Computer-assisted proofs: Disk packings on the plane

Daria Pchelina

CNRS

équipe MC2, LIP, ENS Lyon

- Introduction
- Definitions
- Mexagonal packing is optimal
- Multi-disk packings
- 6 Homework

- Introduction
- Oefinitions
- Hexagonal packing is optimal
- Multi-disk packings
- 6 Homework

Optimal coin packing

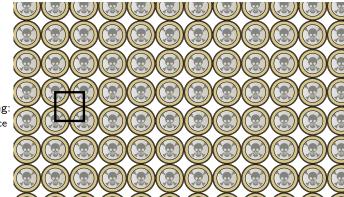
Given infinite number of identical coins

how to place them on an infinite plane without overlap to maximize the covered surface?

Optimal coin packing

Given infinite number of identical coins (

how to place them on an infinite plane without overlap to maximize the covered surface?

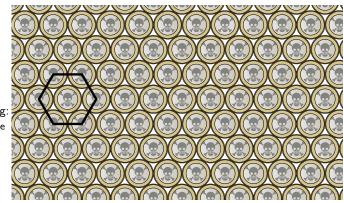


square coin packing: covers 78% of the surface

Optimal coin packing

Given infinite number of identical coins (

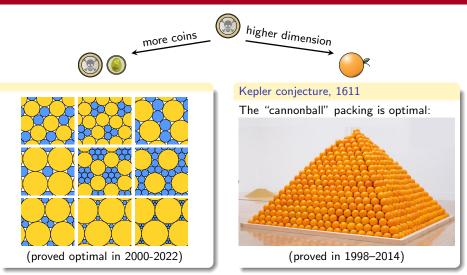
how to place them on an infinite plane without overlap to maximize the covered surface?

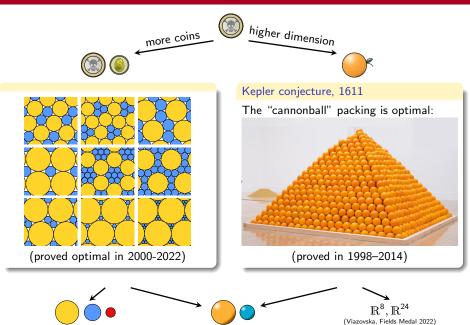


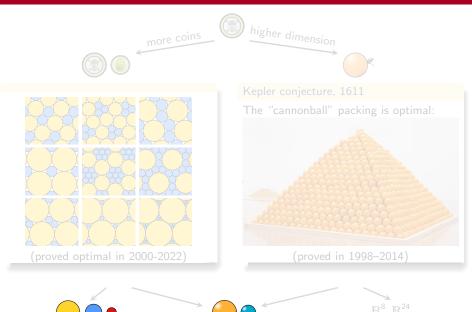
hexagonal coin packing: covers 90% of the surface

1910-1940

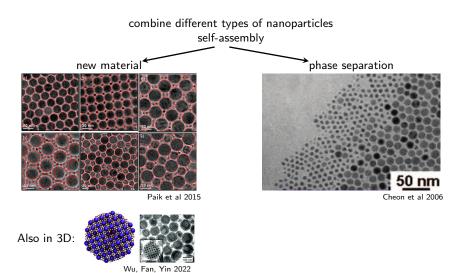
The hexagonal coin packing is optimal.







Nanomaterials and packings

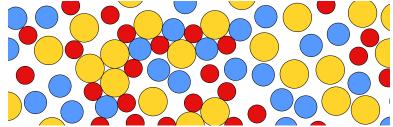


Chemists' question: which sizes and concentrations allow for new materials?

- Introduction
- Definitions
- Hexagonal packing is optimal
- Multi-disk packings
- 6 Homework

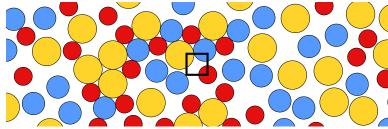
Disks:

Packing P: (in \mathbb{R}^2)



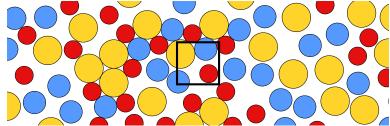
Disks:

Packing P: (in \mathbb{R}^2)



Disks:

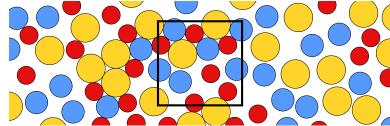
Packing P: (in \mathbb{R}^2)



$$\delta\left(n; \overset{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n; \overset{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n; \overset{n}{\blacksquare}\right)}$$

Disks:

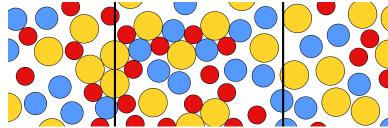
Packing P: (in \mathbb{R}^2)



$$\delta\left(n; \overset{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n; \overset{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n; \overset{n}{\blacksquare}\right)}$$

Disks:

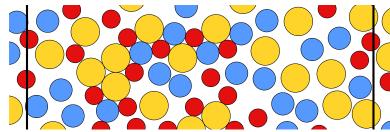
Packing P: (in \mathbb{R}^2)



$$\delta\left(n \ \stackrel{n}{\Longrightarrow} \cap P\right) := \frac{\operatorname{area}\left(n \ \stackrel{n}{\Longrightarrow} \cap P\right)}{\operatorname{area}\left(n \ \stackrel{n}{\Longrightarrow}\right)}$$

Disks:

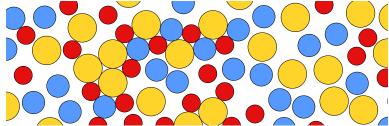
Packing P: (in \mathbb{R}^2)



$$\delta\left(n; \overset{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n; \overset{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n; \overset{n}{\blacksquare}\right)}$$

Disks:

Packing P: (in \mathbb{R}^2)

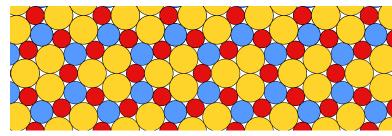


$$\delta(P) := \limsup_{n \to \infty} \frac{\operatorname{area}\left(n \nmid \stackrel{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n \nmid \stackrel{n}{\blacksquare}\right)}$$

Definitions

Disks:

Packing P: (in \mathbb{R}^2)



Density:

$$\delta^*\approx 90.9\%$$

Main Question

Given a finite set of disks (e.g., $\bigcirc \bullet \bullet$), what is the maximal density δ^* of a packing?

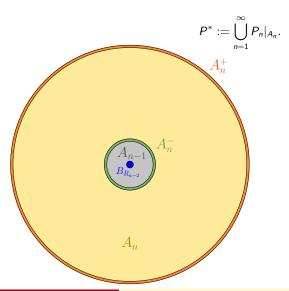
$$\delta^* := \sup_{P} \delta(P)$$

Existence of optimal packing

 $\delta^* = \sup$: does a packing of density δ^* always exist?

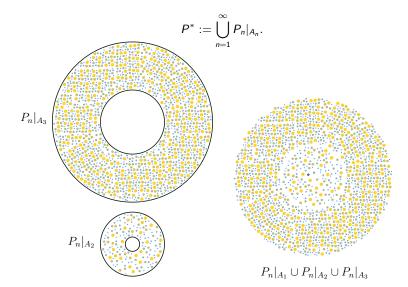
Existence of optimal packing

 $\delta^* = \sup$: does a packing of density δ^* always exist? Yes, let us construct it:

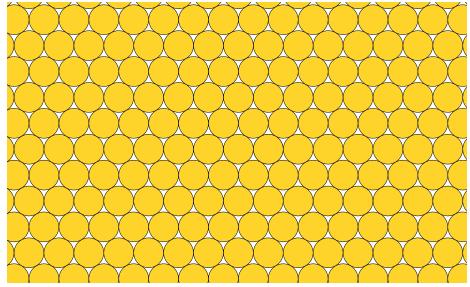


Existence of optimal packing

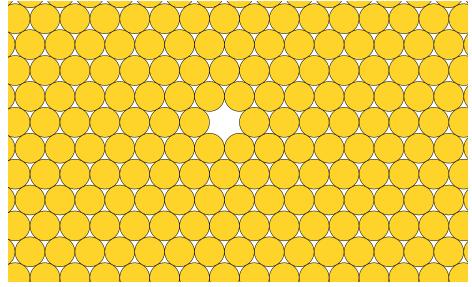
 $\delta^* = \sup$: does a packing of density δ^* always exist? Yes, let us construct it:



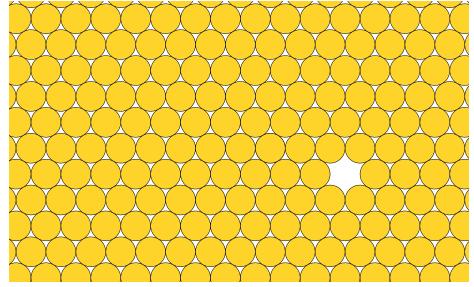
Number of optimal packings



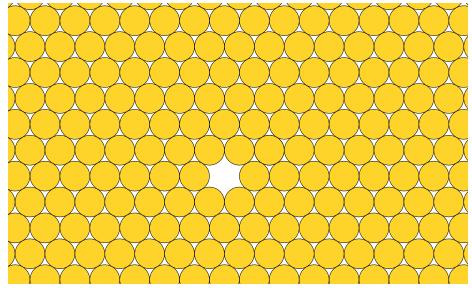
Number of optimal packings



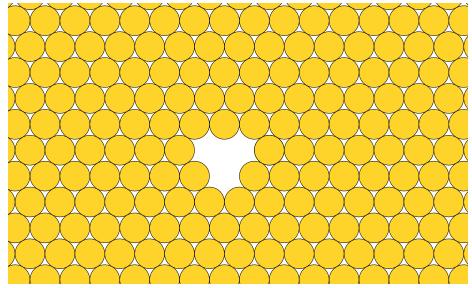
Number of optimal packings



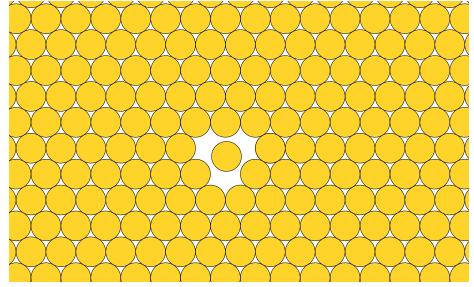
Number of optimal packings



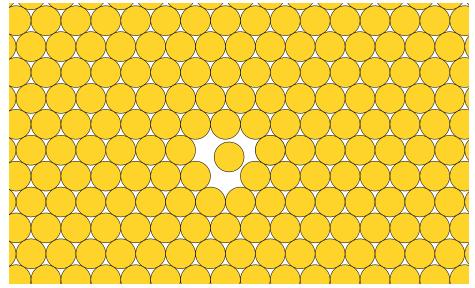
Number of optimal packings



Number of optimal packings



Number of optimal packings



Number of optimal packings

How many packings of density δ^* ? continuum

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

Delaunay triangulation

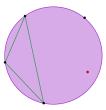
Given $S \subset \mathbb{R}^2$ set of points,

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

Delaunay triangulation

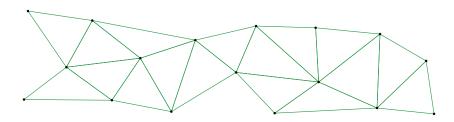
Given $S \subset \mathbb{R}^2$ set of points,



Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a Delaunay triangle if no other point from S in circumcircle Delaunay triangulation: all triangles are Delaunay triangles



Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles

triangles ABC, ABD satisfy Delaunay condition

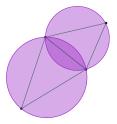
if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a Delaunay triangle if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles

triangles ABC, ABD satisfy Delaunay condition

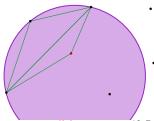
if D is not in ABC-circumcircle C is not in ABD-circumcircle equivalent to $\widehat{ACB} + \widehat{ADB} < 2\pi$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a Delaunay triangle if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

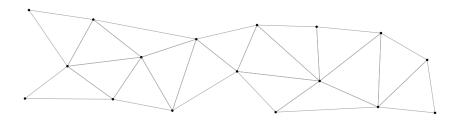
if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

equivalent to
$$\widehat{ACB} + \widehat{ADB} \leq 2\pi$$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a **Delaunay triangle** if no other point from *S* in circumcircle **Delaunay triangulation**: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

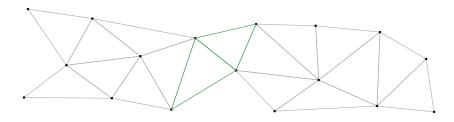
if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

equivalent to $\widehat{ACB} + \widehat{ADB} \leq 2\pi$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a **Delaunay triangle** if no other point from *S* in circumcircle **Delaunay triangulation**: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

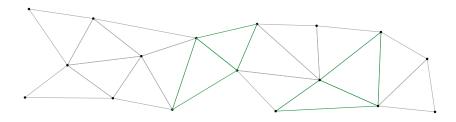
if D is not in ABC-circumcircle C is not in ABD-circumcircle

equivalent to $\widehat{ACB} + \widehat{ADB} \leq 2\pi$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a **Delaunay triangle** if no other point from *S* in circumcircle **Delaunay triangulation**: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

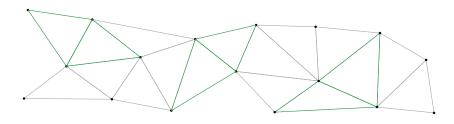
if D is not in ABC-circumcircle C is not in ABD-circumcircle

equivalent to $\widehat{ACB} + \widehat{ADB} \leq 2\pi$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a **Delaunay triangle** if no other point from *S* in circumcircle **Delaunay triangulation**: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

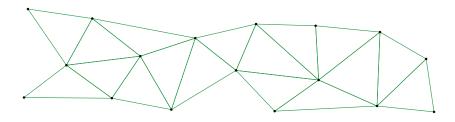
if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

equivalent to $\widehat{ACB} + \widehat{ADB} \leq 2\pi$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a **Delaunay triangle** if no other point from *S* in circumcircle **Delaunay triangulation**: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

equivalent to $\widehat{ACB} + \widehat{ADB} \leq 2\pi$

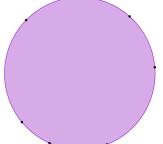
If each pair of adjacent triangles satisfies then the whole triangulation does. Delaunay, 1934 \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

if D is not in ABC-circumcircle C is not in ABD-circumcircle equivalent to $\widehat{ACB} + \widehat{ADB} < 2\pi$

- \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$
- \geq 4 points on the same circle \Rightarrow not unique

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles

triangles ABC, ABD satisfy Delaunay condition

if D is not in ABC-circumcircle C is not in ABD-circumcircle

equivalent to
$$\widehat{ACB} + \widehat{ADB} \le 2\pi$$

- \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$
- \geq 4 points on the same circle \Rightarrow not unique

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

 $\begin{array}{c} \text{if } D \text{ is not in } ABC\text{-circumcircle} \\ C \text{ is not in } ABD\text{-circumcircle} \end{array}$

equivalent to
$$\widehat{ACB} + \widehat{ADB} \le 2\pi$$

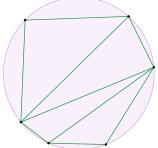
- \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$
- \geq 4 points on the same circle \Rightarrow not unique

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles



triangles ABC, ABD satisfy Delaunay condition

if D is not in ABC-circumcircle C is not in ABD-circumcircle

equivalent to
$$\widehat{ACB} + \widehat{ADB} \leq 2\pi$$

- \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$
- \geq 4 points on the same circle \Rightarrow not unique

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles

triangles ABC, ABD satisfy Delaunay condition

if *D* is not in *ABC*-circumcircle *C* is not in *ABD*-circumcircle

equivalent to
$$\widehat{ACB} + \widehat{ADB} \le 2\pi$$

- \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$
- \geq 4 points on the same circle \Rightarrow not unique

Delaunay triangulation

Given $S \subset \mathbb{R}^2$ set of points,

three points form a $\frac{\text{Delaunay triangle}}{\text{Delaunay triangle}}$ if no other point from S in circumcircle

Delaunay triangulation: all triangles are Delaunay triangles

triangles ABC, ABD satisfy Delaunay condition

 $\begin{array}{c} \text{if } D \text{ is not in } ABC\text{-circumcircle} \\ C \text{ is not in } ABD\text{-circumcircle} \end{array}$

equivalent to
$$\widehat{ACB} + \widehat{ADB} \leq 2\pi$$

If each pair of adjacent triangles satisfies then the whole triangulation does. Delaunay, 1934

 \Rightarrow flip algorithm: any triangulation then flip edges until each satisfies Delaunay $O(n^2)$

 \geq 4 points on the same circle \Rightarrow not unique

3 points on the same line \Rightarrow none

Flip Algorithm

all triangulations are connected by flips ${\tt Lawson~1972}$

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

Flip Algorithm

all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

parabolic lifting map: $(x, y) \mapsto (x, y, x^2 + y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid

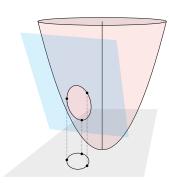
all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

parabolic lifting map: $(x,y)\mapsto (x,y,x^2+y^2)\in\mathbb{R}^3$ lifts the point to a unit paraboloid

circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

 $triangulation = polyhedral \ triangulated \ surface$



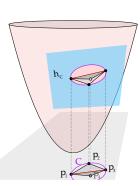
all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

parabolic lifting map: $(x,y) \mapsto (x,y,x^2+y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

triangulation = polyhedral triangulated surface

non-Delaunay edge p_1p_3 : p_4 is inside $p_1p_2p_3$ -circumscircle C, so $L(p_4)$ is under the plane h_C



all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

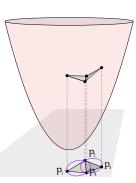
parabolic lifting map: $(x,y) \mapsto (x,y,x^2+y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid

circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

 $triangulation = polyhedral \ triangulated \ surface$

non-Delaunay edge p_1p_3 : p_4 is inside $p_1p_2p_3$ -circumscircle C, so $L(p_4)$ is under the plane h_C

flip $p_1p_3 \rightarrow p_2p_4$:



all triangulations are connected by flips Lawson 1972

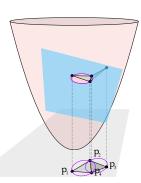
flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

parabolic lifting map: $(x, y) \mapsto (x, y, x^2 + y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid

circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

 $triangulation = polyhedral \ triangulated \ surface$

non-Delaunay edge p_1p_3 : p_4 is inside $p_1p_2p_3$ -circumscircle C, so $L(p_4)$ is under the plane h_C flip $p_1p_3 \to p_2p_4$: $L(p_3)$ is above the plane $L(p_1, p_2, p_4)$



all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

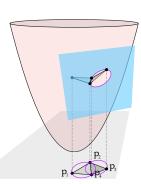
parabolic lifting map: $(x,y) \mapsto (x,y,x^2+y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid

circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

 $triangulation = polyhedral \ triangulated \ surface$

non-Delaunay edge p_1p_3 : p_4 is inside $p_1p_2p_3$ -circumscircle C, so $L(p_4)$ is under the plane h_C flip $p_1p_3 \to p_2p_4$: $L(p_3)$ is above the plane $L(p_1, p_2, p_4)$

 $L(p_3)$ is above the plane $L(p_1, p_2, p_4)$ $L(p_1)$ is above the plane $L(p_2, p_3, p_4)$



8 / 20

all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

parabolic lifting map: $(x, y) \mapsto (x, y, x^2 + y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid

circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

triangulation = polyhedral triangulated surface

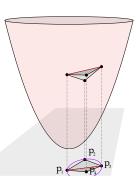
non-Delaunay edge p_1p_3 : p_4 is inside $p_1p_2p_3$ -circumscircle C, so $L(p_4)$ is under the plane h_C

 $L(p_3)$ is above the plane $L(p_1, p_2, p_4)$ flip $p_1p_3 \rightarrow p_2p_4$:

 $L(p_1)$ is above the plane $L(p_2, p_3, p_4)$

Delaunay flip: two top faces \rightarrow two bottom faces

⇒ the surface becomes lower (point-wise)



all triangulations are connected by flips Lawson 1972

flipping non-Delaunay edges, we obtain a Delaunay triangulation in at most $\binom{n}{2}$ flips

parabolic lifting map: $(x,y) \mapsto (x,y,x^2+y^2) \in \mathbb{R}^3$ lifts the point to a unit paraboloid

circle $C \subset \mathbb{R}^2 \mapsto$ lifted circle $L(C) = L(p) \mid p \in C$ is contained in a unique plane $h_C \subset \mathbb{R}^3$, \forall point $p \in \mathbb{R}^2$, p is inside C iff L(p) is below h_C

 $triangulation = polyhedral \ triangulated \ surface$

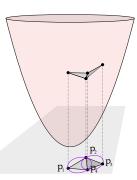
non-Delaunay edge p_1p_3 : p_4 is inside $p_1p_2p_3$ -circumscircle C, so $L(p_4)$ is under the plane h_C

flip $p_1p_3 \rightarrow p_2p_4$: $L(p_3)$ is above the plane $L(p_1,p_2,p_4)$

 $L(p_1)$ is above the plane $L(p_2, p_3, p_4)$

Delaunay flip: two top faces \rightarrow two bottom faces

⇒ the surface becomes lower (point-wise)



Delaunay triangulation and Voronoi diagram

Given $S \subset \mathbb{R}^2$ set of points,

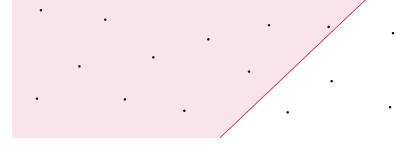
Delaunay triangulation and Voronoi diagram

Given $S \subset \mathbb{R}^2$ set of points,

Delaunay triangulation and Voronoi diagram

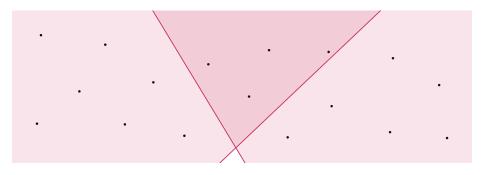
Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$



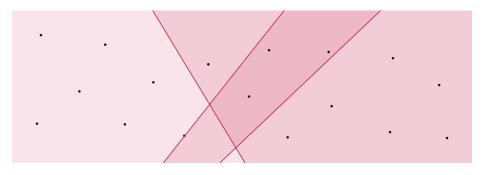
Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$



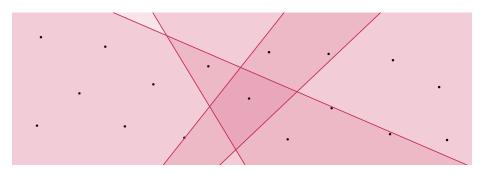
Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$



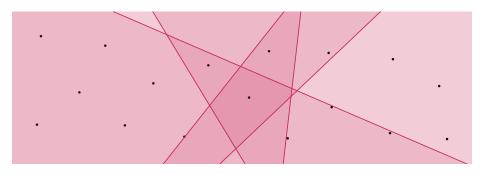
Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$



Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \text{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$



Delaunay triangulation and Voronoi diagram

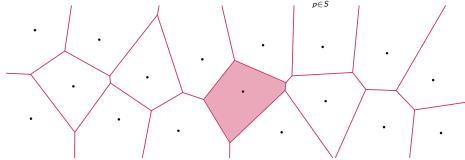
Given $S \subset \mathbb{R}^2$ set of points,

Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup Vor(p)$

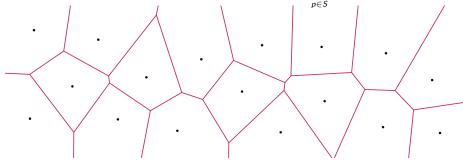


Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup Vor(p)$

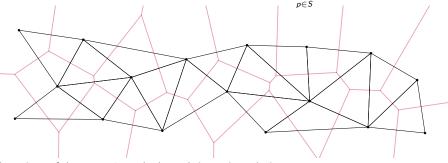


Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup_{n \in S} Vor(p)$



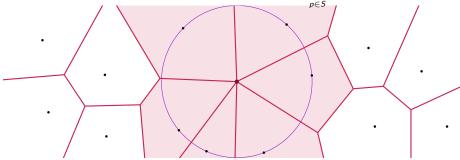
all vertices of degree \leq 3 \Rightarrow dual graph is a triangulation

Given $S \subset \mathbb{R}^2$ set of points,

Voronoi cell of point $p \in S$: $Vor(p) := \{q \in \mathbb{R}^2 \mid d(q, p') > d(q, p) \ \forall p' \in S \setminus \{p\}\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup Vor(p)$



all vertices of degree $\leq 3 \Rightarrow$ dual graph is a triangulation

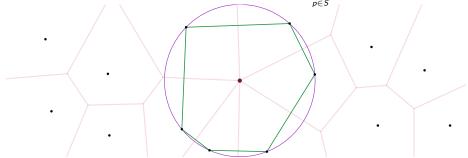
vertex v of the diagram is adjacent to ≥ 3 faces \Rightarrow their points \in circle centered in v s.t. no other point from S inside circle

Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \text{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup Vor(p)$



all vertices of degree $\leq 3 \Rightarrow$ dual graph is a triangulation

vertex v of the diagram is adjacent to ≥ 3 faces \Rightarrow their points \in circle centered in v s.t. no other point from S inside circle

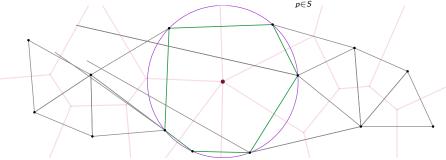
⇒ dual graph is an inscribed polygon and satisfies the Delaunay condition

Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup_{n} Vor(p)$



all vertices of degree $\leq 3 \Rightarrow$ dual graph is a triangulation

vertex v of the diagram is adjacent to ≥ 3 faces \Rightarrow their points \in circle centered in v s.t. no other point from S inside circle

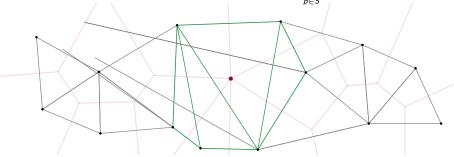
⇒ dual graph is an inscribed polygon and satisfies the Delaunay condition

Given $S \subset \mathbb{R}^2$ set of points,

 $\textbf{Voronoi cell of point } p \in S : \mathsf{Vor}(p) := \left\{q \in \mathbb{R}^2 \mid \mathsf{d}(q,p') > \mathsf{d}(q,p) \ \forall p' \in S \setminus \{p\} \right\}$

Voronoi cell is convex polygonal domain (possibly unbounded)

Voronoi diagram of S: union of Voronoi cells of its points $\bigcup_{n \in S} Vor(p)$



all vertices of degree \leq 3 \Rightarrow dual graph is a triangulation

vertex v of the diagram is adjacent to ≥ 3 faces \Rightarrow their points \in circle centered in v s.t. no other point from S inside circle

⇒ dual graph is an inscribed polygon and satisfies the Delaunay condition dual graph of a Voronoi diagram can be completed into a Delaunay triangulation

Properties of Delaunay triangulations

- does not exist if three collinear points
- circumscribed circle of each triangle contains no other points
- edges do not intersect: exercise
- maximizes minimal angle in the triangulation exercise

Properties of Delaunay triangulations

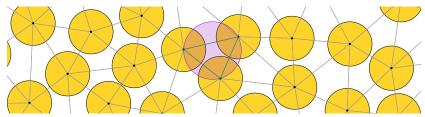
- does not exist if three collinear points
- circumscribed circle of each triangle contains no other points
- edges do not intersect: exercise
- maximizes minimal angle in the triangulation exercise

Delaunay triangulation of a disk packing is Delaunay triangulation of disk centers

Properties of Delaunay triangulations

- does not exist if three collinear points
- circumscribed circle of each triangle contains no other points
- edges do not intersect: exercise
- maximizes minimal angle in the triangulation exercise

Delaunay triangulation of a disk packing is Delaunay triangulation of disk centers

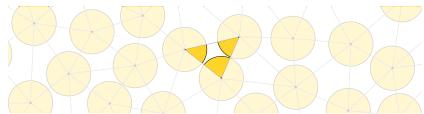


a packing is **saturated** is can not insert more disks without overlap if packing is saturated, circumcircle of each triangle is of radius at most 2

Properties of Delaunay triangulations

- does not exist if three collinear points
- circumscribed circle of each triangle contains no other points
- edges do not intersect: exercise
- maximizes minimal angle in the triangulation exercise

Delaunay triangulation of a disk packing is Delaunay triangulation of disk centers



a packing is saturated is can not insert more disks without overlap if packing is saturated, circumcircle of each triangle is of radius at most 2

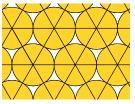
Density of a triangle Δ in a packing = its proportion covered by disks

$$\delta_{\Delta} = \frac{\operatorname{area}(\Delta \cap P)}{\operatorname{area}(\Delta)}$$

- Introduction
- 2 Definitions
- Mexagonal packing is optimal
- Multi-disk packings
- 6 Homework

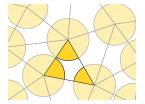
Proof with triangles

P of density $\delta(P)$

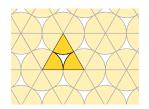


 P^{\ast} of density δ^{\ast}

Proof with triangles

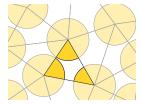


 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \leq \delta() = \delta^*$

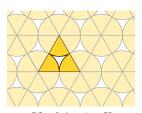


 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Proof with triangles

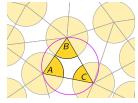


$$P \text{ of density } \delta(P)$$
$$\forall \Delta, \ \delta(\Delta) \leq \delta(\bigodot) = \delta^*$$

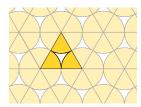


 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Proof with triangles



$$\delta(P) \leq \delta^*$$



 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \leq \delta(\triangle) = \delta^*$

 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Proof:

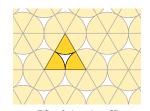
 \bullet the smallest angle of any Δ is at least $\frac{\pi}{6}$

$$2 > R = \frac{|AB|}{2\sin\widehat{C}} \ge \frac{1}{\sin\widehat{C}} \Longrightarrow \widehat{C} > \frac{\pi}{6}$$

Proof with triangles



$$\delta(P) \leq \delta^*$$



 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \le \delta(\triangle) = \delta^*$

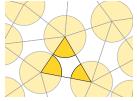
 P^* of density δ^* $\delta(igwedge) = \delta^*$

Proof:

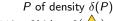
- ullet the smallest angle of any Δ is at least $\frac{\pi}{6}$
- thus the largest angle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

$2 > R = \frac{|AB|}{2\sin\hat{C}} \ge \frac{1}{\sin\hat{C}} \Longrightarrow \hat{C} > \frac{\pi}{6}$

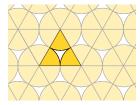
Proof with triangles



$$\delta(P) \leq \delta^*$$



$$\forall \Delta, \ \delta(\Delta) \leq \delta(\triangle) = \delta^*$$



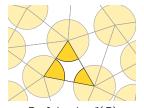
 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Proof:

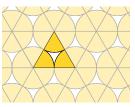
- \bullet the smallest angle of any Δ is at least $\frac{\pi}{6}$
- ullet thus the largest angle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
- density of a triangle Δ : $\delta(\Delta) = \frac{\pi/2}{area(\Delta)}$

$$2 > R = \frac{|AB|}{2\sin \hat{C}} \ge \frac{1}{\sin \hat{C}} \Longrightarrow \hat{C} > \frac{\pi}{6}$$

Proof with triangles



 $\delta(P) \leq \delta^*$



 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

$$P \text{ of density } \delta(P)$$
$$\forall \Delta, \ \delta(\Delta) \leq \delta(\triangle) = \delta^*$$

Proof:

ullet the smallest angle of any Δ is at least $\frac{\pi}{6}$

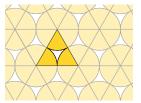
$$2 > R = \frac{|AB|}{2\sin \hat{C}} \ge \frac{1}{\sin \hat{C}} \Longrightarrow \hat{C} > \frac{\pi}{6}$$

- \bullet thus the largest angle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
- ullet density of a triangle Δ : $\delta(\Delta)=rac{\pi/2}{area(\Delta)}$
- the area of a triangle ABC with the largest angle \hat{A} : $\frac{|AB| \cdot |AC| \cdot \sin \hat{A}}{2} \ge \frac{2 \cdot 2 \cdot \frac{\sqrt{3}}{2}}{2} = \sqrt{3}$

 $\delta(P) < \delta^*$

Proof with triangles

$$P \text{ of density } \delta(P)$$
$$\forall \Delta, \ \delta(\Delta) \leq \delta() = \delta^*$$



 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Proof:

 \bullet the smallest angle of any Δ is at least $\frac{\pi}{6}$

$$2 > R = \frac{|AB|}{2\sin \hat{C}} \ge \frac{1}{\sin \hat{C}} \Longrightarrow \hat{C} > \frac{\pi}{6}$$

- thus the largest angle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
- density of a triangle Δ : $\delta(\Delta) = \frac{\pi/2}{area(\Delta)}$
- the area of a triangle ABC with the largest angle \hat{A} : $\frac{|AB| \cdot |AC| \cdot \sin \hat{A}}{2} \ge \frac{2 \cdot 2 \cdot \frac{\sqrt{3}}{2}}{2} = \sqrt{3}$
- thus the density of ABC is less or equal to $\frac{\pi/2}{\sqrt{3}} = \delta^*$

- Introduction
- 2 Definitions
- Hexagonal packing is optimal
- Multi-disk packings
- 6 Homework

FM-triangulation

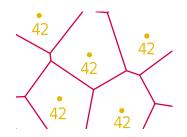
Given a set of points S and weight function $\omega:S o\mathbb{R}^+$,

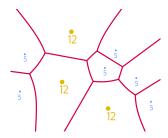
additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

for $q \in \mathbb{R}^2$ and $p \in S$

the heavier the point the larger its cell $% \left\{ \left(1\right) \right\} =\left\{ \left(1\right) \right\}$





FM-triangulation

Given a set of points S and weight function $\omega:S \to \mathbb{R}^+$,

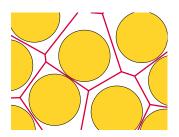
additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

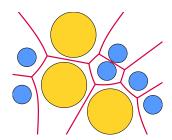
$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

for $q \in \mathbb{R}^2$ and $p \in S$

the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in p





FM-triangulation

Given a set of points S and weight function $\omega:S\to\mathbb{R}^+$,

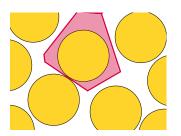
additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

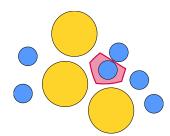
$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

for $q \in \mathbb{R}^2$ and $p \in S$

the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in pVoronoi cell of a disk in a packing: set of points closer to this disk than to any other





FM-triangulation

Given a set of points S and weight function $\omega:S \to \mathbb{R}^+$,

additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

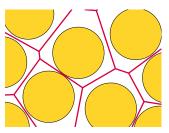
for $q \in \mathbb{R}^2$ and $p \in S$

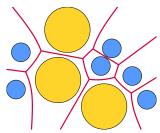
the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in p

Voronoi cell of a disk in a packing: set of points closer to this disk than to any other

FM-triangulation of a packing: dual graph of the Voronoi diagram Fejes Tóth, Mólnar 1958





FM-triangulation

Given a set of points S and weight function $\omega:S \to \mathbb{R}^+$,

additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

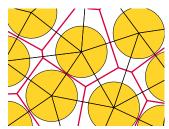
for $q \in \mathbb{R}^2$ and $p \in S$

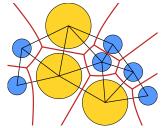
the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in p

Voronoi cell of a disk in a packing: set of points closer to this disk than to any other

FM-triangulation of a packing: dual graph of the Voronoi diagram Fejes Tóth, N





FM-triangulation

Given a set of points S and weight function $\omega:S \to \mathbb{R}^+$,

additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

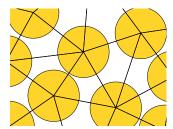
for $q \in \mathbb{R}^2$ and $p \in S$

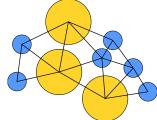
the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in p

Voronoi cell of a disk in a packing: set of points closer to this disk than to any other

FM-triangulation of a packing: dual graph of the Voronoi diagram Fejes Tóth, N





FM-triangulation

Given a set of points S and weight function $\omega:S \to \mathbb{R}^+$,

additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

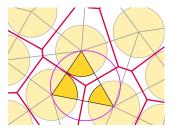
for $q \in \mathbb{R}^2$ and $p \in S$

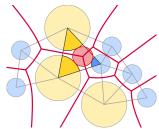
the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in p

Voronoi cell of a disk in a packing: set of points closer to this disk than to any other

FM-triangulation of a packing: dual graph of the Voronoi diagram Fejes Tóth, Mólnar 1958





support circle: centered in the Voronoi vertex, tangent to the three disks of FM- Δ

FM-triangulation

Given a set of points S and weight function $\omega:S o\mathbb{R}^+$,

additively weighted Voronoi diagram of S: Voronoi diagram with modified distance

$$d_{\omega}(q,p) := d(q,p) - \omega(p)$$

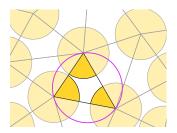
for $q \in \mathbb{R}^2$ and $p \in S$

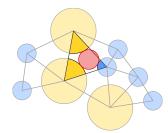
the heavier the point the larger its cell

Let S be the disk centers and $\omega(p)$ equal to the disk radius centered in pVoronoi cell of a disk in a packing: set of points closer to this disk than to any other

FM-triangulation of a packing: dual graph of the Voronoi diagram

Fejes Tóth, Mólnar 1958

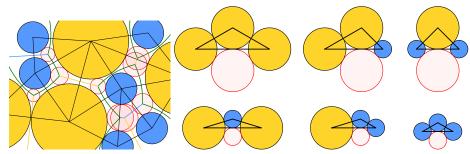




support circle: centered in the Voronoi vertex, tangent to the three disks of FM- Δ if packing is saturated, support circle is of radius at most min radius of disk \in packing

Properties of FM-triangulations

in FM- Δ of a saturated packing, none of its discs can intersect the opposite edge



Uniformity and Florian bound

Packing of uniformity q: packing of the plane by disks of radii $\in [q,1]$.

Uniformity and Florian bound

Packing of uniformity q: packing of the plane by disks of radii $\in [q,1]$.

Florian, 1960

The density of a packing of uniformity q never exceeds $\bar{\delta}_F(q) := \delta\left(\bigsqcup_{q} q\right)$: $\bar{\delta}_F(q) := \frac{\pi q^2 + 2(1-q^2)\arcsin\left(\frac{q}{1+q}\right)}{2q\sqrt{2q+1}}.$

Uniformity and Florian bound

Packing of uniformity q: packing of the plane by disks of radii $\in [q, 1]$.

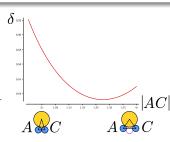
Florian, 1960

The density of a packing of uniformity q never exceeds $\bar{\delta}_F(q) := \delta\left(\bigsqcup_{q \neq 1} q\right)$: $\bar{\delta}_F(q) := \frac{\pi q^2 + 2(1-q^2)\arcsin\left(\frac{q}{1+q}\right)}{2q\sqrt{2q+1}}.$

Proof:

Among all triangles with 2 contacts

$$\delta(r,x) = \frac{2\left(2\,r^2\arccos\left(\frac{x}{2\,(r+1)}\right) + \arccos\left(\frac{2\,r^2-x^2+4\,r+2}{2\,(r^2+2\,r+1)}\right)\right)}{\sqrt{-x^4+4\,(r^2+2\,r+1)x^2}}$$



Uniformity and Florian bound

Packing of uniformity q: packing of the plane by disks of radii $\in [q, 1]$.

Florian, 1960

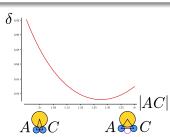
The density of a packing of uniformity q never exceeds $\bar{\delta}_F(q) := \delta\left(\bigsqcup_{q} q\right)$: $\bar{\delta}_F(q) := \frac{\pi q^2 + 2(1-q^2)\arcsin\left(\frac{q}{1+q}\right)}{2q\sqrt{2q+1}}.$

Proof:

Among all triangles with 2 contacts

between disks, \bigwedge_{q} is the densest.

$$\delta(r,x) = \frac{2\left(2\,r^2\arccos\left(\frac{x}{2\,(r+1)}\right) + \arccos\left(\frac{2\,r^2 - x^2 + 4\,r + 2}{2\,(r^2 + 2\,r + 1)}\right)\right)}{\sqrt{-x^4 + 4\,(r^2 + 2\,r + 1)x^2}}$$



 For any triangle, there is a denser triangle with at least two contacts. Reduce the dimension of the set of triangles $(3 \rightarrow 1)$

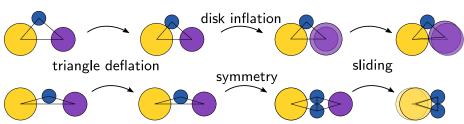
Feies Tóth, Mólnar, 1958

Dimension reduction

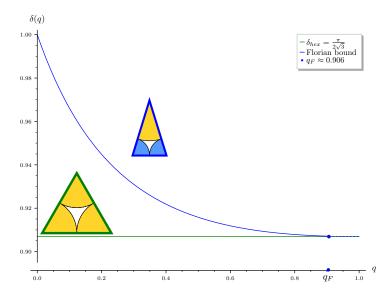
Given uniformity q,

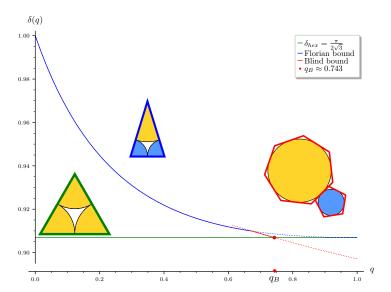
for any FM-triangle, there is a denser FM-triangle with at least two contacts

Proof: each transformation does not diminish the density of the triangle



Florian bound 1960





Power (Laguerre) diagram

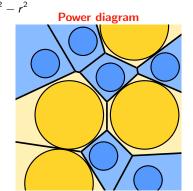
Given a disk D of radius r centered in O in packing P,

Voronoi cell(D): points closer to D than to any other disk in P in Euclidean distance:

$$dist_D(X) = d(O, X) - r$$

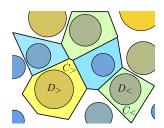
Power cell(D): points closer to D than to any other disk in P in power distance

 $\Pi_D(X) = d(O, X)^2 - r^2$ Voronoi diagram

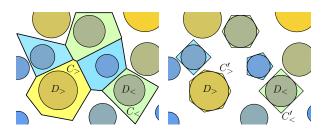


power cells are convex and polygonal (exercise)

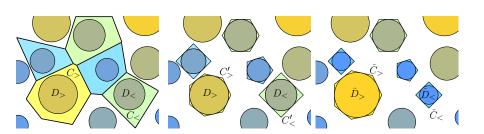
- lacktriangle the mean number of edges of power cells in a packing is ≤ 6
- \bigcirc D disk, C its power cell with k edges



- lacktriangle the mean number of edges of power cells in a packing is ≤ 6
- O disk, C its power cell with k edges
- **3** C' regular circumscribed version of C area(C') < area(C)



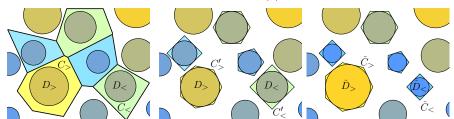
- lacktriangle the mean number of edges of power cells in a packing is ≤ 6
- O disk, C its power cell with k edges
- \circ C' regular circumscribed version of C area(C') < area(C)
- lacktriangledown k<6: \tilde{C} , \tilde{D} : deflated to get disk of radius q
- $\delta k > 6$: \tilde{C} , \tilde{D} : inflated to get disk of radius 1



- lacktriangle the mean number of edges of power cells in a packing is ≤ 6
- O disk, C its power cell with k edges
- \circ C' regular circumscribed version of C area(C') < area(C)
- lacktriangledown k<6: \tilde{C} , \tilde{D} : deflated to get disk of radius q
- $oldsymbol{0}$ k>6: $ilde{C}$, $ilde{D}$: inflated to get disk of radius 1

$$q \in [0.612, 0.74]$$
 $\delta(P) \le \delta_B(q) := \frac{\pi(q^2 + 1)}{q^2 a(5) + a(7)}$

$$q > 0.74$$
 $\delta(P) \le \frac{\pi}{\mathsf{a}(6)} = \delta_{\mathsf{hex}}.$



- Introduction
- 2 Definitions
- Hexagonal packing is optimal
- Multi-disk packings
- 6 Homework

4/12-11/12

- Given an FM-triangle with disks of radii r_A , r_B , r_C of a saturated packing of uniformity q, find lower and upper bounds on its edge lengths.
- ② Use interval arithmetic in any programming language supporting it. You know the value of the optimal density of a triangle of uniformity r (Florian bound, slide 14). Find an enclosure e of the length of the rr-edge of a triangle formed by one unit disk and two r-disks, where the unit disk is tangent to both small disks for $r=\frac{2}{\sqrt{3}}-1$, such that $\delta(e)$ contains the optimum (and it is certified). You can use the formula from slide 14.
- Prove that the edges in the Delaunay triangulation do not intersect.
- ** Write an algorithm, that takes $\{(c_i, r_i)\}_{i=1}^n$ where $c_i = (x_i, y_i)$ are disk center coordinates and r_i are disk radii as input and constructs an FM-triangulation of the packing. The output is $\{(i, j)\}_{\text{there is an edge between } c_i \text{ and } c_j}$.

LaTeX-generated pdfs, txt, anything except handwriting to be submitted by email to: daria.pchelina@ens-lyon.fr

Deadline: beginning of the lecture in one week (11/12, 10h15)