ∈ A∗ is said to be accepted by a pda (Q,A,B, δ, k0 ,K) if k0
w−→ k for some k ∈ K. A

pda with accepting configurations as in (1) is said to be with accepting states, whereas,
when they are as in (2) then the pda is said to be accepting by empty stack. They both

12 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

accept exactly proper context free languages (i.e. context free languages without the empty
word) [3].

Computations in a pushdown machine are generally non-deterministic and can cause
a change in the control state of the automaton as well as in its stack. For this reason
we will model the effects of the computations by means of the so-called non-deterministic
side-effect monad [5]. For a set of states S, let T be the functor Pω(− × S)S . It is a
monad when equipped with the unit ηX : X → T (X), defined by η(x)(s) = {〈x, s〉}, and
the multiplication µX : T (T (X)) → T (X) given by

µX(k)(s) =
⋃

〈c,s′〉∈k(s)

c(s′)

Note that, for a function f : X → T (Y), the extension f ♯ : T (X) → T (Y) is defined by

f ♯(c)(s) =
⋃

〈x′,s′〉∈c(s)

f(x′)(s′) .

Examples of algebras for this monad are T (1) = Pω(S)S and 2S . The latter can in fact be
obtained as a quotient of the former by equating those functions k1, k2 : S → Pω(S) such
that for all s ∈ S, k1(s) = ∅ if and only if k2(s) = ∅.

Every pushdown machine (Q,A,B, δ) together with a set of accepting configurations K
induces a function 〈o, t〉 : Q → FTQ where F is the functor 2B∗ × idA and T is the monad
defined above specialized for S = B∗ (intuitively, side effects in a pushdown machine are

changes in its stack). The functions o : Q → 2B∗
and t : Q → Pω(Q × B∗)B

∗A
are defined as

o(q)(β) = 1 if and only if 〈q, β〉 ∈ K
t(q)(a)(ǫ) = ∅
t(q)(a)(bβ) = {〈q′, αβ〉 | 〈q′, α〉 ∈ δ(q, a, b)}

The transition function t describes the steps between pda configurations and it is specified
in terms of the transition instructions δ of the original machine.

From the above is clear that not every function 〈o, t〉 : Q → FTQ defines a pushdown
machine with accepting configurations, as, for example, t(q) may depend on the whole
stack β and not just on the top element b. Therefore we restrict our attention to consider
functions 〈o, t〉 : Q → FTQ such that

(1) t(q)(a)(ǫ) = ∅
(2) t(q)(a)(bβ) = {〈q′, αβ〉 | 〈q′, α〉 ∈ t(q)(a)(b)},
Every 〈o, t〉 satisfying (1) and (2) above defines the pushdown machine (Q,A,B, δ) with
δ(q, a, b) = t(q)(a)(b) and with accepting configuration K = {〈q, β〉|o(q)(β) = 1}. The first
condition is asserting that a machine is in a deadlock configuration when the stack is empty,
while the last condition ensures that transition steps depend only on the control state and

the top element of the stack. For this reason we will write q
a,b|α−−−→ q′ for 〈q′, αβ〉 ∈ t(q)(a)(b)

indicating that the pushdown machine in the state q by reading an input symbol a and
popping b off the stack, can move to a control state q′ pushing the string α ∈ B∗ on the
current stack (here denoted by β).

Similarly to what we have shown in the examples of structured Moore automata, for

every function 〈o, t〉 : Q → FTQ there is a unique F -coalgebra map [[−]] : T (Q) → 2B∗A∗
,

which is also a T -algebra homomorphism. It is defined for all c ∈ Pω(Q×B∗)B
∗

and β ∈ B∗

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 13

as

Q

〈o,t〉

��

η
// Pω(Q × B∗)B

∗

〈o♯,t♯〉
yytt
tt
tt
tt
tt
tt
tt
tt
tt
t

[[−]]
//❴❴❴❴ 2B∗A∗

��

2B∗ × Pω(Q × B∗)B
∗A

//❴❴❴❴❴❴❴❴❴❴❴❴ 2B∗ × 2B∗A∗A

[[η(q)]](ǫ) = o(q)
[[η(q)]](aw) = [[λβ.t(q)(a)(β)]](w)
[[c]](β) =

⋃
〈q,α〉∈c(β)

[[η(q)]](α) .

We then have that a word w ∈ A∗ is accepted by the pda (Q,A,B, δ, k0,K) with k0 = 〈q, β〉
if and only if [[η(q)]](w)(β) = 1.

The above definition implies that for a given word w ∈ A∗ we can decide if it is accepted
by 〈o, t〉 : Q → FTQ from an initial configuration k0 = 〈q, β〉 in exactly |w| steps (assuming
there is a procedure to decide whether o(q)(β) = 1). As a consequence, we cannot use
structured Moore automata to model Turing machines, for which the halting problem is
undecidable: in general terms, for Turing machines, we would need internal transitions that
do not consume input symbols.

We conclude with an example of our construction using a pushdown machine with
control states Q = {q0, q1}, over an input alphabet A = {a, b} and using stack symbols
B = {x, s}. The transitions rules δ are given below:

q0

a,s|x
��

a,x|xx

SS

b,x|ǫ
// q1

b,x|ǫ

We take K = {〈q0, ǫ〉, 〈q1, ǫ〉}, meaning that o(q0)(ǫ) = 1, o(q1)(ǫ) = 1 and o(qi)(β) = 0 in
all other cases. By considering k0 = 〈q0, s〉 as initial configuration, we then have

[[η(q0)]](ǫ)(s) = o(q0)(s) = 0

meaning that the empty word is not accepted by the pda (Q,A,B, δ, k0,K). However, the
word ab is accepted:

[[η(q0)]](ab)(s) = [[λβ.t(q0)(a)(β)]](b)(s)
=

⋃
〈p,β〉∈t(q0)(a)(s)

[[η(p)]](b)(β)

= [[η(q1)]](b)(x)
= [[λβ.t(q1)(b)(β)]](ǫ)(x)
=

⋃
〈p,β〉∈t(q1)(b)(x)

[[η(p)]](ǫ)(β)

= [[η(q1)]](ǫ)(ǫ)
= o(q1)(ǫ)
= 1 .

In fact, the language accepted by the above pushdown automaton is {anbn | n ≥ 1}. The
structured states ci ∈ TQ, their transitions and their outputs of (part of) the associated
Moore automaton are given in Figure 1.

Context-free grammars generating proper languages (i.e. not containing the empty
word ǫ) are equivalent to realtime pda’s [11, 13, 42]. Given an input alphabet A, and a set

14 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

q0

a,s|x
��

a,x|xx

SS

b,x|ǫ
// q1

b,x|ǫ

c4

a

@@

b //

c2

a
>>⑤⑤⑤⑤⑤⑤⑤⑤ b // c5

a

��

b //

a

��
c0

a
>>⑤⑤⑤⑤⑤⑤⑤⑤

b

 ❇
❇❇

❇❇
❇❇

❇
c1

a //

b
��

c6 a,b
gg

c3

a
>>⑤⑤⑤⑤⑤⑤⑤⑤ b // c7

a

OO

b //

a

^^

o♯(c0) = o♯(c1) = λβ.

{
1 if β = ǫ
0 otherwise

o♯(c2) = o♯(c4) = o♯(c6) = λβ.0

o♯(c3) = o♯(c5) = λβ.

{
1 if β = x
0 otherwise

o♯(c7) = λβ.

{
1 if β = xxs
0 otherwise

c0 = η(q0) c1 = η(q1)

c2 = λβ.

{〈q0, xβ′〉} if β = sβ′

{〈q0, xxβ′〉} if β = xβ′

∅ otherwise
c3 = λβ.

{
{〈q1, β′〉} if β = xβ′

∅ otherwise

c4 = λβ.

{〈q0, xxβ′〉} if β = sβ′

{〈q0, xxxβ′〉} if β = xβ′

∅ otherwise
c5 = λβ.

{〈q1, β′〉} if β = sβ′

{〈q1, xβ′〉} if β = xβ′

∅ otherwise

c6 = λβ.∅ c7 = λβ.

{
{〈q1, β′〉} if β = xxβ′

∅ otherwise

Figure 1: The structured states ci ∈ TQ, their transitions and their output of (part of) the
Moore automaton associated to the pda (Q,A,B, δ, k0,K) where Q = {q0, q1},
A = {a, b}, B = {x, s}, δ is depicted on the left top, k0 = 〈q0, s〉 and K =
{〈q0, ǫ〉, 〈q1, ǫ〉}.

of variables B, let G = (A,B, s, P) be a context-free grammar in Greibach normal form [15],
i.e. with productions in P of the form b → aα with b ∈ B, a ∈ A and α ∈ B∗. We can
construct a function 〈o, t〉 : 1 → FT1 (where 1 = {∗}) by setting

o(∗)(β) = 1 if and only if β = ǫ and t(∗)(a)(bβ) = {〈∗, αβ〉 | b → aα ∈ P} .

Clearly this function satisfies conditions (1) and (2) above, and thus, together with the
initial configuration 〈∗, s〉 defines a pda. Furthermore, [[η(∗)]](w)(s) = 1 if and only if there
exists a derivation for w ∈ A∗ in the grammar G.

As an example, let us consider the grammar ({a, b}, {s, x}, s, P) with productions P =
{s → asx, s → ax, x → b} generating the language {anbn | n ≥ 1}. The associated coalgebra
〈o, t〉 : 1 → FT1 is given by

*

a,s|sx
��

a,s|x

qq

b,x|ǫ

QQ with o(∗)(β) = 1 iff β = ǫ

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 15

*

a,s|sx
��

a,s|x

qq

b,x|ǫ

QQ c′3 //

c′1

a
@@�������

b // c′4

a

��

//

c′0

a
@@�������

b

��
❃❃

❃❃
❃❃

❃
c′5 //

c′2
a //

b

��
❃❃

❃❃
❃❃

❃
c′6 //

c′7 //

c′0 = η(∗)

c′1 = λβ.

{
{〈∗, sxβ′〉, 〈∗, xβ′〉} if β = sβ′

∅ otherwise

c′2 = λβ.

{
{〈∗, β′〉} if β = xβ′

∅ otherwise

c′3 = λβ.

{
{〈∗, sxxβ′〉, 〈∗, xβ′〉} if β = sβ′

∅ otherwise

c′4 = λβ.

{
{〈∗, β′〉} if β = sβ′

∅ otherwise

c′5 = λβ.

{
{〈∗, sxβ′〉, 〈∗, xβ′〉} if β = ssβ′

∅ otherwise

o♯(c′0) = λβ.

{
1 if β = ǫ
0 otherwise

c′6 = λβ.

{
{〈∗, sxβ′〉, 〈∗, xβ′〉} if β = xsβ′

∅ otherwise

o♯(c′2) = λβ.

{
1 if β = x
0 otherwise

c′7 = λβ.

{
{〈∗, β′〉} if β = xxβ′

∅ otherwise

o♯(c′1) = o♯(c′3) = o♯(c′5) = o♯(c′6) = λβ.0

o♯(c′7) = λβ.

{
1 if β = xx
0 otherwise

o♯(c′4) = λβ.

{
1 if β = s
0 otherwise

Figure 2: The structured states ci ∈ TQ, their transitions and their output of (part of)
the Moore automaton associated to the pda (Q,A,B, δ, k0,K) where Q = {∗},
A = {a, b}, B = {x, s}, δ is depicted on the left top, k0 = 〈∗, s〉 and K = {〈∗, ǫ〉}.

Even if the language accepted by the above pda is the same as the one accepted by the
pda in the previous example (i.e., [[η(∗)]](w)(s) = [[η(q0)]](w)(s) for all w ∈ A∗), the two
associated Moore automaton are not in ≈T

F (that is [[η(∗)]] 6= [[η(q0)]]). In fact, the Moore
automaton associated to the above coalgebra (see below) accepts the string abab when
starting from the configuration 〈∗, ss〉, while the one in the previous example does not (in
symbols, [[η(∗)]](abab)(ss) = 1 while [[η(q0)]](abab)(ss) = 0).

The above characterization of context free languages over an alphabet A is different and
complementary to the coalgebraic account of context-free languages presented in [44]. The
latter, in fact, uses the functor D(X) = 2 × XA for deterministic automata (instead of the
Moore automata with output in 2B∗

above, for B a set of variables), and the idempotent
semiring monad T (X) = Pω((X +A)∗) (instead of our side effect monad) to study different

16 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

but equivalent ways to present context-free languages: using grammars, behavioural differ-
ential equations and generalized regular expressions in which the Kleene star is replaced by
a unique fixed point operator.

4. Coalgebras and T-Algebras

In the previous section we presented a framework, parameterized by a functor F and a
monad T, in which systems of type FT (that is, FT -coalgebras) can be studied using a
novel equivalence ≈T

F instead of the classical ∼FT . The only requirement we imposed was
that FT (X) has to be a T-algebra.

In this section, we will present functors F for which the requirement of FT (X) being
a T-algebra is guaranteed because they can be lifted to a functor F ∗ on T-algebra. For
these functors, the equivalence ≈T

F coincides with ∼F ∗. In other words, working on FT -

coalgebras in Set under the novel ≈T
F equivalence is the same as working on F ∗-coalgebras

on T-algebras under the ordinary ∼F ∗ equivalence. Next, we will prove that for this class of
functors and an arbitrary monad T the equivalence ∼FT is contained in ≈T

F . Instantiating
this result for our first motivating example of non-deterministic automata will yield the well
known fact that bisimilarity implies trace equivalence.

Let T be a monad. An endofunctor F ∗ : SetT → SetT is said to be the T-algebra
lifting of a functor F : Set → Set if the following square commutes1:

SetT

UT

��

F ∗
// SetT

UT

��

Set
F

// Set

If the functor F has a T-algebra lifting F ∗ then FT (X) is the carrier of the algebra
F ∗(T (X), µ). Functors that have a T-algebra lifting are given, for example, by those endo-
functors on Set constructed inductively by the following grammar

F :: = Id | B | F × F | FA | TG

where A is an arbitrary set, B is the constant functor mapping every set X to the carrier of
a T-algebra (B,h), and G is an arbitrary functor. Since the forgetful functor UT : SetT →
Set creates and preserves limits, both F1×F2 and FA have a T-algebra lifting if F , F1, and
F2 have. Finally, TG has a T-algebra lifting for every endofunctor G given by the assignment
(X,h) 7→ (TGX,µGX). Note that we do not allow taking coproducts in the above grammar,
because coproducts of T-algebras are not preserved in general by the forgetful functor UT.
Instead, one could resort to extending the grammar with the carrier of the coproduct taken
directly in SetT. For instance, if T is the (finite) powerset monad, then we could extend
the above grammar with the functor F1 ⊕ F2 = F1 + F2 + {⊤,⊥}.

All the functors of the examples in Sections 2 and 3, as well as those in Section 5, can
be generated by the above grammar and, therefore, they have a T-algebra lifting.

Now, let F be a functor with a T-algebra lifting and for which a final coalgebra Ω exists.
If Ω can be constructed as the limit of the final sequence (for example assuming the functor

1This is equivalent to the existence of a distributive law λ : TF ⇒ FT [24].

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 17

accessible [1]), then, because the forgetful functor UT : SetT → Set preserves and creates
limits, Ω is the carrier of a T-algebra, and it is the final coalgebra of the lifted functor F ∗.
Further, for any FT -coalgebra f : X → FT (X), the unique F -coalgebra homomorphism
[[−]] as in diagram (3.1) is a T -algebra homomorphism between T (X) and Ω. Conversely,
the carrier of the final F ∗-coalgebra (in SetT) is the final F -coalgebra (in Set).

Intuitively, the above means that for an accessible functor F with a T-algebra lifting
F ∗, F ∗-equivalence in SetT coincides with F -equivalence with respect to T in Set. The
latter equivalence is coarser than the FT -equivalence in Set, as stated in the following
theorem.

Theorem 4.1. Let T be a monad. If F is an endofunctor on Set for which a final coalgebra
exists and with a T-algebra lifting, then ∼FT implies ≈T

F .

Proof. We first show that there exists a functor from the category of FT -coalgebras to the
category of F -coalgebras.

This functor maps each FT -coalgebra (X, f) into the F -coalgebra (T (X), f ♯) and each
FT -homomorphism h : (X, f) → (Y, g) into the F -homomorphism T (h) : (T (X), f ♯) →
(T (Y), g♯). In order to prove that this is a functor we just have to show that T (h) is
an F -homomorphism (i.e., the backward face of the following diagram commutes).

T (X)

f♯

✌✌
✌✌
✌✌
✌

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌

T (h)
// T (Y)

g♯

��✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

X
h //

f

��

ηX

99tttttttttt
Y

g

��

ηY

::tttttttttt

FT (X)
FT (h)

// FT (Y)

Note that the front face of the above diagram commutes because h is an FT -homomorphism.
Also the top face commutes because η is a natural transformation. Thus

FT (h) ◦ f ♯ ◦ ηX = FT (h) ◦ f = g ◦ h

and also
g♯ ◦ T (h) ◦ ηX = g♯ ◦ ηY ◦ h = g ◦ h.

Since η is the unit of the adjunction, then there exists a unique j♯ : T (X) → FT (Y) in
SetT such that g ◦ h = j♯ ◦ ηX . Since both FT (h) ◦ f ♯ and g♯ ◦ T (h) are (by construction)
morphisms in SetT, then FT (h) ◦ f ♯ = g♯ ◦ T (h).

Let (X, f) and (Y, g) be two FT -coalgebras and [[−]]X and [[−]]Y their morphisms into the
final FT -coalgebra (Ω, ω). Let (T (X), f ♯), (T (Y), g♯) and (T (Ω), ω♯) be the corresponding
F -coalgebras and [[−]]TX , [[−]]TY and [[−]]TΩ their morphisms into the final F -coalgebra
(Ω′, ω′).

Since T ([[−]]X) : (T (X), f ♯) → (T (Ω), ω♯) is an F -homomorphism, then by uniqueness,
[[−]]TX = [[−]]TΩ ◦ T ([[−]]X).

18 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

T (X)

[[−]]TX

((

f♯

✌✌
✌✌
✌✌
✌

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌

T ([[−]]X)
// T (Ω)

ω♯

��✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍
✍

[[−]]TΩ
// Ω′

ω′

��✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

X
[[−]]X

//

f

��

ηX

99tttttttttt
Ω

ω

��

ηΩ

::✉✉✉✉✉✉✉✉✉✉

FT (X)
FT ([[−]]X)

//

F ([[−]]TX)

44
FT (Ω)

F ([[−]]TΩ)
// F (Ω′)

With the same proof, we obtain [[−]]TY = [[−]]TΩ ◦ T ([[−]]Y).
Recall that for all x ∈ X and y ∈ Y , by definition, x ∼FT y iff [[x]]X = [[y]]Y and x ≈T

F y
iff [[ηX(x)]]TX = [[ηY (y)]]TY .

Suppose that [[x]]X = [[y]]Y . Then, T ([[ηX(x)]]X) = ηΩ ◦ [[x]]X = ηΩ ◦ [[y]]Y = T ([[ηY (y)]]Y)
and, finally, [[ηX(x)]]TX = [[−]]TΩ ◦ T ([[ηX(x)]]X) = [[−]]TΩ ◦ T ([[ηY (y)]]Y) = [[ηY (y)]]TY .

The above theorem instantiates to the well-known facts: for NDA, where F (X) = 2×XA

and T = Pω, that bisimilarity implies language equivalence; for partial automata, where
F (X) = 2 × XA and T = 1 + −, that equivalence of pairs of languages, consisting of
defined paths and accepted words, implies equivalence of accepted words; for probabilistic
automata, where F (X) = [0, 1] × XA and T = Dω, that probabilistic bisimilarity implies
probabilistic/weighted language equivalence. Note that, in general, the above inclusion is
strict.

Remark. Let (X, f) be an FT -coalgebra for a monad T and a functor F . If η : id ⇒ T
is pointwise injective, then ∼FT on the FT -coalgebra (X, f) coincides with ∼TFT on the
extended TFT -coalgebra (X, ηFT (X) ◦f) [37, 4]. If moreover F has a T-algebra lifting then,

by the above theorem (on the extended TFT -coalgebra), ∼TFT implies ≈T
TF . Combining

the two implications, it follows that hat ∼FT on the FT -coalgebra (X, f) implies ≈T
TF on

the extended TFT -coalgebra (X, ηFT (X)◦f). Finally, under the assumption that F has a T-

algebra lifting, we also have that ≈T
F the FT -coalgebra (X, f) implies ≈T

TF on the extended
TFT -coalgebra (X, ηFT (X) ◦ f). This yields the following hierarchy of equivalences.

≈T
TF

≈T
F

⊇
◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

∼TFT

⊆

✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡

= ∼FT

⊆

②②②②②②②②②

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 19

5. Beyond Bisimilarity and Traces

The operational semantics of interactive systems is usually specified by labeled transition
systems (LTS’s). The denotational semantics is given in terms of behavioural equivalences,
which depend the amount of branching structure considered. Bisimilarity (full branching) is
sometimes considered too strict, while trace equivalence (no branching) is often considered
too coarse. The linear time / branching time spectrum [14] shows a taxonomy of many
interesting equivalences lying in between bisimilarity and traces.

Labeled transition system are coalgebras for the functor Pω(Id)A and the coalgebraic
equivalence ∼Pω(Id)A coincides with the standard notion of Park-Milner bisimilarity. In [35],

it is shown a coalgebraic characterization of traces semantics (for LTS’s) employing Kleisli
categories. More recently, [33] have provided a characterization of trace, failure and ready
semantics by mean of “behaviour objects”. Another coalgebraic approach [26] relies on
“test-suite” that, intuitively, are fragments of Hennessy-Milner logic. In this section, we
show that (finite) trace equivalence [20], complete trace equivalence [14], failures [9] and
ready semantics [34] can be seen as special cases of ≈T

F .

Before introducing these semantics, we fix some notations. A labeled transition system
is a pair (X, δ) where X is a set of states and δ : X → Pω(X)A is a function assigning to

each state x ∈ X and to each label a ∈ A a finite set of possible successors states: x
a→ y

means that y ∈ δ(x)(a). Given a word w ∈ A∗, we write x
w→ y for x

a1→ . . .
an→ y and

w = a1 . . . an. When w = ǫ, x
ǫ→ y iff y = x. For a function ϕ ∈ Pω(X)A, I(ϕ) denotes

the set of all labels “enabled” by ϕ, i.e., {a ∈ A | ϕ(a) 6= ∅}, while Fail(ϕ) denotes the set
{Z ⊆ A | Z ∩ I(ϕ) = ∅}.

Let 〈X, δ〉 be a LTS and x ∈ X be a state. A trace of x is a word w ∈ A∗ such that

x
w→ y for some y. A trace w of x is complete if x

w→ y and y stops, i.e., I(δ(y)) = ∅. A

failure pair of x is a pair 〈w,Z〉 ∈ A∗ × Pω(A) such that x
w→ y and Z ∈ Fail(δ(y)). A

ready pair of x is a pair 〈w,Z〉 ∈ A∗ × Pω(A) such that x
w→ y and Z = I(δ(y)). We use

T (x), CT (x), F(x) and R(x) to denote, respectively, the set of all traces, complete traces,
failure pairs and ready pairs of x. For I ranging over T , CT ,F and R, two states x and y
are I-equivalent iff I(x) = I(y).

For an example, consider the following transition systems labeled over A = {a, b, c}.
They are all trace equivalent because their traces are a, ab, ac. The trace a is also complete
for p, but not for the others. Only r and s are failure equivalent, since 〈a, {bc}〉 is a failure
pair only of p, while 〈a, {b}〉 and 〈a, {c}〉 are failure pairs of p, r and s, but not of q. Finally
they are all ready different, since 〈a, ∅〉 is a ready pair only of p, 〈a, {b, c}〉 is a ready pair
of q and s but not of r, and 〈a, {b}〉 and 〈a, {c}〉 are ready pairs only of r and s.

p

a

��

a

����
��
��
��

q

a

��

r
a

��
❃❃

❃❃
❃❃

❃❃
a

����
��
��
��

s

a

��

a

��
❃❃

❃❃
❃❃

❃❃
a

����
��
��
��

c

❇❇

❇❇
❇❇

❇❇
b

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ c

❇❇

❇❇
❇❇

❇❇
b

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

b

��

c

��

b

��
b

 ❆
❆❆

❆❆
❆❆

❆

c
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

c

��

We can now show that these equivalences are instances of ≈T
F . We first show ready

equivalence in details and then, briefly, the others.

20 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

Take T = Pω and F = Pω(Pω(A)) × idA. For each set X, consider the function
πR

X : Pω(X)A → FT (X) defined for all ϕ ∈ Pω(X)A by

πR
X(ϕ) = 〈{I(ϕ)}, ϕ〉.

This function allows to transform each LTS (X, δ) into the FT -coalgebra (X,πR
X ◦ δ). The

latter has the same transitions of 〈X, δ〉, but each state x is “decorated” with the set {I(ϕ)}.
Now, by employing the powerset construction, we transform 〈X,πR

X ◦ δ〉 into the F -
coalgebra (Pω(X), 〈o, t〉), where, for all Y ∈ Pω(X), a ∈ A, the functions o : Pω(X) →
Pω(Pω(A)) and t : Pω(X) → Pω(X)A are

o(Y) =
⋃

y∈Y

{I(δ(y))} t(Y)(a) =
⋃

y∈Y

δ(y)(a).

The final F -coalgebra is (Pω(Pω(A))A
∗
, 〈ǫ, (−)a〉) where 〈ǫ, (−)a〉 is defined as usual.

X

δ
��

{·}
// Pω(X)

[[Y]](ǫ) = o(Y)
[[Y]](aw) = [[t(Y)(a)]](w)〈o,t〉

||②②
②②
②②
②②
②②
②②
②②
②②
②②
②②
②

[[−]]
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Pω(Pω(A))A

∗

〈ǫ,(−)a〉

��

(Pω(X))A

πR
X

��

Pω(Pω(A)) × (Pω(X))A //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ Pω(Pω(A)) × (Pω(Pω(Pω(A))A
∗
))A

Summarizing, the final map [[−]] : Pω(X) → Pω(Pω(A))A
∗

maps each {x} into a function

assigning to each word w, the set {Z ⊆ A | x
w→ y and Z = I(δ(y))}. In other terms,

Z ∈ [[{x}]](w) iff 〈w,Z〉 ∈ R(x).
For the state s depicted above, [[{s}]](ǫ) = {{a}}, [[{s}]](a) = {{b}, {b, c}, {c}}, [[{s}]](ab) =

[[{s}]](ac) = {∅} and for all the other words w, [[{s}]](w) = ∅.

The other semantics can be characterized in the same way, by choosing different functors
F and different functions πX : Pω(X)A → FT .

For failure semantics, take the same functor as for the ready semantics, that is F =
Pω(Pω(A)) × idA and a new function πF

X : Pω(X)A → FT (X) defined ∀ϕ ∈ Pω(X)A by

πF
X(ϕ) = 〈Fail(ϕ), ϕ〉.

The FT -coalgebra (X,πF
X ◦ δ) has the same transitions of the LTS 〈X, δ〉, but each state x

is “decorated” with the set Fail(ϕ).
For both trace and complete trace equivalence, take F = 2×idA (as for NDA). For trace

equivalence, πT
X : Pω(X)A → FT (X) maps ϕ ∈ Pω(X)A into 〈1, ϕ〉. Intuitively, (X,πT

X ◦ δ)
is an NDA where all the states are accepting. For complete traces, πCT

X : Pω(X)A → FT (X)
maps ϕ in 〈1, ϕ〉 if I(ϕ) = ∅ (and in 〈0, ϕ〉 otherwise).

By taking T = Dω instead of T = Pω, we hope to be able to characterize probabilistic
trace, complete trace, ready and failure as defined in [25].

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 21

6. Discussion

In this paper, we lifted the powerset construction on automata to the more general frame-
work of FT -coalgebras. Our results lead to a uniform treatment of several kinds of existing
and new variations of automata (that is, FT -coalgebras) by an algebraic structuring of their
state space through a monad T . We showed as examples partial Mealy machines, struc-
tured Moore automata, nondeterministic, partial and probabilistic automata. Furthermore,
we have presented an interesting coalgebraic characterization of pushdown automata and
showed how several behavioural equivalences stemming from concurrency theory can be
retrieved from the general framework. It is worth mentioning that the framework instanti-
ates to many other examples, among which are weighted automata [41]. These are simply
structured Moore automata for B = 1 and T = S−

ω (for a semiring S) [16]. It is easy to
see that ∼FT coincides with weighted bisimilarity [10], while ≈T

F coincides with weighted
language equivalence [41].

Some of the aforementioned examples can also be coalgebraically characterized in
the framework of [19, 18]. There, instead of considering FT -coalgebras on Set and F ∗-
coalgebras on SetT (the Eilenberg-Moore category), TG-coalgebras on Set and G-coalgebras
on SetT (the Kleisli category) are studied. The main theorem of [19] states that under
certain assumptions, the initial G-algebra is the final G-coalgebra that characterizes (gen-
eralized) trace equivalence. The exact relationship between these two approaches has been
studied in [23] (and, indirectly, it could be deduced from [6] and [27]). It is worth to remark
that many of our examples do not fit the framework in [19]: for instance, the exception,
the side effect, the full-probability and the interactive output monads do not fulfill their
requirements (the first three do not have a bottom element and the latter is not commu-
tative). Moreover, we also note that the example of partial Mealy machines is not purely
trace-like, as all the examples in [19].

The idea of using monads for modeling automata with non-determinism, probabilism
or side-effects dates back to the “λ-machines” of [2] that, rather than coalgebras, rely on
algebras. More precisely, the dynamic of a λ-machine is a morphism δ : FX → TX, where F
is a functor and T is a monad (for instance the transitions of T -structured Moore automata
are a function δ : X × A → TX mapping a state and an input symbol into an element
of TX). Analogously to our approach, each λ-machine induces an “implicit λ-machine”
having TX as state space. Many examples of this paper (like Moore automata) can be seen
as λ-machines, but those systems that are essentially coalgebraic (like Mealy machines) do
not fit the framework in [2].

There are several directions for future research. On the one hand, we will try to exploit
F -bisimulations up to T [29, 30] as a sound and complete proof technique for ≈T

F . On the
other hand, we would like to lift many of those coalgebraic tools that have been developed
for “branching equivalences” (such as coalgebraic modal logic [12, 40] and (axiomatization
for) regular expressions [8]) to work with the “linear equivalences” induced by ≈T

F .
We have pursued further the applications to decorated traces and the challenging mod-

eling of the full linear-time spectrum in a separate paper [7], work which we also plan to
extend to probabilistic traces.

22 A. SILVA, F. BONCHI, M. BONSANGUE, AND J. RUTTEN

References

[1] J. Adámek. Free algebras and automata realization in the language of categories. Comment. Math.
Univ. Carolinae, 15:589–602, 1974.

[2] M. Arbib, and E. Manes. Fuzzy machines in a category. Bull. Austral. Math. Soc., 13:169–210, 1975.
[3] J.-M. Autebert, J. Berstel, and L. Boasson. Context-Free Languages and Push-Down Automata. In G.

Rozenberg and A. Salomaa (eds.), Handbook of Formal Languages, Volume 1, pages 111-174. Springer-
Verlag, 1997.

[4] F. Bartels. On generalized coinduction and probabilistic specification formats. PhD thesis, Vrije Univer-
siteit Amsterdam, 2004.

[5] N. Benton, J. Hughes, and E. Moggi. Monads and Effects. Course notes for APPSEM Summer School,
2000. Available on line at http://www.disi.unige.it/person/MoggiE/APPSEM00/BHM.ps.

[6] A. Balan, and A. Kurz. On Coalgebras over Algebras. Electronic Notes in Theoretical Computer Science.
264(2): 47-62 (2010)

[7] F. Bonchi, M.M. Bonsangue, G. Caltais, J.J.M.M. Rutten, and A. Silva. Final semantics for decorated
traces, In Proceedings of MFPS, ENTCS, Elsevier, 2012, to appear.

[8] M.M. Bonsangue, J.J.M.M. Rutten, and A. Silva. An algebra for Kripke polynomial coalgebras. In
Proceedings of 24th Annual IEEE Symposium on Logic In Computer Science (LICS 2009), pages 49–58.
IEEE Computer Society, 2009.

[9] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A Theory of Communicating Sequential Processes.
Journal of the ACM, 31(3):560–599, ACM 1984.

[10] P. Buchholz. Bisimulation relations for weighted automata. Theoretical Computer Science, 393(1-3):109–
123, Elsevier, 2008.

[11] N. Chomsky. Context Free Grammars and Pushdown Storage. Quarterly Progress Report, volume 65,
MIT Research Laboratory in Electronics, Cambridge, MA, 1962.

[12] C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are coalgebraic. Computer
Journal 54(1):31–41, Oxford University Press, 2011.

[13] R.J. Evey. Application of Pushdown Store Machines. In Proceedings of the 1963 Fall Joint Computer
Conference (AFIPS 1963), ACM, 1963.

[14] R.J. van Glabbeek. The Linear Time-Branching Time Spectrum. In E. Best (Ed.), Proceedings of CON-
CUR 93, volume 458 of Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

[15] S. Greibach. A Note on Pushdown Store Automata and Regular Systems. Proceedings of the American
Mathematical Society, 18:263–268, American Mathematical Society 1967.

[16] H.P. Gumm and T. Schröder. Monoid-labeled transition systems. Electronic Notes in Theoretical Com-
puter Science, 44(1):184–203, Elsevier 2001.

[17] H.H. Hansen. Coalgebraising subsequential transducers. Electronic Notes in Theoretical Computer Sci-
ence, 203(5):109–129, 2008.

[18] I. Hasuo. Tracing Anonymity with Coalgebras. PhD thesis, Radboud University Nijmegen, 2008.
[19] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods in

Computer Science, 3(4):1–36, 2007.
[20] C. A. R. Hoare. Communicating Sequential Processes. Communincation of the ACM., 21(8):666–677,

ACM, 1978.
[21] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-

Wesley, 1979.
[22] B. Jacobs. Distributive laws for the coinductive solution of recursive equations. Information and Com-

putation, 204(4): 561-587, 2006.
[23] B. Jacobs, A. Silva, and A. Sokolova. Trace Semantics via Determinization. To appear in Proceedings

of CMCS 12, in Lecture Notes in Computer Science. Springer, 2012.
[24] P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bulletin London Mathematical So-

ciety, 7:294–297, 1975.
[25] C. Jou and S.A. Smolka. Equivalences, Congruences, and Complete Axiomatizations for Probabilistic

Processes. In J. Baeten and J.W. Klop (eds), proceedings of CONCUR ’90, volume 458 of Lecture Notes
in Computer Science, pages 367–383, Springer, 1990.

[26] B. Klin. A coalgebraic approach to process equivalence and a coinduction principle for traces. Electronic
Notes in Theoretical Computer Science, 106:201–218, 2004.

[27] C. Kissig, and A. Kurz. Generic Trace Logics. In arXiv:1103.3239v1 [cs.LO], 2011.

GENERALIZING DETERMINIZATION FROM AUTOMATA TO COALGEBRAS 23

[28] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation,
94(1):1–28, 1991.

[29] M. Lenisa. From Set-theoretic Coinduction to Coalgebraic Coinduction: some results, some problems.
Electronic Notes in Theoretical Computer Science, 19:2–22, Elsevier, 1999.

[30] M. Lenisa, J. Power and H. Watanabe. Distributivity for endofunctors, pointed and co-pointed endofunc-
tors, monads and comonads. Electronic Notes in Theoretical Computer Science, 33:230–260, Elsevier,
2000.

[31] E. Manes. Algebraic theories. Graduate Texts in Mathematics, 26, Springer 1976.
[32] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.
[33] L. Monteiro. A Coalgebraic Characterization of Behaviours in the Linear Time - Branching Time Spec-

trum. In proceedings of the 19th International Workshop on Recent Trends in Algebraic Development
Techniques (WADT 2008), volume 5486 of Lecture Notes in Computer Science, pages 128–140. Springer,
2009.

[34] E.-R. Olderog and C.A.R. Hoare. Specification-Oriented Semantics for Communicating Processes. Acta
Informaticae, 21(1):9–66, 1986.

[35] J. Power and D. Turi. A Coalgebraic Foundation for Linear Time Semantics. Electronic Notes in The-
oretical Computer Science, 160:305–29, 1999.

[36] M.O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
[37] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,

Elsevier, 2000.
[38] J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of mealy automata. Electronic Notes

in Theoretical Computer Science, 160:305–319, 2006.
[39] J.J.M.M. Rutten. Coalgebra, concurrency, and control. In R. Boel and G. Stremersch (eds.), proceedings

of the 5th Workshop on Discrete Event Systems (WODES 2000), pages 31–38, Kluwer, 2000.
[40] L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical Computer

Science, 390(2-3):230–247, Elsevier, 2008.
[41] M.P. Schützenberger. On the definition of a family of automata. Information and Control, 4(2-3):245–

270, 1961.
[42] M.P. Schützenberger. On Context Free Languages and Pushdown Automata. Information and Control,

6:246-264, 1963.
[43] A. Silva, F. Bonchi, M. Bonsangue and J. Rutten. Generalizing the powerset construction, coalge-

braically. In proceedings of IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, (FSTTCS 2010), volume 8 of LIPIcs, pages 272 – 283, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2010.

[44] J. Winter, M.M. Bonsangue, J.J.M.M. Rutten. Context-Free Languages, Coalgebraically. In A. Corra-
dini, B. Klin, and C. Cirstea, (eds.), Proceedings of 4th Int. Conference on Algebra and Coalgebra in
Computer science (CALCO 2011), volume 6859 of Lecture Notes in Computer Science, pages 359-376,
Springer, 2011.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

Efficient Computation of Program Equivalence for
Confluent Concurrent Constraint Programming

(Technical Report)∗

Luis F. Pino
INRIA/DGA and LIX
École Polytechnique

91128 Palaiseau, France
luis.pino@lix.polytechnique.fr

Filippo Bonchi
CNRS and ENS Lyon

Université de Lyon, LIP
69364 Lyon, France

filippo.bonchi@ens-lyon.fr

Frank D. Valencia
CNRS and LIX

École Polytechnique
91128 Palaiseau, France

frank.valencia@lix.polytechnique.fr

ABSTRACT
Concurrent Constraint Programming (ccp) is a well-established
declarative framework from concurrency theory. Its foundations
and principles e.g., semantics, proof systems, axiomatizations, have
been thoroughly studied for over the last two decades. In contrast,
the development of algorithms and automatic verification proce-
dures for ccp have hitherto been far too little considered. To the best
of our knowledge there is only one existing verification algorithm
for the standard notion of ccp program (observational) equivalence.
In this paper we first show that this verification algorithm has an
exponential-time complexity even for programs from a representa-
tive sub-language of ccp; the summation-free fragment (ccp-{+}).
We then significantly improve on the complexity of this algorithm
by providing two alternative polynomial-time decision procedures
for ccp-{+} program equivalence. Each of these two procedures
has an advantage over the other. One has a better time complex-
ity. The other can be easily adapted for the full language of ccp
to produce significant state space reductions. The relevance of both
procedures derives from the importance of ccp-{+}. This fragment,
which has been the subject of many theoretical studies, has strong
ties to first-order logic and an elegant denotational semantics, and
it can be used to model real-world situations. Its most distinctive
feature is that of confluence, a property we exploit to obtain our
polynomial procedures.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Constraint and logic languages.
Concurrent, distributed, and parallel languages; D.2.4 [Software
/ Program Verification]: Formal methods; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—Logic and
constraint programming; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

General Terms
∗This work has been partially supported by the project ANR
12IS02001 PACE, ANR-09-BLAN-0169-01 PANDA, and by the
French Defence procurement agency (DGA) with a PhD grant.

Algorithms, Theory, Verification

Keywords
Concurrent Constraint Programming, Bisimulation, Partition Re-
finement, Observational Equivalence

1. INTRODUCTION

Motivation. Concurrent constraint programming (ccp) [26] is a
well-established formalism from concurrency theory that combines
the traditional algebraic and operational view of process calculi
with a declarative one based upon logic. It was designed to give
programmers explicit access to the concept of partial information
and, as such, has close ties with logic and constraint programming.

The ccp framework models systems whose agents (processes or
programs) interact by concurrently posting (telling) and querying
(asking) partial information in a shared medium (the store). Ccp is
parametric in a constraint system indicating interdependencies (en-
tailment) between partial information and providing for the speci-
fication of data types and other rich structures. The above features
have attracted a renewed attention as witnessed by the works [23,
11, 7, 6, 17] on calculi exhibiting data-types, logic assertions as
well as tell and ask operations. A compelling example of the kind
of system ccp can model involves users interacting by posting and
querying information in a social network [17].

Nevertheless, despite the extensive research on the foundations and
principles of ccp, the development of tools and algorithms for the
automatic verification of ccp programs has hitherto been far too lit-
tle considered. As we shall argue below, the only existing algorithm
for deciding the standard notion of process equivalence was given
[5] and it has an exponential time (and space) complexity.

The main goal of this paper is to produce efficient decision proce-
dures for program equivalence for a meaningful fragment of ccp.
Namely, the summation-free fragment of ccp, henceforth ccp-{+}.
The ccp-{+} formalism is perhaps the most representative sublan-
guage of ccp. It has been the subject of many theoretical studies
because of its computational expressivity, strong ties to first-order
logic, and elegant denotational semantics based on closure opera-
tors [26]. Its most distinctive property is that of confluence in the
sense the final resulting store is the same regardless of the exe-
cution order of the parallel processes. We shall use this property
extensively in proving the correctness of our decision procedures.

Approach. To explain our approach we shall briefly recall some
ccp equivalences. The standard notion of observational (program)
equivalence [26], roughly speaking, decrees that two ccp programs
are observationally equivalent if each one can be replaced with the
other in any ccp context and produce the same final stores. Other
alternative notions of program equivalences for ccp such as sat-
urated barbed bisimilarity (∼̇sb) and its weak variant (≈̇sb) were
introduced in [3], where it is also shown that ≈̇sb coincides with
the standard ccp observational equivalence for ccp-{+} programs.

The above-mentioned alternative notions of ccp equivalences are
defined in terms of a labeled transitions system (LTS) describing
the interactive behavior of ccp programs. (Intuitively, a labeled
transition γ α−→ γ′ represents the evolution into the program con-
figuration γ′ if the information α is added to store of the program
configuration γ.) The advantage of using these alternative notions
of equivalence instead of using directly the standard notion of ob-
servational equivalence for ccp is that there is a substantial amount
of work supporting the automatic verification of bisimilarity-based
equivalence. In this paper we shall mainly deal with the verification
of ≈̇sb for arbitrary ccp-{+} programs since, as mentioned above,
≈̇sb coincides with observational program equivalence [3].

Unfortunately, the standard algorithms for checking bisimilarity
(such as [16, 14, 10, 13]) cannot be reused for ∼̇sb and ≈̇sb, since
in this particular case of the bisimulation game, when the attacker
proposes a transition, the defender not necessarily has to answer
with a transition with the same label. (This is analogous to what
happens in the asynchronous π-calculus [2] where an input transi-
tion can be matched also by an internal (tau) transition.)

Partition Refinement for ccp. By building upon [2], we introduced
in [4] a variation of the partition refinement algorithm that allows
us to decide ∼̇sb in ccp. The variation is based on the observation
that some of the transitions are redundant, in the sense that they
are logical consequences of other transitions. Unfortunately, such
notion of redundancy is not syntactical, but semantical, more pre-
cisely, it is based on ∼̇sb itself. Now, if we consider the transition
system having only non-redundant transitions, the ordinary notion
of bisimilarity coincides with ∼̇sb. Thus, in principle, we could re-
move all the redundant transitions and then check bisimilarity with
a standard algorithm. But how can we decide which transitions are
redundant, if redundancy itself depends on ∼̇sb ?

The solution in [4] consists in computing ∼̇sb and redundancy at
the same time. In the first step, the algorithm considers all the
states as equivalent and all the transitions (potentially redundant)
as redundant. At any iteration, states are discerned according to
(the current estimation of) non-redundant transitions and then non-
redundant transitions are updated according to the new computed
partition.

One peculiarity of the algorithm in [4] is that in the initial partition,
we insert not only the reachable states, but also extra ones which
are needed to check for redundancy. Unfortunately, the number
of these states might be exponentially bigger then the size of the
original LTS and therefore worst-case complexity is exponential,
even as we shall show this paper, for the restricted case of ccp-{+}.

This becomes even more problematic when considering the weak
semantics ≈̇sb. Usually weak bisimilarity is computed by first clos-
ing the transition relation with respect to internal transitions and
then by checking strong bisimilarity on the obtained LTS. This ap-

proach (which is referred in [1] as saturation) is unsound for ccp. In
[5], it is shown that in order to obtain a sound algorithm, one has to
close the transition relation, not only w.r.t. the internal transitions,
but w.r.t. all the transitions. This induces an explosion of the num-
ber of transitions which makes the computation of ≈̇sb even more
inefficient.

Confluent ccp. In this paper, we shall consider the “summation
free” fragment of ccp (ccp-{+}), i.e., the fragment of ccp with-
out non-deterministic choice. Differently from similar fragments
of other process calculi (such as the π-calculus or the mobile ambi-
ent), ccp-{+} is confluent because concurrent constraints programs
interact only via reading and telling permanent pieces of informa-
tion (roughly speaking, resources are not consumed). When con-
sidering the weak equivalence ≈̇sb, confluency makes possible to
characterize redundant transitions syntactically, i.e., without any
information about ≈̇sb. Therefore for checking ≈̇sb in ccp-{+},
we can first prune redundant transitions and then check the stan-
dard bisimilarity with one of the usual algorithms [16, 14, 10, 13].
Since redundancy can be determined statically, the additional states
needed by the algorithm in [4] are not necessary anymore: in this
way, the worst case complexity from exponential becomes polyno-
mial.

Unfortunately, this approach still suffers of the explosion of tran-
sitions caused by the “closure” of the transition relation. In order
to avoid this problem, we exploit a completely different approach
(based on the semantical notion of compact input-output sets) that
works directly on the original LTS. We shall conclude our paper by
also showing how the results obtained for ccp-{+}, can be exploited
to optimize the partition refinement for the full language of ccp.

Contributions. The main contribution of this paper is the introduc-
tion of two novel decision procedures that can be used to decide the
standard notion of program equivalence for ccp-{+} in polynomial
time. This represents a significant improvement over the previous
algorithm for program equivalence, which, as we show in this pa-
per, has an exponential time complexity even in the restricted case
of ccp-{+} programs. Each of these two new procedures has an
advantage over the other. One has a better time complexity. The
other can be easily adapted for the full language of ccp to produce
significant state space reductions.

We wish to conclude this introduction with a quote from [15] that
captures the goal of the present paper:

“The times have gone, where formal methods were primarily a
pen-and-pencil activity for mathematicians. Today, only languages
properly equipped with software tools will have a chance to be
adopted by industry. It is therefore essential for the next genera-
tion of languages based on process calculi to be supported by com-
pilers, simulators, verification tools, etc. The research agenda for
theoretical concurrency should therefore address the design of effi-
cient algorithms for translating and verifying formal specifications
of concurrent systems” [15].

Structure of the paper. The paper is organized as follows: In Sec-
tion 2 we recall the basic knowledge concerning the standard par-
tition refinement and the ccp formalism. In Section 3 we present
the partition refinement for ccp from [4] and how it can be used to
decide observational equivalence following [5]. Our contributions
begin in Section 4 where we prove that the partition refinement for
ccp from Section 3 is inefficient even for ccp-{+}, then we intro-

duce some particular features of ccp-{+} which are then used to
develop a polynomial procedure for checking observational equiv-
alence in ccp-{+}. In Section 5 we introduce our second, more ef-
ficient, method for deciding observational equivalence by using the
compact input-output sets. In Section 6 we show how the procedure
from Section 4 can be adapted to the full ccp language. Finally, in
Section 7 we present our conclusions and future work.

2. BACKGROUND
We start this section by recalling the notion of labeled transition
system (LTS), partition and the graph induced by an LTS. Then
we present the standard partition refinement algorithm, the con-
current constraint programming (ccp) and we show that partition
refinement cannot be used for checking equivalence of concurrent
constraint processes.

Labeled Transition System. A labeled transition system (LTS)
is a triple (S,L,) where S is a set of states, L a set of la-
bels and ⊆ S × L × S a transition relation. We shall use
s

a r to denote the transition (s, a, r) ∈ . Given a transition
t = (s, a, r) we define the source, the target and the label as fol-
lows src(t) = s, tar(t) = r and lab(t) = a. We assume the
reader to be familiar with the standard notion of bisimilarity [19].

Partition. Given a set S, a partition P of S is a set of non-empty
blocks, i.e., subsets of S, that are all disjoint and whose union is S.
We write {B1} . . . {Bn} to denote a partition consisting of (non-
empty) blocks B1, . . . , Bn. A partition represents an equivalence
relation where equivalent elements belong to the same block. We
write sPr to mean that s and r are equivalent in the partition P.

LTSs and Graphs. Given a LTS (S,L,), we write LTS for
the directed graph whose vertices are the states in S and edges are
the transitions in . Given a set of initial states IS ⊆ S, we write
LTS (IS) for the subgraph of LTS rechable from IS . Given a
graph G we write V(G) and E(G) for the set of vertices and edges
of G, respectively.

2.1 Partition Refinement
We report the partition refinement algorithm [16] for checking bisim-
ilarity over the states of an LTS (S,L,).

Given a set of initial states IS ⊆ S, the partition refinement al-
gorithm (see Algorithm 1) checks bisimilarity on IS as follows.
First, it computes IS? , that is the set of all states that are reachable
from IS using . Then it creates the partition P0 where all the
elements of IS? belong to the same block (i.e., they are all equiv-
alent). After the initialization, it iteratively refines the partitions by
employing the function on partitions F (−), defined as follows:
for a partition P , sF (P)r iff

if s a s′ then exists r′ s.t. r a r′ and s′Pr′. (1)

See Figure 1 for an example.

The algorithm terminates whenever two consecutive partitions are
equivalent. In such a partition two states (reachable from IS) be-
long to the same block iff they are bisimilar (using the standard
notion of bisimilarity [19]).

s s′ s′′
a a

s, s′, s′′ s, s′ s′′ s s′ s′′

P F (P) F (F (P))

Figure 1: An example of the use of F (P) from Equation 1

Algorithm 1 pr(IS ,)

Initialization

1. IS? is the set of all states reachable from IS using ,

2. P0 := IS? ,

Iteration Pn+1 := F (Pn) as in Equation 1
Termination If Pn = Pn+1 then return Pn.

2.2 Constraint Systems
The ccp model is parametric in a constraint system (cs) specify-
ing the structure and interdependencies of the information that pro-
cesses can ask or add to a central shared store. This information
is represented as assertions traditionally referred to as constraints.
Following [12, 18] we regard a cs as a complete algebraic lattice
in which the ordering v is the reverse of an entailment relation:
c v dmeans d entails c, i.e., d contains “more information” than c.
The top element false represents inconsistency, the bottom element
true is the empty constraint, and the least upper bound (lub) t is
the join of information.

Definition 1. (Constraint System) A constraint system (cs) is a
complete algebraic lattice C = (Con,Con0,v,t, true, false)
where Con, the set of constraints, is a partially ordered set w.r.t.
v, Con0 is the subset of compact elements of Con , t is the lub
operation defined on all subsets, and true , false are the least and
greatest elements of Con , respectively.

Remark 1. We assume that the constraint system is well-founded
and that its ordering v is decidable.

We now define the constraint system we use in our examples.

Example 1. Let Var be a set of variables and ω be the set of
natural numbers. A variable assignment is a function µ : Var −→
ω. We use A to denote the set of all assignments, P(A) to denote
the powerset of A, ∅ the empty set and ∩ the intersection of sets.
Let us define the following constraint system: The set of constraints
is P(A). We define c v d iff c ⊇ d. The constraint false is
∅, while true is A. Given two constraints c and d, c t d is the
intersection c ∩ d. We will often use a formula like x < n to
denote the corresponding constraint, i.e., the set of all assignments
that map x to a number smaller than n.

2.3 Syntax
We now recall the basic ccp process constructions. We are con-
cerned with the verification of finite-state systems, thus we we shall
dispense with the recursion operator which is meant for describing

infinite behavior. We shall also omit the local/hiding operator for
the simplicity of the presentation (see [3] for further details).

Let C = (Con,Con0,v,t, true, false) a constraint system. The
ccp processes are given by the following syntax:

P,Q ::= stop | tell(c) | ask(c)→ P | P ‖ Q | P +Q

where c ∈ Con0. Intuitively, stop represents termination, tell(c)
adds the constraint (or partial information) c to the store. The ad-
dition is performed regardless the generation of inconsistent infor-
mation. The process ask(c) → P may execute P if c is entailed
from the information in the store. The processes P ‖ Q and P + Q
stand, respectively, for the parallel execution and non-deterministic
choice of P and Q.

Remark 2. (ccp-{+}). Henceforth, we use ccp-{+} to refer to
the fragment of ccp without nondeterministic choice.

2.4 Reduction Semantics
A configuration is a pair 〈P, d〉 representing a state of a system; d
is a constraint representing the global store, and P is a process, i.e.,
a term of the syntax. We use Conf with typical elements γ, γ′, . . .
to denote the set of all configurations. We will use Conf ccp−{+}
for the ccp-{+} configurations.

The operational semantics of ccp is given by an unlabeled transition
relation between configurations: a transition γ −→ γ′ intuitively
means that the configuration γ can reduce to γ′. We call these kind
of unlabeled transitions reductions and we use −→∗ to denote the
reflexive and transitive closure of −→.

Formally, the reduction semantics of ccp is given by the relation
−→ defined in Table 1. These rules are easily seen to realize the
intuitions described in the syntax (Section 2.3).

In [3], the authors introduced a barbed semantics for ccp. Barbed
equivalences have been introduced in [20] for CCS, and have be-
come a classical way to define the semantics of formalisms equipped
with unlabeled reduction semantics. Intuitively, barbs are basic ob-
servations (predicates) on the states of a system. In the case of ccp,
barbs are taken from the underlying set Con0 of the constraint sys-
tem.

Definition 2. (Barbs) A configuration γ = 〈P, d〉 is said to sat-
isfy the barb c, written γ ↓c, iff c v d. Similarly, γ satisfies a weak
barb c, written γ ⇓c, iff there exist γ′ s.t. γ −→∗ γ′ ↓c.

Example 2. Let γ = 〈ask (x > 10) → tell(y < 42), x >
10〉. We have γ ↓x>5 since (x > 5) v (x > 10) and γ ⇓y<42

since γ −→ 〈tell(y < 42), x > 10〉 −→ 〈stop, (x > 10) t (y <
42)〉 ↓y<42.

In this context, the equivalence proposed is the saturated bisimilar-
ity [9, 8]. Intuitively, in order for two states to be saturated bisim-
ilar, then (i) they should expose the same barbs, (ii) whenever one
of them moves then the other should reply and arrive at an equiv-
alent state (i.e. follow the bisimulation game), (iii) they should be
equivalent under all the possible contexts of the language. In the
case of ccp, it is enough to require that bisimulations are upward
closed as in condition (iii) below.

Definition 3. (Saturated Barbed Bisimilarity) A saturated barbed
bisimulation is a symmetric relationR on configurations s.t. when-
ever (γ1, γ2) ∈ R with γ1 = 〈P, c〉 and γ2 = 〈Q, d〉 implies that:

(i) if γ1 ↓e then γ2 ↓e,

(ii) if γ1 −→ γ′1 then there exists γ′2 s.t. γ2 −→ γ′2 and (γ′1, γ
′
2) ∈

R,

(iii) for every a ∈ Con0, (〈P, c t a〉, 〈Q, d t a〉) ∈ R.

We say that γ1 and γ2 are saturated barbed bisimilar (γ1 ∼̇sb γ2)
if there is a saturated barbed bisimulationR s.t. (γ1, γ2) ∈ R.

Weak saturated barbed bisimulations are defined as above by re-
placing ↓ by ⇓ and −→ by −→∗. We say that γ1 and γ2 are weak
saturated barbed bisimilar (γ1 ≈̇sb γ2) if there exists a weak satu-
rated barbed bisimulationR s.t. (γ1, γ2) ∈ R.

Remark 3. It should be noticed that standard notion of observa-
tional ccp program equivalence was shown to coincide with ≈̇sb in
the case of ccp-{+}[3]. For the sake of space we shall not introduce
the standard notion– see [3] for further details.

We now illustrate ∼̇sb and ≈̇sb with the following two examples.

Example 3. Take T = tell(true), P = ask (x < 7) → T
and Q = ask (x < 5) → T . Now, 〈P, true〉 6 ∼̇sb〈Q, true〉,
since 〈P, x < 7〉 −→, while 〈Q, x < 7〉 6−→. Then consider 〈P +
Q, true〉 and observe that 〈P+Q, true〉∼̇sb〈P, true〉. Indeed, for
all constraints e, s.t. x < 7 v e, both the configurations evolve into
〈T, e〉, while for all e s.t. x < 7 6v e, both configurations cannot
proceed. Since x < 7 v x < 5, the behavior of Q is somehow
absorbed by the behavior of P .

Example 4. Let γ1 = 〈tell(true), true〉 and γ2 = 〈ask (c) →
tell(d), true〉. We can show that γ1 ≈̇sb γ2 when d v c. Intu-
itively, this corresponds to the fact that the implication c ⇒ d is
equivalent to true when c entails d. The LTSs of γ1 and γ2 are
the following: γ1 −→ 〈stop, true〉 and γ2

c−→ 〈tell(d), c〉 −→
〈stop, c〉. It is now easy to see that the symmetric closure of the re-
lationR = {(γ2, γ1), (γ2, 〈stop, true〉), (〈tell(d), c〉, 〈stop, c〉),
(〈stop, c〉, 〈stop, c〉)} is a weak saturated barbed bisimulation as in
Definition 3.

2.5 Labeled Semantics
In [3] we have shown that ≈̇sb is fully abstract with respect to the
standard observational equivalence from [26]. Unfortunately, the
quantification over all constraints in condition (iii) of Definition
3 makes hard checking ∼̇sb and ≈̇sb, since one should check in-
finitely many constraints. In order to avoid this problem we have
introduced in [3] a labeled transition semantics where labels are
constraints.

In a transition of the form 〈P, d〉 α−→ 〈P ′, d′〉 the label α ∈ Con0

represents a minimal information (from the environment) that needs
to be added to the store d to reduce from 〈P, d〉 into 〈P ′, d′〉, i.e.,
〈P, d t α〉 −→ 〈P ′, d′〉. As a consequence, the transitions labeled
with the constraint true are in one to one correspondence with the

R1 〈tell(c), d〉 −→ 〈stop, d t c〉 R2 c v d
〈ask (c) → P, d〉 −→ 〈P, d〉 R3 〈P, d〉 −→ 〈P ′, d′〉

〈P ‖ Q, d〉 −→ 〈P ′ ‖ Q, d′〉 R4 〈P, d〉 −→ 〈P ′, d′〉
〈P + Q, d〉 −→ 〈P ′, d′〉

Table 1: Reduction semantics for ccp (the symmetric rules for R3 and R4 are omitted).

reductions defined in the previous section. For this reason, here-
after we will sometimes write −→ to mean true−→. Before formally
introducing the labeled semantics, we fix some notation.

Notation 1. We will use to denote a generic transition rela-
tion on the state space Conf and labels Con0. Also in this case
mean true . Given a set of initial configuration IS , Config (IS)

denote the sets {γ′ | ∃γ ∈ IS s.t. γ
α1 . . .

αn γ′ for some n ≥ 0}.

The LTS (Conf ,Con0,−→) is defined by the rules in Table 2. The
rule LR2 , for example, says that 〈ask (c) → P, d〉 can evolve
to 〈P, d t α〉 if the environment provides a minimal constraint α
that added to the store d entails c, i.e., α ∈ min{a ∈ Con0 | c v
dt a}. The other rules are easily seen to realize the intuition given
in Section 2.3. Figure 2 illustrates the LTS of our running example.

Given the LTS (Conf ,Con0,−→), one would like to exploit it for
“efficiently characterizing” ∼̇sb and ≈̇sb. One first naive attempt
would be to consider the standard notion of (weak) bisimilarity over
−→, but this would distinguish configurations which are in ∼̇sb
(and ≈̇sb), as illustrated by the following two examples.

Example 5. In Example 3 we saw that 〈P+Q, true〉∼̇sb〈P, true〉.
However, 〈P +Q, true〉 x<5−→ 〈T, x < 5〉, while 〈P, true〉 6x<5−→.

Example 6. In Example 4, we showed that γ1 ≈̇sb γ2. However,
γ2

c−→, while γ1 6 c−→

The examples above show that the ordinary notion of bisimilarity
do not coincide with the intended semantics (∼̇sb and ≈̇sb). As a
consequence, the standard partition refinement algorithm (Section
2.1) cannot be used for checking ∼̇sb and ≈̇sb. However, one can
consider a variation of the bisimulation game, namely irredundant
bisimilarity [4], which coincide with ∼̇sb and, in the weak case [5],
with ≈̇sb. This fact allowed us in [4] to define a variation of the
partition refinement algorithm which we show in the next section.

First, we recall some results from [4] and [5], which are fundamen-
tal for the development of the paper.

Lemma 1. ([3], [5]) (Soundness) If 〈P, c〉 α−→ 〈P ′, c′〉 then
〈P, ctα〉 −→ 〈P ′, c′〉. (Completeness) If 〈P, ct a〉 −→ 〈P ′, c′〉
then there exists α and b s.t. 〈P, c〉 α−→ 〈P ′, c′′〉 where α t b = a
and c′′ t b = c′.

The weak labeled transition system (Conf ,Con0,=⇒) is defined
by the rules in Table 3. This LTS is sound and complete, as −→,
and it can be used to decide ≈̇sb as shown in [5].

R-Tau
γ =⇒ γ

R-Label γ
α−→ γ′

γ
α

=⇒ γ′
R-Add γ

α
=⇒ γ′

β
=⇒ γ′′

γ
αtβ
=⇒ γ′′

Table 3: Weak semantics for ccp

Lemma 2. ([5]) (Soundness) If 〈P, c〉 α
=⇒ 〈P ′, c′〉 then 〈P, c t

α〉 =⇒ 〈P ′, c′〉. (Completeness) If 〈P, c t a〉 =⇒ 〈P ′, c′〉 then
there exists α and b s.t. 〈P, c〉 α

=⇒ 〈P ′, c′′〉 where α t b = a and
c′′ t b = c′.

Note that we close−→, not only w.r.t true transitions (as similarly
done in CCS, where τ intutively corresponds to true), but w.r.t. all
the transitions. This is needed to check ≈̇sb, because otherwise the
above lemma would not hold.

The following lemma relates the labeled and weak semantics, i.e.
−→ and =⇒. It states that a single transition in =⇒ corresponds
to a sequence of reductions (−→∗).

Lemma 3. ([5]) γ −→∗ γ′ iff γ =⇒ γ′.

Finally, we introduce some useful notation regarding the transitions
whose label is true .

Notation 2. When the label of a transition is true we will omit
it. Namely, we will use γ −→ γ′ and γ =⇒ γ′ to denote γ true−→ γ′

and γ true
=⇒ γ′ since they are equivalent by Lemma 1 and 2.

3. PARTITION REFINEMENT FOR ccp
In this section we recall the partition refinement algorithm for ccp
and how it can be used to decide observational equivalence.

3.1 Strong equivalence
In [4] we adapted the standard partition refinement procedure to
decide strong bisimilarity for ccp (∼̇sb). As we did for the standard
partition refinement, we also start with Config−→(IS), that is the
set of all states that are reachable from the set of initial state IS
using −→. However, in the case of ccp some other states must be
added to IS? in order to verify ∼̇sb as we will explain later on.

Now, since configurations satisfying different barbs are surely dif-
ferent, it can be safely started with a partition that equates all and
only those states satisfying the same barbs. Hence, as initial parti-
tion of IS? , we take P0 = {B1} . . . {Bm}, where γ and γ′ are in
Bi iff they satisfy the same barbs.

When splitting the above-mentioned partitions, unlike for the stan-
dard partition refinement, we need to consider a particular kind of

LR1 〈tell(c), d〉 true−→ 〈stop, d t c〉 LR2
α ∈ min{a ∈ Con0 | c v d t a }
〈ask (c) → P, d〉 α−→ 〈P, d t α〉

LR3
〈P, d〉 α−→ 〈P ′, d′〉

〈P ‖ Q, d〉 α−→ 〈P ′ ‖ Q, d′〉 LR4
〈P, d〉 α−→ 〈P ′, d′〉

〈P +Q, d〉 α−→ 〈P ′, d′〉

Table 2: Labeled semantics for ccp (the symmetric rules for LR3 and LR4 are omitted).

T = tell(true)

T ′ = tell(y = 1)

P = ask (x < 7) → T

S = ask (z < 7) → P

Q = ask (x < 5) → T

Q′ = ask (x < 5) → T ′
R = ask (z < 5) → (P +Q)

R′ = ask (z < 5) → (P +Q′)

〈R+ S, true〉

〈S, true〉

〈R′ + S, true〉 〈P +Q′, z < 5〉

〈P, z < 7〉

〈P +Q, z < 5〉

〈P, z < 5〉

〈T ′, z < 5 t x < 5〉

〈T, z < 7 t x < 7〉

〈T, z < 5 t x < 5〉

〈T, z < 5 t x < 7〉

〈stop, z < 5 t x < 5 t y = 1〉

〈stop, z < 7 t x < 7〉

〈stop, z < 5 t x < 5〉

〈stop, z < 5 t x < 7〉
x < 7

z < 5

z < 7

z < 7

z < 5

z < 7

x < 5

x < 7

x < 5

x < 7

x < 7

true

true

true

true

Figure 2: LTS−→(IS) where (IS = {〈R′ + S, true〉, 〈S, true〉, 〈R+ S, true〉}).

transitions, so-called irredundant transitions. These are those tran-
sitions that are not dominated by others, in a given partition, in the
sense defined below.

Definition 4. (Transition Domination) Let t and t′ be two transi-
tions of the form t = (γ, α, 〈P ′, c′〉) and t′ = (γ, β, 〈P ′, c′′〉). We
say that t dominates t′, written t �D t′, iff α < β and c′′ = c′tβ.

The intuition is that the transition t dominates t′ iff t requires less
information from the environment than t′ does (hence α < β), and
they end up in configurations which differ only by the additional
information in β not present in α (hence c′′ = c′ t β). To better
explain this notion let us give an example.

Example 7. Let P = (ask (x < 15) → tell(y > 42)) +
(ask (x < 10) → tell(y > 42)) and let γ = 〈P, true〉. Con-
sider t1 = γ

x<15−→ 〈tell(y > 42), x < 15〉 and t2 = γ
x<10−→

〈tell(y > 42), x < 10〉, then one can check that t1 �D t2 since
(x < 15) < (x < 10) and (x < 10) = ((x < 15) t (x < 10)).

Notice that in the definition above t and t′ end up in configurations
whose processes are syntactically identical (i.e., P ′). The follow-
ing notion parameterizes the notion of dominance w.r.t. a relation
on configurations R (rather than fixing it to the identity on config-
urations).

Definition 5. (Transition Domination w.r.t. R and Irredundant
Transition w.r.t. R) We say that the transition t dominates a tran-
sition t′ w.r.t a relation on configurations R, written t �R t′,
iff there exists t′′ such that t �D t′′, lab(t′′) = lab(t′) and
tar(t′′)R tar(t′). A transition is said to be redundant w.r.t. to

R when it is dominated by another w.r.t. R, otherwise it is said to
be irredundant w.r.t. toR.

To understand this definition better consider the following example.

Example 8. Let Q1 = (ask (b) → (ask (c) → tell(d))),
Q2 = (ask (a) → stop) and P = Q1 + Q2, where d v c and
a < b. Now let γ = 〈P, true〉, then consider t = γ

a−→ 〈stop, a〉
and t′ = γ

b−→ 〈ask (c) → tell(d), b〉. Let R = ≈̇sb and take
t′′ = (γ, b, 〈stop, b〉), one can check that t �R t′ as in Definition
5. We have that t �D t′′ follows from a < b. And we know
tar(t′′)R tar(t′) from Example 4, i.e. 〈stop, b〉≈̇sb〈ask (c) →
tell(d), b〉.

We now explain briefly how to compute IS? using the Rules in
Table 4. Rules (ISIS

) and (RSIS
) say that all the states generated

from the labeled semantics (Table 2) from the set of initial states
should be included, i.e., Config (IS) ⊆ IS? .

The rule (RDIS
) adds the additional states needed to check redun-

dancy. Consider the transitions t1 = γ
α 〈P1, c1〉 and t2 = γ

β
〈P2, c2〉with α < β and c2 = c1tβ in Rule (RDIS

). Suppose that
at some iteration of the partition refinement algorithm the current
partition is P and that 〈P2, c2〉P〈P1, c2〉. Then, according to Def-
inition 5 the transitions t1 would dominate t2 w.r.t P . This makes
t2 redundant w.r.t P . Since 〈P1, c2〉 may allow us to witness a po-
tential redundancy of t2, we include it in IS? (and thus, from the
definition of the initial partition P0, also in the block of P0 where
〈P2, c2〉 is). See [4] for further details about the computation of
IS? .

Finally, we shall describe how the refinement is done in the case

(ISIS
)

γ ∈ IS
γ ∈ IS?

(RSIS
)

γ ∈ IS? γ
α γ′

γ′ ∈ IS?
(RDIS

) γ ∈ IS? t1 = γ
α 〈P1, c1〉 t2 = γ

β 〈P2, c2〉 α < β c2 = c1 t β
〈P1, c2〉 ∈ IS?

Table 4: Rules for generating the states used in the partition refinement for ccp

ccp. Instead of using the function F (P) of Algorithm 1, the par-
titions are refined by employing the function IR (P) defined as:

Definition 6. (Refinement function for ccp) Given a partition P
we define IR (P) as follows: γ1 IR (P) γ2 iff

if γ1
α γ′1 is irredundant w.r.t. P

then there exists γ′2 s.t. γ2
α γ′2 and γ′1 Pγ′2

See Figure 3 for an example of the use of IR (−).

Algorithm 2 pr-ccp(IS ,)

Initialization

1. Compute IS? with the rules (ISIS
), (RSIS

), (RDIS
) defined

in Table 4,

2. P0 = {B1} . . . {Bm} is a partition of IS? where γ and γ′

are in Bi iff they satisfy the same barbs (↓c),

Iteration Pn+1 := IR (Pn) as in Definition 6
Termination If Pn = Pn+1 then return Pn.

The Algorithm 2 can be used to decide strong saturated bisimilarity
∼̇sb with exponential time. (Recall that Config−→(IS) represents
the set of states that are reachable from the initial states IS using
−→.) More precisely:

Theorem 1. ([4]) Let γ and γ′ be two ccp configurations. Let
IS = {γ, γ′} and let P be the output of pr-ccp(IS ,−→) in
Algorithm 2. Then

• γ P γ′ iff γ ∼̇sb γ′.
• pr-ccp(IS ,−→) may take exponential time in the size of
Config−→(IS).

The exponential time is due to construction of the set IS?−→ (Algo-
rithm 2, step 1) whose size is exponential in |Config−→(IS)|.

3.2 Weak equivalence
We can also use the above-mentioned algorithm to verify the weak
version of saturated bisimilarity (≈̇sb). Recall that in [3] it was
shown that in ccp-{+}, ≈̇sb coincides with the standard notion of
ccp program (observational) equivalence.

Following [1] the reduction of the problem of deciding ≈̇sb to the
problem of deciding ∼̇sb is obtained by adding some additional
transitions, so called weak transitions, to the LTS. Given two con-
figurations γ and γ′, the first step is to build G = LTS−→(IS)
where IS = {γ, γ′}. Using G we then proceed to compute G′ =
LTS=⇒(IS), and finally we run Algorithm 2 adapted to G′. The

adaptation consists in using weak barbs (⇓c) instead of barbs (↓c)
for the initial partition P0 and using =⇒ as a parameter of Algo-
rithm 2.

Definition 7. (Weak Partition Refinement for ccp) We define the
procedure weak-pr-ccp(IS ,) by replacing the barbs (↓c) in
step 2 of Algorithm 2 with weak barbs (⇓c).

Using this algorithm we can decide ≈̇sb also with exponential time.
This follows from Theorem 1.

Theorem 2. ([5]) Let γ and γ′ be two ccp configurations. Let
IS = {γ, γ′} and let P be the output of weak-pr-ccp(IS ,=⇒)
in Definition 7. Then

• γ P γ′ iff γ ≈̇sb γ′.
• weak-pr-ccp(IS ,=⇒) may take exponential time in the

size of Config−→(IS).

As for the strong case, the exponential time is due to construction
of the set IS?=⇒ by weak-pr-ccp(IS ,=⇒), whose size is expo-
nential in |Config−→(IS)|. In the next section we shall address
the issue of avoiding this exponential construction in the context of
confluent ccp.

4. USING PARTITION REFINEMENT FOR
CHECKING OBSERVATIONAL EQUIV-
ALENCE IN ccp-{+}

In the previous section, we presented a procedure to verify ≈̇sb for
ccp and we saw how this method takes exponential time (in the
size of the LTS) to check whether two configurations are weakly
bisimilar. In this section, we will explore what happens with such
procedure when we restrict ourselves to ccp-{+}. We shall see that
pr-ccp(IS ,−→) may also be exponential time for inputs from
the ccp-{+} fragment.

Let us consider the following ccp-{+} construction.

Example 9. Let n > 0. We define Pn = Pn0 with Pni , for
i ∈ {0, . . . , n− 1}, given by:

Pni = (ask (ai) → (ask (bi) → Pni+1)) ‖ (ask (bi) → stop)

and Pnn = tell(bn). Furthermore, we assume that for all i ∈
{0, . . . , n − 1} we have ai v bi and for all j ∈ {0, . . . , n − 1}
if i 6= j then ai 6v aj and bi 6v bj . The LTS for 〈Pn, true〉 is
illustrated in Figure 4.

One can verify that by taking IS = {〈Pn, true〉} as in the example
above, then the size of IS?−→ in Algorithm 2 grows exponentially
with n, essentially because of the rule (RDIS

−→).

〈(ask (a) → stop) + (ask (b) → stop), true〉

〈stop, a〉 〈stop, b〉

〈(ask (a) → stop), true〉

〈stop, a〉

a b a

γ1

γa1 γb1

γ2

γa2

γ1, γa1 , γ
b
1, γ2, γ

a
2

γ1, γ2 γa1 , γ
b
1, γ

a
2

P

IR−→(P)

Figure 3: An example of the use of IR−→(P) as in Definition 6. Notice that γ1 and γ2 end up in the same block after the refinement
since γ1

b−→ γb1 is a redundant transition w.r.t P hence it is not required that γ2 matches it.

〈Pn, true〉

〈LPn0 , a0〉 〈RPn0 , b0〉

〈LLPn0 , b0〉 〈LRPn0 , b0〉

a0 b0

b0 b0

〈Pn1 , b0〉

Pn = (ask (a0) → (ask (b0) → Pn1)) ‖ (ask (b0) → stop)

LPn0 = (ask (b0) → Pn1) ‖ (ask (b0) → stop)

RPn0 = (ask (ai) → (ask (bi) → Pni+1)) ‖ stop)

LLPn0 = Pn1 ‖ (ask (b0) → stop)

LRPn0 = (ask (b0) → Pn1) ‖ stop

New nodes after Rule (RDIS
−→)

〈LPn0 , b0〉

〈LPn1 , b0 t b1〉

〈LPn1 , b0 t b1〉

Figure 4: LTS−→(IS) where IS = {〈Pn, true〉} as in Example 9. The configurations in the right part are generated by (RDIS
−→)

applied to the source nodes of the dotted arrows. Some transitions and stop processes were omitted for clarity.

Proposition 1. Let γ = 〈Pn, true〉 and IS = {γ}, let P be the
output pr-ccp(IS ,−→) in Algorithm 2, then pr-ccp(IS ,−→)
takes at least exponential time in n.

PROOF. One can check that |IS?−→IS | is given by the following
function f(n) = 2f(n−1)+5 since (RDIS

−→)creates a new node at
each level that contains a new potential redundant transition. Since
f(n) = Ω(2n) then pr-ccp(IS ,−→) takes at least exponential
time in n.

The main problem is that the procedure does not distinguish be-
tween summation-free processes and the normal ccp processes. There-
fore, it is unable to exploit the underlying properties of ccp-{+} and
the algorithm will perform (in the worst-case) inherently the same
as for the full ccp, as evidenced in the example above.

4.1 Properties of ccp-{+}
In this section we will state some features that (unlike the full ccp)
this fragment possess. The first one we want to introduce is con-
fluence. Intuitively, in ccp-{+}, if from a given configuration we
have two possible reductions (−→), then we are guaranteed that
they will coincide at some point of the computation. Recall that
Conf ccp−{+} is the set of all ccp-{+} configurations, i.e. configu-
rations whose process is summation-free.

Proposition 2. Let γ ∈ Conf ccp−{+}. If γ −→∗ γ1 and γ −→∗
γ2 then there exists γ′ such that γ1 −→∗ γ′ and γ2 −→∗ γ′.

Before discussing the second property, we need to introduce some
notation. We shall call derivatives (of γ) the successors reached via
(zero or more) reductions (−→∗) starting from a given configura-
tion γ.

Definition 8. (Derivatives) The derivatives of a configuration γ,
written Deriv(γ), are defined as Deriv(γ) = {γ′ | γ −→∗ γ′}.

Using this notation, we can now state another property of ccp-{+}:
A configuration is weakly bisimilar to all its derivatives.

Lemma 4. Let γ ∈ Conf ccp−{+}. For all γ′ ∈ Deriv(γ) we
have γ ≈̇sb γ′.

PROOF. Let R = {(γ1, γ2) | ∃γ3 s.t. γ1 −→∗ γ3 and γ2 −→∗
γ3}, we prove that R is a weak saturated barbed bisimulation. Let
(γ1, γ2) be any pair of configurations inR.
(i) If γ1 ⇓e then by definition γ1 −→∗ γ′1 ↓e. By confluence
(Proposition 2) γ′1 −→∗ γ3 and thus γ3 ↓e (since constraints can
only be added). Since γ2 −→∗ γ3 ↓e we conclude that γ2 ⇓e.
(ii) If γ1 −→∗ γ′1, then by confluence γ′1 −→∗ γ3 and therefore
(γ′1, γ2) ∈ R.
(iii) Finally, let γ1 = 〈P1, c1〉 and γ2 = 〈P2, c2〉. If 〈P1, c1〉 −→∗
〈P3, c3〉 and 〈P2, c2〉 −→∗ 〈P3, c3〉, then 〈P1, c1te〉 −→∗ 〈P3, c3t
e〉 and 〈P2, c2te〉 −→∗ 〈P3, c3te〉 and thus (〈P1, c1te〉, 〈P2, c2t
e〉) ∈ R.

In the next section we shall take advantage of these properties to
check ≈̇sb for ccp-{+} configurations.

4.2 Optimizations to partition refinement for
ccp-{+}

We presented how the partition refinement for ccp performs for
ccp-{+} as well as some characteristics of the configurations of
this fragment. In this section, using such features, we shall show
that the complexity of weak-pr-ccp(IS ,=⇒) can be improved,
thus we can check ≈̇sb in a more efficient manner.

Due to the nature of ccp-{+}, determining which are the redundant
transitions w.r.t. ≈̇sb (Definition 5) becomes an easier task. As we
explained in Section 3.1, the purpose of rule (RDIS

) from Table
4 is to add some configurations to IS? that will be used to check
redundancy at each iteration of Algorithm 2. In ccp-{+} these ad-
ditional configurations are not necessary. But before we arrive to
this let us introduce some definitions first.

Definition 9. We say that γ goes with α to γ′ with a maximal
weak transition, written γ α

=⇒max γ
′, iff γ α

=⇒ γ′ 6−→.

The definition above reflects the fact that when γ α
=⇒max γ

′ then
γ′ has no more information to deduce without the aid of the envi-
ronment, namely no further reduction (−→) is possible. As =⇒,
the maximal weak transition relation =⇒max is sound and com-
plete.

Lemma 5. (Soundness) If 〈P, c〉 α
=⇒max 〈P ′, c′〉 then 〈P, c t

α〉 =⇒max 〈P ′, c′〉. (Completeness) If 〈P, cta〉 =⇒max 〈P ′, c′〉
then there exists α and b s.t. 〈P, c〉 α

=⇒max 〈P ′, c′′〉where αtb =
a and c′′ t b = c′.

PROOF. Follows from the correctness of =⇒ (Lemma 2) and
from the fact that LTS−→({〈P, c〉}) is finite.

As one would expect, =⇒max can also be used to compute ≈̇sb
and the complexity of the procedure is equivalent to the case of
=⇒ (Theorem 2).

Theorem 3. [5] Let γ and γ′ be two ccp configurations. Let
IS = {γ, γ′}, let P be the output weak-pr-ccp(IS ,=⇒max)
in Definition 7. Then

• γ P γ′ iff γ ≈̇sb γ′.

• weak-pr-ccp(IS ,=⇒max) may take exponential time in
the size of Config−→(IS).

PROOF. Follows from the correctness of =⇒max (Lemma 5),
the results in [5] and Theorem 2.

Nevertheless, in ccp-{+}, the maximal weak transitions =⇒max

satisfy a particular property that allow us to erase the redundant
transitions w.r.t. ≈̇sb before computing ≈̇sb itself.

Proposition 3. Let γ = 〈P, c〉 ∈ Conf ccp−{+}. Let t1 =

γ
α

=⇒max 〈P1, c1〉 and t2 = γ
β

=⇒max 〈P2, c2〉. We have that
α < β and 〈P1, c1 t β〉 −→∗ 〈P ′, c2〉 6−→ iff t1 �≈̇sb t2.

PROOF. (⇒) By soundness on t1 we have 〈P, c t α〉 =⇒max

〈P1, c1〉 then by definition 〈P, c t α〉 =⇒ 〈P1, c1〉 now by mono-
tonicity 〈P, c t β〉 =⇒ 〈P1, c1 t β〉 and then 〈P, c t β〉 −→∗
〈P1, c1 t β〉 then by Lemma 4 〈P, ct β〉≈̇sb〈P1, c1 t β〉. Using a
similar reasoning on t2 we can conclude that 〈P, ctβ〉≈̇sb〈P2, c2〉
and by transitivity 〈P1, c1 t β〉≈̇sb〈P2, c2〉. Finally take t′ =
(γ, β, 〈P1, c1 t β〉), hence we can conclude that t1 �≈̇sb t2 since
t1 �D t′ and 〈P1, c1 t β〉≈̇sb〈P2, c2〉.

(⇐) Assume that t1 �≈̇sb t2 then there exists t′ = (γ, β, 〈P1, c
′〉)

such that t1 �D t′ and 〈P1, c
′〉≈̇sb〈P2, c2〉. By t1 �D t′ we know

that α < β and c′ = c1 t β. Now since 〈P2, c2〉 6−→ by definition
of =⇒max, therefore by condition (i) of ≈̇sb we have c′ v c2.
Moreover, 〈P1, c

′〉 −→∗ 〈P ′, c3〉where c2 v c3. By contradiction
let c2 6= c3 then c2 < c3, thus there is e s.t. 〈P1, c

′〉 ⇓e but since
〈P2, c2〉 6−→ then 〈P2, c2〉 6⇓e and so 〈P1, c

′〉 6 ≈̇sb〈P2, c2〉, an
absurd. Thus c3 = c2 hence 〈P1, c

′〉 −→∗ 〈P ′, c2〉 6−→ .

Algorithm 3 weak-pr-dccp(IS)

Initialization

1. Compute G = LTS=⇒max(IS) using the rules (ISIS
=⇒max

)

and (RSIS
=⇒max

),

2. G′ = remRed(G) where the graph remRed(G) results from
removing from G the redundant transitions w.r.t. ≈̇sb,

3. P0 = {B1} . . . {Bm} is a partition of V(G′) where γ and γ′

are in Bi iff they satisfy the same weak barbs (⇓e),

Iteration Pn+1 := F=⇒max(Pn) as defined in Equation 1
Termination If Pn = Pn+1 then return Pn.

Using this property we can define a new procedure for deciding ≈̇sb
that does not use Rule (RDIS

) since redundancy can be checked
and erased using Proposition 3 (Algorithm 3, Step 2).

The key idea is that in order to compute ≈̇sb, with the redundancy
removed, it suffices to refine the partitions using F=⇒max(P) (de-
fined by Equation 1) instead of IR=⇒max(P). The Algorithm 3
can be used to decide ≈̇sb for configurations in Conf ccp−{+} with
polynomial time.

Theorem 4. Let γ and γ′ be two ccp-{+} configurations. Let
IS = {γ, γ′}, let P be the output of weak-pr-dccp(IS) in
Algorithm 3 and let N = |Config−→(IS)|. Then

• γ P γ′ iff γ ≈̇sb γ′.
• weak-pr-dccp(IS) takes O(N3) time and uses O(N2)

space.

PROOF. The first item follows from the Theorem 2 and Propo-
sition 3. As for the second item:
(Step 1) G = LTS=⇒max(IS) takes O(N2) time and space since
=⇒max will add, at most, a transition from each element in V(G) to
every other configuration in V(G) and |V(G)| = |Config−→(IS)| =
N .
(Step 2) Each node in V(G) has at mostN−1 outgoing transitions,
thenG′ = remRed(G) takesO((N −1)∗ (N −1)) = O(N2) per
node, thus this step takes O(N2 ∗N) = O(N3) time.
(Step 3) P0 can be created in O(N2) by definition of =⇒max.
(Iteration) Using the procedure from Tarjan et al. [22], this step
takesO(|E| log |V |) time and usesO(|E|) space. Therefore, since
|V(G)| = N and |E(G)| = N2, hence we have O(N2 logN) and
O(N2) space.
We can conclude that weak-pr-dccp(IS) takes O(N3) time
and uses O(N2) space.

Thanks to Proposition 3, by removing redundant transitions, we
can solve the problem of checking bisimilarity for ccp-{+} with
the standard solutions for checking bisimilarity. In Algorithm 3, we
have used the “classical” partition refinement, but different, more
effective solutions, are possible. For instance, executing the algo-
rithm in [13] (after having removed all the redundant transitions)
would require at most O(|E|+ |V |) steps. Note however that, due
to the closure needed for weak transitions (Table 3), |E| is usually
quadratic w.r.t. the number of states |V |. In the following section,
we introduce a novel procedure which avoids such expensive clo-
sure.

5. USING THE COMPACT INPUT-OUTPUT
SETS FOR VERIFYING OBSERVATIONAL
EQUIVALENCE IN ccp-{+}

In the previous section we improved the ccp exponential-time deci-
sion procedure for ≈̇sb to obtain a polynomial-time procedure for
the special case of the summation-free fragment ccp-{+}. (Recall
that in ≈̇sb, the relation ≈̇sb coincides with the standard notion of
observational equivalence.)

In this section, we will present an alternative approach for verifying
observational equivalence for ccp-{+}that improves on the time and
space complexity of Algorithm 3.

Roughly speaking our approach consists in reducing the problem
of whether two given ccp-{+}-configurations γ, γ′ are in ≈̇sb to
the problem of whether γ and γ′ have the same minimal finite rep-
resentation of the set of weak barbs they satisfy in every possible
context.

5.1 Weak bisimilarity and barb equivalence
First we will show that, in ccp-{+}, we can give characterization
of ≈̇sb in terms of the simpler notion of weak-barb equivalence
defined below. Intuitively, two configurations are saturated weakly
bisimilar if and only if for every possible augmentation of their
stores, the resulting configurations satisfy the same weak barbs.
More precisely,

Definition 10. (Barb equivalence) 〈P, c〉 and 〈Q, d〉 are (weak)
barbed equivalent, written 〈P, c〉 ∼wb 〈Q, d〉, iff

∀e, α ∈ Con0. 〈P, c t e〉 ⇓α⇔ 〈Q, d t e〉 ⇓α

The full characterization of ≈̇sb in terms of weak-barbed equiv-
alence is given next. The proof relies on the intrinsic confluent
nature of ccp-{+} (Proposition 2).

Theorem 5. 〈P, c〉≈̇sb〈Q, d〉 iff 〈P, c〉 ∼wb 〈Q, d〉
PROOF. (⇒) Assume that 〈P, c〉≈̇sb〈Q, d〉 then by condition (i)

of ≈̇sb (Definition 3) we have ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α,
hence in combination with condition (iii) we can conclude 〈P, c t
e〉 ⇓α⇔ 〈Q, d t e〉 ⇓α.

(⇐) Let R = {(〈P, c〉, 〈Q, d〉) | ∀e, α ∈ Con0. 〈P, c t e〉 ⇓α⇔
〈Q, dt e〉 ⇓α}, we prove thatR is a weak saturated barbed bisim-
ulation:
(i) Take e = true then ∀α ∈ Con0.〈P, c〉 ⇓α⇔ 〈Q, d〉 ⇓α.
(ii) Assume that 〈P, c〉 −→∗ 〈P ′, c′〉, by Lemma 4 〈P, c〉≈̇sb〈P ′, c′〉
hence by (⇒) we can conclude that 〈P ′, c′〉R〈Q, d〉.
(iii) Assume 〈P, c〉R〈Q, d〉 then for all e′ we have 〈P, cte′〉R〈Q, dt
e′〉 just by taking e = e′.

We shall show a compact representation of the set of weak barbs
of a configuration under any possible context. First we introduce
some convenient notation for this purpose. The set J〈P, c〉K will
contain pairs of the form (α, e).

Definition 11. (Input-Output set) The input-output set of a given
configuration 〈P, c〉 is defined as follows:

J〈P, c〉K def
= {(α, e) | 〈P, c t α〉 ⇓e}

Intuitively, each pair (α, e) ∈ J〈P, c〉K denotes a stimulus-response,
or input-output, interaction of γ = 〈P, c〉: If the environment adds
α to the store of γ, the resulting configuration 〈P, c t α〉 may
evolve, without any further interaction with the environment, into a
configuration whose store entails e. In other words 〈P, c t α〉 ⇓ e.
We can think of e as piece of information that 〈P, c t α〉 may pro-
duce.

The following corollary is an immediate consequence of the defini-
tions.

Corollary 1. J〈P, c〉K = J〈Q, d〉K iff 〈P, c〉 ∼wb 〈Q, d〉

We now introduce the notion of relevant input-output pair.

Definition 12. (Relevant Pair) Let (α, e) and (β, e′) be elements
from Con0 × Con0. We say that (α, e) is more relevant than
(β, e′), written (α, e) � (β, e′), iff α v β and e′ v (e t β).
Similarly, given p = (β, e′) s.t. p ∈ S, we say that the pair p is
irrelevant in S if there is a pair (α, e) ∈ S more relevant than p,
else p is said to be relevant in S.

Recall the stimulus-response intuition given above. In other words,
the pair (β, e′) is irrelevant in a given input-output set if there ex-
ists another pair (α, e) in the set that represents the need of less
stimulus from the environment, hence the condition α v β, to pro-
duce at least as much information, with the possible exception of
information that β may entail but α does not. Hence e′ v e t β.

We now list two important properties of � that will be useful later
on. The set J〈P, c〉K is closed w.r.t. �.

Proposition 4. Let (α, e) ∈ J〈P, c〉K. If (α, e) � (β, e′) then
(β, e′) ∈ J〈P, c〉K.

PROOF. By definition 〈P, ctα〉 ⇓e then by monotonicity 〈P, ct
β〉 ⇓e′ since e′ v (e t β), therefore (β, e′) ∈ J〈P, c〉K.

Moreover, the relation � is well-founded. More precisely,

Proposition 5. There is no infinite strictly descending chain p1 �
p2 �

PROOF. Follows from the well-foundedness ofv (Remark 1)

5.2 A canonical representation of ccp-{+} con-
figurations

Clearly J〈P, c〉K may be infinite due potential existence of infinitely
many arbitrary stimuli (inputs). By using the labeled transition se-
mantics (Table 2) we shall show that we do not need consider arbi-
trary inputs but only the minimal ones. Recall that in γ α−→ γ′ the
label α represents the minimal information needed to evolve from
γ to γ′.

Definition 13. The labeled-based input-output set of a configu-
ration 〈P, c〉, denoted asM(〈P, c〉), is inductively defined as fol-
lows:

{(true, c)} ∪⋃
〈P,c〉 α−→〈P ′,c′〉 ({(α, c′)} ∪ (α⊗M(〈P ′, c′〉)))

where ⊗ : Con0 × 2Con0×Con0 −→ 2Con0×Con0 is defined as
α⊗ S def

= {(α t β, e) | (β, e) ∈ S)}.

Nevertheless, labeled-based input-output sets do not give us a fully-
abstract representation of the input-output sets because of the ex-
istence of irrelevant pairs. By excluding these pairs we obtain a
compact and fully-abstract representation of input-output sets.

Definition 14. (Compact input-output set) The compact input-
output set of a configuration 〈P, c〉 is defined as follows:

MC(〈P, c〉) def
= {(α, e) | (α, e) ∈M(〈P, c〉) and

(α, e) is relevant inM(〈P, c〉)}

We shall now show the full-abstraction of the compact input-output
sets. We need the following lemmata. First, compact sets are closed
under weak transitions (=⇒). More precisely:

Proposition 6. If 〈P, c〉 α
=⇒ 〈P ′, c′〉 then (α, c′) ∈M(〈P, c〉).

PROOF. By induction on the depth of the inference of 〈P, c〉 α
=⇒

〈P ′, c′〉.

• Using Rule R-Tau we have 〈P, c〉 =⇒ 〈P, c〉 and (true, c) ∈
M(〈P, c〉) by definition.

• Using Rule R-Label we have 〈P, c〉 α−→ 〈P ′, c′〉 and (α, c′) ∈
M(〈P, c〉) by definition.

• Using Rule R-Add we have 〈P, c〉 α′′
=⇒ 〈P ′′, c′′〉 α′

=⇒ 〈P ′, c′〉
whereα′tα′′ = α. Then by induction hypothesis (α′′, c′′) ∈
M(〈P, c〉) and (α′, c′) ∈ M(〈P ′′, c′′〉), hence by defini-
tion of M(〈P, c〉) we have (α′ t α′′, c′) ∈ M(〈P, c〉) so
(α, c′) ∈M(〈P, c〉).

The following proposition states that whenever a pair (α, e) be-
longs toM(〈P, c〉), it means that e can be reached from 〈P, ctα〉
without aid of the environment.

Proposition 7. If (α, e) ∈ M(〈P, c〉) then 〈P, c t α〉 −→∗
〈P ′, e〉

PROOF. By definition ofM(〈P, c〉), since (α, e) ∈ M(〈P, c〉)
then there exist α1, . . . , αn such that α =

⊔n
i=1 αn and 〈P, c〉 α1−→

. . .
αn−→ 〈P ′, e〉. Hence by soundness on each transition 〈P, c t⊔n

i=1 αn〉 = 〈P, c t α〉 −→∗ 〈P ′, e〉.

We can now prove our main result, given two configurations 〈P, c〉
and 〈Q, d〉, they are observationally equivalent if and only if their
compact input-output sets are identical. We split the proof in the
following two lemmata.

Lemma 6. IfMC(〈P, c〉) =MC(〈Q, d〉) then J〈P, c〉K = J〈Q, d〉K

PROOF. Let us assume that (α, β) ∈ J〈P, c〉K then by definition
〈P, ctα〉 ⇓β hence there exists P ′ and β′ such that 〈P, ctα〉 −→∗
〈P ′, β′〉 and β v β′. By Lemma 3 we have 〈P, c t α〉 =⇒
〈P ′, β′〉, then by completeness of =⇒ (Lemma 2) there exist α′, b

s.t. 〈P, c〉 α′
=⇒ 〈P ′, c′〉 where α′t b = α and c′t b = β′ (1). Now

by Proposition 6 we know (α′, c′) ∈ M(〈P, c〉), then since � is
well-founded (Proposition 5) there is (α′′, c′′) that is relevant in
M(〈P, c〉) (then it belongs toMC(〈P, c〉)) such that (α′′, c′′) �
(α′, c′), namely α′′ v α′ (or equivalently ∃x.(α′′ t x) = α′

(2)) and c′ v (c′′ t α′). Given that (α′′, c′′) ∈ MC(〈P, c〉)
then by hypothesis (α′′, c′′) ∈ MC(〈Q, d〉), this means also that
(α′′, c′′) ∈M(〈Q, d〉) and by Proposition 7 we know that 〈Q, dt
α′′〉 −→∗ 〈Q′, c′′〉. By monotonicity we have the following tran-
sition 〈Q, d t α′′ t x t b〉 −→∗ 〈Q′, c′′ t x t b〉, now notice that
from (1) and (2) we have (dtα′′txtb) = (dtα′tb) = (dtα)
then 〈Q, d t α〉 −→∗ 〈Q′, c′′ t x t b〉. Finally, we have to prove
that β v (c′′ t x t b) to conclude that (α, β) ∈ J〈Q, d〉K, for that
purpose, recall that β v β′ = (c′ t b) v (c′′ t α′ t b) and since
(c′′ t α′′ t x t b) = (c′′ t x t b) then β v (c′′ t x t b) and so
(α, β) ∈ J〈Q, d〉K.

Lemma 7. If J〈P, c〉K = J〈Q, d〉K thenMC(〈P, c〉) =MC(〈Q, d〉)

PROOF. Assume that (α, β) ∈MC(〈P, c〉) our goal is to prove
that (α, β) ∈ MC(〈Q, d〉). By definition (α, β) is relevant in
M(〈P, c〉), moreover, by Proposition 7 we have 〈P, c t α〉 −→∗
〈P ′, β〉 then by definition (α, β) ∈ J〈P, c〉K and by hypothesis
(α, β) ∈ J〈Q, d〉K. This means that 〈Q, d t α〉 ⇓β then there
exists Q′, d′ s.t. 〈Q, d t α〉 −→∗ 〈Q′, d′〉 where β v d′. By
Lemma 3 we have 〈Q, d t α〉 =⇒ 〈Q′, d′〉, now by complete-

ness of =⇒ (Lemma 2) there exist α′, b s.t. 〈Q, d〉 α′
=⇒ 〈Q′, d′′〉

where (α′ t b) = α and (d′′ t b) = d′. Now let us assume by
means of contradiction that α′ 6= α. By soundness of =⇒ (Lemma
2) we have 〈Q, d t α′〉 =⇒ 〈Q′, d′′〉 then by Lemma 3 we get
〈Q, dt α′〉 −→∗ 〈Q′, d′′〉 hence (α′, d′′) ∈ J〈Q, d〉K. By hypoth-
esis then (α′, d′′) ∈ J〈P, c〉K, now this means that 〈P, ctα′〉 −→∗
〈P ′′, e〉 where d′′ v e (equivalently ∃z.(d′′ t z) = e). By Lemma
3 we get that 〈P, c t α′〉 =⇒ 〈P ′′, e〉 and by completeness there
exist x, b′ s.t. 〈P, c〉 x

=⇒ 〈P ′′, c′〉 where (x t b′) = α′ and
c′ t b′ = e. Using Lemma 6 we have that (x, c′) ∈ M(〈P, c〉),
now we will prove that (x, c′) � (α, β), namely x v α and
β v (α t c′). Recall that x v α′ v α, now for the latter con-
dition (αtc′) = (α′tbtc′) = (xtb′tbtc′) = (xtbte) then
since d′′ v ewe can check that β v d′ v (d′tx) = (d′′tbtx) v
(e t b t x) = (α t c′). Thus, this would mean that (α, β) is irrel-
evant inM(〈P, c〉), a contradiction, therefore α′ = α and by con-
sequence d′′ = d′. Therefore, we know that 〈Q, d〉 α

=⇒ 〈Q′, d′〉,
now let us assume by contradiction that d′ 6= β (i.e. β < d′). By
soundness and Lemma 3 we have that 〈Q, d t α〉 −→∗ 〈Q′, d′〉,
this means that (α, d′) ∈ J〈Q, d〉K. By hypothesis then (α, d′) ∈
J〈P, c〉K so there exist P1, c1 s.t. 〈P, c t α〉 −→∗ 〈P1, c1〉 and
d′ v c1. By Lemma 3 then 〈P, c t α〉 =⇒ 〈P1, c1〉, now by
completeness, there exist y, b′′ s.t. 〈P, c〉 y

=⇒ 〈P1, c
′
1〉 where

y t b′′ = α and c′1 t b′′ = c1. Using Lemma 6 we get that
(y, c′1) ∈ M(〈P, c〉). Now let us prove that (y, c′1) � (α, β),
namely y v α and β v (α t c′1). The first condition follows
from yt b′′ = α and for the latter condition we proceed as follows
β < d′ v c1 v (c1 t y) = (c′1 t b′′ t y) = (c′1 t α). Again, this

would mean that (α, β) is irrelevant inM(〈P, c〉), a contradiction,
therefore d′ = β. Hence, we know that 〈Q, d〉 α

=⇒ 〈Q′, β〉 then
by Proposition 6 (α, β) ∈ M(〈Q, d〉). Finally, let us assume by
contradiction that (α, β) is irrelevant in M(〈Q, d〉). Then there
exists (α1, β1) ∈M(〈Q, d〉) such that (α1, β1) � (α, β), namely
α1 v α (equivalently ∃z′.α1tz′ = α) and β v αtβ1. By Propo-
sition 7 we have that 〈Q, d t α1〉 −→∗ 〈Q1, β1〉, then (α1, β1) ∈
J〈Q, d〉K and by hypothesis (α1, β1) ∈ J〈P, c〉K. This means that
〈P, ctα1〉 −→∗ 〈P2, c2〉where β1 v c2, now by Lemma 3 we get
〈P, ctα1〉 =⇒ 〈P2, c2〉. By completeness of =⇒ there exist a, b1
s.t. 〈P, c〉 a

=⇒ 〈P2, c
′
2〉 where (a t b1) = α1 and (c′2 t b1) = c2.

Hence, by Proposition 6 we know that (a, c′2) ∈ M(〈P, c〉). Now
let us prove that (a, c′2) � (α, β) namely a v α and β v (αt c′2).
First a v α1 v α, for the latter condition we proceed as follows
(αtc′2) = (α1tz′tc′2) = (atb1tz′tc′2) = (c2tz′) and since
β1 v c2 and α v c2 then β v (α t β1) v (c2 t z′) = (α t c′2).
Once again, this would mean that (α, β) is irrelevant inM(〈P, c〉),
a contradiction. Finally, we can conclude that (α, β) is relevant in
M(〈Q, d〉) therefore (α, β) ∈MC(〈Q, d〉).

Using the these lemmata above we conclude the following theorem.

Theorem 6. J〈P, c〉K = J〈Q, d〉K iffMC(〈P, c〉) =MC(〈Q, d〉)

PROOF. Using Lemma 6 and Lemma 7.

By combining Theorem 5 and Theorem 6 we get a simple decision
procedure for ≈̇sb by reducing weak saturated equivalence between
two given configuration to the set equivalence of the corresponding
compact input-output representations. The complexity of this pro-
cedure is clearly determined by the complexity of constructions of
the compact input-output sets.

Theorem 7. Let γ and γ′ be two ccp-{+} configurations. Let
IS = {γ, γ′} and let N = |Config−→(IS)|. Then

• MC(γ) =MC(γ′) iff γ ≈̇sb γ′.

• Checking whether MC(γ) = MC(γ′) takes O(N2) time
and uses O(N) space.

PROOF. The first item follows from Follows from Theorem 5
and Theorem 6 and the second item is derived from the construction
ofMC(γ) andMC(γ′).

6. IMPROVING THE PARTITION REFINE-
MENT FOR CCP

In this section we show that in the general case of ccp systems,
the strategy from Section 4.2 can be used for their ccp-{+} com-
ponents, thus producing a IS? which may be significant smaller
(although the worst case remains exponential).

Given a configuration γ the idea is to detect when an evolution of
γ, i.e. a γ′ s.t. γ

α1=⇒ . . .
αk=⇒ γ′, is a ccp-{+} configuration. This

way we can avoid adding new configurations with Rule (RDIS
)

whenever γ′ ∈ Conf ccp−{+}, and redundancy can be then checked
using Proposition 3.

Definition 15. (Improved partition refinement for ccp) We de-
fine the procedure imp-weak-pr-ccp(IS ,) by replacing the
rules in Step 1 of weak-pr-ccp(IS ,) from Definition 7 with
the rules defined in Table 5.

Using this algorithm we can decide ≈̇sb in a more efficient manner,
although, in the worst-case scenario, still with exponential time.
This follows from Proposition 3 and Theorem 1.

Theorem 8. Let γ and γ′ be two ccp configurations. Let IS =
{γ, γ′} and let P be the output of imp-weak-pr-ccp(IS ,=⇒)
in Definition 15. Then

• γ P γ′ iff γ ≈̇sb γ′.
• imp-weak-pr-ccp(IS ,=⇒) may take exponential time

in the size of Config−→(IS).

PROOF. The first item follows Proposition 3 and Theorem 1.
The second item follows from [4].

It is clear that imp-weak-pr-ccp(IS ,=⇒) performs better than
weak-pr-ccp(IS ,=⇒) since the new procedure avoids adding
new states whenever they are not necessary to check redundancy
w.r.t. ≈̇sb. Unfortunately, this improvement does not escape from
the worst-case scenario of weak-pr-ccp(IS ,=⇒). Neverthe-
less, this approach shows the applicability of the strategy developed
in Section 4.2.

7. CONCLUSIONS AND FUTURE WORK
In this paper we explored the use of the partition refinement algo-
rithm for ccp from [4] and [5] for checking observational equiv-
alence in the ccp-{+} fragment. We proved that this procedure
takes exponential time and space (in the size of the set of reach-
able configurations) even for the restricted case of ccp-{+}. We
then proposed two alternative methods for checking observational
equivalence in ccp-{+} by exploiting some of the intrinsic proper-
ties of this fragment, in particular confluence. We proved that both
procedures take polynomial time (in the size of the set of reachable
configurations), thus significantly improving the exponential-time
approach from [4, 5], which is, to the best of our knowledge the
only algorithm for checking observational equivalence in ccp. Each
of the two method has its advantages over the other. On the one
hand, the algorithm from Section 4 uses significantly more time
and space than the one from Section 5, however it can be easily
adapted for verifying observational equivalence for the full ccp as
shown in Section 6. On the other hand, the procedure from Section
5 takes less time and uses only linear space nevertheless there is no
“trivial” adaptation for the full language since it does not use the
partition refinement approach.

Most of the related work was already discussed in the introduc-
tion. As we mentioned in Section 4, it remains as a future work to
consider more efficient partition refinement algorithms [13] to see
whether the algorithm from Section 4 can be further improved. The
challenge would be to find a more efficient version of =⇒ that can
still be used for deciding ≈̇sb and so it can be adapted to the case
of the full ccp. Finally, we plan to investigate how the procedures
here defined can be extended to different versions of ccp where the
summation operator is not present, for instance timed ccp (tcc) [25],
universal temporal ccp (utcc) [21] and epistemic ccp (eccp) [17]).

(IS’ =⇒)
γ ∈ IS
γ ∈ IS?

(RS’ =⇒) γ ∈ IS? γ
α γ′

γ′ ∈ IS?

(opt-RD =⇒) γ ∈ IS? γ 6∈ Conf ccp−{+} t1 = γ
α 〈P1, c1〉 t2 = γ

β 〈P2, c2〉 α < β c2 = c1 t β
〈P1, c2〉 ∈ IS?

Table 5: Rules for improved version of the partition refinement for ccp.

8. REFERENCES
[1] L. Aceto, A. Ingolfsdottir, and J. Srba. Advanced Topics in

Bisimulation and Coinduction, chapter The Algorithmics of
Bisimilarity, pages 100–172. Cambridge University Press,
2011.

[2] R. M. Amadio, I. Castellani, and D. Sangiorgi. On
bisimulations for the asynchronous pi-calculus. In CONCUR,
volume 1119 of Lecture Notes in Computer Science, pages
147–162. Springer, 1996.

[3] A. Aristizabal, F. Bonchi, C. Palamidessi, L. Pino, and F. D.
Valencia. Deriving labels and bisimilarity for concurrent
constraint programming. In FOSSACS, LNCS, pages
138–152. Springer, 2011.

[4] A. Aristizabal, F. Bonchi, L. Pino, and F. D. Valencia.
Partition refinement for bisimilarity in ccp. In SAC, pages
88–93. ACM, 2012.

[5] A. Aristizábal, F. Bonchi, L. F. Pino, and F. Valencia.
Reducing weak to strong bisimilarity in ccp. In ICE, pages
2–16, 2012.

[6] M. Bartoletti and R. Zunino. A calculus of contracting
processes. In LICS, pages 332–341. IEEE Computer Society,
2010.

[7] J. Bengtson, M. Johansson, J. Parrow, and B. Victor.
Psi-calculi: Mobile processes, nominal data, and logic. In
LICS, pages 39–48, 2009.

[8] F. Bonchi, F. Gadducci, and G. V. Monreale. Reactive
systems, barbed semantics, and the mobile ambients. In
FOSSACS, LNCS, pages 272–287, 2009.

[9] F. Bonchi, B. König, and U. Montanari. Saturated semantics
for reactive systems. In LICS, pages 69–80. IEEE, 2006.

[10] A. Bouali and R. de Simone. Symbolic bisimulation
minimisation. In CAV, volume 663 of Lecture Notes in
Computer Science, pages 96–108. Springer, 1992.

[11] M. G. Buscemi and U. Montanari. Open bisimulation for the
concurrent constraint pi-calculus. In ESOP, pages 254–268,
2008.

[12] F. S. de Boer, A. D. Pierro, and C. Palamidessi.
Nondeterminism and infinite computations in constraint
programming. Theor. Comput. Sci., 151(1):37–78, 1995.

[13] A. Dovier, C. Piazza, and A. Policriti. An efficient algorithm
for computing bisimulation equivalence. Theor. Comput.
Sci., 311(1-3):221–256, 2004.

[14] J.-C. Fernandez and L. Mounier. Verifying bisimulations "on
the fly". In FORTE, pages 95–110. North-Holland, 1990.

[15] H. Garavel. Reflections on the future of concurrency theory
in general and process calculi in particular. In Proc. of LIX
Colloquium on Emergent Trends in Concurrency Theory,
Electr. Notes Theor. Comput. Sci. 209, pages 149–164, 2008.

[16] P. C. Kanellakis and S. A. Smolka. Ccs expressions, finite
state processes, and three problems of equivalence. In
PODC, pages 228–240. ACM, 1983.

[17] S. Knight, C. Palamidessi, P. Panangaden, and F. D. Valencia.
Spatial and epistemic modalities in constraint-based process

calculi. In CONCUR, pages 317–332, 2012.
[18] N. P. Mendler, P. Panangaden, P. J. Scott, and R. A. G. Seely.

A logical view of concurrent constraint programming. Nord.
J. Comput., 2(2):181–220, 1995.

[19] R. Milner. A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer-Verlag New
York, Inc., 1980.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP,
LNCS, pages 685–695. Springer, 1992.

[21] C. Olarte and F. D. Valencia. Universal concurrent constraint
programing: symbolic semantics and applications to security.
In SAC, pages 145–150. ACM, 2008.

[22] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM J. Comput., 16(6):973–989, Dec. 1987.

[23] C. Palamidessi, V. A. Saraswat, F. D. Valencia, and B. Victor.
On the expressiveness of linearity vs persistence in the
asychronous pi-calculus. In LICS, pages 59–68, 2006.

[24] L. Pino, F. Bonchi, and F. Valencia. Efficient computation of
program equivalence for confluent concurrent constraint
programming (technical report). Technical report, LIX,
Ecole Polytechnique, 2013.
http://www.lix.polytechnique.fr/~luis.
pino/files/minset-extended.pdf.

[25] V. A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of
timed concurrent constraint programming. In LICS, pages
71–80. IEEE, 1994.

[26] V. A. Saraswat, M. C. Rinard, and P. Panangaden. Semantic
foundations of concurrent constraint programming. In POPL,
pages 333–352. ACM Press, 1991.

Real-Reward Testing for Probabilistic Processes

Yuxin Deng1∗ Rob van Glabbeek2 Matthew Hennessy3† Carroll Morgan4‡

1 Shanghai Jiao Tong University, China
2 NICTA, Sydney, Australia§

3 Trinity College Dublin, Ireland
2,4 University of New South Wales, Sydney, Australia

We introduce a notion of real-valued reward testing for probabilistic processes by extending the tra-
ditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may-
and must preorders turn out to be inverses. We show that for convergent processes with finitely many
states and transitions, but not in the presence of divergence, the real-reward must-testing preorder
coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we charac-
terise the usual resolution-based testing in terms of the weak transitions of processes, without having
to involve policies, adversaries, schedulers, resolutions or similar structures that are external to the
process under investigation. This requires establishing the continuity of our function for calculating
testing outcomes.

1 Introduction

Extending classical testing semantics [1, 9] to a setting inwhich probability and nondeterminism co-exist
was initiated in [18]. The application of a test to a process yields a set of probabilities for reaching a
success state. Traditionally, this set of result probabilities is obtained byresolving[7] a system into a non-
empty set of deterministic but probabilistic systems, eachrepresenting a possible probabilistic run of the
original system; concepts such aspolicy [14], adversary[15], scheduler[16] andresolution[7] have been
used for this purpose.Reward testingwas introduced in [10] for concurrency, though earlier pioneered
in [11] for sequential programs; here the success states arelabelled by nonnegative real numbers—
rewards—to indicate degrees of success, and reaching a success state accumulates the associated reward.
In [17] an infinite set of success actions is used to report success, and the testing outcomes are vectors
of probabilities of performing these success actions. Compared to [10] this amounts to distinguishing
different qualities of success, rather than different quantities.

In [18] and [17], both tests and testees are nondeterministic probabilistic processes, whereas [10]
allows nonprobabilistic tests only, thereby obtaining a less discriminating form of testing. In [7] we
strengthened reward testing by also allowing probabilistic tests. Taking reward testing in this form we
showed that for finitary processes, i.e. finite-state and finitely branching processes, all three modes of
testing lead to the same testing preorders. Thus, vector-based testing is no more powerful thanscalar
testing that employs only one success action, and likewise reward testing is no more powerful than the
special case of reward testing in which all rewards are 1.1

∗Deng was partially supported by the National Natural Science Foundation of China (61173033, 61261130589, 61033002).
†Hennessy was supported by SFI project SFI 06 IN.1 1898.
‡Morgan acknowledges the support of ARC Discovery Grant DP0879529.
§NICTA is funded by the Australian Government as representedby the Department of Broadband, Communications and the

Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.
1In spite of this thereis a difference in power between the notions of testing from [18] and [17], but this is an issue that is

2 Real-Reward Testing for Probabilistic Processes

q
1

τ

a

b

a

b

τ

a

q
2

a

b

1/2 1/2

ω1

ω2

t

Figure 1: Two processes with divergence and a test

In certain situations it is natural to introduce negative rewards; this is the case, for instance, in the
theory of Markov Decision Processes [14]. Intuitively, we could understand negative rewards as costs,
while positive rewards are often viewed as benefits or profits. Consider for instance the (nonprobabilistic)
processesq1 andq2 of Figure 1. Herea represents the action of making an investment. Assuming that the
investment is made by bidding for some commodity, theτ-action represents an unsuccessful bid — if this
happens one simply tries again. Nowb represents the action of reaping the benefits of this investment.
Wheresq1 models a process in which making the investment is always followed by an opportunity to
reap the benefits, the processq2 allows, nondeterministically, for the possibility that the investment is
unsuccessful, so thata does not always lead to a state whereb is enabled. The testt, which will be
explained later, allows us to give a negative reward to action a—its cost—and a positive reward tob.

This leads to the question:if both negative- and positive rewards are allowed, how would the original
reward-testing semantics change?2 We refer to the more relaxed form of testing, using positive and
negative rewards, asreal-reward testingand the original one (from [10], but with probabilistic tests as in
[7]) asnonnegative-reward testing.

The power of real-reward testing is illustrated in Figure 1.The two (nonprobabilistic) processes in
the left- and central diagrams are equivalent under (probabilistic) may- as well as must testing; theτ-
loops in the initial states cause both processes to fail any nontrivial must test. Yet, if a reward of−1 is
associated with performing the actiona, and a reward of 2 with the subsequent performance ofb, it turns
out that in the first process the net reward is either 0, if the process remains stuck in its initial state, or
positive, whereas running the second process may yield a loss. See Example 3.8 for details of how these
rewards are assigned, and how net rewards are associated with the application of tests such ast. This
example shows that for processes that may exhibit divergence, real-reward testing is more discriminating
than nonnegative-reward testing, or other forms of probabilistic testing. It also illustrates that the extra
power is relevant in applications.

As remarked, in [7] we established that for finitary processes the nonnegative-reward must-testing
preorder (⊑nrmust) coincides with the probabilistic must-testing preorder (⊑pmust), and likewise for the

entirely orthogonal to the distinction between scalar testing, reward testing and vector-based testing. In [17] it is the execution
of a successactionthat constitutes success, whereas in [1, 9, 18, 10] it is reaching a successstate(even though typically success
actions are used to identify those states). In [2, Ex 5.3] we showed that state-based testing is (slightly) more powerfulthan
action-based testing. The results presented in [7] about the coincidence of scalar, reward, and vector-based testing preorders
pertain to action-based version of each, but in the conclusion it is observed that the same coincidence could be obtainedfor
their state-based versions. In the current paper we stick tostate-based testing.

2One might suspect no change at all, for any assignment of rewards from the interval[−1,+1] can be converted into a non-
negative assignment simply by adding 1 to all of them. But that would not preserve the testing order in the case of zero-outcomes
that resulted from a process’s failing to reach any success state at all: those zeroes would remain zero.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 3

(⊑rr may)
−1 Thm. 3.7

= ⊑rr must
Thm. 6.4

= ⊑nrmust
[7]
= ⊑pmust

[3]
= ⊑FS

The symbol= between two relations means that they coincide for finitary convergent processes.

Figure 2: The relationship of different testing preorders.

may preorders. The main result of this paper is that restricted to finitary convergent processes, the real-
reward must preorder⊑rr must coincides with the nonnegative-reward must preorder, i.e.for any finitary
convergent processes,

∆ ⊑rr must Γ iff ∆ ⊑nrmustΓ. (1)

Here, as we shall see, convergence is the natural generalisation of the standard concept for nonproba-
bilistic processes to the probabilistic setting; in particular it rules out the processes of Figure 1.

There is also a surprisingly simple proof of the fact that forreal-reward testing the may- and must
preorders are the inverse of each other, i.e. that for any processes∆ andΓ,

∆ ⊑rr may Γ iff Γ ⊑rr must∆. (2)

This pleasing symmetry does not hold for the more restrictive nonnegative-reward (or scalar) testing.
Moreover, the analogy of (1) for the may preorder does not hold, i.e. ⊑rr may does not coincide with
⊑nrmay (q.v. the end of Section 8).

Although it is easy to see that in (1) the former implies the latter, to prove the opposite is far from
trivial; see more discussion in Section 7. We employ a characterisation of⊑pmust from [2, 3]. Failure
simulation is a well-known behavioural preorder for nondeterministicprocesses [8]; in [2] we showed
that it could be adapted to characterise the probabilistic must-testing preorder⊑pmust, and in [3] this work
was generalised from finite to finitary processes. This involved the generalisation of the standard notion
of (weak) derivations in state-based systems [13], to probabilistic processes, i.e. probability distributions.
By capitalising on this novel notion of derivation between distributions we can show that the failure
simulation preorder⊑FS is contained in⊑rr must. Convergence is essential here, even though it is not
needed to establish that⊑FS is contained in⊑nrmust. Recall that⊑rr must is defined usingresolutions; the
key to proving this containment, the heart of the paper, is showing that certain derivations, which we call
extreme derivations, are essentially the same asresolutions. Combining this with the results from [7]
and [3] mentioned above leads to our required result that⊑nrmust is included in⊑rr must, as far as finitary
convergent processes are concerned. Consequently, in thiscase, all the relations of Figure 2 collapse into
one.

The rest of this paper is organised as follows. We start by recalling notation for probabilistic labelled
transition systems. In Section 3 we review the resolution-based testing approach and show that the
real-reward may preorder is simply the inverse of the real-reward must preorder. Moreover, using the
example of Figure 1, we show that in the presence of divergence the inclusion of⊑rr must in ⊑nrmust is
proper. In Section 4 we recall the notions of derivation and the failure simulation preorder. In Section
5 we show that resolutions can be seen as certain kinds of derivations. Then in Section 6 we show
for finitary convergent processes that real-reward must testing coincides with nonnegative-reward must
testing. We explain in Section 7 why the proof of the coincidence result cannot easily be simplified, and
then conclude in Section 8.

Besides the related work already mentioned above, many other studies on probabilistic testing and
simulation semantics have appeared in the literature. Theyare reviewed in [6, 2]. An extended abstract
of the current work has appeared as [5]. All the proofs omitted there are now detailed. Section 7 is newly
added to explain the subtle difference between⊑rr must and⊑nrmust.

4 Real-Reward Testing for Probabilistic Processes

2 Probabilistic Processes

A (discrete) probabilitysubdistributionover a setS is a function∆ : S→ [0,1] with ∑s∈S∆(s) ≤ 1; the
supportof such a∆ is ⌈∆⌉ := {s∈S | ∆(s) > 0}, and itsmass|∆| is ∑s∈⌈∆⌉ ∆(s). A subdistribution is a
(total, or full) distribution if |∆| = 1. The point distributions assigns probability 1 tosand 0 to all other
elements ofS, so that⌈s⌉ = {s}. With Dsub(S) we denote the set of subdistributions overS, and with
D(S) its subset of full distributions.

Let {∆k | k ∈ K} be a set of subdistributions, possibly infinite. Then∑k∈K ∆k is the real-valued func-
tion in S→ R defined by(∑k∈K ∆k)(s) := ∑k∈K ∆k(s). This is a partial operation on subdistributions
because for some states the sum of∆k(s) might exceed 1. If the index set is finite, say{1..n}, we often
write ∆1 + . . .+ ∆n. For p a real number from[0,1] we usep·∆ to denote the subdistribution given by
(p·∆)(s) := p·∆(s). Finally we useε to denote the everywhere-zero subdistribution that thus has empty
support. These operations on subdistributions do not readily adapt themselves to distributions; yet if
∑k∈K pk =1 for somepk ≥ 0, and the∆k are distributions, then so is∑k∈K pk ·∆k.

The expected value∑s∈S∆(s)· f (s) over a subdistribution∆ of a bounded nonnegative functionf
to the reals or tuples of them is written Exp∆(f), and the image of a subdistribution∆ through a func-
tion f : S→ T, for some setT, is written Imgf (∆) — the latter is the subdistribution overT given by
Imgf (∆)(t) := ∑ f (s)=t ∆(s) for eacht ∈ T.

Definition 2.1 A probabilistic labelled transition system(pLTS) is a triple〈S,Act,→〉, where
(i) S is a set of states,
(ii) Act is a set of visible actions,

(iii) relation → is a subset ofS×Actτ ×D(S).
HereActτ denotesAct∪{τ}, whereτ 6∈ Act is the invisible- or internal action.

A (nonprobabilistic) labelled transition system (LTS) maybe viewed as a degenerate pLTS — one in
which only point distributions are used. As with LTSs, we write s α−→ ∆ for (s,α ,∆)∈→, as well as
s α−→ for ∃∆ : s α−→ ∆ ands→ for ∃α : s α−→, with s 6α−→ ands 6→ representing their negations.

We graphically depict pLTSs as follows. States are represented by nodes of the form• and distribu-
tions by nodes of the form◦. For any states and distribution∆ with s α−→ ∆ we draw an edge froms to
∆, labelled withα . For any distribution∆ and states in ⌈∆⌉, the support of∆, we draw an edge from∆
to s, labelled with∆(s). We leave out point-distributions, diverting an incoming edge to the unique state
in its support. See e.g. Figure 4 in the next section for some example pLTSs.

In this paper a(probabilistic) processwill simply be a distribution over the state set of a pLTS. A
pLTS is deterministicif for any states and labelα there is at most one distribution∆ with s α−→ ∆. It
is finitely branchingif the set{∆ | s α−→ ∆, α ∈L} is finite for all statess; if moreoverS is finite, then
the pLTS isfinitary. A subdistribution∆ over the state setSof an arbitrary pLTS isfinitary if restricting
S to the states reachable from∆ in the graphical representation of the pLTS yields a finitarysub-pLTS.
Similarly, a subdistribution∆ is finite if restricting S to the states reachable from∆ yields a finitary
sub-pLTS without loops.

3 Testing probabilistic processes

A test is a finite distribution over the state set of a pLTS havingActτ ∪ Ω as its set of transition labels,
whereΩ is a set of freshsuccessactions, not already inActτ , introduced specifically to report testing
outcomes.3 For simplicity we may assume a fixed pLTS of processes—our results apply to any choice

3For vector-basedtesting we normally takeΩ to be countably infinite [17]. This way we have an unbounded supply of
success actions for building tests, of course without obligation to use them all.Scalartesting is obtained by taking|Ω| = 1.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 5

t α−→T Θ α 6∈Act

t‖p α−→ Θ‖p

p τ−→P ∆
t‖p τ−→ t‖∆

t a−→T Θ p a−→P ∆ a∈Act

t‖p τ−→ Θ‖∆

Figure 3: Synchronous parallel composition between tests and processes

of such a pLTS—and a fixed pLTS of tests. Since the power of testing depends on the expressivity of
the pLTS of tests—in particular certain types of tests are necessary for our results—let us just postulate
that this pLTS is sufficiently expressive for our purposes — for example that it can be used to interpret
all processes from the languagepCSP, as in our previous papers [6, 2, 3].4

Although we use successactions, they are used merely to mark certain states as success states,
namely the sources of transitions labelled by success actions. For this reason we systematically ignore
the distributions that can be reached after a success action. We impose two requirements on all states in
a pLTS of tests, namely

(A) if t ω1−→ andt ω2−→ with ω1,ω2 ∈ Ω thenω1 = ω2. uniqueness
(B) if t ω−→ with ω ∈ Ω andt α−→ ∆ with α ∈ Actτ thenu ω−→ for all u ∈ ⌈∆⌉. no ω-disabling

The first condition says that a success state can have one success identity only, whereas the second
condition is a slight weakening of the requirement from [10]that success states must be end states; it
allows further progress from anω-success state, for someω ∈ Ω, butω must remain enabled.5

To apply testΘ to process∆ we form a parallel compositionΘ‖∆ in which all visible actions of∆
must synchronise withΘ. Those synchronisations are immediately renamed intoτ so that the resulting
composition is a process whose only possible actions are theelements ofΩτ := Ω ∪ {τ}. Formally, if
〈P,Act,→P〉 and〈T,Act∪Ω,→T〉 are the pLTSs of processes and tests, then the pLTS of applications of
tests to processes is〈C,Ω,→〉, with C = {t‖p | t ∈T ∧ p∈P} and→ the transition relation generated by
the rules in Fig. 3. Here ifΘ ∈ D(T) and∆ ∈ D(P), thenΘ‖∆ is the distribution given by(Θ‖∆)(t‖p) :=
Θ(t) · ∆(p). The resulting pLTS also satisfies (A), (B) above; this wouldnot be the case if we had
strengthened (B) to require that success states must be end states.

We will define the resultA (Θ,∆) of applying the testΘ to the process∆ to be a set of testing
outcomes, exactly one of which results from each resolutionof the choices inΘ‖∆. Eachtesting outcome
is anΩ-tuple of real numbers in the interval [0,1], i.e. a functiono : Ω → [0,1], and itsω-component
o(ω), for ω ∈ Ω, gives the probability that the resolution in question willreach anω-success state, one
in which the success actionω is possible.

Due to the presence of nondeterminism in pLTSs, we need a mechanism to reduce a nondeterministic
structure into a set of deterministic structures, each of which determines a single possible outcome. Here
we adapt the notion ofresolution, defined in [7] for probabilistic automata, to pLTSs.

Definition 3.1 [Resolution]A resolutionof a subdistributionΦ∈Dsub(S) in a pLTS〈S,Ω,→〉 is a triple
〈R,Λ,→R〉 where〈R,Ω,→R〉 is a deterministic pLTS andΛ∈Dsub(R), such that there exists aresolving
function f : R→ Ssatisfying

(i) Img f (Λ) = Φ

(ii) if r α−→R Λ′ for α ∈ Ωτ then f (r) α−→ Imgf (Λ′)

(iii) if f (r) α−→ for α ∈ Ωτ thenr α−→R .

4In [3] tests are allowed to be finitary, but if two processes are behaviourally different they can be distinguished by some
characteristic tests which are always finite. Therefore, the results in [3] still hold if tests are required to be finite, as we do here.

5This simplifies our treatment of test but, as can be seen from Appendix A of [7], it is not a heavy restriction.

6 Real-Reward Testing for Probabilistic Processes

τ

1/2

τ

ω

τ

(c)

s
s

s

s

2

3

4

1

a

ω

τ

1/2

a

τ

q
1 t

(a) (b)

1/2 1/2

||t q
1

Figure 4: Testing the processq1

The reader is referred to Section 2 of [7] for a detailed discussion of the concept of resolution, and the
manner in which a resolution represents a run of a process; inparticular in a resolution states inS are
allowed to be resolved into distributions, and computationsteps can beprobabilistically interpolated.
Our resolutions match the results of applying a scheduler asdefined in [16].

We now explain how to associate an outcome with a particular resolution, which in turn will associate
a set of outcomes with a subdistribution in a pLTS. Given a deterministic pLTS〈R,Ω,→R〉 consider the
functionalF : (R→ [0,1]Ω) → (R→ [0,1]Ω) defined by

F (g)(r)(ω) :=

1 if r ω−→
0 if r 6ω−→ andr 6τ−→
Exp∆(g)(ω) if r 6ω−→ andr τ−→ ∆.

(3)

We view the unit interval[0,1] ordered in the standard manner as a complete lattice; this induces the
structure of a complete lattice on the product[0,1]Ω and in turn on the set of functionsR→ [0,1]Ω. The
functionalF is easily seen to be monotonic and therefore has a least fixed point, which we denote by
V〈R,Ω,→R〉; this is abbreviated toV when the deterministic pLTS in question is understood. Intuitively
ExpΛ(V〈R,Ω,→R〉) is the result of executing the resolution〈R,Λ,→R〉 starting from the initial distribution
Λ, a vector of probabilities. From Definition 3.1 we see that ingeneral a distributionΦ gives rise to a
non-empty set of resolutions. Collecting all of the possible results of executing them we get

A (Φ) = {ExpΛ(V〈R,Ω,→R〉) | 〈R,Λ,→R〉 is a resolution ofΦ} . (4)

This notation is most often used in calculating the results of applying a test to a process. To emphasise
this, we will sometimes use the notationA (Θ,∆) for A (Θ‖∆).

Example 3.2 Consider the processq1 depicted in Figure 4(a). When we apply the testt depicted in
Figure 4(b) to it we get the processt‖q1 depicted in Figure 4(c). This process is already deterministic,
hence has essentially only one resolution: itself. Moreover the outcome Expt‖q1

(V) = V(t‖q1) associated

with it is the least solution of the equationV(t‖q1) = 1
2 ·V(t‖q1)+ 1

2
−→ω where−→ω : Ω → [0,1] is theΩ-

tuple with−→ω (ω) = 1 and−→ω (ω ′) = 0 for all ω ′ 6= ω . In fact this equation has a unique solution in[0,1]Ω,
namely−→ω . ThusA (t,q1) = {−→ω }. 2

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 7

1/2

τ τ

1/2 1/2

τ

ω

(a)

τ

s1

4

ω

τ

1/2

2
s

ω

(b) (c)

:=s ||t

s5
s6

q
2q

1/2

1/2

2

τ

τ τ

1/2

a
a

t

a

0

1/2

s 3
s

Figure 5: Testing the processq2

Example 3.3 Consider the processq2 and the application of the testt to it, as outlined in Figure 5. For
eachk ≥ 1 the processt‖q2 has a resolution〈Rk,Λ,→Rk〉 such that ExpΛ(V) = (1− 1

2k)
−→ω ; intuitively it

goes around the loop(k−1) times before at last taking the right handτ action. ThusA (t,q2) contains
(1− 1

2k)
−→ω for everyk ≥ 1. But it also contains−→ω , because of the resolution which takes the left hand

τ-move every time. ThusA (t,q2) includes the set

{(1−1
2)−→ω , (1− 1

22)
−→ω , . . . ,(1− 1

2k)
−→ω , . . . ,−→ω }

As resolutions allow any interpolation between the twoτ-transitions from states1, A (t,q2) is actually
the convex closure of the above set. 2

There are two standard methods for comparing two sets of ordered outcomes:

O1 ≤Ho O2 if for every o1 ∈ O1 there exists someo2 ∈ O2 such thato1 ≤ o2

O1 ≤Sm O2 if for every o2 ∈ O2 there exists someo1 ∈ O1 such thato1 ≤ o2

This gives us our definition of the probabilistic may- and must-testing preorders; they are decorated with
·Ω for the repertoireΩ of testing actions they employ.

Definition 3.4 [Probabilistic testing preorders]

(i) ∆ ⊑Ω
pmayΓ if for every Ω-testΘ, A (Θ,∆) ≤Ho A (Θ,Γ).

(ii) ∆ ⊑Ω
pmustΓ if for every Ω-testΘ, A (Θ,∆) ≤Sm A (Θ,Γ).

These preorders are abbreviated to∆ ⊑pmayΓ and∆ ⊑pmustΓ when|Ω|= 1.

In [7] we established that for finitary processes⊑Ω
pmay coincides with⊑pmay and⊑Ω

pmust with ⊑pmust

for any choice ofΩ. We also defined the reward-testing preorders in terms of themechanism set up so
far. The idea is to associate with each success actionω ∈ Ω a reward, which is a nonnegative number in
the unit interval[0,1]; and then a run of a probabilistic process in parallel with a test yields an expected
reward accumulated by those states which can enable successactions. A reward tupleh ∈ [0,1]Ω is used
to assign rewardh(ω) to success actionω , for eachω ∈ Ω. Due to the presence of nondeterminism,
the application of a testΘ to a process∆ produces a set of expected rewards. Two sets of rewards

8 Real-Reward Testing for Probabilistic Processes

can be compared by examining their suprema/infima; this gives us two methods of testing called reward
may/must testing. In [7] all rewards are required to be nonnegative, so we refer to that approach of testing
asnonnegative-reward testing. If we also allow negative rewards, which intuitively can beunderstood as
costs, then we obtain an approach of testing calledreal-reward testing. Technically, we simply let reward
tuplesh range over the set[−1,1]Ω. If o ∈ [0,1]Ω, we use the dot-producth ·o = ∑ω∈Ω h(ω) ·o(ω). It
can apply to a setO ⊆ [0,1]Ω so thath·O = {h·o | o ∈ O}. Let A ⊆ [−1,1]. We use the notation

⊔
A for

the supremum of setA, and
d

A for the infimum.

Definition 3.5 [Reward testing preorders]

(i) ∆ ⊑Ω
nrmay Γ if for every Ω-testΘ and nonnegative-reward tupleh ∈ [0,1]Ω,⊔

h·A (Θ,∆) ≤ ⊔
h·A (Θ,Γ).

(ii) ∆ ⊑Ω
nrmustΓ if for every Ω-testΘ and nonnegative-reward tupleh ∈ [0,1]Ω,d

h·A (Θ,∆) ≤ d
h·A (Θ,Γ).

(iii) ∆ ⊑Ω
rr may Γ if for every Ω-testΘ and real-reward tupleh ∈ [−1,1]Ω,⊔

h·A (Θ,∆) ≤ ⊔
h·A (Θ,Γ).

(iv) ∆ ⊑Ω
rr mustΓ if for every Ω-testΘ and real-reward tupleh ∈ [−1,1]Ω,d

h·A (Θ,∆) ≤ d
h·A (Θ,Γ).

This time we drop the superscriptΩ iff Ω is countably infinite.

It is shown in Corollary 1 of [7] that nonnegative-reward testing is equally powerful as probabilistic
testing.

Theorem 3.6 [7]For any finitary processes∆ andΓ,

(i) ∆ ⊑nrmay Γ if and only if ∆ ⊑pmayΓ.

(ii) ∆ ⊑nrmustΓ if and only if ∆ ⊑pmustΓ.

In this paper we focus on the real-reward testing preorders⊑rr may and⊑rr must, by comparing them with
the nonnegative reward testing preorders⊑nrmay and⊑nrmust. Although these two nonnegative-reward
testing preorders are in general incomparable, we have for the real-reward testing preorders:

Theorem 3.7 For any processes∆ andΓ, it holds that∆ ⊑rr may Γ if and only if Γ ⊑rr must ∆.

Proof: We first notice that for any nonempty setA ⊆ [0,1]Ω and any reward tupleh ∈ [−1,1]Ω,

⊔
h·A = − (

l
(−h) ·A) (5)

where−h is the negation ofh, i.e. (−h)(ω) = −(h(ω)) for anyω ∈ Ω. We consider the “if” direction;
the “only if” direction is similar. LetΘ be anyΩ-test andh be any real reward tuple in[−1,1]Ω. Clearly,
−h is also a real reward tuple. SupposeΓ ⊑rr must∆, then

l
(−h) ·A (Θ,Γ) ≤

l
(−h) ·A (Θ,∆) (6)

Therefore, we can infer that
⊔

h·A (Θ,∆) = −(
d

(−h) ·A (Θ,∆)) by (5)
≤ −(

d
(−h) ·A (Θ,Γ)) by (6)

=
⊔

h·A (Θ,Γ) by (5). 2

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 9

Our next task is to compare⊑rr must with ⊑nrmust. The former is included in the latter, which directly
follows from Definition 3.5. Surprisingly, it turns out thatfor finitary convergent processes the latter is
also included in the former, thus establishing that the two preorders are in fact the same. The rest of
the paper is devoted to proving this result. However, we firstshow that this result does not extend to
divergent processes.

Example 3.8 Consider the processesq1 and q2 depicted in Figure 1. Using the characterisations of
⊑pmay and⊑pmust in [3], it is easy to see that these processes cannot be distinguished by probabilistic
may- and must testing, and hence not by nonnegative-reward testing either. However, lett be the test in
the right diagram of Figure 1 that first synchronises on the action a, and then with probability12 reaches
a state in which a reward of−2 is allocated, and with the remaining probability1

2 synchronises with the
actionb and reaches a state that yields a reward of 4. Thus the test employs two success actionsω1 and
ω2, and we use the reward tupleh with h(ω1) = −2 andh(ω2) = 4. Then the resolution ofq1 that does
not involve theτ-loop contributes the value−2 · 1

2 + 4 · 1
2 = −1+ 2 = 1 to the seth ·A (t,q1), whereas

the resolution that only involves theτ-loop contributes the value 0. Due to interpolation,h ·A (t,q1) is
in fact the entire interval[0,1]. On the other hand, the resolution corresponding to thea-branch ofq2

contributes the value−1 andh·A (t,q2) = [−1,1]. Thus
d

h·A (t,q1) = 0 > −1 =
d

h·A (t,q2), and
henceq1 6⊑rr mustq2. 2

4 Failure simulations

In this section we explain the characterisation of probabilistic testing from [2, 3]; it depends on a general-
isation of failure simulations [8] to the probabilistic setting. The key ingredient is that of weak derivations
for distributions. To deal with infinite (but finitary) processes, we need to employ the weak derivations
of [3] rather than those of [2].

In a pLTS actions are performed only by states, in that actions are given by relations from states to
distributions. But processes in general correspond to distributions over states, so in order to define what
it means for a process to perform an action, we need tolift these relations so that they also apply to
distributions. In fact we will find it convenient to lift themto subdistributions.

Definition 4.1 Let (S,L,→) be a pLTS andR ⊆ S×Dsub(S) be a relation from states to subdistributions.
ThenR ⊆ Dsub(S)×Dsub(S) is the smallest relation that satisfies:

(i) sR ∆ impliessR ∆, and
(ii) (Linearity) Γi R ∆i for i ∈ I implies (∑i∈I pi ·Γi) R (∑i∈I pi ·∆i) for any pi ∈[0,1] (i ∈ I) with

∑i∈I pi ≤ 1, whereI is a countable set.

An application of this notion is when the relation isα−→ for α ∈ Actτ ; in that case we also writeα−→
for α−→. Thus, as source of a relationα−→ we now also allow distributions, and even subdistributions. A
subtlety of this approach is that for any actionα , we haveε α−→ ε simply by takingI = /0 or ∑i∈I pi = 0
in Definition 4.1. That turns out to makeε especially useful for modelling the “chaotic” aspects of
divergence in [3], in particular that in the must-case a divergent process can mimic any other.

Definition 4.1 is very similar to our previous definition in [2], although there it applied only to (full)
distributions:

Lemma 4.2 Γ R ∆ if and only if
(i) Γ = ∑i∈I pi ·si , whereI is an index set and∑i∈I pi ≤ 1,
(ii) For eachi ∈ I there is a subdistribution∆i such thatsi R ∆i ,

(iii) ∆ = ∑i∈I pi ·∆i.

10 Real-Reward Testing for Probabilistic Processes

Proof: Straightforward. 2

An important point here is that a single state can be split into several pieces: that is, the decomposition
of Γ into ∑i∈I pi ·si is not unique.

Definition 4.3 [Weak derivation] Suppose we have subdistributions∆,∆→
k ,∆×

k , for k ≥ 0, with the fol-
lowing properties:

∆ = ∆→
0 + ∆×

0

∆→
0

τ−→ ∆→
1 + ∆×

1...

∆→
k

τ−→ ∆→
k+1 + ∆×

k+1 .
...

Then we call∆′ := ∑∞
k=0∆×

k a weak derivativeof ∆, and write∆ =⇒ ∆′ to mean that∆ can make aweak
derivationto its derivative∆′.

There is always at least one weak derivative of any subdistribution (the subdistribution itself) and there
can be many.

Proposition 4.4 [Transitivity, linearity and decomposition of weak derivations [4]]

(i) If ∆ =⇒ ∆′ and∆′ =⇒ ∆′′ then∆ =⇒ ∆′′.
Let pi ∈ [0,1] for i ∈ I with ∑i∈I pi ≤ 1.

(ii) If ∆i =⇒ ∆′
i for all i ∈ I then∑i∈I pi ·∆i =⇒ ∑i∈I pi ·∆′

i.

(iii) If ∑i∈I pi ·∆i =⇒ ∆′ then∆′ = ∑i∈I pi ·∆′
i for subdistributions∆′

i such that∆i =⇒ ∆′
i for all i ∈ I .

We now use these weak derivations to define, in the standard manner of [13], weak action relations
between derivations; these, together with the refusal relations 6A−→ for A ⊆ Act are the key ingredients in
the definition of the failure-simulation preorder.

Definition 4.5 Let ∆ and its variants∆′,∆pre,∆post be subdistributions in a pLTS〈S,Act,→〉.
• For a ∈ Act write ∆ a

=⇒ ∆′ whenever∆ =⇒ ∆pre a−→ ∆post=⇒ ∆′, for some∆pre and∆post. Extend
this toActτ by allowing as a special case thatτ=⇒ is simply=⇒, i.e. including identity (rather than
requiring at least oneτ−→).

• For A ⊆ Act ands∈S write s 6A−→ if s 6α−→ for everyα ∈A∪ {τ}; write ∆ 6A−→ if s 6A−→ for every
s∈⌈∆⌉.

• More generally write∆ =⇒ 6A−→ if ∆ =⇒ ∆pre for some∆pre such that∆pre 6A−→.

Definition 4.6 [Failure simulation preorder] Define�FS to be the largest relation inS×Dsub(S) such
that if s�FS ∆ then

(i) whenevers α
=⇒ Γ′, for α ∈Actτ , then there is a∆′ ∈Dsub(S) with ∆ α

=⇒ ∆′ andΓ′ �FS ∆′,

(ii) and whenevers=⇒ 6A−→ then∆ =⇒ 6A−→.

Any relationR ⊆ S× Dsub(S) that satisfies the two clauses above is called afailure simulation. The
failure simulation preorder⊑FS ⊆ Dsub(S)×Dsub(S) is defined by letting∆ ⊑FS Γ whenever there is a
∆♮ with ∆ =⇒ ∆♮ andΓ �FS ∆♮.

Note that the simulating process,∆, occurs at the right of�FS, but at the left of⊑FS. The following
lemma will bee needed in Section 6.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 11

Lemma 4.7 If Γ �FS ∆ andΓ =⇒ Γ′ then there is a matching transition∆ =⇒ ∆′ such thatΓ′ �FS ∆′.

Proof: Γ �FS ∆ implies by Lemma 4.2 that Γ = ∑
i∈I

pi ·si , si �FS ∆i, ∆ = ∑
i∈I

pi ·∆i.

By Proposition 4.4(iii) there areΓ′
i ∈ Dsub(S) for i ∈ I with si =⇒ Γ′

i and Γ′ = ∑pi∈I pi ·Γ′
i . For each

i ∈ I we infer fromsi �FS ∆i andsi =⇒ Γ′
i that there is a∆′

i ∈Dsub(S) with ∆i =⇒ ∆′
i andΓ′

i �FS ∆′. Let
∆′ := ∑i∈I pi ·∆′

i . Then Definition 4.1(2) and Proposition 4.4(ii) yieldΓ′ �FS ∆′ and∆ =⇒ ∆′. 2

The failure simulation preorder is preserved under parallel composition with a test and it is sound and
complete for probabilistic must testing of finitary processes.

Theorem 4.8 [3]For finitary processes∆ andΓ,

(i) If ∆ ⊑FS Γ then for anyΩ-testΘ, Θ‖∆ ⊑FS Θ‖Γ.

(ii) ∆ ⊑FS Γ if and only if ∆ ⊑pmustΓ.

5 From derivations to resolutions

In this section we explain how resolutions, on which the definitions of the testing preorders in Defini-
tions 3.4 and 3.5 are based, can be seen as certain kinds of derivations.

Definition 5.1 [Extreme derivatives]A states in a pLTS is calledstableif s 6τ−→, and a subdistribution
∆ is calledstableif every state in its support is stable. We write∆ =⇒≻ ∆′ whenever∆ =⇒ ∆′ and∆′ is
stable, and call∆′ anextremederivative of∆.

Referring to Definition 4.3, we see this means that in the extreme derivation of∆′ from ∆ at every stage a
state must move on if it can, so that every stopping componentcan contain only states whichmuststop:
for s∈ ⌈∆→

k + ∆×
k ⌉ we haves∈ ⌈∆×

k ⌉ if and now alsoonly if s 6τ−→.

Lemma 5.2 [Existence and uniqueness of extreme derivatives]

(i) For every subdistribution∆ there exists some (stable)∆′ such that∆ =⇒≻ ∆′.

(ii) In a deterministic pLTS if∆ =⇒≻ ∆′ and∆ =⇒≻ ∆′′ then∆′ = ∆′′.

Proof: We construct a derivation as in Definition 4.3 of a stable∆′ by defining the components∆k,∆×
k

and∆→
k using induction onk. Let us assume that the subdistribution∆k has been defined; in the base case

k = 0 this is simply∆. The decomposition of this∆k into the components∆×
k and∆→

k is carried out by
defining the former to be precisely those states which must stop, i.e. thoses for which s 6τ−→. Formally
∆×

k is determined by:

∆×
k (s) =

{
∆k(s) if s 6τ−→
0 otherwise

Then∆→
k is given by theremainderof ∆k, namely those states which can perform aτ action:

∆→
k (s) =

{
∆k(s) if s τ−→
0 otherwise

Note that these definitions divide the support of∆k into two disjoints sets, namely the support of∆×
k and

the support of∆→
k . Moreover by construction we know that∆→

k
τ−→ Θ for someΘ; we let ∆k+1 be an

arbitrary suchΘ.

12 Real-Reward Testing for Probabilistic Processes

This completes our construction of an extreme derivative asin Definition 4.3 and so we have estab-
lished (i).

For (ii) we observe that in a deterministic pLTS the above choice of∆k+1 is unique, so that the whole
derivative construction becomes unique. 2

Subdistributions are essential in the definition of extreme derivations. Consider a statet that has only
one transition, a selfτ-loop t τ−→ t. Then it diverges and it has a unique extreme derivativeε , the empty
subdistribution. More generally, suppose a subdistribution ∆ diverges, that is there is an infinite sequence
of internal transitions∆ τ−→ ∆1

τ−→ . . .∆k
τ−→ Then one extreme derivative of∆ is ε , but it may have

others.
In the extreme derivative∆ =⇒≻ ∆′, the subdistribution∆′ may be viewed as a final result of an

execution starting in∆ and dynamically resolving nondeterministic choices as theexecution proceeds.
We can tabulate the outcome of this execution in the following manner:

Definition 5.3 [Outcomes]The outcome $Φ ∈ [0,1]Ω of a stable subdistributionΦ is given by $Φ(ω) =

∑{Φ(s) | s∈ ⌈Φ⌉, s ω−→}. For any distributionΦ we write V (Φ) for the set of possible outcomes
{$Φ′ | Φ =⇒≻ Φ′} via extreme derivatives.

Let pi ∈ [0,1] for i ∈ I with ∑i∈I pi ≤ 1, and let∆i,Φi , for i ∈ I , be subdistributions. We use∑i∈I pi ·V (∆i)
as shorthand for{∑i∈I pi ·νi | νi ∈ V (∆i)}. By construction, $∑i∈I pi ·Φi = ∑i∈I pi ·$Φi . Using this, we
establish the linearity ofV :

Lemma 5.4 Let pi ∈ [0,1] for i ∈ I with ∑i∈I pi ≤ 1. ThenV (∑i∈I pi ·∆i) = ∑i∈I pi ·V (∆i).

Proof: Supposeν ∈ V (∑i∈I pi ·∆i). Thenν = $Φ for some stableΦ with ∑i∈I pi ·∆i =⇒ Φ. By Propo-
sition 4.4(iii) Φ can be written as∑i∈I pi ·Φi for subdistributionsΦi such that∆i =⇒ Φi for all i ∈ I ;
moreover, theΦi must be stable. Henceνi := $Φi ∈ V (∆i) and thusν = ∑i∈I pi ·νi ∈ ∑i∈I pi ·V (∆i).

Conversely, supposeν ∈ ∑i∈I pi ·V (∆i), i.e.,ν = ∑i∈I pi ·νi with νi ∈ V (∆i). Then for alli ∈ I there
are stable subdistributionsΦi with νi := $Φi and∆i =⇒ Φi . So∑i∈I pi ·∆i =⇒ ∑i∈I pi ·Φi by Proposi-
tion 4.4(ii). Moreover∑i∈I pi ·Φi is stable andν = ∑i∈I pi ·νi = $∑i∈I pi ·Φi ∈ V (∑i∈I pi ·∆i). 2

The following two examples illustrate that this manner of calculating outcomes often gives the same
result as when resolutions are used.

Example 5.5 (Revisiting Example 3.2.) The pLTS in Figure 4(c) is deterministic and therefore from
part (ii) of Lemma 5.2 it follows thatt‖q1 has a unique extreme derivativeΛ. MoreoverΛ can be
calculated to be∑k≥1

1
2k ·s3, which simplifies to the distributions3. Therefore, since $s3 = −→ω , it follows

thatV (t‖q1) = {−→ω }. This is exactly the same result as obtained in Example 3.2, using resolutions. 2

Example 5.6 (Revisiting Example 3.3.) The application of the testt to processesq2 is outlined in Fig-
ure 5(c). Consider any extreme derivative∆′ from s0 = t‖q2. Using the notation of Definition 4.3, it is
clear that∆×

0 and∆→
0 must beε ands0 respectively. Similarly,∆×

1 and∆→
1 must beε ands1 respectively.

But s1 is a nondeterministic state, having two possible transitions:

(i) s1
τ−→ Λ0 whereΛ0 has support{s0,s2} and assigns each of them the weight1

2

(ii) s1
τ−→ Λ1 whereΛ1 has the support{s3,s4}, again dividing the mass equally among them.

So there are many possibilities for∆2; from Definition 4.3 one sees that in fact∆2 can be of the form

p·Λ0 +(1− p) ·Λ1 (7)

for any choice ofp ∈ [0,1].

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 13

Let us consider one possibility, an extreme one wherep is chosen to be 0; only the transition (ii) above
is used. Here∆→

2 is the subdistribution1
2s4, and∆→

k = ε wheneverk > 2. A simple calculation shows
that in this case the extreme derivative generated isΛe

1 = 1
2s3 + 1

2s6 which implies that12
−→ω ∈ V (t‖q2).

Another possibility for∆2 is Λ0, corresponding top = 1 in (7) above. Continuing this derivation
leads to∆3 being 1

2 ·s1 + 1
2 ·s5; thus∆×

3 = 1
2 ·s5 and∆→

3 = 1
2 ·s1. Now in the generation of∆4 from ∆→

3
again we resolve a transition from the nondeterministic state s1, by choosing some arbitraryp ∈ [0,1] in
(7). Suppose we choosep= 1 every time, completely ignoring transition (ii) above. Then the extreme
derivative generated is

Λe
0 = ∑

k≥1

1
2k ·s5

which simplifies to the distributions5. This in turn means that−→ω ∈ V (t‖q2).
We have seen two possible derivations of extreme derivatives froms0. But there are many others. In

general whenever∆→
k is of the formq·s1 we have to resolve the nondeterminism by choosing ap∈ [0,1]

in (7) above; moreover each such choice is independent. It turns out that every extreme derivative∆′

of s0 is of the formq · Λe
0 +(1−q) · Λe

1 for some choice ofq ∈ [0,1], which implies thatV (t‖q2) is the
convex closure of the set{1

2
−→ω ,−→ω }.

Again this is similar to the results obtained using resolutions, in Example 3.3. 2

Unfortunately there is not an exact agreement between usingresolutions and extreme derivations, as the
next example shows.

Example 5.7 Let p be a process that first does ana-action, to the point distributionq, and then diverges,
via theτ-loopq τ−→ q. Let t be the test used in Examples 3.2 and 3.3. It is easy to see that the distribution
p‖t has a unique resolution, with expected outcome−→ω ; thusA (t, p) = {−→ω }.

It turns out thatt‖p also has a unique extreme derivative; unfortunately this turns out to beε. Since
$ε = 0 this means thatV (t‖p) =

−→
0 ; so in this case, which is actually nonprobabilistic, there is a

difference between the use of resolutions and extreme derivations. 2

To rectify this anomaly, we restrict our attention to a subset of pLTSs.

Definition 5.8 [ω-respecting]A pLTS 〈S,Ω,→〉 is said to beω-respectingwhen it satisfies the unique-
ness requirement (A) from Page 5, ands ω−→, for anyω ∈ Ω, impliess 6τ−→.

It is straightforward to modify the pLTS of applications of tests to processes into one that it isω-
respecting, namely by removing all transitionss τ−→ ∆ for statess with s ω−→; we call thispruning.
We denote the result of pruning the pLTS〈S,Ω,→〉 by 〈S,Ω, [→]〉, and the distributionΦ in this pruned
pLTS by[Φ].

Example 5.9 (Revisiting Example 5.7) Letp,q andt be as in Example 5.7. As we have already seen,
t‖p has the unique derivativeε. But by pruning it we obtain a different extreme derivative.If we denote
the state reachable fromt with the outgoingω-transition, in Figure 5(c), asω also, then[t‖p] has the
unique extreme derivative[ω‖q]. Since $[ω‖q] = −→ω , we obtainV ([t‖p]) = {−→ω }; this is exactly the
result obtained using resolutions. 2

Note that pruning has no effect on Examples 5.5 and 5.6, as thepLTSs concerned are alreadyω-
respecting. It also has no effect on the closure of the failure simulation preorder under parallel com-
position:

Lemma 5.10 [4]For finitary processes∆ andΓ, if ∆ ⊑FS Γ then for anyΩ-testΘ, [Θ‖∆] ⊑FS [Θ‖Γ].

14 Real-Reward Testing for Probabilistic Processes

In the remainder of this section we show that, at least inω-respecting pLTSs, using resolutions
to calculate outcomes, as used in the definition of testing (Definitions 3.4 and 3.5), leads to the same
results as using extreme derivations. In the former a set of deterministic structures are associated with
a distribution, while in the latter nondeterministic choices are resolved dynamically as the derivation
proceeds. We start by showing that resolution-based testing is insensitive to pruning. LetA p(Φ) denote
the set of vectors

{ExpΛ(V〈R,Ω,→R〉) | 〈R,Λ,→R〉 is a resolution of[Φ]} .

Proposition 5.11 For any distributionΦ in a pLTS〈S,Ω,→〉 we have thatA p(Φ) = A (Φ).

Proof: “⊇”: Let 〈R,Λ,→R〉 be a resolution ofΦ. Then, following Definition 3.1,〈R, [Λ], [→R]〉 is a
resolution of[Φ] and, by (3), Exp[Λ](V〈R,Ω,[→R]〉) = ExpΛ(V〈R,Ω,→R〉).

“⊆”: Let 〈R,Λ,→R〉 be a resolution of[Φ] with resolving function f . We construct a resolution
〈R′,Λ,→′

R〉 of Φ as a random extension of〈R,Λ,→R〉. For every pair(s,α)∈S× Ωτ with s α−→ pick

a distributionΨ(s,α) ∈D(S) such thats α−→ Ψ(s,α). Now defineR′ := R
.∪ (S×N), where

.∪ denotes
the disjoint union operation, and obtain→′

R from →R by adding (A) a transition(s,k) α−→′
R Ψ(s,α)

k+1 for

eachk∈N and eachs∈S with s α−→, and (B) a transitionr τ−→′
R Ψ(f (r),τ)

0 for eachr ∈R with f (r) τ−→
as well asf (r) ω−→ for someω ∈Ω. HereΨ(s,α)

k+1 ∈ D(S×{k+1}) is given byΨ(s,α)
k+1 (t,k+1) = Ψ(s,α)(t)

for all t ∈S. The resolving functionf is extended byf (s,k) := s. Using Definition 3.1 it follows that
〈R′,Λ,→′

R〉 is a resolution ofΦ and, again by (3), ExpΛ(V〈R′,Ω,→′
R〉) = ExpΛ(V〈R,Ω,→R〉). 2

The rest of this section is devoted to showing thatV ([Φ]) = A p(Φ) for any compositionΦ = Θ‖∆ of a
testΘ and process∆; this amounts to showing

{$Φ′ | Φ =⇒≻ Φ′} = {ExpΛ(V〈R,Ω,→〉) | 〈R,Λ,→〉 is a resolution ofΦ}

for any distributionΦ in anω-respecting pLTS〈S,Ω,→〉.
Let us see how an extreme derivation can be viewed as a method for dynamically generating a reso-

lution.

Proposition 5.12 [Resolutions from extreme derivatives]Let Φ =⇒≻ Φ′ in a pLTS〈S,Ω,→〉. Then
there is a resolution〈R,Λ,→R〉 of Φ, with resolving functionf , such thatΛ =⇒≻R Λ′ for someΛ′ for
which Φ′ = Imgf (Λ′).

Proof: Consider an extreme derivation ofΦ =⇒≻ Φ′ as given in Definition 4.3 where allΦ×
k must be

stable:
Φ = Φ0, Φk = Φ×

k + Φ→
k , Φ→

k
τ−→ Φk+1, Φ′ = ∑∞

k=0 Φ×
k .

By Lemma 4.2,Φ→
k

τ−→ Φk+1 implies that there are statessik ∈Sand distributionsΦi(k+1) ∈D(S), such
that

Φ→
k = ∑i∈Ik pik ·sik, sik

τ−→ Φi(k+1) for eachi ∈ Ik and Φk+1 = ∑i∈Ik pik ·Φi(k+1) .

Let Φ×
ik(s) :=

{
Φik(s) if s 6τ−→
0 if s τ−→ . SinceΦ×

k (s) =

{
Φk(s) if s 6τ−→
0 if s τ−→ it follows thatΦ×

k+1 = ∑i∈Ik pik ·Φ×
i(k+1)

.

We will now define the resolution〈R,Λ,→R〉 and the resolving functionf . The set of statesR is
(S×N)∪⋃

k∈N(Ik ×{k}). The resolving functionf : R→ Smaps(s,k)∈S×N to sand(i,k)∈ Ik×{k} to
sik ∈S. The second componentk of a state counts how many transitions have fired already: each transition
in →R goes from a state(i,k) or (s,k) to a distribution over(S∪ Ik+1)×{k+1}.

Define the subdistributionsΛ×
k ∈Dsub(S×{k}) and Λ→

k ∈Dsub(Ik ×{k}) by Λ×
k (s,k) = Φ×

k (s) and
Λ→

k (i,k) = pik. Let Λk := Λ×
k + Λ→

k and Λ := Λ0. Furthermore, for allk > 0 and i ∈ Ik−1, define

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 15

Λik ∈Dsub((S∪ Ik)×{k}) by

Λik(s,k) = Φ×
ik(s) and Λik(j,k) = p jk · Φik(sjk)

Φk(sjk)

for j ∈ Ik. We introduce the transitions(i,k) τ−→R Λi(k+1) for k ≥ 0 andi ∈ Ik. Moreover, for each state
s∈Sand labelα ∈Actτ such thats α−→, pick a transitions α−→ Ψ, and add the transition(s,k) α−→R Ψk+1

to →R, for all k∈N. HereΨk+1 is the distribution withΨk+1(t,k+1) = Ψ(t) for all t ∈S. Likewise,
for eachk ∈ N, i ∈ Ik and ω ∈Ω such thatsik

ω−→, pick a transitionsik
ω−→ Ψ, and add the transition

(i,k) ω−→R Ψk+1 to →R. This ends the definition of the resolution〈R,Λ,→R〉 and the resolving function
f . By construction,〈R,Ω,→R〉 is a deterministic pLTS. We now check thatf satisfies the requirements
for a resolving function of Definition 3.1.

(i) Img f (Λk)(s) = Λk(s,k)+ ∑
sik=s

Λk(i,k) = Λ×
k (s,k)+ ∑

sik=s
pik = Φ×

k (s)+ Φ→
k (s) = Φk(s)

for all s∈S, so Imgf (Λk) = Φk, and in particular Imgf (Λ) = Φ.
(ii) Let r α−→R Γ for α ∈Ωτ . In caser = (s,k) it must be thatΓ = Ψk+1 and f (r) = s α−→ Ψ =

Imgf (Ψk+1). Likewise, in caser =(i,k) andα ∈Ω it must be thatΓ = Ψk+1 and f (r) = sik
α−→ Ψ =

Imgf (Ψk+1). The remaining case isr =(i,k), α = τ andΓ = Λi(k+1). Then f (r) = sik
τ−→ Φi(k+1),

so it suffices to show that Imgf (Λik) = Φik for all k∈N andi ∈ Ik. For anys∈Swe have

Imgf (Λik)(s) = Λik(s,k)+ ∑
sjk=s

Λik(j,k) = Φ×
ik(s)+ ∑

sjk=s
p jk · Φik(sjk)

Φk(sjk)
= Φ×

ik(s)+
Φik(s)
Φk(s)

· ∑
sjk=s

p jk .

In cases 6τ−→ we havesjk = s for no j ∈ Ik, so Imgf (Λik)(s) = Φ×
ik(s) = Φik(s).

In cases τ−→ we haveΦ×
ik(s) = 0 and∑sjk=s p jk = Φ→

k (s) = Φk(s), so again Imgf (Λik)(s) = Φik(s).

(iii) Let f (r) α−→ for α ∈Ωτ . By construction there is aΨk+1 such thatr α−→R Ψk+1.
Hence〈R,Λ,→R〉 is a resolution ofΦ. We have:

∑
i∈Ik

pik ·Λi(k+1)(s,k+1) = ∑
i∈Ik

pik ·Φ×
i(k+1)(s) = Φ×

k+1(s) = Λ×
k+1(s,k+1) = Λk+1(s,k+1)

∑
i∈Ik

pik ·Λi(k+1)(j,k+1) = ∑
i∈Ik

pik ·p j(k+1) ·
Φi(k+1)(sj(k+1))

Φk+1(sj(k+1))
= p j(k+1) = Λ→

k+1(j,k+1) = Λk+1(j,k+1).

HenceΛk+1 = ∑i∈Ik pik ·Λi(k+1). Since alsoΛ→
k = ∑i∈Ik pik ·(i,k) and (i,k) τ−→R Λi(k+1), Lemma 4.2

yieldsΛ→
k

τ−→R Λk+1. Let Λ′ = ∑∞
k=0 Λ×

k . Then, by Definition 4.3,Λ =⇒≻R Λ′.
By construction Imgf (Λ×

k) = Φ×
k for all k∈N. Hence Imgf (Λ′) = ∑∞

k=0 Imgf (Λ×
k) = ∑∞

k=0Φ×
k = Φ′.

2

The converse is somewhat simpler.

Proposition 5.13 [Extreme derivatives from resolutions]Let 〈R,Λ,→R〉 be a resolution of a subdis-
tribution Φ in a pLTS〈S,Ω,→〉 with resolving functionf . ThenΛ =⇒≻R Λ′ impliesΦ =⇒≻ Imgf (Λ′).

Proof: The definition of Imgf implies that Imgf (∑i pi · Ψi) = ∑i pi · Imgf (Ψi). FurthermoreΨ τ−→ Ψ′

implies Imgf (Ψ) τ−→ Imgf (Ψ′). Namely, by Lemma 4.2,Ψ τ−→ Ψ′ implies

Ψ = ∑i∈I pi ·si , si
τ−→ Ψi for eachi ∈ I and Ψ′ = ∑i∈I pi ·Ψi

which, using Definition 3.1, entails

16 Real-Reward Testing for Probabilistic Processes

Imgf (Ψ) = ∑i∈I pi · f (si), f (si)
τ−→ Imgf (Ψi) for eachi ∈ I and Imgf (Ψ′) = ∑i∈I pi · Imgf (Ψi).

Hence Imgf (Ψ) τ−→ Imgf (Ψ′).
Now consider any derivation ofΛ =⇒≻R Λ′ along the lines of Definition 4.3. By systematically apply-

ing the functionf to the component subdistributions in this derivation we geta derivation Imgf (Λ) =⇒
Imgf (Λ′), that isΦ =⇒ Imgf (Λ′). To show that Imgf (Λ′) is actually an extreme derivative it suffices to
show thats is stable for everys∈ ⌈Imgf (Λ′)⌉. But if s∈ ⌈Imgf (Λ′)⌉ then by definition there is some
t ∈ ⌈Λ′⌉ such thats= f (t). SinceΛ =⇒≻R Λ′ the statet must be stable. The stability ofs now follows
from requirement (iii) of Definition 3.1. 2

Our next step is to relate the outcomes extracted from extreme derivatives to those extracted from
the corresponding resolutions. This requires some analysis of the evaluation functionV applied toω-
respecting deterministic pLTSs. We show that the functionF defined in (3) on Page 6 and its least fixed
point V are continuous with respect to the standard Euclidean metric.

Definition 5.14 [Continuous functions]An ω-chain in a complete latticeL is a sequence of elements
{cn | n ≥ 0} satisfyingci ≤ ci+1. Since the lattice is complete,ω-chains have least upper bounds; we
denote them by

⊔
n≥0cn. A function f : L → L is said to be (ω)-continuous [19] if it preserves the least

upper bounds ofω-chains:
f (

⊔

n≥0

cn) =
⊔

n≥0

f (cn) .

Lemma 5.15 [Exchange of suprema]Let functiong :N×N→R be such that it is

(i) monotonic in both of its arguments separately, so thati ≤ i′ impliesg(i, j) ≤ g(i′, j) for all j, and
j ≤ j ′ impliesg(i, j) ≤ g(i, j ′) for all i, and

(ii) bounded above, so that there is ac ∈R≥0 with g(i, j) ≤ c for all i, j.

Then
lim
i→∞

lim
j→∞

g(i, j) = lim
j→∞

lim
i→∞

g(i, j).

Proof: Conditions (i) and (ii) guarantee the existence of all the limits. Moreover, for a non-decreasing
sequence its limit and supremum agree, and both sides equal the supremum of allg(i, j) for i, j ∈N. In
fact, (R,≤) is a complete partial order (CPO), and it is a basic result of CPOs [19] that

⊔

i∈N(
⊔

j∈Ng(i, j)) =
⊔

j∈N(
⊔

i∈Ng(i, j)). 2

The following technical proposition states that some real functions satisfy the property ofbounded con-
tinuity, which allows the exchange of limit and sum operations. It plays a crucial role in proving the
continuity ofF .

Proposition 5.16 [Bounded continuity]Given a functionf :N×N→ R≥0 which satisfies the follow-
ing conditions:

C1. f is monotonic in the second parameter, i.e.j1 ≤ j2 implies f (i, j1) ≤ f (i, j2) for all i, j1, j2 ∈N;

C2. for any i ∈N, the limit lim j→∞ f (i, j) exists;

C3. the partial sumsSn = ∑n
i=0 lim j→∞ f (i, j) are bounded, i.e. there exists somec ∈ R≥0 such that

Sn ≤ c for all n ≥ 0;

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 17

then it holds that
∞

∑
i=0

lim
j→∞

f (i, j) = lim
j→∞

∞

∑
i=0

f (i, j).

Proof: Let g :N×N→ R≥0 be the function defined byg(n, j) = ∑n
i=0 f (i, j). It is easy to see thatg is

monotonic in both arguments. ByC1 andC2, we have thatf (i, j) ≤ lim j→∞ f (i, j) for any i, j ∈ N. So
for any j,n ∈N we have that

g(n, j) =
n

∑
i=0

f (i, j) ≤
n

∑
i=0

lim
j→∞

f (i, j) ≤ c

according toC3. In other words,g is bounded above. Therefore we can apply Lemma 5.15 and obtain

lim
n→∞

lim
j→∞

n

∑
i=0

f (i, j) = lim
j→∞

lim
n→∞

n

∑
i=0

f (i, j). (8)

For any j ∈N, the sequence{g(n, j)}n≥0 is nondecreasing and bounded, so its limit∑∞
i=0 f (i, j) exists.

That is,
lim
n→∞

n

∑
i=0

f (i, j) =
∞

∑
i=0

f (i, j). (9)

In view of C2, we have that, for any givenn∈N, the limit lim j→∞ ∑n
i=0 f (i, j) exists and

n

∑
i=0

lim
j→∞

f (i, j) = lim
j→∞

n

∑
i=0

f (i, j). (10)

By C3 the sequence{Sn}n≥0 is bounded. Since it is also nondecreasing, it converges to
∞

∑
i=0

lim
j→∞

f (i, j).
That is,

lim
n→∞

n

∑
i=0

lim
j→∞

f (i, j) =
∞

∑
i=0

lim
j→∞

f (i, j). (11)

Hence the left-hand side of the desired equality exists. By combining (8)-(11) we obtain the result that∞

∑
i=0

lim
j→∞

f (i, j) = lim
j→∞

∞

∑
i=0

f (i, j). 2

Lemma 5.17 Let R be a set andh : R → [0,1]Ω. Furthermore, let∆0 ≤ ∆1 ≤ ·· · be anω-chain of
subdistributions overR— here∆ ≤ ∆′ iff ∆(r) ≤ ∆′(r) for all r ∈ R. Then Exp⊔

n≥0 ∆n
h =

⊔
n≥0 Exp∆n

h.

Proof:
(
Exp⊔

n≥0 ∆n
h
)
(ω) =

(
∑r∈R(

⊔
n≥0 ∆n)(r)·h(r)

)
(ω)

=
(

∑r∈R(
⊔

n≥0 ∆n(r))·h(r)
)
(ω)

=
(

∑r∈R
⊔

n≥0(∆n(r)·h(r))
)
(ω)

= ∑r∈R
⊔

n≥0(∆n(r)·h(r)(ω))
= ∑r∈Rlimn→∞(∆n(r)·h(r)(ω))
= limn→∞ ∑r∈R(∆n(r)·h(r)(ω)) by Proposition 5.16
=

⊔
n≥0∑r∈R(∆n(r)·h(r)(ω))

=
(⊔

n≥0∑r∈R(∆n(r)·h(r))
)
(ω)

=
(⊔

n≥0Exp∆n
h
)
(ω).

In the above reasoning, Proposition 5.16 can be applied because we can definef : R×N → R≥0 by
letting f (r,n) = ∆n(r) ·h(r)(ω) and checking thatf satisfies the three conditions in Proposition 5.16. If
R is finite, we can extend it to a countable setR′ ⊇ Rand requiref (r ′,n) = 0 for all r ′ ∈ R′\Randn∈N.

18 Real-Reward Testing for Probabilistic Processes

1. f satisfies conditionC1. For anyr ∈ Rand j1, j2 ∈N, if j1 ≤ j2 then∆ j1 ≤ ∆ j2. It follows that

f (r, j1) = ∆ j1(r) ·h(r)(ω) ≤ ∆ j2(r) ·h(r)(ω) = f (r, j2).

2. f satisfies conditionC2. For anyr ∈ R, the sequence{∆n(r) ·h(r)(ω)}n≥0 is nondecreasing and
bounded byh(r)(ω). It follows that the limit limn→∞ f (r,n) exists.

3. f satisfies conditionC3. For any finiteR′′ ⊆ R, the partial sum∑r∈R′′ limn→∞ f (r,n) is bounded
because

∑r∈R′′ limn→∞ f (r,n) = limn→∞ ∑r∈R′′ f (r,n) = limn→∞ ∑r∈R′′ ∆n(r) ·h(r)(ω)
≤ limn→∞ ∑r∈R′′ ∆n(r) ≤ limn→∞ ∑r∈R∆n(r) ≤ limn→∞ 1 = 1. 2

Lemma 5.18 Consider a deterministic pLTS〈R,Ω,→〉. The functionF defined in (3) is continuous.

Proof: Let f0 ≤ f1 ≤ ... be an increasing chain inR→ [0,1]Ω. We need to show that

F (
⊔

n≥0

fn) =
⊔

n≥0

F (fn) (12)

For anyr ∈ R, we are in one of the following three cases:
1. r ω−→ for someω ∈ Ω. We have

F (
⊔

n≥0 fn)(r)(ω) = 1 by (3)
=

⊔
n≥0 1

=
⊔

n≥0F (fn)(r)(ω)
= (

⊔
n≥0F (fn))(r)(ω)

and
F (

⊔

n≥0

fn)(r)(ω ′) = 0 = (
⊔

n≥0

F (fn))(r)(ω ′)

for all ω ′ 6= ω .

2. r 6→. Similar to the last case. We have

F (
⊔

n≥0

fn)(r)(ω) = 0 = (
⊔

n≥0

F (fn))(r)(ω)

for all ω ∈ Ω.

3. Otherwise,r τ−→ ∆ for some∆ ∈ D(R). Then we infer that, for anyω ∈ Ω,

F (
⊔

n≥0 fn)(r)(ω) = Exp∆(
⊔

n≥0 fn)(ω) by (3)
= ∑r∈⌈∆⌉ ∆(r) · (⊔n≥0 fn)(r)(ω)

= ∑r∈⌈∆⌉ ∆(r) · (⊔n≥0 fn(r))(ω)

= ∑r∈⌈∆⌉
⊔

n≥0 ∆(r) · fn(r)(ω)

= ∑r∈⌈∆⌉ limn→∞ ∆(r) · fn(r)(ω)

= limn→∞ ∑r∈⌈∆⌉ ∆(r) · fn(r)(ω) by Proposition 5.16
=

⊔
n≥0∑r∈⌈∆⌉ ∆(r) · fn(r)(ω)

=
⊔

n≥0Exp∆(fn)(ω)
=

⊔
n≥0F (fn)(r)(ω)

= (
⊔

n≥0F (fn))(r)(ω) .

In the above reasoning, Proposition 5.16 can be applied because we can define the functionf :
R×N→R≥0 by letting f (r,n) = ∆(r) · fn(r)(ω) and checking thatf satisfies the three conditions
in Proposition 5.16. IfR is finite, we can extend it to a countable setR′ ⊇ Rand requiref (r ′,n) = 0
for all r ′ ∈ R′\Randn ∈N.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 19

(a) f satisfies conditionC1. For anyr ∈ R and j1, j2 ∈ N, if j1 ≤ j2 then f j1 ≤ f j2. It follows
that

f (r, j1) = ∆(r) · f j1(r)(ω) ≤ ∆(r) · f j2(r)(ω) = f (r, j2).

(b) f satisfies conditionC2. For anyr ∈ R, the sequence{∆(r) · fn(r)(ω)}n≥0 is nondecreasing
and bounded by∆(r). It follows that the limit limn→∞ f (r,n) exists.

(c) f satisfies conditionC3. For anyR′′ ⊆ R, the partial sum∑r∈R′′ limn→∞ f (r,n) is bounded
because

∑
r∈R′′

lim
n→∞

f (r,n) = ∑
r∈R′′

lim
n→∞

∆(r) · fn(r)(ω) ≤ ∑
r∈R′′

∆(r) ≤ ∑
r∈R

∆(r) = 1. 2

The continuity ofF implies that its fixed pointV can be captured by a chain of approximants. The
functionsVn, n ≥ 0 are defined by induction onn:

V0(r)(ω) = 0 for all r ∈ Randω ∈ Ω

Vn+1 = F (Vn)

Now V =
⊔

n≥0 Vn. This is used in the following result.

Lemma 5.19 Let Λ be a subdistribution in anω-respecting deterministic pLTS〈R,Ω,→R〉. If Λ =⇒≻ Λ′

then ExpΛ(V〈R,Ω,→R〉) = ExpΛ′(V〈R,Ω,→R〉).

Proof: For simplicity let us writeV(∆) for Exp∆(V〈R,Ω,→R〉) for any∆. Since the pLTS isω-respecting
we know thats τ−→ ∆ implies s 6ω−→ for any ω . Therefore, from the definition of the functionalF we
have thats τ−→ ∆ impliesVn+1(s) = Vn(∆), whence by lifting and linearity we get:

if ∆ τ−→ ∆′ thenVn+1(∆) = Vn(∆′) for all n ≥ 0.

Now supposeΛ =⇒≻ Λ′. Then

Λ = Λ0, Λk = Λ×
k + Λ→

k , Λ→
k

τ−→ Λk+1, Λ′ =
∞

∑
k=0

Λ×
k .

Using in the base case thatV0(∆)(ω)=0 for each∆, a straightforward induction onn yields, for allℓ≥0,

Vn(Λℓ) =
n

∑
k=0

Vn−k(Λ×
ℓ+k) . (13)

NamelyVn+1(Λℓ) = Vn+1(Λ×
ℓ + Λ→

ℓ) = Vn+1(Λ×
ℓ)+Vn+1(Λ→

ℓ) = Vn+1(Λ×
ℓ)+Vn(Λℓ+1)

induction
=

Vn+1(Λ×
ℓ)+ ∑n

k=0Vn−k(Λ×
ℓ+1+k) = Vn+1(Λ×

ℓ)+ ∑n+1
k=1 Vn+1−k(Λ×

ℓ+k) = ∑n+1
k=0 Vn+1−k(Λ×

ℓ+k).
SinceΛ×

k is stable, we have

Vm(Λ×
k) = V(Λ×

k) for everyk,m≥ 0. (14)

We conclude by reasoning

V(Λ) =
⊔

n≥0Vn(Λ) by continuity ofF
=

⊔
n≥0∑n

k=0Vn−k(Λ×
k) from (13) above, takingℓ = 0

=
⊔

n≥0∑n
k=0V(Λ×

k) by (14)
=

⊔
n≥0V(∑n

k=0 Λ×
k) by linearity ofV

= V(
⊔

n≥0∑n
k=0 Λ×

k) by Lemma 5.17
= V(∑∞

k=0Λ×
k)

= V(Λ′) . 2

20 Real-Reward Testing for Probabilistic Processes

We are now ready to compare the two methods for calculating the set of outcomes associated with a
subdistribution:

• using extreme derivatives and the reward function $ from Definition 5.3
• using resolutions and the evaluation functionV from page 6.

Theorem 5.20 In anω-respecting pLTS〈S,Ω,→〉, the following statements hold.

(a) If Φ =⇒≻ Φ′ then there is a resolution〈R,Λ,→R〉 of Φ such that ExpΛ(V〈R,Ω,→R〉) = $Φ′.

(b) For any resolution〈R,Λ,→R〉 of Φ, there exists aΦ′ such thatΦ =⇒≻ Φ′ and ExpΛ(V〈R,Ω,→R〉)= $Φ′.

Proof: SupposeΦ =⇒≻ Φ′. By Proposition 5.12, there is a resolution〈R,Λ,→R〉 of Φ with resolving
function f and a subdistributionΛ′ such thatΛ =⇒≻ Λ′ andΦ′ = Imgf (Λ′). By Lemma 5.19, we have

ExpΛ(V) = ExpΛ′(V). (15)

SinceΛ′ is an extreme derivative, all the statess in its support are stable, soV(s)(ω) = 0 if s 6ω−→, for all
ω ∈Ω. Hence

ExpΛ′(V)(ω) = ∑
s∈⌈Λ′⌉

Λ′(s) ·V(s)(ω) = ∑
s∈⌈Λ′⌉, s

ω−→
Λ′(s) = $Λ′(ω) . (16)

Furthermore, for allt ∈⌈Φ′⌉, Φ′(t) = Imgf (Λ′)(t) = ∑ f (s)=t Λ′(s), so, for allω ∈ Ω,

$Φ′(ω) = ∑
t∈⌈Φ′⌉, t

ω−→
Φ′(t) = ∑

t∈⌈Φ′⌉, t
ω−→

Imgf (Λ
′)(t) = ∑

t∈⌈Φ′⌉, t
ω−→

∑ f (s)=t Λ′(s) = ∑
s∈⌈Λ′⌉, f (s)

ω−→
Λ′(s) = $Λ′(ω) ,

where in the last step we the use the property of resolutions that f (s) ω−→ iff s ω−→. Combining this with
(15) and (16) yields that ExpΛ(V) = $Φ′.

To prove part (b), suppose that〈R,Λ,→R〉 is a resolution ofΦ with resolving functionf , so thatΦ =
Imgf (Λ). We know from Lemma 5.2 that there exists a (unique) subdistribution Λ′ such thatΛ =⇒≻ Λ′.
By Proposition 5.13 we have thatΦ =⇒≻ Imgf (Λ′). The same arguments as in the other direction show
that ExpΛ(V) = $(Imgf (Λ′)). 2

A direct consequence of the above theorem is thatV (Φ) = A (Φ) for any subdistributionΦ in an ω-
respecting pLTS〈S,Ω,→〉. This implies thatV ([Φ]) = A p(Φ) for any subdistributionΦ in a pLTS
〈S,Ω,→〉. This, in turn, together with Proposition 5.11, implies thefollowing result.

Corollary 5.21 For any subdistributionΦ in a pLTS〈S,Ω,→〉 we have thatV ([Φ]) = A (Φ). 2

6 Agreement of nonnegative- and real-reward must testing

In this section we prove the agreement of⊑nrmustwith ⊑rr must for finitary convergent processes, by using
failure simulation [3], recalled in Definition 4.6, as a stepping stone.

Because we prune our pLTSs before extracting values from them, we will be concerned mainly with
ω-respecting structures. Moreover, we require the pLTSs to be convergentin the sense that there is
no wholly divergent states, i.e. with s =⇒ ε. It follows from Theorem 8 in [3], in combination with
Lemma 4.4(iii), that on a finitary convergent pLTS, if∆ =⇒ ∆′ with ∆ a full distribution, then∆′ is a full
distribution.

Lemma 6.1 Let ∆ andΓ be full distributions in anω-respecting finitary convergent pLTS〈S,Ω,→〉. If
distributionΓ is stable andΓ �FS ∆, then $Γ ∈ V (∆).

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 21

Proof: We first show that ifs is stable ands�FS ∆ with ∆ a full distribution, then $s∈ V (∆). Sinces is
stable, we have only two cases:

(i) s 6→ Here $s=
−→
0 , where

−→
0 (ω) = 0 for all ω ∈ Ω. Sinces�FS ∆ we have∆ =⇒ ∆′ with ∆′ 6→,

whence in fact∆ =⇒≻ ∆′ and $∆′ =
−→
0 . Thus $s=

−→
0 ∈ V (∆).

(ii) s ω−→ Γ′ for someΓ′ Here $s=−→ω , and sinces�FS ∆ we have∆ =⇒ ∆′ ω−→. As remarked above,
also∆′ is a full distribution. Hence $∆′=−→ω . Because the pLTS isω-respecting, in fact∆ =⇒≻ ∆′

and so again $s= −→ω ∈ V (∆).

Now for the general case we supposeΓ �FS ∆. By Lemma 4.2 there is an index setI and statessi ,
subdistributions∆i and probabilitiespi for i ∈ I , with ∑i∈I pi ≤ 1, such that

Γ = ∑i∈I pi ·si , si �FS ∆i for eachi ∈ I and ∆ = ∑i∈I pi ·∆i.

Since∆ is full, ∑i∈I pi = 1 and the∆i are full distributions. SinceΓ is stable, each statesi is stable. From
above we have that $si ∈ V (∆i) for all i ∈ I , and so $Γ = ∑i∈I pi ·$si ∈ ∑i∈I pi ·V (∆i) = V (∆), using
Lemma 5.4. 2

Lemma 6.2 Let ∆ and Γ be full distributions in anω-respecting finitary convergent pLTS〈S,Ω,→〉.
Then∆ ⊑FS Γ impliesV (∆) ⊇ V (Γ).

Proof: Let Γ,∆ ∈ D(S). We first claim that

(i) If ∆ =⇒ ∆′ thenV (∆′) ⊆ V (∆).

(ii) If Γ �FS ∆, then we haveV (Γ) ⊆ V (∆).

The first claim holds because if∆′ =⇒≻ ∆′′ then ∆ =⇒ ∆′ =⇒≻ ∆′′, i.e. every extreme derivative of
∆′ is also an extreme derivative of∆. For the second claim, we assumeΓ �FS ∆. For anyΓ =⇒≻ Γ′

Lemma 4.7 gives a matching transition∆ =⇒ ∆′ such thatΓ′ �FS ∆′. By definitionΓ′ is stable and since
〈S,Ω,→〉 is finitary and convergent∆′ andΓ′ must be full. It follows from Lemma 6.1 and Claim (i) that
$Γ′ ∈ V (∆′) ⊆ V (∆). Consequently, we obtainV (Γ) ⊆ V (∆).

Now suppose∆ ⊑FS Γ. By definition there exists some∆′ such that∆ =⇒ ∆′ andΓ �FS ∆′. By the
above two claims we obtainV (Γ) ⊆ V (∆′) ⊆ V (∆). 2

This lemma shows that the failure-simulation preorder is a very strong relation in the sense that if∆ is
related toΓ by the failure-simulation preorder then the set of outcomesgenerated by∆ includes the set of
outcomes given byΓ. It is mainly due to this strong property that we can show thatthe failure-simulation
preorder is sound for the real-reward must-testing preorder. Convergence is a crucial condition in this
lemma.

Theorem 6.3 For any finitary convergent processes∆ andΓ, if ∆ ⊑FS Γ then we have that∆ ⊑rr mustΓ.

Proof: We reason as follows.

∆ ⊑FS Γ
implies [Θ‖∆] ⊑FS [Θ‖Γ] Lemma 5.10, for anyΩ-testΘ
implies V ([Θ‖∆]) ⊇ V ([Θ‖Γ]) [·] is ω-respecting; Lemma 6.2
iff A (Θ,∆) ⊇ A (Θ,Γ) Corollary 5.21
implies h·A (Θ,∆) ⊇ h·A (Θ,Γ) for anyh ∈ [−1,1]Ω

implies
d

h·A (Θ,∆) ≤ d
h·A (Θ,Γ) for anyh ∈ [−1,1]Ω

iff ∆ ⊑Ω
rr mustΓ .

22 Real-Reward Testing for Probabilistic Processes

Note that in the second line above, both[Θ‖∆] and[Θ‖Γ] are convergent, since for any convergent process
Ξ and finite processΘ, by induction on the structure ofΘ, it can be shown that the compositionΘ‖Ξ is
also convergent. Furthermore, since processes∆,Γ and testsΘ are defined to be full distributions, also
[Θ‖∆] and[Θ‖Γ] are full. 2

The proof of the above theorem is subtle. The failure-simulation preorder is defined via weak derivations
(cf. Definition 4.6), while the reward must-testing preorder is defined in terms of resolutions (cf. Defini-
tion 3.5). Fortunately, we have shown in Corollary 5.21 thatwe can just as well characterise the reward
must-testing preorder in terms of weak derivations. Based on this observation, the proof was carried out
by exploiting Lemmas 5.10 and 6.2.

This result does not extend to divergent processes. One witness example is given in Figure 1. A
simpler example is as follows. Let∆ be a process that diverges, by performing aτ-loop only, and letΓ
be a process that merely performs a single actiona. It holds that∆ ⊑FS Γ because∆ =⇒ ε and the empty
subdistribution can failure-simulate any processes. However, if we apply the testt from Example 3.2
again, and the reward tupleh with h(ω) = −1, then

d
h·A (t,∆) =

d
h·V ([t‖∆]) =

d
h· {$ε} =

d{0} = 0d
h·A (t,Γ) =

d
h·V ([t‖Γ]) =

d
h· {−→ω } =

d{−1} = −1

As
d

h·A (t,∆) 6≤ d
h·A (t,Γ), we see that∆ 6⊑rr mustΓ. SinceV ([t‖Γ]) = {−→ω } but−→ω 6∈ V ([t‖∆]), this

also is a counterexample against an extension of Lemma 6.2 with divergence.
Finally, by combining Theorems 3.6(ii) and 4.8(ii), together with Theorem 6.3, we obtain the main

result of the paper which states that, in the absence of divergence, nonnegative-reward must testing is as
discriminating as real-reward must testing.

Theorem 6.4 For any finitary convergent processes∆ and Γ, it holds that∆ ⊑rr must Γ if and only if
∆ ⊑nrmustΓ.

Proof: The “only if” direction is obvious (cf. Definition 3.5). For the “if” direction, suppose∆ andΓ
are finitary convergent processes. We reason as follows.

∆ ⊑Ω
nrmustΓ

iff ∆ ⊑Ω
pmustΓ Theorem 3.6(ii)

iff ∆ ⊑FS Γ Theorem 4.8(ii)
implies ∆ ⊑Ω

rr mustΓ . Theorem 6.32

7 Discussion

Below we give a characterisation of⊑rr must in terms of the set inclusion relation between testing outcome
sets. As a similar characterisation for⊑nrmust does in general not hold for finitary (non-convergent)
processes, hopefully this gives some indication of the subtle difference between⊑rr mustand⊑nrmust, and
we see more clearly why our proof of Theorem 6.4 involves the failure simulation preorder.

Theorem 7.1 Let ∆ andΓ be any finitary processes. Then∆ ⊑rr mustΓ if and only if A (Θ,∆) ⊇ A (Θ,Γ)
for anyΩ-testΘ.

Proof: (⇐) Let Θ be anyΩ-test andh ∈ [−1,1]Ω be any real-reward tuple. SupposeA (Θ,∆) ⊇
A (Θ,Γ). It is obvious thath·A (Θ,∆) ⊇ h·A (Θ,Γ), from which it easily follows that

l
h·A (Θ,∆) ≤

l
h·A (Θ,Γ).

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 23

As this holds for an arbitrary real-reward tupleh, we see that∆ ⊑rr mustΓ.
(⇒) Suppose for a contradiction that there is someΩ-testΘ with A (Θ,∆) 6⊇ A (Θ,Γ). Then there

exists some outcomeo ∈ A (Θ,Γ) lying outsideA (Θ,∆), i.e.

o 6∈ A (Θ,∆). (17)

SinceΘ is finite, it contains only finitely many elements ofΩ, so that we may assume wlog thatΩ is
finite. Since∆ andΘ are finitary, it is easy to see that the pruned composition[∆‖Θ] is also finitary.
By Theorem 1/Corollary 1 in [3], the set{Φ | [∆‖Θ] =⇒ Φ} is convex and compact. With an analogous
proof, it can be shown that so is the set{Φ | [∆‖Θ] =⇒≻ Φ}. It follows that the set

{$Φ | [∆‖Θ] =⇒≻ Φ}

i.e. V ([Θ‖∆]), is also convex and compact. By Corollary 5.21 the setA (Θ,∆) is thus convex and
compact. Combining this with (17), and using the SeparationHyperplane Lemma [7, 12], we infer the
existence of some hyperplane whose normal ish ∈ RΩ such thath ·o′ > h ·o for all o′ ∈ A (Θ,∆). By
scalingh, we obtain without loss of generality thath ∈ [−1,1]Ω. It follows that

l
h·A (Θ,∆) > h·o ≥

l
h·A (Θ,Γ)

which is a contradiction to the assumption that∆ ⊑rr mustΓ. 2

Note that in the above proof the normal of the separating hyperplane belongs to[−1,1]Ω rather than
[0,1]Ω. So we cannot repeat the above proof for⊑nrmust. In general, we do not have that∆ ⊑nrmust Γ
impliesA (Θ,∆) ⊇ A (Θ,Γ) for anyΩ-testΘ and for arbitrary finitary processes∆ andΓ, that is finitary
processes which might not be convergent. However, when we restrict ourselves to finitary convergent
processes, this property does indeed hold, as can be seen from the first four lines in the proof of Theo-
rem 6.3. Note that in that proof there is an essential use of the failure simulation preorder; in particular
the pleasing property stated in Lemma 6.2. Even for finitary convergent processes we cannot give a direct
and simple proof of that property for⊑nrmust, analogous to that of Theorem 7.1.

8 Conclusion

We have studied a notion of real-reward testing which extends the traditional nonnegative-reward testing
with negative rewards. It turned out that the real-reward may preorder is the inverse of the real-reward
must preorder, and vice versa. More interestingly, for finitary convergent processes, the real-reward must
testing preorder coincides with the nonnegative-reward testing preorder. In order to prove this result,
we have capitalised on a characterisation of nonnegative-reward testing in terms of a derivation based
simulation preorder. Relating derivations to resolutions, on which the testing theories are based, involved
proving some analytic properties such as the continuity of afunction for calculating testing outcomes.

Although for finitary convergent processes real-reward must testing is no more powerful than non-
negative-reward must testing, the same does not hold for maytesting. This is immediate from our result
that (the inverse of) real-reward may testing is as powerfulas real-reward must testing, that is known
not to hold for nonnegative-reward may- and must testing. For finitary processes we know from [3]
that ⊑nrmay and⊑nrmust correspond to the simulation and failure simulation preorder respectively, and
without divergence the latter is strictly more discriminating than the former.

24 Real-Reward Testing for Probabilistic Processes

References

[1] R. De Nicola & M. Hennessy (1984):Testing equivalences for processes. Theoretical Computer Science34,
pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[2] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2008): Characterising testing preorders for finite
probabilistic processes. Logical Methods in Computer Science4(4):4, doi:10.2168/LMCS-4(4:4)2008.

[3] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.
In: Proc.CONCUR’09, LNCS 5710, Springer, pp. 274–288, doi:10.1007/978-3-642-04081-819.

[4] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.
Full version of [3]. Available athttp://www.cse.unsw.edu.au/ ˜ rvg/pub/finitary.pdf .

[5] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2011): Real Reward Testing for Probabilistic
Processes. In: Proc.QAPL’11. EPTCS57, pp. 61–73, doi:10.4204/EPTCS.57.5.

[6] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan & C. Zhang (2007):Remarks on Testing Probabilis-
tic Processes. ENTCS172, pp. 359–397, doi:10.1016/j.entcs.2007.02.013.

[7] Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang (2007):Scalar Outcomes Suffice for Finitary Proba-
bilistic Testing. In: Proc.ESOP’07, LNCS 4421, Springer, pp. 363–368, doi:10.1007/978-3-540-71316-625.

[8] R.J. van Glabbeek (1993):The Linear Time – Branching Time Spectrum II; The semantics of sequential
systems with silent moves (extended abstract). In: Proc.CONCUR’93. LNCS 751, Springer, pp. 66–81,
doi:10.1007/3-540-57208-26.

[9] M. Hennessy (1988):An Algebraic Theory of Processes. MIT Press.

[10] B. Jonsson, C. Ho-Stuart & Wang Yi (1994):Testing and Refinement for Nondeterministic and Probabilistic
Processes. In: Proc.FTRTFT’94, LNCS 863, Springer, pp. 418–430, doi:10.1007/3-540-58468-4 176.

[11] D. Kozen (1985):A Probabilistic PDL. JCSS30(2), pp. 162–178, doi:10.1016/0022-0000(85)90012-1.

[12] J. Matousek (2002):Lectures on Discrete Geometry. Springer.

[13] R. Milner (1989):Communication and Concurrency. Prentice-Hall.

[14] M.L. Puterman (1994):Markov Decision Processes. Wiley, doi:10.1002/9780470316887.

[15] J.J.M.M. Rutten, M.Kwiatkowska, G. Norman & D. Parker (2004):Mathematical Techniques for Analyzing
Concurrent and Probabilistic Systems,P. Panangaden and F. van Breugel (eds.).CRM Monograph Series23,
American Mathematical Society.

[16] R. Segala (1995):Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,
MIT.

[17] R. Segala (1996):Testing Probabilistic Automata. In: ProceedingsCONCUR’96, LNCS 1119, Springer, pp.
299–314, doi:10.1007/3-540-61604-762.

[18] Wang Yi & K.G. Larsen (1992):Testing Probabilistic and Nondeterministic Processes. In: Proc.PSTV’92.
IFIP TransactionsC-8, North-Holland, pp. 47–61.

[19] Glynn Winskel (1993):The Formal Semantics of Programming Languages: An Introduction. The MIT Press.

ar
X

iv
:1

20
2.

34
84

v2
 [

cs
.L

O
]

 2
1

Fe
b

20
12

Symbolic bisimulation for quantum processes

Yuan Feng1, Yuxin Deng2, and Mingsheng Ying1

1 University of Technology, Sydney, Australia, and Tsinghua University, China
2Shanghai Jiao Tong University, China

February 22, 2012

Abstract

With the previous notions of bisimulation presented in literature, to check if two quan-
tum processes are bisimilar, we have to instantiate the free quantum variables of them with
arbitrary quantum states, and verify the bisimilarity of resultant configurations. This makes
checking bisimilarity infeasible from an algorithmic point of view, because quantum states con-
stitute a continuum. In this paper, we introduce a symbolic operational semantics for quantum
processes directly at the quantum operation level, which allows us to describe the bisimulation
between quantum processes without resorting to quantum states. We show that the symbolic
bisimulation defined here is equivalent to the open bisimulation for quantum processes in the
previous work, when strong bisimulations are considered. An algorithm for checking symbolic
ground bisimilarity is presented. We also give a modal logical characterisation for quantum
bisimilarity based on an extension of Hennessy-Milner logic to quantum processes.

1 Introduction

An important issue in quantum process algebra is to discover a quantum generalisation of bisim-
ulation preserved by various process constructs, in particular, parallel composition, where one of
the major differences between classical and quantum systems, namely quantum entanglement, is
present. Jorrand and Lalire [13, 15] defined a branching bisimulation for their Quantum Process Al-
gebra (QPAlg), which identifies quantum processes whose associated graphs have the same branching
structure. However, their bisimulation cannot always distinguish different quantum operations, as
quantum states are only compared when they are input or output. Moreover, the derived bisimilarity
is not a congruence; it is not preserved by restriction. Bisimulation defined in [7] indeed distinguishes
different quantum operations but it works well only for finite processes. Again, it is not preserved
by restriction. In [20], a congruent bisimulation was proposed for a special model where no classical
datum is involved. However, as many important quantum communication protocols such as super-
dense coding and teleportation cannot be described in that model, the scope of its application is
very limited.

A general notion of bisimulation for the quantum process algebra qCCS developed by the authors
was found in [8], which enjoys the following nice features: (1) it is applicable to general models
where both classical and quantum data are involved, and recursion is allowed; (2) it is preserved
by all the standard process constructs, including parallel composition; and (3) quantum operations
are regarded as invisible, so that they can be combined arbitrarily. Independently, a bisimulation
congruence in Communicating Quantum Processes (CQP), developed by Gay and Nagarajan [11],
was established by Davidson [5]. Later on, motivated by [18], an open bisimulation for quantum
processes was defined in [6] that makes it possible to separate ground bisimulation and the closedness

1

under super-operator applications, thus providing not only a neater and simpler definition, but also
a new technique for proving bisimilarity.

The various bisimulations defined in the literature, however, have a common shortcoming: they
all resort to the instantiation of quantum variables by quantum states. As a result, to check whether
or not two processes are bisimilar, we have to accompany them with an arbitrarily chosen quantum
states, and check if the resultant configurations are bisimilar. Note that all quantum states constitute
a continuum. The verification of bisimilarity is actually infeasible from an algorithmic point of view.
The aim of the present paper is to tackle this problem by the powerful symbolic technique [12, 4].
This paper only considers qCCS, but the ideas and techniques developed here apply to other quantum
process algebras.

As a quantum extension of value-passing CCS, qCCS has both (possibly infinite) classical data
domain and (doomed-to-be infinite) quantum data domain. The possibly infinite classical data set
can be dealt with by symbolic bisimulation [12] for classical process algebras directly. However,
in qCCS, we are also faced with the additional difficulty caused by the infinity of all quantum
states. The current paper solves this problem by introducing super-operator valued distributions,
which allows us to fold the operational semantics of qCCS into a symbolic version and provides us
with a notion, also called symbolic bisimulation for simplicity, where to check the bisimilarity of
two quantum processes, only a finite number of process-superoperator pairs need to be considered,
without appealing to quantum states. To be specific, we propose

• a symbolic operational semantics of qCCS in which quantum processes are described directly
by the super-operators they can perform. It also incorporates a symbolic treatment for classical
data.

• a notion of symbolic bisimulation, based on the symbolic operational semantics, as well as an
efficient algorithm to check its ground version;

• the coincidence of symbolic bisimulation with the open bisimulation defined in [6], when strong
bisimulation is considered.

• a modal characterisation of symbolic bisimulation by a quantum logic as an extension of
Hennessy-Milner logic.

The remainder of the paper is organised as follows. In Section 2, we review some basic notions
from linear algebra and quantum mechanics. The syntax and (ordinary) operational semantics of
qCCS are presented in Section 3. We also review the definition of open bisimulation presented
in [6]. Section 4 collects some definitions and properties of the semiring of completely positive
super-operators. The notion of super-operator valued distributions, which serves as an extension of
probabilistic distributions, is also defined. Section 5 is the main part of this paper where we present
a symbolic operational semantics of qCCS which describes the execution of quantum processes
without resorting to concrete quantum states. Based on it, symbolic bisimulation between quantum
processes, which also incorporates a symbolic treatment for classical data, motivated by symbolic
bisimulation for classical processes, is presented and shown to be equivalent to the open bisimulation
in Section 3. Section 6 is devoted to proposing an algorithm to check symbolic ground bisimulation,
which is applicable to reasoning about the correctness of existing quantum communication protocols.
In section 7 we propose a modal logic which turns out to be both sound and complete with respect
to the symbolic bisimulation. We outline the main results in Section 8 and point out some directions
for further study. In particular, we suggest the potential application of our results in model checking
quantum communication protocols.

2

2 Preliminaries

For convenience of the reader, we briefly recall some basic notions from linear algebra and quantum
theory which are needed in this paper. For more details, we refer to [16].

2.1 Basic linear algebra

A Hilbert space H is a complete vector space equipped with an inner product

〈·|·〉 : H × H → C

such that

(1) 〈ψ|ψ〉 ≥ 0 for any |ψ〉 ∈ H, with equality if and only if |ψ〉 = 0;

(2) 〈φ|ψ〉 = 〈ψ|φ〉∗;

(3) 〈φ|∑i ci|ψi〉 =
∑
i ci〈φ|ψi〉,

where C is the set of complex numbers, and for each c ∈ C, c∗ stands for the complex conjugate of
c. For any vector |ψ〉 ∈ H, its length |||ψ〉|| is defined to be

√
〈ψ|ψ〉, and it is said to be normalized

if |||ψ〉|| = 1. Two vectors |ψ〉 and |φ〉 are orthogonal if 〈ψ|φ〉 = 0. An orthonormal basis of a Hilbert
space H is a basis {|i〉} where each |i〉 is normalized and any pair of them are orthogonal.

Let L(H) be the set of linear operators on H. For any A ∈ L(H), A is Hermitian if A† = A where
A† is the adjoint operator of A such that 〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗ for any |ψ〉, |φ〉 ∈ H. The fundamental
spectral theorem states that the set of all normalized eigenvectors of a Hermitian operator in L(H)
constitutes an orthonormal basis for H. That is, there exists a so-called spectral decomposition for
each Hermitian A such that

A =
∑

i

λi|i〉〈i| =
∑

λi∈spec(A)

λiEi

where the set {|i〉} constitute an orthonormal basis of H, spec(A) denotes the set of eigenvalues
of A, and Ei is the projector to the corresponding eigenspace of λi. A linear operator A ∈ L(H)
is unitary if A†A = AA† = IH where IH is the identity operator on H. The trace of A is defined
as tr(A) =

∑
i〈i|A|i〉 for some given orthonormal basis {|i〉} of H. It is worth noting that trace

function is actually independent of the orthonormal basis selected. It is also easy to check that trace
function is linear and tr(AB) = tr(BA) for any operators A,B ∈ L(H).

Let H1 and H2 be two Hilbert spaces. Their tensor product H1 ⊗ H2 is defined as a vector space
consisting of linear combinations of the vectors |ψ1ψ2〉 = |ψ1〉|ψ2〉 = |ψ1〉 ⊗ |ψ2〉 with |ψ1〉 ∈ H1 and
|ψ2〉 ∈ H2. Here the tensor product of two vectors is defined by a new vector such that

(∑

i

λi|ψi〉
)

⊗

∑

j

µj |φj〉

 =

∑

i,j

λiµj |ψi〉 ⊗ |φj〉.

Then H1 ⊗ H2 is also a Hilbert space where the inner product is defined as the following: for any
|ψ1〉, |φ1〉 ∈ H1 and |ψ2〉, |φ2〉 ∈ H2,

〈ψ1 ⊗ ψ2|φ1 ⊗ φ2〉 = 〈ψ1|φ1〉H1〈ψ2|φ2〉H2

where 〈·|·〉Hi is the inner product of Hi. For any A1 ∈ L(H1) and A2 ∈ L(H2), A1 ⊗A2 is defined
as a linear operator in L(H1 ⊗ H2) such that for each |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2,

(A1 ⊗A2)|ψ1ψ2〉 = A1|ψ1〉 ⊗A2|ψ2〉.

3

The partial trace of A ∈ L(H1 ⊗ H2) with respected to H1 is defined as trH1(A) =
∑
i〈i|A|i〉 where

{|i〉} is an orthonormal basis of H1. Similarly, we can define the partial trace of A with respected
to H2. Partial trace functions are also independent of the orthonormal basis selected.

Traditionally, a linear operator E on L(H) is called a super-operator on H. A super-operator is
said to be completely positive if it maps positive operators in L(H) to positive operators in L(H),
and for any auxiliary Hilbert space H′, the trivially extended operator IH′ ⊗ E also maps positive
operators in L(H′ ⊗ H) to positive operators in L(H′ ⊗ H). Here IH′ is the identity operator on
L(H′). The elegant and powerful Kraus representation theorem [14] of completely positive super-
operators states that a super-operator E is completely positive if and only if there are some set of
operators {Ei : i ∈ I} with appropriate dimension such that

E(A) =
∑

i∈I
EiAE

†
i

for any A ∈ L(H). The operators Ei are called Kraus operators of E . We abuse the notation
slightly by denoting E = {Ei : i ∈ I}. A super-operator E is said to be trace-nonincreasing if
tr(E(A)) ≤ tr(A) for any positive A ∈ L(H), and trace-preserving if the equality always holds.
Equivalently, a super-operator is trace-nonincreasing completely positive (resp. trace-preserving

completely positive) if and only if its Kraus operators Ei satisfy
∑

iE
†
iEi ≤ I (resp.

∑
iE

†
iEi = I).

In this paper, we will use some well-known (unitary) super-operators listed as follows: the quantum
control-not super-operator CN = {CN} performed on two qubits where

CN =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

the 1-qubit Hadamard super-operator H = {H}, and Pauli super-operators σ0 = {I2}, σ1 =
{X}, σ2 = {Z}, and σ3 = {Y } where

H =
1√
2

(
1 1
1 −1

)
, I2 =

(
1 0
0 1

)
,

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
.

We also use the notations X ,Z, and Y to denote σ1, σ2, and σ3, respectively.

2.2 Basic quantum mechanics

According to von Neumann’s formalism of quantum mechanics [19], an isolated physical system is
associated with a Hilbert space which is called the state space of the system. A pure state of a
quantum system is a normalized vector in its state space, and a mixed state is represented by a
density operator on the state space. Here a density operator ρ on Hilbert space H is a positive linear
operator such that tr(ρ) = 1. Another equivalent representation of density operator is probabilistic
ensemble of pure states. In particular, given an ensemble {(pi, |ψi〉)} where pi ≥ 0,

∑
i pi = 1, and

|ψi〉 are pure states, then ρ =
∑

i pi[|ψi〉] is a density operator. Here [|ψi〉] denotes the abbreviation
of |ψi〉〈ψi|. Conversely, each density operator can be generated by an ensemble of pure states in this
way. The set of density operators on H can be defined as

D(H) = { ρ ∈ L(H) : ρ is positive and tr(ρ) = 1}.

4

The state space of a composite system (for example, a quantum system consisting of many qubits)
is the tensor product of the state spaces of its components. For a mixed state ρ on H1 ⊗ H2, partial
traces of ρ have explicit physical meanings: the density operators trH1ρ and trH2ρ are exactly the
reduced quantum states of ρ on the second and the first component system, respectively. Note that
in general, the state of a composite system cannot be decomposed into tensor product of the reduced
states on its component systems. A well-known example is the 2-qubit state

|Ψ〉 =
1√
2
(|00〉 + |11〉)

which appears repeatedly in our examples of this paper. This kind of state is called entangled state.
To see the strangeness of entanglement, suppose a measurement M = λ0[|0〉] + λ1[|1〉] is applied on
the first qubit of |Ψ〉 (see the following for the definition of quantum measurements). Then after
the measurement, the second qubit will definitely collapse into state |0〉 or |1〉 depending on whether
the outcome λ0 or λ1 is observed. In other words, the measurement on the first qubit changes the
state of the second qubit in some way. This is an outstanding feature of quantum mechanics which
has no counterpart in classical world, and is the key to many quantum information processing tasks
such as teleportation [2] and super-dense coding [3].

The evolution of a closed quantum system is described by a unitary operator on its state space:
if the states of the system at times t1 and t2 are ρ1 and ρ2, respectively, then ρ2 = Uρ1U

† for some
unitary operator U which depends only on t1 and t2. In contrast, the general dynamics which can
occur in a physical system is described by a trace-preserving super-operator on its state space. Note
that the unitary transformation U(ρ) = UρU † is a trace-preserving super-operator.

A quantum measurement is described by a collection {Mm} of measurement operators, where the
indices m refer to the measurement outcomes. It is required that the measurement operators satisfy
the completeness equation

∑
mM

†
mMm = IH. If the system is in state ρ, then the probability that

measurement result m occurs is given by

p(m) = tr(M †
mMmρ),

and the state of the post-measurement system is MmρM
†
m/p(m).

A particular case of measurement is projective measurement which is usually represented by a
Hermitian operator. Let M be a Hermitian operator and

M =
∑

m∈spec(M)

mEm (1)

its spectral decomposition. Obviously, the projectors {Em : m ∈ spec(M)} form a quantum mea-
surement. If the state of a quantum system is ρ, then the probability that result m occurs when
measuring M on the system is p(m) = tr(Emρ), and the post-measurement state of the system is
EmρEm/p(m). Note that for each outcome m, the map

Em(ρ) = EmρEm

is again a super-operator by Kraus Theorem; it is not trace-preserving in general.

Let M be a projective measurement with Eq.(1) its spectral decomposition. We call M non-
degenerate if for any m ∈ spec(M), the corresponding projector Em is 1-dimensional; that is, all
eigenvalues of M are non-degenerate. Non-degenerate measurement is obviously a very special case
of general quantum measurement. However, when an ancilla system lying at a fixed state is provided,
non-degenerate measurements together with unitary operators are sufficient to implement general
measurements.

5

3 qCCS: Syntax and Semantics

In this section, we review the syntax and semantics of a quantum extension of value-passing CCS,
called qCCS, introduced in [7, 20, 8], and the definition of open bisimulation between qCCS processes
presented in [6].

3.1 Syntax

We assume three types of data in qCCS: Bool for booleans, real numbers Real for classical data, and
qubits Qbt for quantum data. Let cV ar, ranged over by x, y, . . . , be the set of classical variables,
and qV ar, ranged over by q, r, . . . , the set of quantum variables. It is assumed that cV ar and qV ar
are both countably infinite. We assume a set Exp of classical data expressions over Real, which
includes cV ar as a subset and is ranged over by e, e′, . . . , and a set of boolean-valued expressions
BExp, ranged over by b, b′, . . . , with the usual set of boolean operators tt, ff, ¬, ∧, ∨, and →.
In particular, we let e ⊲⊳ e′ be a boolean expression for any e, e′ ∈ Exp and ⊲⊳∈ {>,<,≥,≤,=}.
We further assume that only classical variables can occur free in both data expressions and boolean
expressions. Let cChan be the set of classical channel names, ranged over by c, d, . . . , and qChan
the set of quantum channel names, ranged over by c, d, Let Chan = cChan ∪ qChan. A
relabeling function f is a one to one function from Chan to Chan such that f(cChan) ⊆ cChan
and f(qChan) ⊆ qChan.

We often abbreviate the indexed set {q1, . . . , qn} to q̃ when q1, . . . , qn are distinct quantum
variables and the dimension n is understood. Sometimes we also use q̃ to denote the string q1 . . . qn.
We assume a set of process constant schemes, ranged over by A,B, Assigned to each process
constant scheme A there are two non-negative integers arc(A) and arq(A). If x̃ is a tuple of classical
variables with |x̃| = arc(A), and q̃ a tuple of distinct quantum variables with |q̃| = arq(A), then
A(x̃, q̃) is called a process constant. When arc(A) = arq(A) = 0, we also denote by A the (unique)
process constant produced by A.

Based on these notations, the syntax of qCCS terms can be given by the Backus-Naur form as

t ::= nil | A(ẽ, q̃) | α.t | t+ t | t‖t | t\L | t[f] | if b then t

α ::= τ | c?x | c!e | c?q | c!q | E [q̃] | M [q̃;x]

where c ∈ cChan, x ∈ cV ar, c ∈ qChan, q ∈ qV ar, q̃ ⊆ qV ar, e ∈ Exp, ẽ ⊆ Exp, τ is the silent
action, A(x̃, q̃) is a process constant, f is a relabeling function, L ⊆ Chan, b ∈ BExp, and E and
M are respectively a trace-preserving super-operator and a non-degenerate projective measurement
applying on the Hilbert space associated with the systems q̃. In this paper, we assume all super-
operators are completely positive.

To exclude quantum processes which are not physically implementable, we also require q 6∈ qv(t)
in c!q.t and qv(t) ∩ qv(u) = ∅ in t‖u, where for a process term t, qv(t) is the set of its free quantum
variables inductively defined as follows:

qv(nil) = ∅ qv(τ.t) = qv(t)
qv(c?x.t) = qv(t) qv(c!e.t) = qv(t)
qv(c?q.t) = qv(t) − {q} qv(c!q.t) = qv(t) ∪ {q}
qv(E [q̃].t) = qv(t) ∪ q̃ qv(M [q̃;x].t) = qv(t) ∪ q̃
qv(t+ u) = qv(t) ∪ qv(u) qv(t‖u) = qv(t) ∪ qv(u)
qv(t[f]) = qv(t) qv(t\L) = qv(t)

qv(if b then t) = qv(t) qv(A(ẽ, q̃)) = q̃.

The notion of free classical variables in quantum processes, denoted by fv(·), can be defined in the
usual way with the only modification that the quantum measurement prefix M [q̃;x] has binding

6

power on x. A quantum process term t is closed if it contains no free classical variables, i.e.,
fv(t) = ∅. We let T , ranged over by t, u, · · · , be the set of all qCCS terms, and P , ranged over by
P,Q, · · · , the set of closed terms. To complete the definition of qCCS syntax, we assume that for
each process constant A(x̃, q̃), there is a defining equation

A(x̃, q̃)
def
= t

such that fv(t) ⊆ x̃ and qv(P) ⊆ q̃. Throughout the paper we implicitly assume the convention
that process terms are identified up to α-conversion.

The process constructs we give here are quite similar to those in classical CCS, and they also have
similar intuitive meanings: nil stands for a process which does not perform any action; c?x and c!e are
respectively classical input and classical output, while c?q and c!q are their quantum counterparts.
E [q̃] denotes the action of performing the super-operator E on the qubits q̃ while M [q̃;x] measures
the qubits q̃ according to M and stores the measurement outcome into the classical variable x. +
models nondeterministic choice: t + u behaves like either t or u depending on the choice of the
environment. ‖ denotes the usual parallel composition. The operators \L and [f] model restriction
and relabeling, respectively: t\L behaves like t as long as any action through the channels in L
is forbidden, and t[f] behaves like t where each channel name is replaced by its image under the
relabeling function f . Finally, if b then t is the standard conditional choice where t can be executed
only if b is tt.

An evaluation ψ is a function from cV ar to Real; it can be extended in an obvious way to
functions from Exp to Real and from BExp to {tt, ff}, and finally, from T to P . For simplicity,
we still use ψ to denote these extensions. Let ψ{v/x} be the evaluation which differs from ψ only
in that it maps x to v.

3.2 Transitional semantics

For each quantum variable q ∈ qV ar, we assume a 2-dimensional Hilbert space Hq to be the state
space of the q-system. For any S ⊆ qV ar, we denote

HS =
⊗

q∈S
Hq.

In particular, H = HqV ar is the state space of the whole environment consisting of all the quantum
variables. Note that H is a countably-infinite dimensional Hilbert space.

Suppose P is a closed quantum process. A pair of the form 〈P, ρ〉 is called a configuration, where
ρ ∈ D(H) is a density operator on H. The set of configurations is denoted by Con, and ranged over
by C,D, · · · . Let

Actc = {τ} ∪ {c?v, c!v | c ∈ cChan, v ∈ Real} ∪ {c?r, c!r | c ∈ qChan, r ∈ qV ar}.

For each α ∈ Actc, we define the bound quantum variables qbv(α) of α as qbv(c?r) = {r} and
qbv(α) = ∅ if α is not a quantum input. The channel names used in action α is denoted by cn(α);
that is, cn(c?v) = cn(c!v) = {c}, cn(c?r) = cn(c!r) = {c}, and cn(τ) = ∅. We also extend the
relabelling function to Actc in an obvious way.

Let Dist(Con), ranged over by µ, ν, · · · , be the set of all finite-supported probabilistic distribu-
tions over Con. Then the operational semantics of qCCS can be given by the probabilistic labelled
transition system (pLTS) 〈Con,Actc, 7−→〉, where 7−→ ⊆ Con×Actc×Dist(Con) is the smallest re-
lation satisfying the inference rules depicted in Fig. 1. The symmetric forms for rules Parc, C-Comc,
Q-Comc, and Sumc are omitted.

In these rules, we abuse the notation slightly by writing C α7−→ D if C α7−→ µ where µ is the
simple distribution such that µ(D) = 1. We also use the obvious extension of the function ‖

7

Figure 1: Operational semantics of qCCS

on configurations to distributions. To be precise, if µ =
∑
i∈I pi〈Pi, ρi〉 then µ‖Q denotes the

distribution
∑
i∈I pi〈Pi‖Q, ρi〉. Similar extension applies to µ[f] and µ\L.

3.3 Open bisimulation

In this subsection, we recall the basic definitions and properties of open bisimulation introduced
in [6]. Let R ⊆ Con×Con be a relation on configurations. We can lift R to a relation on Dist(Con)
by writing µRν if

(1) µ =
∑

i∈I piCi,

(2) for each i ∈ I, CiRDi for some Di, and

(3) ν =
∑
i∈I piDi.

Note that here the set of Ci, i ∈ I, are not necessarily distinct.

Definition 3.1. A symmetric relation R ⊆ Con×Con is called a (strong) open bisimulation if for
any 〈P, ρ〉, 〈Q, σ〉 ∈ Con, 〈P, ρ〉R〈Q, σ〉 implies that

(1) qv(P) = qv(Q), and trqv(P)(ρ) = trqv(Q)(σ),

(2) for any trace-preserving super-operator E acting on Hqv(P), whenever 〈P, E(ρ)〉 α7−→ µ, there

exists ν such that 〈Q, E(σ)〉 α7−→ ν and µRν.

8

〈Q, ρ〉

τ

τ

〈P, ρ〉

❄

〈nil, |0〉q〈0| ⊗ trq(ρ)〉 〈nil, |0〉q〈0| ⊗ trq(ρ)〉
❄

❄

〈Q0, |0〉q〈0| ⊗ trq(ρ)〉 〈Q1, |1〉q〈1| ⊗ trq(ρ)〉

τ

〈nil, |0〉q〈0| ⊗ trq(ρ)〉
❄

τ

p1p0

❄

〈I[q].nil, |0〉q〈0| ⊗ trq(ρ)〉

τ

Figure 2: pLTSs for the two ways of setting a quantum system to |0〉

Definition 3.2. (1) Two quantum configurations 〈P, ρ〉 and 〈Q, σ〉 are open bisimilar, denoted by
〈P, ρ〉 ∼̇ 〈Q, σ〉, if there exists an open bisimulation R such that 〈P, ρ〉R〈Q, σ〉;

(2) Two quantum process terms t and u are open bisimilar, denoted by t ∼̇ u, if for any quantum
state ρ ∈ D(H) and any evaluation ψ, 〈tψ, ρ〉 ∼̇ 〈uψ, ρ〉.

To illustrate the operational semantics and open bisimulation presented in this section, we give
a simple example.

Example 3.3. This example shows two alternative ways of setting a quantum system to the pure

state |0〉. Let P
def
= Set0[q].I[q].nil and

Q
def
= M0,1[q;x].(if x = 0 then I[q].nil + if x = 1 then X [q].nil),

where Set0 = {|0〉〈0|, |0〉〈1|}, M0,1 is the 1-qubit measurement according to the computational basis
{|0〉, |1〉}, I is the identity super-operator, and X is the Pauli-X super-operator. For any ρ ∈ D(H),
the pLTSs rooted by 〈P, ρ〉 and 〈Q, ρ〉 respectively are depicted in Fig. 2 where

Q0 = if 0 = 0 then I[q].nil + if 0 = 1 then X [q].nil,

Q1 = if 1 = 0 then I[q].nil + if 1 = 1 then X [q].nil,

and pi = tr(|i〉q〈i|ρ). We can show P ∼̇ Q by verifying that the relation R ∪ R−1, where

R = {(〈P, ρ〉, 〈Q, ρ〉), (〈I[q].nil, ρ0〉, 〈Q0, ρ0〉), (〈I[q].nil, ρ0〉, 〈Q1, ρ1〉), (〈nil, ρ0〉, 〈nil, ρ0〉) : ρ ∈ D(H)}

and ρi = |i〉q〈i| ⊗ trqρ, is an open bisimulation.

4 Super-operator Valued Distributions

4.1 Semiring of super-operators

We denote by CP (H) the set of super-operators on H, ranged over by A,B, · · · . Obviously, both
(CP (H), 0H,+) and (CP (H), IH, ◦) are monoids, where IH and 0H are the identity and null super-
operators on H, respectively, and ◦ is the composition of super-operators defined by (A ◦ B)(ρ) =
A(B(ρ)) for any ρ ∈ D(H). We alway omit the symbol ◦ and write AB directly for A◦B. Furthermore,
the operation ◦ is (both left and right) distributive with respect to +:

A(B1 + B2) = AB1 + AB2, (B1 + B2)A = B1A + B2A.

9

Thus (CP (H),+, ◦) forms a semiring.

For any A,B ∈ CP (H) and V ⊆ qV ar, we write A .V B if for any ρ ∈ D(H), trV (A(ρ)) ⊑
trV (B(ρ)), where V is the complement set of V in qV ar, and ⊑ is the Löwner preorder defined
on operators such as A ⊑ B if and only if B − A is positive semi-definite. Let hV be .V ∩ &V .
We usually abbreviate .∅ and h∅ to . and h, respectively. It is easy to check that if A and
B have Kraus operators {Ai : i ∈ I} and {Bj : j ∈ J} respectively, then A . B if and only if∑

i∈I A
†
iAi ⊑∑j∈J B

†
jBj . The following proposition is direct from definitions:

Proposition 4.1. Let A and B ∈ CP (H). Then

(1) A h IH if and only if A is trace-preserving, i.e., tr(A(ρ)) = tr(ρ) for any ρ ∈ D(H).

(2) A h 0H if and only if A = 0H.

The next lemma, which is easy from definition, shows that the equivalence relation hV is pre-
served by right application of composition.

Lemma 4.2. Let A,B, C ∈ CP (H) and V ⊆ qV ar. If A hV B, then AC hV BC.

However, h is not preserved by composition from the left-hand side. A counter-example is when
A is the X-pauli super-operator, and C has one single Kraus operator |0〉〈0|. Then A h IH, but
CA 6h CIH since tr(CA(|0〉〈0|)) = 0 while tr(CIH(|0〉〈0|)) = 1. Nevertheless, we have the following
property which is useful for latter discussion.

Lemma 4.3. Let A,B ∈ CP (H) and C ∈ CP (HV) where ∅ 6= V ⊆ qV ar. If A hV B, then both
AC hV BC and CA hV CB.

Proof. Easy from the fact that trV CA(ρ) = C(trV A(ρ)) when C ∈ CP (HV). ✷

Let CPt(H) ⊆ CP (H) be the set of trace-preserving super-operators, ranged over by E ,F , · · · .
Obviously, (CPt(H), IH, ◦) is a sub-monoid of CP (H) while (CPt(H), 0H,+) is not. It is easy
to check that for any E ,F ∈ CPt(H) and V ⊆ qV ar, E .V F if and only if E hV F . So for
trace-preserving super-operators, we usually use the more symmetric form hV instead of .V .

4.2 Super-operator valued distributions

Let S be a countable set. A super-operator valued distribution, or simply distribution for short, ∆
over S is a function from S to CP (H) such that

∑
s∈S ∆(s) h IH. We denote by ⌈∆⌉ the support set

of ∆, i.e., the set of s such that ∆(s) 6= 0H. Let DistH(S) be the set of finite-support super-operator
valued distributions over S; that is,

DistH(S) = {∆ : S → CP (H) | ⌈∆⌉ is finite, and
∑

s∈⌈∆⌉
∆(s) h IH}.

Let ∆,Ξ, etc range over DistH(S). When ∆ is a simple distribution such that ⌈∆⌉ = {s} for some s
and ∆(s) = E , we abuse the notation slightly to denote ∆ by E • s. We further abbreviate IH • s to
s. Note that there are infinitely many different simple distributions having the same support {s}.

Definition 4.4. Given {∆i : i ∈ I} ⊆ DistH(S) and {Ai : i ∈ I} ⊆ CP (H),
∑
i∈I Ai h IH, we

define the combination, denoted by
∑
i∈I Ai • ∆i, to be a new distribution ∆ such that

(1) ⌈∆⌉ =
⋃{⌈∆i⌉ : i ∈ I,Ai 6= 0H},

(2) for any s ∈ ⌈∆⌉, ∆(s) =
∑

i∈I ∆i(s)Ai.

10

Figure 3: Symbolic operational semantics of qCCS

Here and in the following of this paper, the index sets I, J,K, etc are all assumed to be finite.
By Lemma 4.2, it is easy to check that the above definition is well-defined. Furthermore, since h
is not preserved by left applications of composition, we cannot require ∆(s) =

∑
i∈I Ai∆i(s) in the

second clause, although it seems more natural. As a result, say, E • (F • s) = FE • s but not EF • s.
Probability distributions can be regarded as special super-operator valued distributions by requir-

ing that all super-operators appeared in the definitions above have the form pIH where 0 ≤ p ≤ 1.
Since in this case all super-operators commute, we always omit the bullet • in the expressions.

5 Symbolic bisimulation

5.1 Super-operator weighted transition systems

We now extend the ordinary probabilistic labelled transition systems to super-operator weighted
ones.

Definition 5.1. A super-operator weighted labelled transition system, or quantum labelled transition
system (qLTS), is a triple (S,Act,−→), where

(1) S is a countable set of states,

(2) Act is a countable set of transition actions,

(3) −→, called transition relation, is a subset of S ×Act× DistH(S).

For simplicity, we write s
α−→ ∆ instead of (s, α,∆) ∈−→. A pLTS may be viewed as a degenerate

qLTS in which all super-operator valued distributions are probabilistic ones.

11

5.2 Symbolic transitional semantics of qCCS

To present the symbolic operational semantics of quantum processes, we need some more notations.
Let

Acts = {τ} ∪ {c?x, c!e | c ∈ cChan, x ∈ cV ar, e ∈ Exp} ∪ {c?r, c!r | c ∈ qChan, r ∈ qV ar}

and BActs = BExp × Acts. For each γ ∈ Acts, the notion qbv(γ) for bound quantum variables,
cn(γ) for channel names, and fv(γ) for free classical variables are similarly defined as for Actc. We
also define bv(γ), the set of bound classical variables in γ in an obvious way.

A pair of the form Lt, EM, where t ∈ T and E ∈ CPt(H), is called a snapshot, and the set of snap-
shots is denoted by SN . Then the symbolic semantics of qCCS is given by the qLTS (SN,BActs,−→)
on snapshots, where −→ ⊆ SN × BActs × DistH(SN) is the smallest relation satisfying the rules

defined in Fig. 3. In Rule Meass, for each i ∈ I, Aφi
r̃ ∈ CP (H) and Setφir̃ ∈ CPt(H) are defined

respectively as

Aφi
r̃ : ρ 7→ |φi〉r̃〈φi|ρ|φi〉r̃〈φi| (2)

Setφir̃ : ρ 7→
∑

j∈I
|φi〉r̃〈φj |ρ|φj〉r̃〈φi|. (3)

The symmetric forms for rules Pars, C-Coms, Q-Coms, and Sums are omitted. Here again, the
functions ‖, [f], and \L have been extended to super-operator valued distributions by denoting, say,
∆‖u the super-operator valued distribution

∑
i∈I Ai • Lti‖u, EiM, if ∆ =

∑
i∈I Ai • Lti, EiM.

The transition graph of a snapshot is depicted as usual where each transition Lt, EM b,γ−→∑n
i=1 Ai•

Lti, EiM is depicted as

Lt, EM

b, γ

❄

. . .A1 A2

Lt1, E1M

An

Lt2, E2M Ltn, EnM. . .

We sometimes omit the line marked with IH for simplicity.

Example 5.2. (Example 3.3 revisited) For the first example, we revisit the two ways of setting a
quantum system to pure state |0〉, presented in Example 3.3. According to the symbolic operational
semantics presented in Fig. 3, the qLTSs rooted by LP, IHM and LQ, IHM respectively can be depicted
as in Fig. 4, where Ai has the single Kraus operator |i〉q〈i| for i = 0, 1.

At the first glance, it is tempting to think that symbolic semantics provides no advantage in
describing quantum processes, as the qLTSs in Fig. 4 are almost the same as the pLTSs in Fig. 2
(Indeed, the right-hand side qLTS in the former is even more complicated than the corresponding
pLTS in the latter). However, pLTSs in Fig. 2 are depicted for a fixed quantum state ρ; to characterise
the behaviours of a quantum process, infinitely many such pLTSs must be given, although typically
they share the same structure. On the other hand, the qLTSs in Fig. 4 specify all possible behaviours
of the processes, by means of the super-operators they can perform.

Example 5.3. This example shows the correctness of super-dense coding protocol. Let M =∑3
i=0 i|̃i〉〈̃i| be a 2-qubit measurement where ĩ is the binary expansion of i. Let CN be the controlled-

not operation and H Hadamard operation. Then the quantum processes participating in super-dense

12

LQ, IHM

tt, τtt, τ

LP, IHM

Set0q

❄

Lnil, Set0qM

❄

LQ0, Set0qM LQ1, Set1qM

✙ ❘

0 = 0, τ 0 = 1, τ

Lnil, Set0qM
✠ ❥

1 = 0, τ 1 = 1, τ

Lnil, Set1qMXq

Lnil, Set1qM

Xq

Lnil, Set0qM

A1A0

❄

LI[q].nil, Set0qM

tt, τ

Figure 4: qLTSs for two ways of setting a quantum system to |0〉

coding protocol can be defined as follows:

Alice
def
= cA?q1.

∑

0≤i≤3

(
if x = i then σi[q1].e!q1.nil

)
,

Bob
def
= cB?q2.e?q1.CN [q1, q2].H[q1].M [q1, q2;x].d!x.nil,

EPR
def
= SetΨ[q1, q2].cB!q2.cA!q1.nil,

Sdc
def
= c?x.(EPR‖Alice‖Bob)\{cA, cB, e}.

The specification of super-dense coding protocol can be defined as:

Sdcspec
def
= c?x.τ7.Setx[q1, q2].d!x.nil

where

Setx[q1, q2].d!x.nil =
3∑

i=0

(if x = i then Seti[q1, q2].d!x.nil).

Here Seti and SetΨ are the 2-qubit super-operators which set the target qubits to |̃i〉 and |Ψ〉 =
(|00〉 + |11〉)/

√
2, respectively. We insert seven τ ’s in the specification to match the internal actions

of Sdc. The qLTSs rooted from LSdcspec, IHM and LSdc, IHM respectively are depicted in Fig. 5 where

q̃ = {q1, q2}, Aĩ is the super-operator with the single Kraus operator |̃i〉〈̃i|, L = {cA, cB, e},

Sdcx =

((
3∑

i=0

(if x = i then σi[q1].e!q1.nil)

)
‖Bob

)
\{e},

and for simplicity, we only draw the transitions along the x = 0 branch.

To conclude this subsection, we prove some useful properties of symbolic transitions.

Lemma 5.4. If Lt, EM b,γ−→ ∆, then there exist super-operators {Bi : i ∈ I} ⊆ CP (H) and {Fi : i ∈
I} ⊆ CPt(H), and process terms {ti : i ∈ I} ⊆ T such that

(1)
∑
i∈I Bi h IH,

(2) ∆ =
∑

i∈I Bi • Lti,FiEM,

13

LSdcspec, IHM

tt, c?x

❄

✮ ✠ ❘ q
x = 0, τ x = 1, τ x = 2, τ x = 3, τ

LSetx[q̃].d!x.nil, IHM

Set0
eq Set1

eq Set2
eq Set3

eq

Ld!x.nil, Set0
eqM Ld!x.nil, Set1

eqM Ld!x.nil, Set2
eqM Ld!x.nil, Set3

eqM

tt, d!x

❄
tt, d!x

❄
tt, d!x

❄
tt, d!x

❄
Lnil, Set0

eqM Lnil, Set1
eqM Lnil, Set2

eqM Lnil, Set3
eqM

tt, τ7

❄

LSdc, IHM

tt, c?x

❄

✮ ✠ ❘ q
x = 0, τ x = 1, τ x = 2, τ x = 3, τ

LSdcx, SetΨ
eq M

σ0
q1

L(e!q1.nil‖Bob)\L, σ0
q1

SetΨq̃ M

tt, τ3

❄
L(M [q̃; x].d!x.nil)\L, Set0q̃M

A00 A01 A10

...
...

...

A11

tt, τ

❄

Lnil\L, Set0q̃M

L(d!1.nil)\L, 0HM L(d!2.nil)\L, 0HM

L(d!3.nil)\L, 0HM

tt, d!1

❄ ❄

tt, d!2
❄

tt, d!0

❄

L(d!0.nil)\L, Set0q̃M

Lnil\L, 0HM

Lnil\L, 0HM

tt, d!3

Lnil\L, 0HM

tt, τ3

❄

Figure 5: qLTSs for LSdcspec, IHM and LSdc, IHM

(3) for any G ∈ CPt(H), Lt,GM b,γ−→∑
i∈I Bi • Lti,FiGM.

Especially, if |I| > 1 then Bi and Fi take the forms as Aφi
r̃ and Setφir̃ in Eqs.(2) and (3), respectively.

Proof. Easy from the definition of inference rules. ✷

The following lemmas show the relationship between transitions in ordinary semantics and in
symbolic semantics. Let ψ be an evaluation, α ∈ Actc, and γ ∈ Acts. We write α =ψ γ if either
α = c!v, γ = c!e, and ψ(e) = v, or γ = α if neither of them is a classical output.

Lemma 5.5. Suppose 〈tψ, ρ〉 α7−→ µ. Then there exist b, I, ψ′, {Ai : i ∈ I} ⊆ CP (H), {Ei : i ∈ I} ⊆
CPt(H), and {ti : i ∈ I} ⊆ T , such that

∑
i∈I Ai h IH, and

(1) ψ(b) = tt,

(2) µ =
∑

i∈I tr(Ai(ρ))〈tiψ′, Ei(ρ)〉,

(3) for any E ∈ CPt(H), Lt, EM b,γ−→∑
i∈I Ai • Lti, EiEM, where

(a) if α = c?v then γ = c?x for some x 6∈ fv(t), and ψ′ = ψ{v/x},
(b) otherwise, γ =ψ α and ψ′ = ψ.

Proof. We prove by induction on the depth of the inference by which the action 〈tψ, ρ〉 α7−→ µ is
inferred. We argue by cases on the form of t.

14

(1) t = c?x.t′. Then tψ = c?x.u where u is the process term obtained from t′ by instantiating all
the free variables in fv(t′) − {x} according to ψ. By Rule C-Inpc we deduce that α = c?v
for some v ∈ Real and µ = 〈P, ρ〉 where P = u{v/x} = t′ψ{v/x}. By Rule Acts, for any

E ∈ CPt(H), we have Lt, EM tt,c?x−→ Lt′, EM. So we need only to take b = tt, |I| = 1, ti = t′,
Ai = Ei = IH.

(2) t = c!e.t′. Then tψ = c!ψ(e).(t′ψ), and by Rule C-Outc we deduce that α = c!ψ(e) and

µ = 〈t′ψ, ρ〉. By Rule Acts, for any E ∈ CPt(H), we have Lt, EM tt,c!e−→ Lt′, EM. So we need only
to take b = tt, |I| = 1, ti = t′, Ai = Ei = IH as well.

(3) t = c?q.t′. Then tψ = c?q.(t′ψ), and by Rule Q-Inpc we deduce that α = c?r for some
r 6∈ qv(t) and µ = 〈(t′ψ){r/q}, ρ〉. By Rule Acts and α-conversion, for any E ∈ CPt(H),

we have Lt, EM tt,c?r−→ Lt′{r/q}, EM. So we need only to take b = tt, |I| = 1, ti = t′{r/q},
Ai = Ei = IH.

(4) t = M [q̃;x].t′. Then tψ = M [q̃;x].u where u is the process term obtained from t′ by instan-
tiating all the free variables in fv(t′) − {x} according to ψ. Let M =

∑
i∈I λi|φi〉〈φi|. By

Rule Measc we deduce that α = τ and µ =
∑
i∈I tr(Ai(ρ))〈Pi, Ei(ρ)〉 where Pi = u{λi/x} =

t′{λi/x}ψ, Ai = {|φi〉〈φi|}, and Ei = {|φi〉〈φj | : j ∈ I}. Take b = tt. By Rule Meass, for any

E ∈ CPt(H), we have Lt, EM b,τ−→ ∑
i∈I Ai • Lt′{λi/x}, EiEM.

(5) t = t1‖t2. Then tψ = t1ψ‖t2ψ. There are two sub-cases to consider:

(a) The action is caused by one of the components, say 〈t1ψ, ρ〉 α7−→ µ1. Then we have
qbv(α) ∩ qv(t2ψ) = ∅, and µ = µ1‖t2ψ. By induction, there exist b, I, ti, Ai, Ei, i ∈
I, such that ψ(b) = tt, µ1 =

∑
i∈I tr(Ai(ρ))〈tiψ′, Ei(ρ)〉, and for any E ∈ CPt(H),

Lt1, EM b,γ−→ ∑
i∈I Ai • Lti, EiEM. Note that by α-conversion, when γ = c?x, we can always

take x such that x 6∈ fv(t2), and consequently, (ti‖t2)ψ′ = tiψ
′‖t2ψ. Finally, we have

Lt, EM b,γ−→∑
i∈I Ai • Lti‖t2, EiEM, using Rule Pars.

(b) The action is caused by a (classical or quantum) communication. Here we only detail the

case when 〈t1ψ, ρ〉 c?v7−→ 〈P1, ρ〉, 〈t2ψ, ρ〉 c!v7−→ 〈P2, ρ〉, α = τ , and µ = 〈P1‖P2, ρ〉. Then
by induction, there exist b1, b2, t

′
1, t

′
2 such that ψ(b1 ∧ b2) = tt, P1 = t′1ψ

′, P2 = t′2ψ,

and for any E ∈ CPt(H), Lt1, EM b1,c?x−→ Lt′1, EM and Lt2, EM b2,c!e−→ Lt′2, EM, where x 6∈ fv(t1),
ψ′ = ψ{v/x}, and ψ(e) = v. Thus

(t′1{e/x}‖t′2)ψ = t′1{e/x}ψ‖t′2ψ = t′1ψ{v/x}‖t′2ψ = t′1ψ
′‖t′2ψ = P1‖P2.

Finally, we have Lt, EM b1∧b2,τ−→ Lt′1{e/x}‖t′2, EM, using Rule Q-Coms.

(6) Other cases. Similar to the cases we discussed above. ✷

Lemma 5.6. Suppose Lt, EM b,γ−→ ∆. Then there exist I, {Ai : i ∈ I} ⊆ CP (H), {Ei : i ∈ I} ⊆
CPt(H), and {ti : i ∈ I} ⊆ T , such that

∑
i∈I Ai h IH, and

(1) ∆ =
∑

i∈I Ai • Lti, EiEM,

(2) for any ψ and ρ, ψ(b) = tt implies 〈tψ, ρ〉 α7−→∑
i∈I tr(Ai(ρ))〈tiψ′, Ei(ρ)〉 where

(a) if γ = c?x then α = c?v for some v ∈ Real, and ψ′ = ψ{v/x},
(b) otherwise, γ =ψ α and ψ′ = ψ.

Proof. Similar to Lemma 5.5. ✷

15

5.3 Symbolic bisimulation

Let S ⊆ SN × SN be an equivalence relation. We lift S to DistH(SN) × DistH(SN) by defin-
ing ∆SΞ if for any equivalence class T ∈ SN/S, ∆(T) h Ξ(T); that is,

∑
Lt,EM∈T ∆(Lt, EM) h∑

Lt,EM∈T Ξ(Lt, EM). We write γ =b γ
′ if either γ = c!e, γ′ = c!e′, and b → e = e′, or γ = γ′ if neither

of them is a classical output.

Definition 5.7. Let S = {Sb : b ∈ BExp} be a family of equivalence relations on SN . S is called
a symbolic (open) bisimulation if for any b ∈ BExp, Lt, EMSbLu,FM implies that

(1) qv(t) = qv(u) and E h
qv(t)

F , if b is satisfiable;

(2) for any G ∈ CPt(Hqv(t)), whenever Lt,GEM b1,γ−→ ∆ with bv(γ)∩ fv(b, t, u) = ∅, then there exists

a collection of booleans B such that b ∧ b1 → ∨
B and ∀ b′ ∈ B, ∃b2, γ′ with b′ → b2, γ =b′ γ′,

Lu,GFM b2,γ
′

−→ Ξ, and (GE • ∆)Sb′
(GF • Ξ).

Two configurations Lt, EM and Lu,FM are symbolically b-bisimilar, denoted by Lt, EM ∼b Lu,FM, if
there exists a symbolic bisimulation S = {Sb : b ∈ BExp} such that Lt, EMSbLu,FM. Two quantum
process terms t and u are symbolically b-bisimilar, denoted by t ∼b u, if Lt, IHM ∼b Lu, IHM. When
b = tt, we simply write t ∼ u.

To show the usage of symbolic bisimulation, we revisit the examples presented in Section 5.2
to show that the proposed protocols indeed achieve the desired goals. Let Ã = {Ai : i ∈ I} be a

set of disjoint subsets of snapshots. An equivalence relation S is said to be generated by Ã if its
equivalence classes on the set of snapshots ∪i∈IAi are given by the partition Ã, and it is the identity
relation on SN − ∪i∈IAi.

Example 5.8. (Example 5.2 revisited) This example is devoted to showing rigorously that the two
ways of setting a quantum system to the pure state |0〉, presented in Examples 3.3 and 5.2, are
indeed bisimilar. Let

A = {LP, IHM, LQ, IHM},
B = {LI[q].nil, Set0qM, LQ0, Set

0
qM, LQ1, Set

1
qM}

and S ′ be the equivalence relation generated by {A,B}. It is easy to check that the family {Sb : b ∈
BExp}, where Sb = S ′ for any b ∈ BExp, is a symbolic bisimulation. Thus P ∼ Q.

Example 5.9. (Superdense coding revisited) This example is devoted to proving rigorously that
the protocol presented in Example 5.3 indeed sends two bits of classical information from Alice to
Bob by transmitting a qubit. For that purpose, we need to show that LSdcspec, IHM ∼tt LSdc, IHM.
Indeed, let

A = {LSdcspec, IHM, LSdc, IHM},
Bj = {Lt, EM : d(Lt, EM) = j},
Cki = {Lt, EM : Lt, EM along the branch of x = i, and d(Lt, EM) = k},

where d(Lt, EM) is the depth of the node Lt, EM from the root of its corresponding qLTS, 0 < j ≤ 4,
0 ≤ i ≤ 3, and 5 ≤ k ≤ 10. Let Stt1 be the equivalence relation generated by {A,B1, B2, B3, B4},
and Sx=i1 generated by {Cki : 5 ≤ k ≤ 10}. For any b ∈ BExp, let Sb be Sx=i1 if b ↔ x = i, Stt1

if b ↔ tt, and IdSN otherwise. Then it is easy to check that S = {Sb : b ∈ BExp} is a symbolic
bisimulation.

In the following, we denote by S∗ the equivalence closure of a relation S.

16

Definition 5.10. A relation family S = {Sb : b ∈ BExp} is called decreasing, if for any b, b′ ∈
BExp with b → b′, we have Sb′ ⊆ Sb.

Lemma 5.11. Let S = {Sb : b ∈ BExp} be a symbolic bisimulation. Then there exists a decreasing
symbolic bisimulation U = {Ub : b ∈ BExp} such that for each b ∈ BExp, Sb ⊆ Ub.

Proof. Suppose S = {Sb : b ∈ BExp} is a symbolic bisimulation. For each b ∈ BExp, let

Ub1 =
⋃

{Sb′
: b → b′} and Ub = (Ub1)∗.

Obviously, U = {Ub : b ∈ BExp} is decreasing. We have to show that U is a symbolic bisimulation.

Let b ∈ BExp and Lt, EMUbLu,FM. Note that Ub1 is both reflexive and symmetric. So Ub is actually
the transitive closure of Ub1 , and there exist n ≥ 1 and a sequence of snapshots Lti, EiM, 0 ≤ i ≤ n,
such that Lt, EM = Lt0, E0M, Lu,FM = Ltn, EnM, and for each 0 ≤ i ≤ n−1, Lti, EiMUb1Lti+1, Ei+1M. For the
sake of simplicity, we assume n = 2. That is, there exists Ls,GM such that Lt, EMSb1 Ls,GMSb2 Lu,FM
with b → b1 ∧ b2. The general case is more tedious but similar.

First we check that if b is satisfiable, then qv(t) = qv(s) = qv(u) and E hqv(t) G hqv(t) F . Now

for any G′ ∈ CPt(Hqv(t)
), suppose Lt,G′EM b′

1,γ−→ ∆ with bv(γ) ∩ fv(b1, t, u) = ∅. By α-conversion,

we may assume further that bv(γ) ∩ fv(s) = ∅. From Lt, EMSb1 Ls,GM, there exists a collection of
booleans {ci : 1 ≤ i ≤ n} such that b1 ∧ b′1 → ∨

ci and for any i, ∃c′i, γi with ci → c′i, γ =ci γi,

Ls,G′GM c
′
i,γi−→ Θ, and (G′E • ∆)Sci (G′G • Θ). By α-conversion, we can again assume that for each i,

bv(γi) ∩ fv(b2, s, u) = ∅. Now by the assumption that Ls,GMSb2 Lu,FM, there exists a collection of
booleans {dij : 1 ≤ j ≤ ni} such that b2 ∧ c′i → ∨

j dij and for any dij , ∃d′
ij , γij with dij → d′

ij ,

γij =dij γi, Lu,G′FM d
′
ij ,γij−→ Ξ, and (G′G • Θ)Sdij (G′F • Ξ).

Now let
B = {b ∧ ci ∧ dij : 1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

From the fact that b → b1 ∧ b2, it is easy to check that b ∧ b′1 → ∨
B. For any c = b ∧ ci ∧ dij , we

take c′ = d′
ij and γ′ = γij . Then c → c′, γ′ =c γ, and Lu,G′FM c

′,γ′
−→ Ξ. Furthermore, by the fact that

c → ci and the definition of Uc, we have (G′E •∆)Uc(G′G•Θ) indeed. Similarly, (G′G•Θ)Uc(G′F •Ξ).
Thus (G′E • ∆)Uc(G′F • Ξ) as required. ✷

Lemma 5.12. Let decreasing families Si = {Sbi : b ∈ BExp}, i = 1, 2, be symbolic bisimulations.
Then the family S = {(Sb1Sb2)∗ : b ∈ BExp} is also a symbolic bisimulation.

Proof. Let b ∈ BExp and Lt, EM(Sb1Sb2)∗Lu,FM. Suppose there exist n ≥ 1 and a sequence of
snapshots Lti, EiM, 0 ≤ i ≤ n, such that Lt, EM = Lt0, E0M, Lu,FM = Ltn, EnM, and for each 0 ≤ i ≤ n− 1,
Lti, EiMSb1Sb2Lti+1, Ei+1M. Again, for the sake of simplicity, we assume n = 1. That is, there exists
Ls,GM such that Lt, EMSb1Ls,GMSb2Lu,FM. The rest of the poof follows almost the same lines of those
in Lemma 5.11, by employing the assumption that S1 and S2 are both decreasing. ✷

Lemma 5.13. Let S = {Sb : b ∈ BExp} be a symbolic bisimulation and c ∈ BExp. Then
Sc = {Ub = Sb∨c : b ∈ BExp} is also a symbolic bisimulation.

Proof. Easy from definition. ✷

Corollary 5.14. If b → b′, then ∼b′ ⊆ ∼b. That is, the relation family {∼b: b ∈ BExp} is
decreasing.

With the lemmas above, we can show that the family {∼b: b ∈ BExp} is actually the largest
symbolic bisimulation.

17

Theorem 5.15. (1) For each b ∈ BExp, ∼b is an equivalence relation.

(2) The family {∼b: b ∈ BExp} is a symbolic bisimulation.

Proof. (2) is direct from (1). To prove (1), let b ∈ BExp. Obviously, ∼b is reflexive and
symmetric. To show the transitivity of ∼b, let Lt, EM ∼b Lu,FM and Lu,FM ∼b Ls,GM. Then by
definition, there exist symbolic bisimulations Si = {Sbi : b ∈ BExp}, i = 1, 2, such that Lt, EMSb1Lu,FM
and Lu,FMSb2Ls,GM. By Lemma 5.11, we can assume without loss of generality that both S1 and S2

are decreasing, thus S = {(Sb1Sb2)∗ : b ∈ BExp} is also a symbolic bisimulation, by Lemma 5.12. So
Lt, EM ∼b Ls,GM. ✷

To conclude this subsection, we present a property of symbolic bisimilarity which is useful for
the next section.

Theorem 5.16. Let Lt, EM, Lu,FM ∈ SN and b ∈ BExp. Then Lt, EM ∼b Lu,FM if and only if

(1) qv(t) = qv(u) and E hqv(t) F , if b is satisfiable;

(2) for any G ∈ CPt(Hqv(t)), whenever Lt,GEM b1,γ−→ ∆ with bv(γ) ∩ fv(b, t, u) = ∅, then there exist

a collection of booleans B such that b ∧ b1 → ∨
B and ∀ b′ ∈ B, ∃b2, γ′ with b′ → b2, γ =b′ γ′,

Lu,GFM b2,γ
′

−→ Ξ, and (GE • ∆) ∼b′
(GF • Ξ);

(3) Symmetric condition of (2).

Proof. Routine. ✷

5.4 Connection of symbolic and open bisimulations

To ease notation, in the rest of the paper we use t, u to range over SN , and sometimes equate t with
Lt, EM, u with Lu,FM, ∆ with

∑
i∈I Ai • Lti, EiM, and Ξ with

∑
j∈J Bj • Luj ,FjM without stating them

explicitly. We also write

(∆ψ)(ρ) =
∑

i∈I
tr(Ai(ρ))〈tiψ, Ei(ρ)〉 and (Ξψ)(ρ) =

∑

j∈J
tr(Bj(ρ))〈ujψ,Fj(ρ)〉.

In particular, (tψ)(ρ) = 〈tψ, E(ρ)〉 and (uψ)(ρ) = 〈uψ,F(ρ)〉. The basic ideas of the proofs in this
subsection are borrowed from [12], with the help of Lemma 5.5 and 5.6.

Let S = {Sb : b ∈ BExp} be a symbolic bisimulation. Define

RS = {((tψ)(ρ), (uψ)(ρ)) : ρ ∈ D(H) and ∃b, ψ(b) = tt and tSbu}.

We prove that RS is an open bisimulation. To achieve this, the following lemma is needed.

Lemma 5.17. Let S = {Sb : b ∈ BExp} be a symbolic bisimulation, ρ ∈ D(H), and ψ(b) = tt.
Then

∆ Sb Ξ implies (∆ψ)(ρ) RS (Ξψ)(ρ).

Proof. Suppose ∆ =
∑
i∈I Ai • Lti, EiM, Ξ =

∑
j∈J Bj • Luj ,FjM and ∆ Sb Ξ. We decompose the

set ⌈∆⌉∪ ⌈Ξ⌉ into disjoint subsets S1, · · · , Sn such that any two snapshots are in the same Sk if and
only if they are related by Sb. For each 1 ≤ k ≤ n, let

Kk = {i ∈ I : Lti, EiM ∈ Sk} ∪ {j ∈ J : Luj ,FjM ∈ Sk}.

Then ∑

i∈Kk∩I
Ai h

∑

j∈Kk∩J
Bj. (4)

18

For any ρ ∈ D(H) and ψ such that ψ(b) = tt,

(∆ψ)(ρ) =
∑

i∈I
tr(Ai(ρ))〈tiψ, Ei(ρ)〉 =

n∑

k=1

∑

i∈Kk∩I
tr(Ai(ρ))〈tiψ, Ei(ρ)〉

=

n∑

k=1

1∑
j∈Kk∩J tr(Bj(ρ))

∑

i∈Kk∩I

∑

j∈Kk∩J
tr(Ai(ρ))tr(Bj(ρ))〈tiψ, Ei(ρ)〉.

Similarly, we have

(Ξψ)(ρ) =
∑

j∈J
tr(Bj(ρ))〈ujψ,Fj(ρ)〉 =

n∑

k=1

∑

j∈Kk∩J
tr(Bj(ρ))〈ujψ,Fj(ρ)〉

=

n∑

k=1

1∑
i∈Kk∩I tr(Ai(ρ))

∑

i∈Kk∩I

∑

j∈Kk∩J
tr(Ai(ρ))tr(Bj(ρ))〈ujψ,Fj(ρ)〉.

Note that by definition, if tSbu then (tψ)(ρ)RS(uψ)(ρ). It follows that for any 1 ≤ k ≤ n, i ∈
Kk ∩ I, and j ∈ Kk ∩ J , we have 〈tiψ, Ei(ρ)〉RS〈ujψ,Fj(ρ)〉. Furthermore, by Eq.(4), we know∑

i∈Kk∩I tr(Ai(ρ)) =
∑

j∈Kk∩J tr(Bj(ρ)). Thus (∆ψ)(ρ) RS (Ξψ)(ρ) by definition. ✷

Lemma 5.18. Let S = {Sb : b ∈ BExp} be a symbolic bisimulation. Then RS is an open
bisimulation.

Proof. Let (tψ)(ρ)RS(uψ)(ρ). Then there exists b, such that ψ(b) = tt and tSbu. Thus we have

(1) qv(tψ) = qv(t) = qv(u) = qv(uψ), and trqv(tψ)E(ρ) = trqv(tψ)F(ρ) from E hqv(t) F .

(2) For any G ∈ CPt(Hqv(tψ)), let

〈tψ,GE(ρ)〉 α7−→ µ.

Then by Lemma 5.5, we have

Lt,GEM b1,γ−→ ∆′ =
∑

i∈I
Ai • Lti, EiGEM

such that ψ(b1) = tt,

µ =
∑

i∈I
tr(AiGE(ρ))〈tiψ′, EiGE(ρ)〉.

Furthermore, we have γ = c?x for some x 6∈ fv(t) and ψ′ = ψ{v/x} if α = c?v, or γ =ψ α
and ψ′ = ψ otherwise. Note that if γ = c?x, we can always take x such that x 6∈ fv(t, u, b) by
α-conversion. Now by the assumption that tSbu, there exists a collection of booleans B such
that b ∧ b1 → ∨

B and ∀ b′ ∈ B, ∃b2, γ′ with b′ → b2, γ =b′ γ′,

Lu,GFM b2,γ
′

−→ Ξ′ =
∑

j∈J
Bj • Luj ,FjGFM,

and (GE • ∆′)Sb′
(GF • Ξ′). Note that ψ(b∧ b1) = tt and b ∧ b1 → ∨

B. We can always find a
b′ ∈ B such that ψ(b′) = tt, and so ψ(b2) = tt as well. Then by Lemma 5.6, we have

〈uψ,GF(ρ)〉 β7−→ ν =
∑

j∈J
tr(BjGF(ρ))〈ujψ′′,FjGF(ρ)〉

where β = c?v and ψ′′ = ψ{v/x} if γ′ = c?x, or γ′ =ψ β and ψ′′ = ψ otherwise.

We claim that β = α, and ψ′′ = ψ′. There are three cases to consider:

19

(i) α = c?v. Then γ = c?x and ψ′ = ψ{v/x}. So γ′ = c?x by definition, which implies that
β = c?v = α, and ψ′′ = ψ{v/x} = ψ′.

(ii) α = c!v. Then γ = c!e, ψ(e) = v, and ψ′ = ψ. So γ′ = c!e′ with b′ → e = e′, which
implies that β = c!v′ where v′ = ψ(e′), and ψ′′ = ψ = ψ′. Finally, from ψ(b′) = tt we
deduce v′ = v.

(iii) For other cases, β = γ′ = γ = α, and ψ′′ = ψ = ψ′.

Finally, by Lemma 5.17 we deduce µRSν from the facts that (GE • ∆′)Sb′
(GF • Ξ′) and

ψ′(b′) = tt. ✷

Corollary 5.19. Let b ∈ BExp, t, u ∈ T , and P,Q ∈ P. Then

(1) t ∼b u implies for any evaluation ψ, if ψ(b) = tt then tψ ∼̇ uψ.

(2) t ∼ u implies t ∼̇ u.

(3) P ∼b Q implies P ∼̇ Q, provided that b is satisfiable.

Proof. (2) and (3) are both direct corollaries of (1). To prove (1), let t ∼b u, and S = {Sb :
b ∈ BExp} be a symbolic bisimulation such that Lt, IHMSbLu, IHM. Then by Lemma 5.18, for any
evaluation ψ and any ρ, ψ(b) = tt implies 〈tψ, ρ〉 ∼̇ 〈uψ, ρ〉. Thus tψ ∼̇ uψ by definition. ✷

For any b ∈ BExp, define

Sb∼̇ = {(t, u) : ∀ψ, ψ(b) = tt implies that for any ρ ∈ D(H), (tψ)(ρ) ∼̇ (uψ)(ρ)}.

We prove that S ∼̇ = {Sb∼̇ : b ∈ BExp} is a symbolic bisimulation. Firstly, it is easy to check that
for each b, Sb∼̇ is an equivalence relation. Two quantum states ρ, σ ∈ D(H) are said to be equal
except at q̃ if trq̃ρ = trq̃σ. Then we can show the following lemma, which is parallel to Lemma 5.17.

Lemma 5.20. Let b ∈ BExp. If for any evaluation ψ,

ψ(b) = tt implies that ∀ρ ∈ D(H), (∆ψ)(ρ) ∼̇ (Ξψ)(ρ),

then ∆ Sb∼̇ Ξ.

Proof. Let ∆ =
∑

i∈I Ai • Lti, EiM and Ξ =
∑

j∈J Bj • Luj,FjM. We prove this lemma by distin-
guishing two cases:

(1) Both |I| > 1 and |J | > 1. Similar to Lemma 5.17, we first decompose the set ⌈∆⌉ ∪ ⌈Ξ⌉ into
disjoint subsets S1, · · · , Sn such that any two snapshots are in the same Sk if and only if they
are related by Sb∼̇ . For each 1 ≤ k ≤ n, let

Kk = {i ∈ I : Lti, EiM ∈ Sk} ∪ {j ∈ J : Luj ,FjM ∈ Sk} (5)

and K = {Kk : 1 ≤ k ≤ n}. Note that by Lemma 5.4, there are two sets of pairwise orthogonal
pure states {|φi〉 : i ∈ I} and {|φ′

j〉 : j ∈ J} in some Hq̃ such that the Kraus operators of
Ai and Ei are {|φi〉〈φi|} and {|φi〉〈φi′ | : i′ ∈ I}, respectively, while the Kraus operators of Bj
and Fj are {|φ′

j〉〈φ′
j |} and {|φ′

j〉〈φ′
j′ | : j′ ∈ J}, respectively. Let Ek =

∑
i∈Kk∩I |φi〉〈φi|, and

Fk =
∑

j∈Kk∩J |φ′
j〉〈φ′

j |. Then it suffices to show Ek = Fk, 1 ≤ k ≤ n. In the following, we
prove E1 = F1; other cases are similar.

For any ρ and ψ such that ψ(b) = tt, we decompose the set ⌈(∆ψ)(ρ)⌉ ∪ ⌈(Ξψ)(ρ)⌉ into
equivalence classes R1, · · · , Rmψρ according to ∼̇ . For each 1 ≤ l ≤ mψ

ρ , let

Lψ,ρl = {i ∈ I : 〈tiψ, Ei(ρ)〉 ∈ Rl} ∪ {j ∈ J : 〈ujψ,Fj(ρ)〉 ∈ Rl}

20

and Lψ,ρ = {Lψ,ρl : 1 ≤ l ≤ Rmψρ }. Note that by definition, K is a refinement of Lψ,ρ for any

ψ(b) = tt and ρ. We assume without loss of generality that Lψ,ρ1 is the partition in Lψ,ρ which

contains K1, and Lψ,ρ1 = K1 ∪Kψ,ρ
1 where Kψ,ρ

1 =
⋃
k∈Iψ,ρ Kk, Iψ,ρ is a subset of {2, · · · , n}.

As the effects of the super-operators Ai and Bj are simply erasing the original information
at q̃ and setting the partial states of q̃ to be |φi〉 and |φ′

j〉, respectively, we have Lψ,ρ = Lψ,σ

(which means mψ
ρ = mψ

σ , and Lψ,ρl = Lψ,σl for each l) for all σ which is equal to ρ except at q̃.
Note that tr(Ai(ρ)) = tr(|φi〉q̃〈φi|ρ) = tr(|φi〉q̃〈φi|ρq̃) where ρq̃ = trq̃ρ is the reduced state of ρ

at the systems q̃. Let Eψ,ρ1 =
∑

k∈Iψ,ρ Ek and Fψ,ρ1 =
∑

k∈Iψ,ρ Fk. Then for any ρ′ ∈ D(Hq̃),

tr((E1 + Eψ,ρ1)ρ′) =
∑

i∈Lψ,σ1 ∩I

tr(Ai(σ)) =
∑

j∈Lψ,σ1 ∩J

tr(Bj(σ)) = tr((F1 + Fψ,ρ1)ρ′)

where σ = ρ′ ⊗ trq̃(ρ) is equal to ρ except at q̃, and the second equality is from the assumption

that (∆ψ)(σ) ∼̇ (Ξψ)(σ). This implies E1 + Eψ,ρ1 = F1 + Fψ,ρ1 .

Let K =
⋂
ρ,ψ(b)=tt Iψ,ρ. We claim that K = ∅. Otherwise, there exists k such that k ∈ Iψ,ρ

for any ψ(b) = tt and ρ. Then by the definition of Lψ,ρ1 , we have 〈tiψ, Ei(ρ)〉 ∼̇ 〈ti′ψ, Ei′(ρ)〉
where i ∈ K1 and i′ ∈ Kk. Thus Lti, EiMSb∼̇ Lti′ , Ei′M, contradicting the fact that they belong
to different equivalence classes of Sb∼̇ .

Now for any pure state |φ〉 such that E1|φ〉 = |φ〉, we have Eψ,ρ1 |φ〉 = 0 for any ρ and

ψ(b) = tt, by the orthogonality of Ei’s. Thus Fψ,ρ1 |φ〉 = |φ〉 − F1|φ〉. Note that Fψ
′,ρ′

1 Fψ,ρ1 =∑
k∈Iψ,ρ∩Iψ′,ρ′ Fk = Fψ,ρ1 Fψ

′,ρ′

1 . We have

∑

k∈Iψ,ρ∩Iψ′,ρ′

Fk|φ〉 = |φ〉 − F1|φ〉,

and finally,
∑
k∈K Fk|φ〉 = |φ〉 − F1|φ〉. Then F1|φ〉 = |φ〉 from the fact that K = ∅. Similarly,

we can prove that for any |φ〉, F1|φ〉 = |φ〉 implies E1|φ〉 = |φ〉. Thus E1 = F1.

(2) Either |I| = 1 or |J | = 1. Let us suppose |I| = 1, and ∆ = Lt, EM. We need to show that for
each j ∈ J , Bj 6= 0H implies Lt, EMSb∼̇ Luj ,FjM. This is true because otherwise we can find
ψ(b) = tt, j ∈ J , and ρ ∈ D(H) such that tr(Bj(ρ)) 6= 0 but 〈tψ, E(ρ)〉 ≁̇ 〈ujψ,Fj(ρ)〉. Thus
(∆ψ)(ρ) ≁̇ (Ξψ)(ρ), a contradiction. ✷

Lemma 5.21. The family S ∼̇ = {Sb∼̇ : b ∈ BExp} is a symbolic bisimulation.

Proof. Let b ∈ BExp and tSb∼̇ u. Then for any ψ, ψ(b) = tt implies that for any ρ ∈ D(H),
(tψ)(ρ) ∼̇ (uψ)(ρ). Thus we have

(1) If b is satisfiable, then qv(t) = qv(tψ) = qv(uψ) = qv(u), and E h
qv(t)

F from the fact that

trqv(t)E(ρ) = trqv(t)F(ρ) for any ρ.

(2) For any G ∈ CPt(Hqv(t)), let

Lt,GEM b1,γ−→ ∆′ =
∑

i∈I
Ai • Lti, EiGEM (6)

with bv(γ)∩ fv(b, t, u) = ∅. We need to construct a set of booleans B such that b∧ b1 → ∨
B,

and ∀ b′ ∈ B, ∃b2, γ′ with b′ → b2, γ =b′ γ′, Lu,GFM b2,γ
′

−→ Ξ′, and (GE • ∆′)Sb′
(GF • Ξ′). Let

U = {Θ : Lu,GFM b(Θ),γ(Θ)−→ Θ and γ =ff γ(Θ)}.

21

Here similar to [12], to ease the notations we only consider the case where for each Θ, there is

at most one symbolic action, denoted by (b(Θ), γ(Θ)), such that Lu,GFM b(Θ),γ(Θ)−→ Θ. For each
Θ ∈ U , let b′Θ be a boolean expression such that for any ψ,

ψ(b′Θ) = tt if and only if for any ρ, (GE • ∆′ψ̃)(ρ) ∼̇ (GF • Θψ̃)(ρ) (7)

where ψ̃ = ψ{v/x} for some v if γ = c?x, and ψ̃ = ψ otherwise.

Let B = {bΘ : Θ ∈ U}, where bΘ = b′Θ ∧ b′′Θ ∧ b(Θ) and b′′Θ is a boolean expression defined by

b′′Θ ≡
{
e = e′ if γ = c!e and γ(Θ) = c!e′ are both classical output,

tt otherwise.
(8)

Then obviously, γ =bΘ γ(Θ). We check b ∧ b1 → ∨
B. For any evaluation ψ such that

ψ(b ∧ b1) = tt, we have by definition of Sb∼̇ that 〈tψ, E(ρ)〉 ∼̇ 〈uψ,F(ρ)〉 for any ρ. On the
other hand, by Lemma 5.6 and Eq.(6), we obtain

〈tψ,GE(ρ)〉 α7−→ µ =
∑

i∈I
tr(AiGE(ρ))〈tiψ′, EiGE(ρ)〉

where α = c?v and ψ′ = ψ{v/x} if γ = c?x, and α =ψ γ and ψ′ = ψ otherwise. To match this
transition, we have

〈uψ,GF(ρ)〉 α7−→ ν

for some ν such that µ ∼̇ ν. Now from Lemma 5.5, there exists Ξ′ ∈ U such that ψ(b(Ξ′)) = tt,

Lu,GFM b(Ξ
′),γ(Ξ′)−→ Ξ′ =

∑

j∈J
Bj • Luj ,FjGFM,

ν =
∑

j∈J
tr(BjGF(ρ))〈ujψ′′,FjGF(ρ)〉.

Furthermore, we have γ(Ξ′) = c?y for some y 6∈ fv(u) and ψ′′ = ψ{v/y} if α = c?v, and
α =ψ γ(Ξ

′) and ψ′′ = ψ otherwise.

We claim that γ =ψ γ(Ξ
′), and ψ′′ = ψ′. There are three cases to consider:

(i) γ = c?x. Then α = c?v and ψ′ = ψ{v/x}, which implies that γ(Ξ′) = c?y for some
y 6∈ fv(u). By α-conversion and the fact that x 6∈ fv(b, t, u), we can also take y = x. So
γ(Ξ′) = γ, and ψ′′ = ψ{v/x} = ψ′.

(ii) For other cases, γ(Ξ′) =ψ α =ψ γ, and ψ′′ = ψ = ψ′.

Now we have µ = (GE • ∆′ψ′)(ρ) and ν = (GF • Ξ′ψ′)(ρ). From the arbitrariness of ρ, we
know ψ(b′Ξ′) = tt from Eq.(7). By Eq.(8) and the fact that γ =ψ γ(Ξ

′), we further derive that
ψ(b′′Ξ′) = tt. Therefore, ψ(bΞ′) = tt, and so ψ(

∨
B) = tt.

For any bΘ ∈ B, we have bΘ → b(Θ), γ =b(Θ) γ(Θ), and Lu,GFM b(Θ),γ(Θ)−→ Θ by definition
of B. Finally, for any evaluation ψ, if ψ(bΘ) = tt then ψ(b′Θ) = tt, and from Eq.(7) we

have (GE • ∆′ψ̃)(ρ) ∼̇ (GF • Θψ̃)(ρ) for any ρ ∈ D(H). Then (GE • ∆′)SbΘ(GF • Θ) follows
by Lemma 5.20. Here we have used that fact that x 6∈ fv(b, t, u) implies tψ{v/x} = tψ and
uψ{v/x} = tψ. ✷

Lemma 5.22. If for any evaluation ψ, ψ(b) = tt implies tψ ∼̇ uψ, then t ∼b u.

22

Proof. For any ρ ∈ D(H) and any evaluation ψ such that ψ(b) = tt, we first derive 〈tψ, ρ〉 ∼̇ 〈uψ, ρ〉
from the assumption that tψ ∼̇ uψ. Then by Lemma 5.21, we have Lt, IHM ∼b Lu, IHM, and thus
t ∼b u by definition. ✷

From the above lemmas, we finally reach our main result in this section.

Theorem 5.23. Let b ∈ BExp, t, u ∈ T , and P,Q ∈ P. Then

(1) t ∼b u if and only if for any evaluation ψ, ψ(b) = tt implies tψ ∼̇ uψ.

(2) t ∼ u if and only if t ∼̇ u.

(3) P ∼b Q if and only if P ∼̇ Q, provided that b is satisfiable.

6 An algorithm for symbolic ground bisimulation

From Clause (2) of Definition 5.7, to check whether two snapshots are symbolically bisimilar, we are
forced to compare their behaviours under any super-operators. This is generally infeasible since all
super-operators constitute a continuum, and it seems hopeless to design an algorithm which works
for the most general case. In this section, we develop an efficient algorithm for a class of quantum
process terms which covers all existing practical quantum communication protocols. To this end,
we first define the notion of symbolic ground bisimulation which stems from [18].

Definition 6.1. A family of equivalence relations {Sb : b ∈ BExp} is called a symbolic ground
bisimulation if for any b ∈ BExp, Lt, EMSbLu,FM implies that

(1) qv(t) = qv(u), and E hqv(t) F ,

(2) whenever Lt, EM b1,γ−→ ∆ with bv(γ) ∩ fv(b, t, u) = ∅, then there exists a collection of booleans

B such that b ∧ b1 → ∨
B and ∀ b′ ∈ B, ∃b2, γ′ with b′ → b2, γ =b′ γ′, Lu,FM b2,γ

′
−→ Ξ, and

(E • ∆)Sb′
(F • Ξ).

Given two configurations Lt, EM and Lu,FM, we write Lt, EM ∼b
g Lu,FM if there exists a symbolic

ground bisimulation {Sb : b ∈ BExp} such that Lt, EMSbLu,FM.
Definition 6.2. A relation S on SN is said to be closed under super-operator application if Lt, EMSLu,FM
implies Lt,GEMSLu,GFM for any G ∈ CPt(Hqv(t)). A family of relations are closed under super-

operator application if each individual relation is.

The following proposition, showing the difference of symbolic bisimulation and symbolic ground
bisimulation, is easy from definition.

Proposition 6.3. ∼ is the largest symbolic ground bisimulation that is closed under super-operator
application.

A process term is said to be free of quantum input if all of its descendants, including itself,
can not perform quantum input actions. Note that all existing quantum communication protocols
such as super-dense coding [3], teleportation [2], quantum key-distribution protocols [1], etc, are, or
can easily modified to be, free of quantum input. Putting this constraint will not bring too much
restriction on the application range of our algorithm.

Lemma 6.4. Let Lt, EM ∼b
g Lu,FM, and t and u both free of quantum input. Then for any G ∈

CPt(Hqv(t)), Lt,GEM ∼b
g Lu,GFM.

23

Proof. We need to show S = {Sb : b ∈ BExp}, where

Sb = {(Lt,GEM, Lu,GFM) : t and u free of quantum input, G ∈ CPt(Hqv(t)), and Lt, EM ∼b
g Lu,FM},

is a symbolic ground bisimulation. This is easy by noting that for any descendant t′ of t, qv(t′) ⊆
qv(t), and then G ∈ CPt(Hqv(t′)) as well. Consequently, G commutes with all the super-operators

performed by t and its descendants. ✷

Theorem 6.5. If t and u are both free of quantum input, then Lt, EM ∼b Lu,FM if and only if
Lt, EM ∼b

g Lu,FM.

Proof. Easy from Lemma 6.4. ✷

Algorithm 1 computes the most general boolean b such that t ∼b
g u, for two given snapshots t

and u. By the most general boolean mgb(t, u) we mean that t ∼mgb(t,u)
g u and whenever t ∼b

g u
then b → mgb(t, u). From Theorem 6.5, this algorithm is applicable to verify the correctness of all
existing quantum communication protocols.

The algorithm closely follows that introduced in [12]. The main procedure is Bisim(t, u). It
starts with the initial snapshot pairs (t, u), trying to find the smallest symbolic bisimulation relation
containing the pair by comparing transitions from each pair of snapshots it reaches. The core
procedure Match has four parameters: t and u are the current terms under examination; b is
a boolean expression representing the constraints accumulated by previous calls; W is a set of
snapshot pairs which have been visited. For each possible action enabled by t and u, the procedure
MatchAction is used to compare possible moves from t and u. Each comparison returns a boolean
and a table; the boolean turns out to be mgb(t, u) and the table is used to represent the witnessing
bisimulation. We consider a table as a function that maps a pair of snapshots to a boolean. The
disjoint union of tables, viewed as sets, is denoted by ⊔.

The main difference from the algorithm of [12] lies in the comparison of τ transitions. We
introduce the procedure MatchDistribution to approximate ∼b

g by a relation R. For any two
snapshots ti ∈ ⌈∆⌉ and uj ∈ ⌈Θ⌉, they are related by R if b → T (ti, uj). More precisely, we use the
equivalence closure of R instead in order for it to be used in the procedure Check. Moreover, if a
snapshot pair (t, u) has been visited before, i.e. (t, u) ∈ W , then T (t, u) is assumed to be tt in all
future visits. Hence, R is coarser than ∼b

g in general. We use Check(∆,Θ,R) to computate the
constraint so that the super-operator valued distribution ∆ is related to Θ by a relation lifted from
R. The correctness of the algorithm is stated in the following theorem.

Theorem 6.6. For two snapshots t and u, the function Bisim(t, u) terminates. Moreover, if
Bisim(t, u) = (θ, T) then T (t, u) = θ = mgb(t, u).

Proof. Termination is easy to show. Each time a new snapshot pair is encountered, the procedure
Match is called and the pair is added to the set W . Since we are considering a finitary transition
graph, the number of different pairs is finite. Eventually every possible pair is in W and each call
to Match immediately terminates.

Correctness of the algorithm is largely similar to that in [12], though we use the additional
procedure MatchDistribution to compute the constraint that relates two super-operator valued
distributions. ✷

7 Modal characterisation

We now present a modal logic to characterise the behaviour of quantum snapshots and their distri-
butions.

24

Algorithm 1: Bisim(t, u)

Bisim(t, u) = Match(t, u, tt, ∅)

Match(t, u, b,W) = where t = Lt, EM and u = Lu,FM
if (t, u) ∈ W then
(θ, T) := (tt, ∅)

else
for γ ∈ Act(t, u) do

(θγ , Tγ) := MatchAction(γ, t, u, b,W)

(θ, T) := (
∧
γ θγ ,

⊔
γ(Tγ ⊔ {(t, u) 7→ (b ∧∧γ θγ)}))

return (θ ∧ (qv(t) = qv(u)) ∧ (E hqv(t) F), T)

MatchAction(γ, t, u, b,W) =
switch γ do
case c!

for t
bi,c!ei−→ ti and u

b′
j ,c!e

′
j−→ uj do

(θij , Tij) := Match(ti, uj , b ∧ bi ∧ b′j ∧ ei = e′
j , {(t, u)} ∪W)

return (
∧
i(bi → ∨

j(b
′
j ∧ ei = e′

j ∧ θij)) ∧∧j(b′j → ∨
i(bi ∧ ei = e′

j ∧ θij)),
⊔
ij Tij)

case τ

for t
bi,τ−→ ∆i and u

b′
j ,τ−→ Θj do

(θij , Tij) := MatchDistribution(∆i,Θj , b ∧ bi ∧ b′j , {(t, u)} ∪W)

return (
∧
i(bi → ∨

j(b
′
j ∧ θij)) ∧∧j(b′j → ∨

i(bi ∧ θij)),
⊔
ij Tij)

otherwise

for t
bi,γ−→ ti and u

b′
j ,γ−→ uj do

(θij , Tij) := Match(ti, uj , b ∧ bi ∧ b′j , {(t, u)} ∪W)

return (
∧
i(bi → ∨

j(b
′
j ∧ θij)) ∧∧j(b′j → ∨

i(bi ∧ θij)),
⊔
ij Tij)

MatchDistribution(∆,Θ, b,W)=
for ti ∈ ⌈∆⌉ and uj ∈ ⌈Θ⌉ do
(θij , Tij) := Match(ti, uj , b,W)

R := {(t, u) | b → (
⊔
ij Tij)(t, u)}∗

return (Check(∆,Θ,R),
⊔
ij Tij)

Check(∆,Θ,R) = θ := tt

for S ∈ ⌈∆⌉ ∪ ⌈Θ⌉/R do
θ := θ ∧ (∆(S) h Θ(S))

return θ

Definition 7.1. The class L of quantum modal formulae over Acts, ranged over by φ, Φ, etc, is
defined by the following grammar:

φ ::= Gq̃ | ¬φ |
∧

i∈I
φi | G.φ | 〈γ〉Φ

Φ ::= Q&A(φ) |
∧

i∈I
Φi

where G ∈ CPt(H), γ ∈ Acts, and A ∈ CP (H). We call φ a snapshot formula and Φ a distribution
formula.

The satisfaction relation |= ⊆ EV × (SN ∪ DistH(SN)) × L is defined as the minimal relation
satisfying

• ψ, t |= Gq̃ if qv(t) ∩ q̃ = ∅, and E hq̃ G, where t = Lt, EM ;

• ψ, t |= ¬φ if ψ, t 6|= φ;

25

• ψ, t |= ∧i∈I φi if ψ, t |= φi for each i ∈ I;

• ψ, t |= G.φ if G ∈ CPt(Hqv(t)) and Lt,GEM |= φ, where t = Lt, EM;

• ψ, t |= 〈γ〉Φ if t
b,γ′
−→ ∆ for some b, γ′, and ∆, such that ψ(b) = tt, γ =ψ γ

′, and ψ,∆ |= Φ;

• ψ,∆ |= Q&A(φ) if ∑

t∈⌈∆⌉
{∆(t) : ψ, t |= φ} & A;

• ψ,∆ |= ∧i∈I Φi if ψ,∆ |= Φi for each i ∈ I.

Definition 7.2. Let ψ be an evaluation. We write t =ψ
L u if for any φ ∈ L,

ψ, t |= φ if and only if ψ, u |= φ.

Similarly, ∆ =ψ
L Ξ if for any Φ ∈ L,

ψ,∆ |= Φ if and only if ψ,Ξ |= Φ.

Lemma 7.3. Let ψ be an evaluation, t, u ∈ SN , and ∆,Ξ ∈ DistH(SN).

(1) If t 6=ψ
L u, then there exists φ ∈ L, such that ψ, t |= φ but ψ, u 6|= φ;

(2) If ∆ 6=ψ
L Ξ, then there exists Φ ∈ L, such that ψ,∆ |= Φ but ψ,Ξ 6|= Φ.

Proof. (1) is easy as we have negation operator ¬ for state formulae. To prove (2), let ∆ 6=ψ
L Ξ,

and Φ a distribution formula such that ψ,∆ 6|= Φ but ψ,Ξ |= Φ. We construct another distribution
formula Φ′ satisfying ψ,∆ |= Φ′ but ψ,Ξ 6|= Φ′ by induction on the structure of Φ.

(i) Φ = Q&A(φ). Let

S = {u ∈ SN : ψ, u |= φ} and S = SN − S.

Then by definition, Ξ(S) & A but ∆(S) 6& A. Let B = ∆(S) and Φ′ = Q&B(¬φ). Then we

have trivially ψ,∆ |= Φ′. Now it suffices to show ψ,Ξ 6|= Φ′. Otherwise, we have Ξ(S) & B,
and then

IH h Ξ(S) + Ξ(S) & A + B.
On the other hand, we have

IH h ∆(S) + ∆(S) = ∆(S) + B.

Comparing the two formulae above, we conclude that ∆(S) & A, a contradiction.

(ii) Φ =
∧
i∈I Φi. Then by definition, ψ,Ξ |= Φi for each i ∈ I but ψ,∆ 6|= Φi0 for some i0 ∈ I.

By induction we have Φ′
i0 such that ψ,∆ |= Φ′

i0 but ψ,Ξ 6|= Φ′
i0 . For any i 6= i0, let Φ′

i = Φi
if ψ,∆ |= Φi, and otherwise it is determined by applying induction on Φi. Let Φ′ =

∧
i∈I Φ′

i.
Then ψ,∆ |= Φ′ but ψ,Ξ 6|= Φ′. ✷

With this lemma, we can show that the logic L exactly characterises the behaviours of quantum
snapshots up to symbolic bisimilarity.

Theorem 7.4. Let t and u be two snapshots and b ∈ BExp. Then t ∼b u if and only if for any
evaluation ψ, ψ(b) = tt implies t =ψ

L u.

26

Proof. We first prove the necessity part. For any φ,Φ ∈ L, it suffices to prove the following two
properties:

∀ t, u, ψ, if t ∼b u and ψ(b) = tt then ψ, t |= φ ⇔ ψ, u |= φ,

∀ ∆,Ξ, ψ, if ∆ ∼b Ξ and ψ(b) = tt then ψ,∆ |= Φ ⇔ ψ,Ξ |= Φ.

We proceed by mutual induction on the structures of φ and Φ. Take arbitrarily t ∼b u, ∆ ∼b Ξ, and
ψ(b) = tt. Let t = Lt, EM, u = Lu,FM, ψ, t |= φ, and ψ,∆ |= Φ. There are seven cases to consider:

• φ = Gq̃. Then qv(t)∩ q̃ = ∅ and E hq̃ G. Since t ∼b u and b is satisfiable, we have qv(t) = qv(u)

and E hqv(t) F . Thus qv(u)∩ q̃ = ∅, and F hq̃ G from the fact that q̃ ⊆ qv(t). Then ψ, u |= Gq̃
follows.

• φ = ¬φ′. Then ψ, t 6|= φ′. By induction we have ψ, u 6|= φ′, and ψ, u |= φ.

• φ =
∧
i∈I φi. Then ψ, t |= φi for each i ∈ I. By induction we have ψ, u |= φi, and ψ, u |= φ.

• φ = G.φ′. Then G ∈ CPt(Hqv(t)) and ψ,G(t) |= φ′. Since t ∼b u, we have G(t) ∼b G(u) by

Proposition 6.3, and qv(t) = qv(u). By induction we have ψ,G(u) |= φ′, and ψ, u |= φ.

• φ = 〈γ〉Φ′. Then t
b1,γ

′
−→ ∆′ for some b1, γ

′, and ∆′ such that ψ(b1) = tt, γ =ψ γ′, and
ψ,∆′ |= Φ′. Since t ∼b u, there exists a collection of booleans B such that b ∧ b1 → ∨

B

and ∀ b′ ∈ B, ∃b(b′), γ(b′) with b′ → b(b′), γ′ =b′ γ(b′), u
b(b′),γ(b′)−→ Ξ′, and ∆′ ∼b′

Ξ′. Note
that ψ(b ∧ b1) = tt. We can find a b′ ∈ B such that ψ(b′) = tt. Thus ψ(b(b′)) = tt, and
γ =ψ γ(b

′). Furthermore, by induction we have ψ,Ξ′ |= Φ′ from ∆′ ∼b′
Ξ′ and ψ,∆′ |= Φ′. So

ψ, u |= 〈γ〉Φ′.

• Φ = Q&A(φ′). Let S = {t ∈ SN : ψ, t |= φ′}. Then by definition, ∆(S) & A. Furthermore, by

induction we can see that S is the disjoint union of some equivalence classes S1, · · · , Sk of ∼b.
Thus

Ξ(S) = Ξ(S1) + · · · + Ξ(Sk) h ∆(S1) + · · · + ∆(Sk) = ∆(S) & A
where the h equality is derived from the assumption that ∆ ∼b Ξ.

• Φ =
∧
i∈I Φi. Then ψ,∆ |= Φi for each i ∈ I. By induction we have ψ,Ξ |= Φi, and ψ,Ξ |= Φ.

By symmetry, we also have ψ, u |= φ implies ψ, t |= φ and ψ,Ξ |= Φ implies ψ,∆ |= Φ. That
completes the proof of the necessity part.

We now turn to the sufficiency part. By Lemma 5.21, we need only to prove that t =ψ
L u implies

(tψ)(ρ) ∼̇ (uψ)(ρ) for all ρ ∈ D(H). Let

R = {((tψ)(ρ), (uψ)(ρ)) : ρ ∈ D(H), ψ ∈ EV, and t =ψ
L u}

It suffices to show that R is an open bisimulation. Suppose (tψ)(ρ)R(uψ)(ρ). Then t =ψ
L u, and

qv(tψ) = qv(t) = qv(u) = qv(uψ).

We further claim that trqv(t)E(ρ) = trqv(t)F(ρ). Otherwise there exists q̃ ⊆ qv(t) such that E 6hq̃ F .
Then ψ, t |= Eq̃ while ψ, u 6|= Eq̃, a contradiction.

Now let (tψ)(ρ)
α7−→ µ. By Lemma 5.5 we have t

b1,γ−→ ∆µ such that ψ(b1) = tt, µ = (∆µψ
′)(ρ),

and

(1) if α = c?v then γ = c?x for some x 6∈ fv(t), and ψ′ = ψ{v/x},

27

(2) otherwise, γ =ψ α and ψ′ = ψ.

Let
K = {ν ∈ Dist(Con) : (uψ)(ρ)

α7−→ ν and µ 6Rν}.

For any ν ∈ K, by Lemma 5.5 we have u
b(Ξν),γ(Ξν)−→ Ξν such that ψ(b(Ξν)) = tt, ν = (Ξνψ

′′)(ρ), and

(1) if α = c?v then γ(Ξν) = c?x for some x 6∈ fv(u), and ψ′′ = ψ{v/x},

(2) otherwise, γ(Ξν) =ψ α and ψ′′ = ψ.

Here again, to ease the notations we only consider the case where for each Ξ, there is at most one

pair, denoted (b(Ξ), γ(Ξ)), such that u
b(Ξ),γ(Ξ)−→ Ξ. Furthermore, by α-conversion, we can always

take γ(Ξν) =ψ γ and ψ′′ = ψ′. For any ν ∈ K, we claim ∆µ 6=ψ
L Ξν . Otherwise, since µ = (∆µψ

′)(ρ)
and ν = (Ξνψ

′)(ρ), we have µRν, a contradiction. Thus, from Lemma 7.3 (2), there exists Φν ∈ L
such that ψ,∆µ |= Φν but ψ,Ξν 6|= Φν . Let

Φµ =
∧

{Φν : ν ∈ K} and φ = 〈γ〉Φµ.

Then ψ,∆µ |= Φµ and ψ, t |= φ. Since t =ψ
L u, we have ψ, u |= φ too. That is, there exists Θ such that

ψ(b(Θ)) = tt, γ =ψ γ(Θ), and ψ,Θ |= Φµ. Now by Lemma 5.6, we have (uψ)(ρ)
α′

7−→ ω = (Θψ′′′)(ρ)
such that

(1) if γ(Θ) = c?x then α′ = c?v for some v ∈ Real, and ψ′′′ = ψ{v/x},

(2) otherwise, α′ =ψ γ(Θ) and ψ′′′ = ψ.

By transition rule C-Inpc, we can alway choose α′ = α, and ψ′′′ = ψ′. We claim that ω 6∈ K.
Otherwise, if ω ∈ K then ψ,Ξω 6|= Φω, and ψ,Ξω 6|= Φµ as well. This is a contradiction since by
assumption, Ξω = Θ. So ω 6∈ K, and µRω as required.

Finally, we prove that R is closed under super-operator application. To this end, we only need to
show that =ψ

L is ; that is, for any G ∈ CPt(Hqv(t)), t =ψ
L u implies G(t) =ψ

L G(u). Suppose t =ψ
L u and

let φ be a formula such that ψ,G(t) |= φ. Then ψ, t |= G.φ. It follows from t =ψ
L u that qv(t) = qv(u)

and ψ, u |= G.φ. Therefore, ψ,G(u) |= φ. By symmetry if φ is satisfied by ψ,G(u) then it is also

satisfied by ψ,G(t). In other words, we have G(t) =ψ
L G(u). Then R is an open bisimulation by

Proposition 5 of [6]. ✷

For any t, u ∈ T and b ∈ BExp, we write t =b
L u if for any evaluation ψ, ψ(b) = tt implies

Lt, IHM =ψ
L Lu, IHM. Then we have the following theorem:

Theorem 7.5. For any t, u ∈ T , t ∼b u if and only if t =b
L u.

8 Conclusion and further work

The main contribution of this paper is a notion of symbolic bisimulation for qCCS, a quantum
extension of classical value-passing CCS. By giving the operational semantics of qCCS directly by
means of the super-operators a process can perform, we are able to assign to each (non-recursively
defined) quantum process a finite super-operator weighted labelled transition system, comparing
to the infinite probabilistic labelled transition system in previous literature. We prove that the
symbolic bisimulation in this paper coincides with the open bisimulation in [6], thus providing a
practical way to decide the latter. We also design an algorithm to check symbolic ground bisimu-
lation, which is applicable to reasoning about the correctness of existing quantum communication
protocols. A modal logic characterisation for the symbolic bisimulation is also developed.

28

A natural extension of the current paper is to study symbolic weak bisimulation where the
invisible actions, caused by internal (classical and quantum) communication as well as quantum
operations, are abstracted away. To achieve this, we may need to define symbolic weak transitions
similar to those proposed in [8] and [6]. Note that one of the distinct features of weak transitions for
probabilistic processes is the so-called left decomposibility; that is, if µ =⇒ ν and µ =

∑
i∈I piµi is

a probabilistic decomposition of µ, then ν can be decomposed into
∑
i∈I piνi accordingly such that

µi =⇒ νi for each i ∈ I. This property is useful in proving the transitivity of bisimilarity. However,
it is not satisfied by symbolic transitions defined in this paper, since, in general, a super-operator
does not have an inverse. Therefore, we will have to explore other ways of defining weak symbolic
transitions, which is one of the research directions we are now pursing.

We have presented in this paper, for the first time in literature to the best of our knowledge,
the notion of super-operator weighted labelled transition systems, which serves the semantic model
for qCCS and plays an important role in describing and reasoning about quantum processes. For
the next step, we are going to explore the possibility of model checking quantum communication
protocols based on this model. As is well known, one of the main challenges for quantum model
checking is that the set of all quantum states, traditionally regarded as the underlying state space of
the models to be checked, is a continuum, so that the techniques of classical model checking, which
normally works only for finite state space, cannot be applied directly. Gay et al. [9, 10, 17] provided
a solution for this problem by restricting the state space to a set of finitely describable states called
stabiliser states, and restricting the quantum operations applied on them to the class of Clifford
group. By doing this, they were able to obtain an efficient model checker for quantum protocols,
employing purely classical algorithms. The limit of their approach is obvious: it can only check the
(partial) behaviours of a protocol on stabiliser states, and does not work for general protocols.

Our approach of treating both classical data and quantum operations in a symbolic way provides
an efficient and compact way to describe behaviours of a quantum protocol without resorting to the
underlying quantum states. In this model, all existing quantum protocols have finite state spaces,
and consequently, classical model checking techniques will be easily adapted to verifying quantum
protocols.

Acknowledgement

This work was supported by Australian ARC grants DP110103473 and FT100100218.

References

[1] C. H. Bennett and G. Brassard. Quantum cryptography: Public-key distribution and coin
tossing. In Proceedings of the IEEE International Conference on Computer, Systems and Signal
Processing, pages 175–179, 1984.

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters. Teleporting an
unknown quantum state via dual classical and epr channels. Physical Review Letters, 70:1895–
1899, 1993.

[3] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on
einstein-podolsky-rosen states. Physical Review Letters, 69(20):2881–2884, 1992.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:
1020 states and beyond. Information and Computation, 98(2):142–170, 1992.

[5] T. A. S. Davidson. Formal Verification Techniques using Quantum Process Calculus. PhD
thesis, 2011.

29

[6] Yuxin Deng and Yuan Feng. Open bisimulation for quantum processes. Manuscript. Available
at http://arxiv.org/abs/1201.0416.

[7] Y Feng, R Duan, Z Ji, and M Ying. Probabilistic bisimulations for quantum processes. Infor-
mation and Computation, 205(11):1608–1639, 2007.

[8] Y Feng, R Duan, and M Ying. Bisimulations for quantum processes. In Mooly Sagiv, editor,
Proceedings of the 38th ACM Symposium on Principles of Programming Languages (POPL’11),
pages 523–534, 2011.

[9] S Gay, R Nagarajan, and N Papanikolaou. Probabilistic model-checking of quantum protocols.
In Proceedings of the 2nd International Workshop on Developments in Computational Models,
2006.

[10] S Gay, R Nagarajan, and N Papanikolaou. Qmc: A model checker for quantum systems. In
CAV 08, pages 543–547. Springer, 2008.

[11] S. J. Gay and R. Nagarajan. Communicating quantum processes. In J. Palsberg and M. Abadi,
editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 145–157, 2005.

[12] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138(2):353–
389, 1995.

[13] P. Jorrand and M. Lalire. Toward a quantum process algebra. In P. Selinger, editor, Proceedings
of the 2nd International Workshop on Quantum Programming Languages, 2004, page 111, 2004.

[14] K. Kraus. States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer,
Berlin, 1983.

[15] Marie Lalire. Relations among quantum processes: Bisimilarity and congruence. Mathematical
Structures in Computer Science, 16(3):407–428, 2006.

[16] M. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge uni-
versity press, 2000.

[17] N. K. Papanikolaou. Model Checking Quantum Protocols. PhD thesis, 2008.

[18] D. Sangiorgi. A theory of bisimulation for the -calculus. Acta Informatica, 33(1):69–97, 1996.

[19] J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University
Press, Princeton, NJ, 1955.

[20] M Ying, Y Feng, R Duan, and Z Ji. An algebra of quantum processes. ACM Transactions on
Computational Logic (TOCL), 10(3):1–36, 2009.

30

