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The intrinsic dynamic nature of chromosomes is emerging as a

fundamental component in regulating DNA transcription,

replication, and damage-repair among other nuclear functions.

With this increased awareness, reinforced over the last ten

years, many new experimental techniques, mainly based on

microscopy and chromosome conformation capture, have

been introduced to study the genome in space and time. Owing

to the increasing complexity of these cutting-edge techniques,

computational approaches have become of paramount

importance to interpret, contextualize, and complement such

experiments with new insights. Hence, it is becoming crucial for

experimental biologists to have a clear understanding of the

diverse theoretical modeling approaches available and the

biological information each of them can provide.
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Introduction
In the last ten years, our understanding of the relationship

between genome structure and function in eukaryotic

cells has tremendously increased. Owing to the synergis-

tic development of advanced microscopy [1–5] and high-

throughput chromosome conformation capture (3C-

based) techniques [6–8], it has been possible to
www.sciencedirect.com 
characterize the various features of three-dimensional

(3D) genome organization [9,10]. Briefly, at the nuclear

scale, chromosomes occupy distinct territories with lim-

ited intermingling that has been proposed to impact gene

regulation [11]. At the tens of megabases scale, chromatin

segregates into spatial (A/B) compartments that are char-

acterized by distinctive GC-content, gene density and

diverse chromatin marks [7,8]. At the submegabase scale,

genomes are partitioned into topologically associating

domains (TADs), that are proposed to be the main

functional and structural units of the 3D genome where

enhancers and promoters colocalize. However, the latest

experimental developments have revealed that many

fundamental nuclear and cellular processes occur in a

time-dependent dynamical context, prompting the

advent of the so-called 4D nucleome [12,13].

Biological processes happen in a wide range of time and

spatial scales, which makes the concepts of genome

structure and dynamics context-dependent. For example,

in the fast dynamics and local length scales regime, gene

transcription typically lasts within minutes. At interme-

diate scales, DNA replication, cell cycle and meiosis [14–

16] span periods of hours, and involve the reorganization

of entire chromosomes (hundreds of Mbs or �10 mm).

Slower dynamics regulate, for example, cell differentia-

tion and reprogramming [17,18��], lasting several days,

and involving genome structural reorganization of both

local and genome-wide scales. Notably, these phenomena

need to be investigated by distinct experimental

approaches each sensitive to a specific range of temporal

and spatial scales (Figure 1a).

A crucial – and sometimes underappreciated – aspect of

4D nucleomics is the extensive development of compu-

tational tools that have been instrumental for reliable

analysis, interpretation, and modeling of experimental

data. To this end, data modeling encompasses two dis-

tinct, complementary strategies. On the one hand, data-

driven or top-down approaches use experimental obser-

vations as input to generate 3D models representative of

the data. However, the models represent more than a

mere visualization as they often provide new insights into

the structure-function relationships. In some cases [3],

these models allow the integration of different datasets

into unified models, disentangling possible similarities or

incompatibilities between experiments. Data-driven 4D

modeling usually covers the slow dynamics regime

describing the large reorganization of genomes or of

genomic regions at coarse genomic resolutions (tens of
Current Opinion in Genetics & Development 2021, 67:25–32

mailto:marco.distefano@cnag.crg.es
mailto:martirenom@cnag.crg.eu
https://doi.org/10.1016/j.gde.2020.10.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gde.2020.10.004&domain=pdf
http://www.sciencedirect.com/science/journal/0959437X


26 Genome architecture and expression

Figure 1

(a) (b)
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Exploration map.

Radar chart displaying spanned areas of current experimental (a) and computational (b) approaches used to study the 4D nucleome. All axes are

in arbitrary units. Vertical axis (‘resources’) indicates the required resources to execute the experiments/computations. Left axis (‘space’) indicates

the coverage and depth of 3D space by either experiments or computation. Right axis (‘time’) indicates the coverage and depth of time by either

experiments or computation. Dashed grey lines exemplifies a ‘perfect approach’ that requires very little resources but can provide the maximum

insight in both space and time. Both the experimental and computational approaches have extensively charted the space dimension, but yet there

is some work to do in unraveling the effects of the local scale on the global ones, and vice versa. In this sense, hybrid modeling has not yet

exploited this to the fullest. The time axis has a great potential for further 4D nucleome modeling in parts of the exploration map still inaccessible

to experiments. The resource dimension is currently the limiting factor, since both experiments and computation tend to use it at maximum.

Experimental resource needs could be limited by, for example, reducing material requirements, as for instance a recently introduced low-input Hi-

C technique [60]. As for computational resources, data-driven approaches are generally less demanding than top-down approaches, but the

implementation of more efficient software may balance out this difference. For instance, bottom-up computational methods usually rely on few

local force-fields and thus ought to be more computationally scalable than data-driven ones, given an efficient software implementation [34].
kbs) (Figure 1b). On the other hand, hypothesis-driven or

bottom-up strategies build parametric, predictive models

based on mechanistic hypotheses intuited from observa-

tions. By confronting model predictions of both genome

structure and dynamics to experiments, the models allow

to invalidate or consolidate the underlying assumed

mechanisms and to propose novel experiments to further

challenge them. Bottom-up approaches usually can treat

both the fast dynamics regime describing short local

genome kinetics at fine resolution and the slow dynamics

regime describing chromosome reorganization at coarse

genomic resolution (Figure 1b).

Taken together, these modeling achievements lead to an

exploration map spanning dimensions of space, time and

use of resources (Figure 1b). Here, we aim to review the

recent efforts of charting new territories of this map to

better characterise the 4D nucleome. Discussing exem-

plary applications, we highlight how modeling helped to

add value to the experimental data providing novel bio-

logical insights otherwise inaccessible to experiments.

We discuss criticalities and challenges, proposing feasible
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solutions which may drive the future developments of 4D

nucleome modeling.

New insights from data-driven modeling
In recent years, experimental approaches (mainly 3C-

based techniques) have offered an increasing number

of time-resolved datasets, which aimed to study how

the 3D genome architecture changes over time. An

impressive range of temporal resolutions have been

probed using these techniques, ranging from minutes

[19,20], to hours [21��,22], to days [17,23��]. In some of

these studies, data-driven 4D modeling has been used

to convey an intuitive representation of complex

dynamical behaviours of chromatin organization and

nuclear shape [24], and to interpret the underlying

features of the data [25,26], which enhanced our

understanding of patterns not immediately observable

in the raw representation of the data [21��,27��]. These

hidden patterns often provide clues for further experi-

mental exploration of the underlying biological system

[21��,27��].
www.sciencedirect.com
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Data-driven techniques are based on four main method-

ological steps: (i) data collection; (ii) representation of the

elementary genomic region; (iii) scoring of the possible

structural conformations using the input data transformed

into spatial restraints; and (iv) sampling the search space

and ranking each conformation based on the satisfaction

of the imposed restraints. The 3D models which opti-

mally satisfy the input data-driven restraints are retained

for further analysis [28].

A common strategy to model the 4D nucleome is to

consider each time-point separately, and generate 3D

models whose characteristics can be used to explore

the different ranges of temporal and spatial resolutions

(Figure 2a). An illustrative example was provided by the

Fraser and Tanay groups using single-cell Hi-C (scHi-C)

experiments to characterize genome structure-dynamics

during the cell cycle across thousands of individual cells

[21��]. By in-silico inferred single-cell phasing, whole

genome 3D models were generated representing the

structural dynamics across stages of the cell cycle. From

the modeling, the authors found that chromosomes rap-

idly decondense from a mitotic conformation during the

progression of G1, yet with a more rapid decondensation

of A (active/euchromatin) than B (inactive/heterochroma-

tin) compartments. Further, the radial distribution of

these compartments was found to be progressively estab-

lished during G1, whereas long-range cis-contacts

appeared earlier than the trans-compartment re-

establishment.

More recently, Paulsen et al. used Hi-C and ChIP-seq of

nuclear lamins (Lamin A/C and Lamin B1) to analyze

genome structure dynamics during differentiation of

human adipose stem cells into two distinct lineages

[18��]. Using Chrom3D [29], the lamin-genome and

Hi-C interactions were integrated to generate whole

genome 3D models revealing a differentiation-coupled

reinforcement of compartment compactification into a

repressive state at the nuclear lamina (Figure 2b).

A recent alternative approach, called TADdyn [27��],
integrates in a single trajectory chromosomal structural

changes probed at discrete time-points along a biological

process. This new hybrid (Figure 1b) approach allowed

simulating gradual and smooth dynamical transitions

between Hi-C experimental time-points by merging

the methodological step of data-driven modeling with

polymer-based representation of the chromatin fiber and

molecular dynamics typically used in bottom-up

approaches. TADdyn was used [27��] to study the struc-

tural changes of 21 genomic loci during the reprogram-

ming of murine B cells to induced pluripotent stem cells.

The simulations indicated the formation of 3D hubs

harbouring enhancer-like regions around the transcription

start site (TSS) of genes upon transcriptional activation.

Similarly, these 3D super enhancers were found to
www.sciencedirect.com 
disaggregate during gene silencing. For some genes (i.

e. Sox2 and Nanog), the simulations also indicated the

presence of a structural cage that embedded the TSS and

confined its dynamics during gene expression (Figure 2c).

These new types of simulations support the idea of local

aggregation of active chromatin whose size correlates with

the gene expression activity.

Deepening our understanding of mechanisms
using modeling
Complementary to data-driven approaches, bottom-up

modeling offers a set of quantitative frameworks to for-

malize, test and (in)validate mechanistic hypotheses on

the dynamical processes driving the 4D nucleome. In

particular, relying on computer simulations as their pri-

mary tool, these approaches use experimental data a priori
to parameterize the models and a posteriori to validate the

obtained results. The ultimate goal is to provide simple

testable rules which can explain, in part, the complex

nuclear architecture. While most of the current applica-

tions of bottom-up modeling aim at describing the aver-

age 3D organization of chromosomes [30], a plethora of

new approaches are addressing how key molecular mech-

anisms affect the 4D nucleome.

To address the dynamical scales of the 4D nucleome, 3D

polymer models parameterized with population-averaged

3D data have been used to predict and validate their

consistency [31,32] mostly with experiments probing the

fast dynamics of chromatin motion [33�,34–37] and of

chromatin-binding proteins [38,39]. An alternative per-

spective is to use 4D experimental data for inferring in

parallel both the structure and dynamics of the genome

[40,41�,42]. Khanna et al. tracked over minutes the motion

of VH and DHJH segments at the Igh locus in live mouse

B-lymphocytes. To explore the mechanistic origin of the

measured dynamics, they built independent ensembles

of models in different conditions and inferred the scenario

capable of recapitulating quantitatively the data

(Figure 2d). They found that polymer chains containing

5% of crosslinkable sites are consistent with the experi-

mentally observed spatial confinement of the loci due to

the formation of multiple transient loops. Tuning the

bond lifetime of the simulated cross-linkings to 10 s, they

recapitulated the relative constrained and subdiffusive

motion of VH-DHJH segments, leading the system close to

a liquid-to-gel transition.

A clear example of the potential of bottom-up approaches

was their use to propose and demonstrate in silico that an

active loop-extrusion model by SMC complexes [43�,44]
impacts key structural elements of genome folding like,

for example, the formation of TADs during interphase by

cohesins [45,46]. These models and their predictions lead

to the exciting development of many experiments cor-

roborating directly in-vitro [47,48] and indirectly in-vivo
[49–51] the loop extrusion mechanism. In terms of 4D
Current Opinion in Genetics & Development 2021, 67:25–32



28 Genome architecture and expression
folding, polymer modeling by the Mirny group demon-

strated that loop extrusion by condensins is a main driver of

the dynamical reorganization of chromosomes during mito-

sis [52,53,54��,55�]. Massive loading of condensins on chro-

matin leads to the full extrusion of the polymer into

consecutive reinforced loops in early prophase, and drives
Figure 2

(a)

(b)

(c)
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Illustration of selected 4D modeling studies.

On the left, each panel (a)–(f) shows the portion of the exploration map cha

and time dimensions one could explore given the available resources apply

using single-cell Hi-C data at different cell-cycle phases [21��]. Models at di

in the Hi-C contact patterns such as the difference in decompaction speed 

Chrom3D whole-genome models in human adipose stem cells [18��] at the 

distinct color. Right: Three groups of TADs (cliques) in a repressive compar

Trajectories of the Sox2 locus dynamics were simulated during the mouse B

expression activation in day 6 (D6), several regions (red beads) with enhanc

of the locus (black bead) and form a 3D superenhancer hub. (d) Bead-and-s

used in Ref. [41�] to study the structure and dynamics of the Igh locus in liv

constrained motion of chromatin is consistent with a network of long-lived l

enough fluidity. (e) 4D application of the loop extrusion model during mitotic

Prometaphase, condensin II acts first by forming a helical scaffold of large 

loops by folding them into shorter nested loops (80 kbp). (f) 3D organization

fibroblasts was modeled [23��] by polymer simulations accounting for the ca

lamina. The slow 3D reorganization of SAHDs into large internal foci is cons

mediated by HMGA-2.
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the sister chromatids segregation in late-prophase

(Figure 2e). In Gibcus et al. [54��], in combination with

Hi-C experiments on synchronized chicken cells, bottom-

up modeling of the loop extrusion mechanism established

how condensins I and II time-coordinate during prometa-

phase to dramatically compact chromosomes (Figure 2e).
d)

e)

f)
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rted by the corresponding approach. These graphs illustrate the space

ing the various approaches. (a) Whole-genome models were obtained

fferent timepoints were crucial to unveil structural features only implicit

between A (fast) and B (slow) during the G1 progression. (b) Center:

single-TAD level resolution. Each chromosome is indicated with a

tment predicted to be interacting with the nuclear lamina. (c)

-to-iPSC reprogramming using the TADdyn tool [27��]. Upon

er characteristics (Open and Active chromatin) gather around the TSS

pring polymer models with temporary crosslinking interactions were

e mouse B-lymphocytes. The authors showed that the observed

oops ensuring that the genomic region is ordered, but maintains

 chromosome folding [54��]. In particular, going from Prophase to

adjacent loops (400 kbp), then condensin I further compacts these

 of heterochromatin domains (SAHDs) in cycling and senescent human

pacity of SAHDs to self-interact and to associate with the nuclear

istent with a substantial weakening of lamina-SAHDs interactions
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Bottom-up approaches have also been used to study slow

dynamical behaviors, such as the 4D reorganization of the

genome after biological cues or perturbations [23��,56�].
The general strategy is to start from a predictive mecha-

nistic model of the 3D nuclear organization of wild-type

or undifferentiated cells and to test different scenarios on

how the cue or the perturbation will affect the model

parameters. Then, by tracking in silico the dynamical

changes of genome folding and by comparing with exper-

imental data measured at different time-points during the

reorganization, the more-likely scenario is inferred. An

interesting example is provided by the recent investiga-

tion of the global rewiring of genome contacts during

oncogene-induced senescence in human fibroblasts

[23��]. Using microscopy and Hi-C, the authors monitored

during several days the progressive reorganization of

senescence-associated heterochromatin domains

(SAHDs), that slowly detach from the nuclear periphery

and segregate into large foci (SAHFs). A polymer model

integrating attraction between SAHDs and the nuclear

lamina and self-attraction between SAHDs (Figure 2f)

suggested that the observed dynamics is consistent with a

slow time relaxation of the chromosomes (senescent cells

do not divide anymore) driven by phase-separation of

SAHDs, combined with loss of interactions with the

nuclear lamina. Interestingly, a similar change of affinity

between heterochromatin and the lamina was associated

with the slow dynamics of nuclear inversion observed

during the differentiation of rod cells in nocturnal mam-

mals using 4D bottom-up modeling [56�].

Challenges of the 4D nucleome modeling
Although modeling has yielded huge insights into the 4D

nucleome, open challenges remain to be addressed.

Bottom-up approaches need an underlying model of the

chromatin which can account for its average structural and

dynamical physical properties, but yet can be efficiently

simulated. In this respect, the community urges to reach a

consensus on which polymer model should be used to

describe this non-specific behaviour of the chromatin

since several of its features, such as bending rigidity or

chain crossability, may affect the resulting predictions

[34]. Once defined, this null chromatin model should

allow developing efficient multi-scale coarse-graining

strategies to simulate both the local fast dynamics and

the slow full genome motion over relevant time-scales

within the same framework. Moreover, data-driven

approaches would also benefit from this chromatin model,

because it could be used to restrain genomic regions

poorly characterized by the experimental information,

for instance due to data sparsity.

Approaches addressing time-resolved experimental data

[23��,27��], are in need of fine-grained observations that

are consistent with the hypothesis of smooth dynamical

structural chromosomal changes. If the temporal
www.sciencedirect.com 
resolution of the data is too coarse, thereby excluding

important chromosome structure transitions, those meth-

ods could fail to provide the best models to explain the

biological observations. Thus, experimental methods

need to be designed with a sufficiently resolved time-

scale to answer the biological question at a reasonable

experimental and computational price and, at the same

time, comply with the underlying methodological

hypothesis.

With the advent of novel experimental techniques [5,57],

4D modeling methods will remain a central component

for unleashing the full potential of the data and revealing

new biological insights. However, biases related to cell

fixation, digestion, cross-linking, repetitive genome

sequences, and probe hybridization would need to be

properly handled during data processing and modeling. A

substantial challenge for the 4D modeling community

will be to integrate existing and new technologies into

comprehensive 4D nucleome models by emphasizing

their complementarity, while avoiding pitfalls related

to technology-specific biases. A further challenge will

also be to integrate multi-omics (transcriptomics and

epigenomics) datasets seamlessly into the models to fully

exploit all existing data.

Conclusions
Considering the exciting challenges we are facing, we

propose possible ways forward for the community to

continue uncovering new parts of our exploration map
to deepen our understanding of the 4D nucleome.

Computational resources are a limiting factor in our

ability to fully explore the ranges of spatial and temporal

scales spanned by the exploration map. An effort to make

computer code more efficient should be encouraged by

including a wider range of software developers, by

emphasizing good coding practices, and by sharing soft-

ware early and often during the development process.

Additionally, improved exploitation of multiprocessing

via graphical processing units (GPUs) could drastically

improve modeling efficiency and pave the way to explore

even fast dynamics at large time scales.

A challenge is also posed to the experimental community

to provide new techniques orthogonal to existing ones to

significantly expand our coverage and depth, both in time

and space. For instance, the development of high-

throughput techniques measuring in live cells both struc-

tural and dynamical properties of many loci simulta-

neously will elucidate new aspects of genome struc-

ture-function relationship. In addition, we believe that

more effort beyond current ones [58,59] should be spent

to design experiments that address fundamental ques-

tions on chromatin structure, such as what is the elementary
structure of the chromatin fiber? And, to what degree does this
Current Opinion in Genetics & Development 2021, 67:25–32
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local folding depend on the DNA sequence itself, gene expression,
and/or on the epigenetic marks?

Ultimately, to chart a larger space in the exploration map
(Figure 1a and b), we believe that our efforts should not

involve merely an improvement of our computational and

experimental techniques, but also a restructuring of the

community itself. As such, more dedicated communica-

tion channels between scientists with experimental skills

and others with a more theoretical background (e.g.

bioinformaticians and biophysicists) should be devised.

We note that the 4D nucleome community has already

greatly benefited from stable collaborations between

experimental and theoretical labs, leading to outstanding

scientific production [12,13]. However, in training our

early stage researchers, the tight connections between

computational and experimental efforts should be more

highlighted and emphasized. Indeed, as the experimental

techniques will become more complex, the correct inter-

pretation of the data will rely on scientists well aware of

the strengths of both experiments and modeling, and

capable of synergistically applying both.
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