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Abstract 
Cell-type heterogeneity of tumors is a key factor in tumor progression and response to 

chemotherapy. Tumor cell-type heterogeneity, defined as the proportion of the various cell-types 

in a tumor, can be inferred from DNA methylation of surgical specimens. However, confounding 

factors known to associate with methylation values, such as age and sex, complicate accurate 

inference of cell-type proportions. While reference-free algorithms have been developed to infer 

cell-type proportions from DNA methylation, a comparative evaluation of the performance of these 

methods is still lacking. 

Here we use simulations to evaluate several computational pipelines based on the software 

packages MeDeCom, EDec, and RefFreeEWAS. We identify that accounting for confounders, 
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feature selection, and the choice of the number of estimated cell types are critical steps for 

inferring cell-type proportions. We find that removal of methylation probes which are correlated 

with confounder variables reduces the error of inference by 30-35%, and that selection of cell-

type informative probes has similar effect. We show that Cattell’s rule based on the scree plot is 

a powerful tool to determine the number of cell-types. Once the pre-treatment steps are achieved, 

the three deconvolution methods provide comparable results. We observe that all the algorithms’ 

performance improves when inter-sample variation of cell-type proportions is large or when the 

number of available samples is large. We find that under specific circumstances the methods are 

sensitive to the initialization method, suggesting that averaging different solutions or optimizing 

initialization is an avenue for future research. Based on the lessons learned, to facilitate pipeline 

validation and catalyze further pipeline improvement by the community, we develop a benchmark 

pipeline for inference of cell-type proportions and implement it in the R package medepir. 
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Background 

 
Since the development of high-throughput sequencing technologies, cancer research has 

focused on characterizing genetic and epigenetic changes that contribute to the disease. 

However, these studies often neglect the fact that tumors are constituted of cells with different 

identities and origins (cell heterogeneity) (Alizadeh et al. 2015). Quantification of tumor 

heterogeneity is of utmost interest as multiple components of a tumor are key factors in tumor 

progression and response to chemotherapy (Alizadeh et al. 2015).   

Advanced microdissection techniques to isolate a population of interest from 

heterogeneous clinical tissue samples are still not feasible in daily practice (too complicated and 

costly). An alternative is to rely on computational deconvolution methods that infer cell-type 

composition. Recently, several “reference-free” algorithms have been proposed to estimate tumor 

cell-type heterogeneity from global DNA methylation profiling of surgical specimens (Houseman 

et al. 2016; Lutsik et al. 2017; Onuchic et al. 2016). Indeed, DNA methylation is a stable molecular 

marker with a cell type-specific profile dynamically acquired during cell differentiation (Jones 

2012; Roadmap Epigenomics Consortium et al. 2015) and thus provides valuable information for 

cell-type heterogeneity characterization and quantification. The “reference-free” algorithms are 

labelled as such because they do not require a priori information about DNA methylation profiles 

of cell types found within tumors: they directly infer them from DNA methylation samples using 

computational methods. While not requiring the a priori reference information, some algorithms 

are designed to use such information when available (Houseman et al. 2016; Lutsik et al. 2017; 

Onuchic et al. 2016). In the absence of reference information, confounding factors affecting 

methylation values, such as age and sex, can potentially influence the inference of cell-type 

proportions. Moreover, the heuristics that are used to estimate the number of underlying cell types 

may differ between each deconvolution method and the sensitivity of the methods to such 

variability remains uncharacterized. Therefore, there is an urgent need to comprehensively 

characterize the current analysis pipelines, identify key features influencing their performance and 

provide benchmarks and recommendations to guide the application and further development of 

pipelines that quantify cell-type heterogeneity from reference-free DNA methylation samples 

(Titus et al. 2017).  

Methods correcting for cell-type heterogeneity have already been compared for their 

statistical power to detect significant associations between epigenetic variation and biological 

traits (McGregor et al. 2016)(Kaushal et al. 2017). When associating epigenetic variation to 
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phenotypic traits (Epigenome Wide Association Studies, EWAS), cell-type proportions are 

considered as confounding factors, their inference is not the main objective, but rather an 

intermediate step that can contribute to reducing false positive associations. In contrast, we here 

compare reference-free deconvolution methods with the estimation of cell-type proportions as the 

main objective, as they are directly related to tumorigenesis (Alizadeh et al. 2015). This objective 

excludes several software packages from our comparison that instead return latent or surrogate 

variables, which are not interpretable in terms of cell-type proportions (McGregor et al. 2016). 

We compare three software packages that infer cell type proportions based on methylation 

data: MeDeCom, EDec, and RefFreeEWAS (Onuchic et al. 2016; Houseman et al. 2016; Lutsik 

et al. 2017). For our comparisons, we rely on simulations where real methylation profiles of 

different cell types are mixed in differing proportions. While some of the methods include series 

of steps that may be considered a pipeline, the simulations focus on comparing the core 

deconvolution step shared by all the three methods (e.g., Stage 1 of EDec) that solves a 

convolution equation that contains two key variables: (i) the cell-type proportions within the 

samples, and (ii) the average methylation profiles of constituent cell types. The main outcome of 

this core deconvolution step are estimates of cell-type proportions and of the methylation profiles 

of constituent cell types, which are needed to characterize the constituent cell types and quantify 

tumor heterogeneity. Because accurate references for cell-type specific methylation profiles are 

sparse, especially for solid tissues and cancer cell types, we further assume that reference data 

for constituent cell-types is not available, which excludes reference-based methods from our 

comparative analysis (Teschendorff et al. 2017; Zheng et al. 2018). 

We here evaluate key factors affecting performance of deconvolution pipelines. We 

examine to what extent cell-type proportions can be accurately inferred when accounting for 

measured confounding factors. We determine how feature selection impacts algorithms’ 

performance at inferring cell-type proportions. We ask how variable are the results of 

deconvolution to the randomly selected initialization of local optimization involved in solving 

deconvolution equation. We also test several methods for selecting appropriate number of 

constituent cell types and ask how sensitive the results are to the variation in cell type number.  

Based on these, we provide general guidelines for the development of reference-free 

deconvolution pipelines and define a benchmark pipeline to catalyze further application and 

improvement of reference-free deconvolution methods. 
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Results 

Evaluation of computational frameworks to estimate cell type composition 

We apply MeDeCom, EDec (Stage 1, the core deconvolution step), and RefFreeEWAS to 

estimate heterogeneity within simulated tumorous tissues (Lutsik et al. 2017; Onuchic et al. 2016; 

Houseman, Molitor, and Marsit 2014). Simulations are encoded in a matrix D of size MxN, where 

M represents the number of CpG probes and N represents the number of samples. All these 

software packages perform various types of non-negative matrix factorization to infer cell type 

proportions (matrix A of size KxN, with K as the putative number of cell types) and cell type-

specific methylation profiles (matrix T of size MxK) by solving D = TA, or rather by minimizing, 

under various constraints (that vary between the three tested algorithms), the error term: 

∥ 𝐷 − 𝑇𝐴 ∥&(see Material and Methods). We simulate D with 5 cell types (K = 5): 2 cancer-like 

cells (lung epithelial and mesenchymal), healthy epithelial cells (lung epithelial), immune cells (T 

lymphocytes), and stromal cells (fibroblasts). These simulations mainly depend on a parameter 

α0, which controls the diversity of the generated samples (see Material and Methods): When α0 

is small (~1), the simulated proportions of the K cell-types are diverse among samples and as α0 

increases, the variability decreases to the point at which proportions are the same for all samples. 

Finally, we simulate the effect of confounding factors on these mixtures by using a regression 

model of methylation data computed from real lung cancer clinical datasets (Supplementary 

Figure S1, see Material and Methods for details). 

To evaluate the methods performance, we use Mean Absolute Error (MAE, see Material 

and Methods) as a metric to compare inferred individual cell type proportions to the ground truth. 

First, we tested the effect of altering four simulation parameters on the methods performance 

(Figure 1 and Supplementary Figure S1): (1) the number of simulated samples (N, ranging from 

10 to 500), (2) the inter-sample variation in mixture proportions ( α0, from 1 to 10,000), (3) the 

magnitude of random noise added to the mixture component (𝜀, from 0.05 to 0.2) and (4) the set 

of K cell types used to simulate complex tissues (termed as the cell line background, G, which 

includes all specificities related to the cell line establishment, such as the genetic background of 

the donor) (see Material and Methods for details). As expected, increasing the sample size 

(Supplementary Figure S2) or decreasing random noise improves the performance of all methods 

(Figure 1). By contrast, their performance is not sensitive to changes of the cell background 

(Figure 1). Increasing inter-sample proportion variability also substantially improves performance 

of all methods (Figure 1). Average error (mean error across the three methods) is 0.074 (α0 = 1) 
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when inter-sample variation is large, increases to 0.147 (α0 = 10) when variation is moderate, and 

reaches 0.194 (α0 = 100) when variation is almost zero (Figure 1 and Supplementary Figure S3).  

In this first direct comparison, the three deconvolution methods account for all 23,381 probes 

corresponding to a subset of the Illumina 27k DNA methylation probes, with no specific filtering. 

To run the algorithms, we used the following functions and parameters: 

RefFreeEWAS::RefFreeCellMix (5 cell types, 9 iterations),  EDec::run_edec_stage_1 (5 cell 

types, all probes kept as informative loci, maximum iterations = 2000), and 

MeDeCom::runMeDeCom (5 cell types, lambdas in 0, 0.00001, 0.0001, 0.001, 0.01, 0.1), 

maximum iterations = 300, 10 random initializations, number of cross-validation folds = 10). Under 

these not-optimized conditions (i.e. with no pre-processing steps), we observe that all methods 

provide comparable performance, each algorithm performing best under specific conditions and 

parameter settings. RefFreeEwas performs best for 9 out of 17 different parameter settings, 

MeDeCom for 6, and EDec for 2 conditions. Error obtained with EDec is on average 8% larger 

than the error obtained with RefFreeEwas and 2% larger than MeDeCom.  

 

Figure 1: Performance of the 3 deconvolution methods for different parameter settings.  

Heatmap of method performance (`A MAE`: Mean Absolute Error on estimated A, the matrix of cell 
proportions). RFE stands for RefFreeEWAS, MDC for MeDeCom and EDec for EDec stage 1. All algorithms 
were run on 10 D matrices corresponding to 10 different realizations of the random 𝜀- controlled process 
on one D matrix computed from one simulated A matrix, each time, with the following parameters n (number 
of samples), α0 (inter-sample variation in mixture proportion), 𝜀 (magnitude of random noise applied on D)  
and G (the cell line background of the cell lineages). A random A matrix was used for testing the effect of 
G1 and G2, another random A matrix was used for testing the effect of 𝜀 magnitude. Testing the effect of n 
and α0 required independent simulation of A each time. As a consequence, the four simulations 
corresponding to the set of parameters n = 100, α0 = 1, 𝜀 = 0.2, G = 1 have different results, because these 
simulations are based on different randomly simulated A matrices (see figure 7 for a systematic analysis of 
performance variation according to the random simulations of A).  
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These results suggest that the differences between the tested algorithms are minor when default 

parameters are used and no filters are applied on the provided DNA methylation probes. The 

main variations in performance are related to simulation parameters, such as sample size (n) or 

inter-sample proportion variability (α0). 

Different strategies to initialize matrix factorization  

Optimization algorithms implemented in MeDeCom, EDec and RefFreeEWAS start with an initial 

condition for either T, the cell type-specific methylation matrix, or A, the cell type proportion matrix. 

RefFreeEWAS initializes the T matrix. To explore the role of T initialization, we run the 

RefFreeEWAS package on 10 D matrices (generated from 10 random simulations of an A matrix 

with the following parameters:  K = 5, n = 100, α0 = 1 and 𝜀  = 0.2), using the following initialization 

schemes (see Material and Methods for details). K averaged methylation profiles are derived from 

the D matrix either by hierarchical clustering (estimation of the mean methylation of the K first 

clusters using a complete linkage method) based on (1) Euclidean or (2) Manhattan distances; 

either by  (3) singular value decomposition (SVD) (corresponding to the K highest singular values) 

with discretized methylation values (0/1); (4) the ground truth corresponding to real T matrix used 

in the simulations is also tested (4)  (Figure 2, Supplementary table S1). The RefFreeEWAS 

outcome varies significantly according to how it is initialized, especially when T is initialized by 

hierarchical clustering applied on the D matrix (estimation of the mean methylation of the K first 

clusters). Indeed, these two approaches based on hierarchical clustering display a high variability 

depending on the random simulations of A. Hierarchical clustering based on Euclidean distance 

or Manhattan distance performs similarly (error ranging from 0.022 to 0.135 for Euclidean 

distance, and from 0.022 to 0.138 for Manhattan distance). In some cases, they even outcompete 

initialization with the real T matrix used for simulations (0.059 mean MAE for real T), whereas the 

SVD approach perform systematically worse (0.152 mean MAE). Surprisingly, the effect of T 

initialization is highly dependent on the inter-sample variation in mixture proportion (α0). When 

variation of proportion is low (α0 = 10,000), SVD initialization is more efficient than hierarchical 

clustering (0.077 mean MAE for SVD-based initialization versus 0.23 mean MAE for clustering-

based initialization) (Supplementary Figure S4, Supplementary table S2). 

MeDeCom performs multiple random initializations of A, the cell type proportion matrix, and EDec 

performs initialization with random guesses of proportions of cell types in each sample 

(randomized A generated from a Dirichlet distribution meeting boundary conditions of 0<A<1). To 

roughly estimate the differences between these two approaches on the outcome of the 

deconvolution algorithms, we run MeDeCom (without the regularization function: parameter 
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lambda = 0) and EDec on 10 independent D matrices (generated from 10 random simulation of 

matrices A, n = 100, α0 = 1 and 𝜀  = 0.2) (Supplementary Figure S5). Interestingly, both 

approaches give similar results. There appears to be a range of errors across 10 different D 

matrices simulated for both methods tested, with 3 D matrices showing a high standard deviation 

across 10 random noises (Supplementary Figure S5), suggesting these initialization methods may 

show sensitivity as well in certain situations.    

 

Figure 2: Impact of algorithm initialization of RefFreeEWAS method performance 

`A MAE` is shown for 10 D matrices (mean value of 10 random noises applied on D) computed from 10 
random A. Each colour represents a different simulated A. Error bars represent standard deviation on 10 
random noises. The following parameters were used to simulate D: K = 5, α0 = 1, 𝜀 = 0.2, G = 1 and n = 
100). Euclidean corresponds to RefFreeEWAS::RefFreeCellMixInitialize function applied with the default 
parameter dist.method = “euclidean”. Manhattan corresponds to  RefFreeEWAS::RefFreeCellMixInitialize 
function applied with the parameter dist.method = “manhattan”. Real T corresponds to 
RefFreeEWAS::RefFreeCellMix used with the parameter mu0 = real_T, with real_T the matrix composed 
of the 5 cell types used to simulate D. SVD corresponds to RefFreeEWAS::RefFreeCellMixInitializeBySVD 
function with default parameters. 
 
In summary, the strategies of initialization can have important impacts on method performance, 

some of them being highly dependent on the composition of the original D matrix. Further work is 
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therefore needed to better understand the relationship between the initialization of the algorithm 

and method performance.  

Feature selection and accounting for confounders 

Variation in DNA methylation is associated with different factors (such as age, sex, batch effects, 

etc.) that are not always related with cell-type composition. A popular assumption is that removing 

probes by feature selection will improve performance of deconvolution methods. Yet, such an 

approach may also discard relevant biological information (Teschendorff et al. 2017). 

Because probe selection always involves probe removal, we evaluate to what extent removing 

probes (i.e. Feature Selection, FS) impacts estimation error. In the previous section, all the 23,381 

probes were used by the three non-negative matrix factorization algorithms. Here, we apply 

different types of feature selection and measure their impacts on deconvolution errors. First, we 

perform feature selection (FS) without removal of confounding probes (Figure 3A and B, left 

panel). When keeping only the most variable probes, or the ones that are the most correlated with 

principal components (PCs), error remains similar to when using no FS (FS variance and FS PCA, 

resp. in Figure 3). When keeping only cell-type variable informative probes based on literature 

curation and use of publicly available reference cell profiles as surrogates (FS infloci, as 

suggested in the EDec method, see Material and Methods for probe selection information), we 

find a large reduction of error (47% error reduction on average with 20 patients and 26% with 100 

patients). Then, we remove confounding probes, which corresponds to ~1,000-2,000 probes 

significantly correlated with confounder variables (such as age, sex, etc.) with an adjusted false 

discovery rate (FDR) threshold of 15% (Benjamini and Hochberg 1995). We subsequently 

observe a substantial reduction of error (33% in average with 20 patients and 35% with 100 

patients). Other FDR thresholds between 5% and 20% provide similar error measures 

(Supplementary Figure S6). After removal of correlated probes, there is no systematic advantage 

in filtering additional probes by feature selection (see Figure 3A and B, right panel). For each 

deconvolution software, best performances are always obtained, with both 20 and 100 patients, 

when removing probes correlated with confounders. However, the positive impact of removing 

confounding probes is only observed when inter-sample variation in mixture proportion is high (α0 

= 1). When inter-sample variation is low (α0 = 10,000), the deconvolution is much more 

complicated, which could explain why we do not observe reproducible improvement of error 

detection after removing confounding probes in this case (Supplementary Figure S7).  

In summary, we highly recommend to systematically remove possible confounding probes to 

account for confounders. Filtering based on biologically informative loci, after removing of 
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confounding probes, can also be an interesting approach, if the investigated biological system is 

properly defined. In the rest of the paper, removal of confounding probes is always considered 

before using MeDeCom, and RefFreeEwas whereas EDec infers informative probes from any 

available references (in EDec Stage 0, as also illustrated in its vignette). 

 

 

Figure 3: Impact of pre-treatments on method performance 

Heatmap of method performances (`A MAE`: Mean Absolute Error on estimated A, the matrix of cell 
proportions). RFE stands for RefFreeEWAS, MDC for MeDeCom and EDec for EDec stage 1. All algorithms 
are run on 10 D matrices: 10 different random noises	𝜀 were simulated on one matrix D computed from one 
simulated A matrix. In each heatmap, the left panel corresponds to algorithms run without accounting for 
confounders (no removal of confounding probes), the right panel corresponds to algorithms run accounting 
for confounders (removal of confounding probes by linear regression). In each case, different types of 
feature selection (FS) are tested: no FS = no feature selection, FS variance = selecting probes with high 
variance (var > 0.02), FS PCA = selecting probes highly correlated with the 4 first PCs (p_value < 0.1), FS 
infloci = selecting probes expected to biologically vary in methylation levels across constitutive cell types.  
(A) Simulations were performed with the following parameters K = 5, n = 20, α0 = 1, 𝜀 = 0.2 and G = 1. (B) 
Simulations were performed with the following parameters K = 5, n = 100, α0 = 1, 𝜀 = 0.2 and G = 1. The 
number of conserved probes is display supplementary table 1.  

Choice of the number of cell types K 

We tested several methods to choose the number of cell types K including the scree plot based 

on PCA of the D matrix, a cross validation score provided by MeDeCom, a deviance statistic 

estimated with bootstrap provided by RefFreeEWAS, and contrast those to the “best fit” and 

stability methods used by EDec. 
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Figure 4: Determining K with PCA scree plot 

To choose K, we recommend to use Cattell’s rule, calculating the estimated K as K = PCs + 1. The number 
of PCs chosen by the Cattel’s rule is shown with an arrow. The D matrix was simulated with the following 
parameters: n = 100, α0 = 1, 𝜀 = 0.2, G = 1 and K = 3 (A and C) and n = 100, α0 = 1, 𝜀 = 0.2, G = 1 and K 
= 5 (B and D). (A, B) Scree plot of PCA applied on D matrix before removal of confounding probes (23,381 
probes). (C, D) Scree plot of PCA applied on D matrix after removal of confounding probes (22,551 probes 
in C, 22,532 probes in D).  
 

First, we look at the scree plot by plotting the eigenvalues of the D matrix in descending order 

(Figure 4). For choosing K, we use Cattell’s rule, which states that components corresponding to 

eigenvalues to the left of the straight line should be retained (Cattell 1966). When the actual 

number of different cell types is equal to K, we expect that there are (K-1) eigenvalues would 

correspond to the mixture of cell types and that other eigenvalues would correspond to noise (or 

other unaccounted for confounders). Indeed, one PCA axis is needed to separate two types, two 

axes for three types, etc. However, when not accounting for confounders, Cattell’s rule 
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overestimates the number of PCs and suggests to choose 3 and 5 PCs (i.e. K = 4 and K = 6) 

whereas the correct answers are K = 3 and K = 5 respectively (Figure 4 upper panel). When 

accounting for confounders by removing probes significantly correlated with confounders, 

Cattell’s rule provides the correct answer of 3 and 5 cell types (2 or 4 PCs) (Figure 4 lower panel). 

Finally, we observe that varying the FDR threshold used to select confounding probes has no 

impact of the choice of K using Cattell’s rule (for all thresholds tested, the estimation of K is 

correct, Supplementary Figure S8).  

The cross-validation score provided by MeDeCom gives similar choices of K as the scree plot. 

When not accounting for confounders, graphical inspection of the decay of cross-validation error, 

as a function of the number of cell types, suggests to keep K = 4 or K = 6 cell types. When 

accounting for confounders, it suggests to keep K = 3 or K = 5 cell types, which are the correct 

answers, yet the distinction is less obvious for K = 5 (Supplementary Figure S9 right panel). 

The bootstrap estimation of the deviance provides different answers than the previous two 

approaches. When the exact value of the number of cell types is K = 3, the minimum value of 

deviance is reached at the correct value of K = 3, whether confounders were accounted for or not. 

When the exact value of the number of cell types is K = 5, the deviance statistic indicates to 

choose a K = 4 or 5 whether confounders were accounted for or not (Supplementary Figure S9 

left panel). 

Lastly, we investigate to what extent inference of cell type proportions is robust with respect to 

the choice of K. We find that the choice of K has a strong influence on inference of cell type 

proportions. Underestimation of K has a large impact on measured error, and overestimation of 

K, albeit to a lesser extent, also increases measured error (Figure 5). For instance, when the 

correct K is equal to 3, using K = 4 instead of K = 3 provides an error measure that is at least 

twice as large regardless of the deconvolution method that is used. Overestimation of K lead to 

large increase of error, even if our MAE-computing algorithm only retains the 3 cell types that 

minimize MAE error among the 4 inferred cell types. 

These results suggest that the choice of K can be reliably guided by a scree plot based on PCA, 

after accounting for confounders.  

Alternatively, the best performance at true K-s in Figure 5 suggests a different approach where K 

is selected after running deconvolution for various values of K and choosing the K with best 

performance. EDec adopts this general idea by selecting the K that explains the most variance 

(achieves the best fit of D) and largest K that shows stable estimates of both the A and T matrices. 

The stability is tested by taking at least 3 subsets (consisting of randomly selected 80% of the 

sample profiles) and measuring the similarity of estimates for A and for T across the 3 subsets. 
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Figure 5: Impact of  K selection on algorithm performance 

`A MAE` is shown for D matrices (mean value of 10 random noises applied on D) computed from 1 random 
A. Each color represents a different method. Error bars represent standard deviation on 10 random noise 
realizations. RFE stands for RefFreeEWAS, MDC for MeDeCom and EDec for EDec stage 1, each method 
was applied with various imposed K parameters (from 2 to 7). (A) The following parameters were used to 
simulate D : K =3, α0 = 1, 𝜀 = 0.2, G = 1 and n = 100. RFE and MDC methods were run after removal of 
confounding probes (between 22,517 and 22,624 remaining probes), EDec was run on informative loci, as 
recommended by the method’s authors (614 remaining probes). (B) The following parameters were used 
to simulate D : K =5, α0 = 1, 𝜀= 0.2, G = 1 and n = 100. RFE and MDC methods were run after removal of 
confounding probes (between 22,551 and 22,602 remaining probes), EDec was run on informative loci, as 
recommended by the method’s authors (614 remaining probes). 

Biological interpretation of recovered methylation profiles T 

We next compare the estimated matrix of average cell type-specific methylation profiles (matrix 

T) with the real methylation profiles of cell types used to simulate the datasets.  

To assess the similarity of reconstructed methylation profiles, we run the three algorithms on a 

representative D matrix, with n = 100 patients. We then draw a heatmap representing the level of 

correlation between estimated methylation profiles and reference methylation profiles. When the 

inter-sample variation is high (α0 = 1), we observe that all the deconvolution methods tested 

succeed to properly estimate the cell type-specific methylation profiles and to robustly identify 

corresponding reference cell types (Figure 6). When the inter-sample variation is low (α0 = 

10,000), all methods fail to identify reference cell types (Supplementary Figure S10), which is 

consistent with the results observed in Supplementary figure S7. Importantly, in a real setting, 

true methylation reference profiles are not available, and the identity of the cell-types present is 
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unknown, which strongly complexifies the biological interpretation and the annotation of the 

obtained cell types.  

Altogether, this indicates that reducing the inter-sample variability will impact both identification of 

cell type proportion and the identification of existing cell type-specific methylation profiles.  

 

Figure 6: Correlation between estimated and real cell type-specific methylation profiles  

Heatmap of the correlations between cell type-specific methylation profile used for the simulation and cell 
type-specific methylation profiles estimated (Est.) by different methods. In (A), the correlation between 
different cell types used for the simulation of the T matrix (data_fib = fibroblast, data_epith = cancerous 
epithelial, data_lymph = T lymphocytes, data_epit_ctrl = healthy epithelial and data_mes = cancerous 
mesenchymal). We applied EDec (B) , MeDeCom (C) and RefFreeEwas (D) on a representative simulation 
of 100 patients (α0 = 1, 𝜀 = 0.2, G = 1, K = 5) after the removal of confounding probes by linear regression 
(22,483 remaining probes). We used the Pearson method to compute the correlation between the estimated 
cell type-specific methylation profiles and real cell type-specific methylation profiles used for the simulation.  
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Conclusion and discussion 

Recommendation 

We have conducted extensive benchmarking of the core deconvolution step shared by three 

algorithms dedicated to reference-free cell-type heterogeneity quantification from DNA 

methylation datasets. We identify the following critical steps influencing method performance: i) 

accounting for confounders, ii) feature selection and iii) the choice of the number of estimated cell 

types. To account for confounders, we suggest to remove probes associated with the measured 

confounders. We suggest to use a large false discovery rate threshold, preferring to remove too 

many probes rather than keeping probes influenced by confounders, given the large (>20,000) 

initial number of probes. When probes associated with confounders are not removed, the number 

of cell types is overestimated, capturing the additional dimension of confounders (Figure 4). We 

recommend that care to be taken to choose the right number K of cell types, as the outcome of 

deconvolution may strongly depend on K. One such method is the scree plot and Cattell’s rule, 

which states that eigenvalues corresponding to true signal are to the left of the straight line (Figure 

4). The number of cell types to consider is equal to the number of eigenvalues to keep plus one. 

Choice based on Cattell’s rule is robust with respect to the false discovery rate threshold used 

when discarding probes associated with confounders (Figure S7). Lastly, we suggest to use 

feature selection and to further reduce the number of probes by focusing on probes that are 

informative of cell types or the highest variance markers if no biological information is available. 

Further reducing the number of probes marginally affects estimation error (Figure 3), but can 

substantially reduce computational running time (Supplementary table 3). Once the markers and 

the number of cell types have been chosen, the core deconvolution step implemented by one of 

the three packages would provide comparable estimates of average methylation profiles (Figure 

6) and of sample-specific cell-type proportions (Figure 7).  

Benchmark Pipeline 

Based on lessons learned from the simulation experiments, we developed a benchmark pipeline 

to estimate cell-type proportions that addresses the presence of confounders and other key 

factors affecting performance of deconvolution algorithms (Figure 8). We anticipate that this 

benchmark pipeline will help catalyze wide adoption of deconvolution methods and accelerate 

improvement of deconvolution pipelines by (1) helping validate other deconvolution pipelines by 

demonstrating concordant results; (2) serving as a benchmark for demonstrating improved 
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performance of other pipelines; (3) providing a starting point (“toolkit”) for development of new 

pipelines. 

 

Figure 7: Comprehensive comparison of the pre-treatment pipeline 

Histogram of `A MAE` (`A MAE`: Mean Absolute Error on estimated A, the matrix of cell proportions) for 10 
D matrices (mean value of 10 random noises applied on D) computed from 10 random A. Each colour 
represents a different method. Error bars represent standard deviation on 10 random noises. RFE stands 
for RefFreeEWAS, MDC for MeDeCom and EDec for EDec stage 1. The following parameters were used 
to simulate D : K = 5, α0 = 1, 𝜀 = 0.2, G = 1. The methods were run without pre-treatment (NA), after removal 
of confounding probes by linear regression (lm), after removal of confounding probes and filtering for the 
most variable probes (lm + var), and after removal of confounding probes and filtering of probes expected 
to biologically vary in methylation levels across constitutive cell types (lm + infloci). 
 
We note that the benchmark pipeline is not experimentally validated nor it is systematically 

compared as a whole against more complex pipelines that include expression data (e.g., all 

stages of EDec pipeline). In our experience, no deconvolution pipeline can be expected to provide 

accurate solutions when applied “out of the box” to a new tumor type. Tuning and validation are 
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required in the context of each tumor type, using resources and information that may be tumor-

type specific. In that sense, deconvolution may be thought of as a computational modeling 

approach that goes hand-in-hand with experimentation.  

Initialization 

The software MeDeCom, EDec and RefFreeEwas have different methods to initialize the 

deconvolution algorithm. MeDeCom performs multiple random initialization of the matrix of 

proportion A. EDec performs initialization with random draws of proportions of cell types in each 

sample. RefFreeEwas initializes the matrix of cell types using reduction dimension or clustering 

techniques depending on a user-defined option. For RefFreeEwas, we find that clustering 

techniques provide the best option in the favorable scenario when cell-type proportions strongly 

differ between individuals (Figure 2). However, in the less favorable scenario where cell-type 

proportions are more similar between individuals, initialization based on singular value 

decomposition should be preferred (Figure S4). Differences of performance according to 

initialization are substantial and depending on initialization, error measures can vary by a factor 

of two. The fact that deconvolution methods depend on initialization indicates that there is room 

for improvement either by finding an optimal initialization strategy or by using an ensemble 

method that combines or averages several deconvolution solutions (Alhamdoosh et al. 2017; 

Jakobsson and Rosenberg 2007).  

Evaluation of performance  

To estimate performances of methods, we used the MAE metric. A similar alternative metric, the 

root mean square error (RMSE) gave equivalent performance evaluation (Supplementary Figure 

S11). Internal steps of the MeDeCom algorithm use a leaving-columns-out Cross-Validation Error 

(CVE) to choose regularization parameter λ and number of cell types K. In our study, we consider 

a grid of six values for the regularization parameter λ (0, 0.00001, 0.0001, 0.001, 0.01, 0.1). 

Interestingly, the optimum lambda selected by the CVE approach does not always perform better 

than λ = 0, when evaluated by the MAE metric (Supplementary Figure S12). Although it is difficult 

to assess the biological relevance of each possible error metric, we would like to emphasize that 

the choice of evaluation metrics is an important parameter when conducting a benchmarking 

study. In addition, evaluation based on simulations remain limited compared to evaluation based 

on real tumor datasets, because the in silico simulation does not model all the biological properties 

of the system, such as changes in methylation due to cell-cell interaction. However, we are still 

lacking real tumor dataset with accurate quantification of tumor heterogeneity. Deconvolution  
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Figure 8: Recommendations and benchmarking pipeline 
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algorithms evaluation will then be significantly improved with the generation of dedicated in vivo 

benchmarking dataset 

Data challenge, collaborative and open science 

Our work strongly benefits from a data challenge format where different pipelines were proposed 

and evaluated. We gathered methylation deconvolution experts for a week of brainstorming on 

this benchmarking issue. We used the resulting ideas and computational methods to construct 

several pipelines which we evaluated in the paper. Thus, all challenge participants are referred 

as consortium authors of the paper. As a key deliverable of the project, to facilitate wide 

application of reference-free deconvolution and also pipeline development by the community, we 

develop a benchmark pipeline and release it as an R package (Figure 8 and R package medepir). 

Material and methods 

Matrix factorisation 
We assume D is a (M×N) methylation matrix composed of methylation value for N samples, at M 
CpG methylation sites.  Each sample is constituted of K cell types. We assume the following 
model: D = TA, with T an unknown (M×K) matrix of K cell type-specific methylation reference 
profiles (composed of M sites), and A an unknown (K×N) proportion matrix composed of K cell 
type proportions for each sample. In the methods tested here, A and T are found using matrix 

factorization, which consists of minimizing the error term *|𝐷 − 𝑇𝐴|*& , with constraints on 
methylation values,  0 ≤ 𝐴 ≤ 1 and  0 ≤ 𝑇 ≤ 1, and on proportions ∑ 𝐴123

1	4	5 = 1(MeDeCom and 
EDec) or  ∑ 𝐴123

1	4	5 ≤ 1(RefFreeEWAS), where 𝐴12is the proportion of the nth sample for the kth 
cell type. MeDeCom uses an additional regularization function, which depends on a regularization 
term, which is weighted by a hyperparameter λ, that favors methylation values close to 0 or 1  
 𝜆∑ ∑ 𝜔(𝑇12);

2	4	5
3
1	4	5 	with 𝜔(𝑥) 	= 	𝑥(1 − 𝑥).   

Simulations 
We used the The Cancer Genome Atlas (TCGA) lung cancer dataset (LUAD and LUSC) as an 
example biological dataset. We simulated synthetic DNA methylation mixtures. We selected M = 
23,381 probes using the following criteria: (i) intersect between the Illumina 27k and Illumina 450k 
DNA methylation array, and (ii) non-null probes in 100% of LUAD and LUSC methylation datasets. 
Simulated D matrix were obtained using D = TA model. 
The A matrix is simulated by a Dirichlet distribution with parameters defined for 10% of fibroblast, 
60% of cancerous epithelial, 5% of T lymphocytes, 15% of control epithelial and 10% of cancerous 
mesenchyme. The mixture proportions are sampled from a Dirichlet distribution with parameters 
generating sets of proportions more or less variable across the sample population. The parameter 
𝛼0, which defines the variability across the sample population, is set to 1 by default. For simulation 
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with only three cell types, we used 20% of fibroblast, 70% of cancerous epithelial and 10% of T 
lymphocytes. 
To simulate the T matrix of cell type-specific methylation profile, we used different study from 
GEO. For the cancerous epithelial line, we used the cell line GSM1560930 and for the cancerous 
mesenchymal cell line, we used the cell line GSM1560925, from the same study. For the fibroblast 
cell line, we used the cell line GSM1354676 after conversion from m-value to b-value. For the T 
lymphocyte cell line, we used the GSM1641099 and for the control epithelial the GSM2743808. 
These cell lines correspond to the cell line background G1. To simulate the G2, we used different 
cell line from the same studies. The cell line of cancerous epithelial is GSM1560911, these of the 
cancer mesenchymal is GSM1560931, the fibroblast cell line is GSM1354675, the T cell line is 
GSM1641101 and the control epithelial cell line is GSM2743807. 
Once the initial T matrix is defined, we applied a series of confounding effects using parameter 
extracted from the clinical data associated with LUAD and LUSC cohorts. 
First, we generate an individual-specific T matrix, accounting for two major biological confounders 
for methylation, which are sex and age. 
To identify effects of sex, we performed linear regression of methylation by sex in the TCGA 
dataset and detected 1397 probes correlated with sex (p-value < 0.01). Given that the majority of 
cell lines used to construct the initial T matrix were derived from male individuals, we used the 
corresponding linear regression coefficients to shift accordingly methylation value of female-
associated T matrices. We used the same sex coefficient for each cell type represented in the T 
matrix. 
To identify effects of age, we performed linear regression of methylation by age in the TCGA 
dataset and identified 113 probes correlated with age (p-value < 0.05). We used this linear model 
to generate an individual-specific methylation profile, according to its age. Then, we arbitrarily 
decided to assign these 113 methylation values to the normal epithelial cell type. For each probe 
associated with age, we then applied a normalization coefficient (ratio of each cell type to the 
epithelial cell type computed in the initial T matrix) to modify methylation values of the remaining 
cell types. Our simulation scheme implicitly assumes that age has the same effect whatever the 
cell type. 
Second, we decided to account for technical confounders. We calculated 22 median plate-effects 
(TCGA experimental batch effect) using 1000 random probes. For each probe, we modeled plate 
effects using multiplicative coefficients that measure the ratio of mean methylation values of a 
plate on mean methylation of the (arbitrarily) 1st plate. Each coefficient is estimated by the median 
of the 1000 ratios of methylation values. These multiplicative coefficients are then used on all 
probes to model batch effects on the matrix D of individual convoluted methylation profile.  
Finally, we added gaussian noise on the matrix of convoluted methylation profiles D. By default, 
we used the gaussian parameters mean = 0 and sd = 0.2. In case noise generated methylation 
values larger than 1 or smaller than 0, noise was not added to the methylation value. 
The simulation function is accessible using our R package medepir. 
 

Software usage 
We follow publication guidelines and default parameters for each method (see Material and 
Methods for details in software usage). RefFreeEwas was used with the function “RefFreeCellMix” 
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with 9 iterations and remaining parameters set to default, unless specified otherwise. MeDeCom 
was used with the function runMeDeCom with the following parameters: NINIT = 10, NFOLDS = 
10, ITERMAX = 300, lambdas=c(0, 0.00001, 0.0001, 0.001, 0.01, 0.1), if unless specified 
otherwise. EDec was used with the function run_edec_stage_1 with default parameters, unless 
specified otherwise. When testing the initialization of matrix T in RefFreeEWAS algorithm, we 
used the following functions: RefFreeEWAS::RefFreeCellMixInitializeBySVD(D, type = 1), 
RefFreeEWAS:: RefFreeCellMixInitialize(method = "ward", dist.method = “euclidean”), 
RefFreeEWAS:: RefFreeCellMixInitialize(method = "ward", dist.method = “manhattan”). Each 
RefFreeEWAS initialization method estimates an averaged methylation profile for K components 
from the initial D matrix (either by hierarchical clustering on D, or by singular value decomposition 
of D). 

Confounding factor detection 
Accounting for confounding probes was performed using linear regression for each confounding 
factor (based on clinical metadata extracted from TCGA LUAD and LUSC cohorts). We control 
for false discovery rate using Benjamini-Hochberg correction. For each confounder variable, we 
removed probes that are significantly associated with the confounder variable using a false 
discovery rate threshold of 0.15.  

Feature selection 
To enhance the precision of the method, we can select the more informative probes. For this, we 
tested three methods: (i) selecting probes with high variance (var > 0.02), (ii) selecting probes 
highly correlated with the first four PCs (p_value < 0.1) (Luu, Bazin, and Blum 2017; Prive, 
Aschard, and Blum, n.d.), and (iii) selecting probes expected to biologically vary in methylation 
levels across constitutive cell types, as described in EDec method(Prive, Aschard, and Blum, n.d.; 
Luu, Bazin, and Blum 2017), the corresponding probes are depicted in supplementary table S4.  

Performance evaluation 
We evaluate algorithm performances by (i) computing the mean absolute error (MAE) on 
estimated A, defined as 𝑀𝐴𝐸	 = 	 (∑ ∑ |𝐴𝑒𝑠𝑡21 	− 	𝐴𝑟𝑒𝑎𝑙21|)/(𝑁𝐾),3

1	4	5
;
2	4	5 	 or (ii) computing the 

root-mean-square error (RMSE) on estimated A, defined as 𝑅𝑀𝑆𝐸	 =

L	(∑ 	∑ (𝐴𝑒𝑠𝑡21 	− 	𝐴𝑟𝑒𝑎𝑙21)&)3
1	4	5

;
2	4	5 	/𝑁𝐾	, with n the total number of observations.  
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estimated A MAE depending of the number of patients. Figure S3: Distribution of cell types proportions 
according to the parameter α0. Figure S4: Impact of the initialisation method of RefFreeEwas for a stable 
Dirichlet simulation. Figure S5: Effect of A matrix initialization on algorithms performances. Figure S6: 
Impact of the FDR threshold for the removing of confounding factors. Figure S7: Impact of pre-treatments 
for a stable dirichlet. Figure S8: Determining K is robust to variations in accounting for confounders. Figure 
S9: Determining K by RefFreeEWAS and MeDeCom. Figure S10: Correlation between estimated and real 
cell type-specific methylation profiles for a Dirichlet of α0 = 10,000. Figure S11: Variation of the error metric: 
Mean Absolute Error and Root-Mean-Square Error. Figure S12: Impact of lambda parameter for 
MeDeCom. 

Supplementary Tables: Supplementary Table 1: Number of remaining probes in figure 2. 
Supplementary Table 2: Number of remaining probes in figure S3. Supplementary Table 3: Mean 
execution time in figure 7 (minutes). 
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