Computer-assisted proofs: Triangulated disk packings

Daria Pchelina

CNRS

équipe MC2, LIP, ENS Lyon

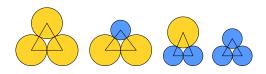
- Introduction
- Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

- Introduction
- 2 Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

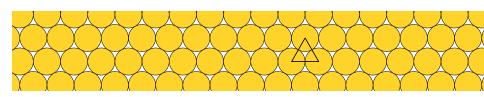
They are everywhere

Looking for optimal packings...

tight triangle: a triangle formed by three pairwise tangent disks:



hexagonal packing: optimal, consists only of tight triangles



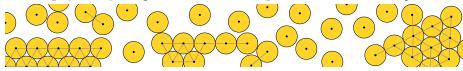
Florian bound: densest triangle is tight

Definition

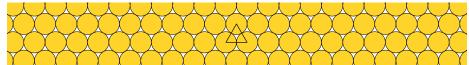
 $\begin{tabular}{ll} \textbf{contact graph} of a packing: \textbf{vertices} = centers, edges between centers of tangent disks \\ \end{tabular}$

Definition

contact graph of a packing: vertices=centers, edges between centers of tangent disks

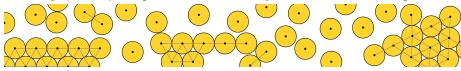


a packing is **triangulated** if its contact graph is a triangulation:

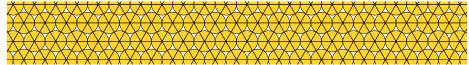


Definition

contact graph of a packing: vertices=centers, edges between centers of tangent disks

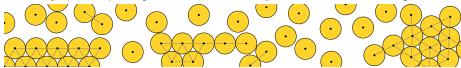


a packing is triangulated if its contact graph is a triangulation:

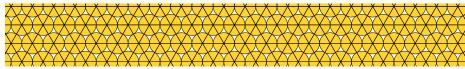


Definition

contact graph of a packing: vertices=centers, edges between centers of tangent disks

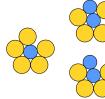


a packing is triangulated if its contact graph is a triangulation:



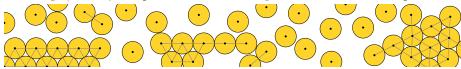
find a triangulated packing of disks of radii 1 and r:

$$r = \frac{4}{5} = 0.8$$

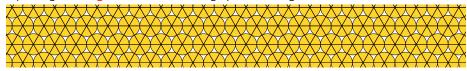


Definition

contact graph of a packing: vertices=centers, edges between centers of tangent disks



a packing is triangulated if its contact graph is a triangulation:

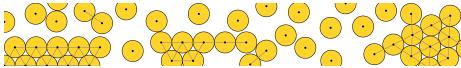


find a triangulated packing of disks of radii 1 and r:

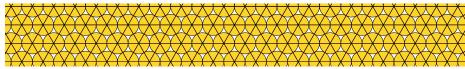
$$r = \frac{4}{5} = 0.8$$

Definition

contact graph of a packing: vertices=centers, edges between centers of tangent disks



a packing is triangulated if its contact graph is a triangulation:



there exists no triangulated packing of disks of radii 1 and r:

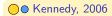
 $r = \frac{4}{5} = 0.8$

2-disk triangulated packings

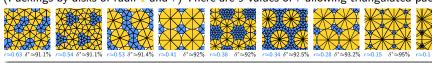
Which values of r allow triangulated packings?

2-disk triangulated packings

Which values of *r* allow triangulated packings?



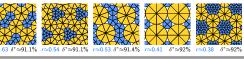
(Packings by disks of radii 1 and r) There are 9 values of r allowing triangulated packings:

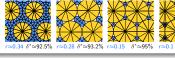


2-disk triangulated packings

Which values of r allow triangulated packings?

(Packings by disks of radii 1 and r) There are 9 values of r allowing triangulated packings:



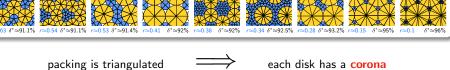


packing is triangulated

each disk has a corona

2-disk triangulated packings

Which values of r allow triangulated packings?



strategy: find r allowing a pair of coronas, then check if there is a packing of the plane

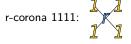
- Introduction
- Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

Find values of r allowing a pair of coronas: idea

symbolic corona: finite necklace of 1 and r

all rotations of a sequence are identical

1-corona: around 1-disk, *r*-corona: around *r*-disk



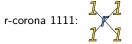
Find values of r allowing a pair of coronas: idea

symbolic corona: finite necklace of 1 and r

all rotations of a sequence are identical

1-corona: around 1-disk, *r*-corona: around *r*-disk

examples: 1-corona 1r1r1r1r:



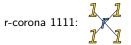
ullet if r allows a triangulated packing using both disks, there is $\epsilon>0$ such that $r\geq\epsilon$ exercise

Find values of r allowing a pair of coronas: idea

symbolic corona: finite necklace of 1 and r

all rotations of a sequence are identical

1-corona: around 1-disk, *r*-corona: around *r*-disk



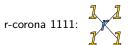
- ullet if r allows a triangulated packing using both disks, there is $\epsilon>0$ such that $r\geq\epsilon$ exercise
- for any $r \ge \epsilon$, there is at most N disks in an r-corona and M disks in a 1-corona exercise

Find values of r allowing a pair of coronas: idea

symbolic corona: finite necklace of 1 and r

all rotations of a sequence are identical

1-corona: around 1-disk, *r*-corona: around *r*-disk



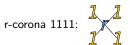
- ullet if r allows a triangulated packing using both disks, there is $\epsilon > 0$ such that $r > \epsilon$ exercise
- ② for any $r \geq \epsilon$, there is at most N disks in an r-corona and M disks in a 1-corona exercise
- \odot there is at most $2^N \cdot 2^M$ different pairs of coronas which can both be present in a triangulated packing finitely many

Find values of r allowing a pair of coronas: idea

symbolic corona: finite necklace of 1 and r

all rotations of a sequence are identical

1-corona: around 1-disk, *r*-corona: around *r*-disk



- ullet if r allows a triangulated packing using both disks, there is $\epsilon > 0$ such that $r > \epsilon$ exercise
- ② for any $r \geq \epsilon$, there is at most N disks in an r-corona and M disks in a 1-corona exercise
- \odot there is at most $2^N \cdot 2^M$ different pairs of coronas which can both be present in a triangulated packing finitely many

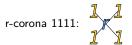
Find values of r allowing a pair of coronas: idea

symbolic corona: finite necklace of 1 and r

all rotations of a sequence are identical

1-corona: around 1-disk, *r*-corona: around *r*-disk

examples: 1-corona 1r1r1r1r:



- ullet if r allows a triangulated packing using both disks, there is $\epsilon > 0$ such that $r > \epsilon$ exercise
- ② for any $r \geq \epsilon$, there is at most N disks in an r-corona and M disks in a 1-corona exercise
- \bullet there is at most $2^N \cdot 2^M$ different pairs of coronas which can both be present in a triangulated packing finitely many

for each pair of symbolic coronas: r, find the value of r if it exists

in the end, we obtain a finite number of r_1, \ldots, r_k with associated pairs of coronas

Corona \rightarrow value of r

tight triangles:
$$T_{111}$$

$$T_{11r}$$

$$T_{1rr}$$

 T_{rrr}

$$\widehat{111} = \frac{7}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha', \ \widehat{1r1} = \alpha$ $\widehat{1rr} = \beta', \ \widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

Corona \rightarrow value of r

tight triangles:
$$T_{111}$$

$$T_{11r}$$

$$T_{1rr}$$

 T_{rrr}

$$\widehat{111} = \frac{7}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

Corona \rightarrow value of r

tight triangles:
$$T_{111}$$

 T_{1rr}

 T_{rrr}

$$\widehat{111} = \frac{\pi}{2}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

 T_{11r}

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta$$

Corona \rightarrow value of r

tight triangles:
$$T_{111}$$

$$T_{11r}$$

$$T_{1rr}$$

$$T_{rrr}$$

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

equation on α, β' :

$$\cos(\alpha') = \frac{1}{1+\epsilon}, \ \alpha = \pi - 2\alpha'$$

$$\cos(lpha') = \frac{1}{1+r}, \; lpha = \pi - 2lpha' \qquad \cos(eta') = \frac{r}{1+r}, \; eta = \pi - 2eta'$$

$$3\alpha + 2\beta' = 2\pi$$

Corona \rightarrow value of r

tight triangles:
$$T_{111}$$

$$T_{11r}$$

 T_{1rr}

 T_{rrr}

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{\mathsf{Lrr}} = eta', \ \widehat{\mathsf{r1r}} = eta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

equation on α, β' :

$$\cos(\alpha') = \frac{1}{1+\epsilon}, \ \alpha = \pi - 2\alpha'$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

 $3\alpha + 2\beta' = 2\pi$

1-corona

Corona \rightarrow value of r

tight triangles: T_{111}

$$T_{11r}$$

 T_{1rr}

 T_{rrr}

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rr} = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+\epsilon}, \ \alpha = \pi - 2\alpha'$$

$$\cos(lpha') = \frac{1}{1+r}, \; lpha = \pi - 2lpha' \qquad \cos(eta') = \frac{r}{1+r}, \; eta = \pi - 2eta'$$

r-corona

equation on α, β' :

 $3\alpha + 2\beta' = 2\pi$

1-corona

equation on α', β :

 $\beta + 6\alpha' = 2\pi$

Corona \rightarrow value of r

tight triangles: T_{111}

$$T_{11r}$$

 T_{1rr}

 T_{rrr}

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$rrr = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+\epsilon}, \ \alpha = \pi - 2\alpha'$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

r-corona

equation on α, β' :

$$3\alpha + 2\beta' = 2\pi$$

$$\cos(3\alpha + 2\beta') = \cos(2\pi) = 1$$

1-corona

equation on α', β :

 $\beta + 6\alpha' = 2\pi$

Corona \rightarrow value of r

tight triangles: T_{111}

$$T_{11r}$$

 T_{1rr}

$$T_{rrr}$$

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

$$3\alpha + 2\beta' = 2\pi$$

equation on
$$\alpha, \beta$$

$$\cos(3\alpha + 2\beta') = \cos(2\pi) = 1$$

$$\cos(3\alpha)\cos(2\beta') = \sin(3\alpha)\sin(2\beta') = 1$$

$$\cos(3\alpha)\cos(2\beta') - \sin(3\alpha)\sin(2\beta') = 1$$

1-corona

$$\iff$$

equation on α', β :

$$\beta + 6\alpha' = 2\pi$$

Corona \rightarrow value of r

tight triangles: T_{111}

$$T_{11r}$$

 T_{1rr}

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$\widehat{rrr} = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+\epsilon}, \ \alpha = \pi - 2\alpha'$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

equation on α, β' :

$$3\alpha + 2\beta' = 2\pi$$

$$\cos(3\alpha + 2\beta') = \cos(2\pi) = 1$$

$$\cos(3\alpha)\cos(2\beta') - \sin(3\alpha)\sin(2\beta') = 1$$

 $\cos^3 \alpha \cos^2 \beta^7 - 3 \cos \alpha \cos^2 \beta' \sin^2 \alpha - 6 \cos^2 \alpha \cos \beta' \sin \alpha \sin \beta' + 2 \cos \beta' \sin^3 \alpha \sin \beta' - \cos^3 \alpha \sin^2 \beta' + 3 \cos \alpha \sin^2 \alpha \sin^2 \beta' = 1$

1-corona

equation on α', β :

 $\beta + 6\alpha' = 2\pi$

Corona \rightarrow value of r

tight triangles: T_{111}

$$T_{11r}$$

 T_{1rr}

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha'$, $\widehat{1r1} = \alpha$ $\widehat{1rr} = \beta'$, $\widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rr} = \beta', \ \widehat{r1r} = \beta$$

$$rrr = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

$$3\alpha + 2\beta' = 2\pi$$

$$\cos(3\alpha+2\beta')=\cos(2\pi)=1$$

$$\cos(3\alpha)\cos(2\beta') - \sin(3\alpha)\sin(2\beta') = 1$$

 $\cos^3 \alpha \cos^2 \beta^7 - 3 \cos \alpha \cos^2 \beta' \sin^2 \alpha - 6 \cos^2 \alpha \cos \beta' \sin \alpha \sin \beta' + 2 \cos \beta' \sin^3 \alpha \sin \beta' - \cos^3 \alpha \sin^2 \beta' + 3 \cos \alpha \sin^2 \alpha \sin^2 \beta' = 1$

1-corona

equation on α', β :

 $\beta + 6\alpha' = 2\pi$

$$\cos(\beta + 6\alpha') = 1$$

 $\cos^6 \alpha' \cos \beta - 15 \cos^4 \alpha' \cos \beta \sin^2 \alpha' + 15 \cos^2 \alpha' \cos \beta \sin^4 \alpha' - \cos \beta \sin^6 \alpha' 6 \cos^5 \alpha' \sin \alpha' \sin \beta + 20 \cos^3 \alpha' \sin^3 \alpha' \sin \beta - 6 \cos \alpha' \sin^5 \alpha' \sin \beta = 1$

Corona \rightarrow value of r

tight triangles:
$$T_{111}$$

$$T_{11r}$$

$$T_{1rr}$$

$$\widehat{111} = \frac{\pi}{3}$$

$$\widehat{1r} = \alpha', \ \widehat{1r1} = \alpha'$$

$$\widehat{111} = \frac{\pi}{3}$$
 $\widehat{11r} = \alpha', \ \widehat{1r1} = \alpha$ $\widehat{1rr} = \beta', \ \widehat{r1r} = \beta$ $\widehat{rrr} = \frac{\pi}{3}$

$$\widehat{rrr} = \frac{\pi}{3}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

$$3\alpha + 2\beta' = 2\pi$$

 $\cos(3\alpha + 2\beta') = \cos(2\pi) = 1$

$$\cos(3\alpha)\cos(\beta') - \sin(3\alpha)\sin(2\beta') = 1$$

$$\cos(3\alpha)\cos(2\beta') - \sin(3\alpha)\sin(2\beta') = 1$$

$$\cos^2 \alpha \cos^2 \beta' - 3 \cos \alpha \cos^2 \beta' \sin^2 \alpha - 6 \cos^2 \alpha \cos \beta' \sin \alpha \sin \beta' + 2 \cos \beta' \sin^2 \alpha \sin \beta' - \cos^3 \alpha \sin^2 \beta' + 3 \cos \alpha \sin^2 \alpha \sin^2 \beta' = 1$$

1-corona

equation on α', β :

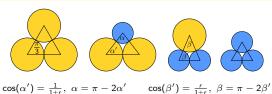
$$\beta + 6\alpha' = 2\pi$$
$$\cos(\beta + 6\alpha') = 1$$

 $\cos^6 \alpha' \cos \beta - 15 \cos^4 \alpha' \cos \beta \sin^2 \alpha' + 15 \cos^2 \alpha' \cos \beta \sin^4 \alpha' - \cos \beta \sin^6 \alpha' 6 \cos^5 \alpha' \sin \alpha' \sin \beta + 20 \cos^3 \alpha' \sin^3 \alpha' \sin \beta - 6 \cos \alpha' \sin^5 \alpha' \sin \beta = 1$

 $(7+4\sqrt{3}) r^4 + (20+12\sqrt{3}) r^3 + (6+4\sqrt{3}) r^2 + (-20-4\sqrt{3}) r + 3 = 0$

 $r \approx 0.5451510421$

Corona \rightarrow value of r: properties



Corona \rightarrow value of r: properties

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(eta') = rac{r}{1+r}, \ eta = \pi - 2eta'$$

r-corona

equation on α, β' :

$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

1-corona

equation on
$$\alpha',\beta$$
:
$$I\,\alpha' + m\,\beta + n\,\tfrac{\pi}{3} = 2\pi$$

Corona \rightarrow value of r: properties

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

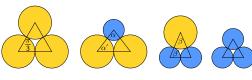
$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{2} = 2\pi$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

Corona \rightarrow value of r: properties



$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

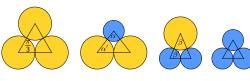
$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{2} = 2\pi$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

Corona \rightarrow value of r: properties



$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

$$\cos(eta') = rac{r}{1+r}, \; eta = \pi - 2eta'$$

r-corona

equation on α, β' :

$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

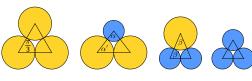
1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{2} = 2\pi$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

$$F_{ijk}=i\,lpha+j\,eta'+k\,rac{\pi}{3}$$
 is decreasing on $r\Rightarrow orall (i,j,k),$ at most one value of r such that $F_{ijk}(r)=2\pi$

Corona \rightarrow value of r: properties



$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta$$

r-corona

equation on α, β' :

$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

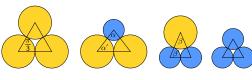
1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{2} = 2\pi$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

$$F_{ijk} = i \alpha + j \beta' + k \frac{\pi}{3}$$
 is decreasing on $r \Rightarrow \forall (i,j,k)$, at most one value of r such that $F_{ijk}(r) = 2\pi$ $\Rightarrow \forall (i,j,k), \forall r \in (0,1) \ F_{ijk}(0) > F_{ijk}(r) > F_{ijk}(1)$

Corona \rightarrow value of r: properties



$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{2} = 2\pi$

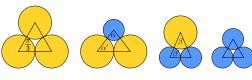
$$I\alpha' + m\beta + n\frac{\pi}{3} = 2\pi$$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

$$\begin{aligned} F_{ijk} &= i \, \alpha + j \, \beta' + k \, \tfrac{\pi}{3} \text{ is decreasing} & \text{ on } r \Rightarrow \forall (i,j,k), \text{ at most one value of } r \text{ such that } F_{ijk}(r) = 2\pi \\ &\Rightarrow \forall (i,j,k), \, \forall r \in (0,1) \, \, F_{ijk}(0) > F_{ijk}(r) > F_{ijk}(1) \end{aligned}$$

$$\lim_{r \to 0} F_{ijk}(r) = i \pi + j \frac{\pi}{2} + k \frac{\pi}{3} > F_{ijk}(r) = 2\pi >$$

Corona \rightarrow value of r: properties



$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \qquad \cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

r-corona

equation on α, β' :

$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{2} = 2\pi$

$$I\alpha' + m\beta + n\frac{\pi}{3} = 2\pi$$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

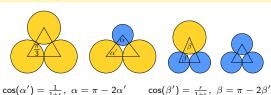
$$F_{ijk} = i \, \alpha + j \, \beta' + k \, \frac{\pi}{3}$$
 is decreasing on $r \Rightarrow \forall (i,j,k)$, at most one value of r such that $F_{ijk}(r) = 2\pi$ $\Rightarrow \forall (i,j,k), \, \forall r \in (0,1) \, F_{ijk}(0) > F_{ijk}(r) > F_{ijk}(1)$

$$\lim_{r\to 0} F_{ijk}(r) = i\pi + j\frac{\pi}{2} + k\frac{\pi}{3}$$

$$>F_{ijk}(r)=2\pi>$$

$$F_{ijk}(1) = (i+j+k)\frac{\pi}{3}$$

Corona \rightarrow value of r: properties



equation on α, β' :

$$i\,\alpha + j\,\beta' + k\,rac{\pi}{3} = 2\pi$$

equation on
$$\alpha',\beta$$
:
$$I\,\alpha' + m\,\beta + n\,\frac{\pi}{3} = 2\pi$$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

how many solutions (another method)

 $F_{iik}=i\, lpha+j\, eta'+k\, rac{\pi}{3}$ is decreasing on $r\Rightarrow orall (i,j,k),$ at most one value of r such that $F_{ijk}(r)=2\pi$ $\Rightarrow \forall (i,j,k), \forall r \in (0,1) \ F_{iik}(0) > F_{iik}(r) > F_{iik}(1)$

$$\lim_{r\to 0} F_{ijk}(r) = i\pi + j\frac{\pi}{2} + k\frac{\pi}{3}$$

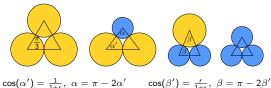
$$F_{ijk}(r) = 2\pi >$$

$$> F_{ijk}(r) = 2\pi > F_{ijk}(1) = (i+j+k)\frac{\pi}{3}$$

 \Rightarrow there is an $r \in [0,1]$ such that $F_{ijk} = 2\pi$ iff 6i + 3j + 2k > 12 and i + j + k < 6

 \Rightarrow finite number of (i, j, k) with a solution

Corona \rightarrow value of r: properties



1-corona

equation on α, β' :

$$(\beta') = \frac{r}{14\pi}, \ \beta = \pi - 2\beta$$

equation on
$$\alpha', \beta$$
:
$$l\alpha' + m\beta + n\frac{\pi}{2} = 2\pi$$

 $i\alpha + i\beta' + k\frac{\pi}{2} = 2\pi$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

how many solutions (another method)

 $F_{iik}=i\, lpha+j\, eta'+k\, rac{\pi}{3}$ is decreasing on $r\Rightarrow orall (i,j,k),$ at most one value of r such that $F_{ijk}(r)=2\pi$ $\Rightarrow \forall (i,j,k), \forall r \in (0,1) \ F_{iik}(0) > F_{iik}(r) > F_{iik}(1)$

$$\lim_{r\to 0} F_{ijk}(r) = i\pi + j\frac{\pi}{2} + k\frac{\pi}{3}$$

$$> F_{ijk}$$

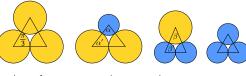
$$> F_{ijk}(r) = 2\pi > F_{ijk}(1) = (i+j+k)\frac{\pi}{3}$$

 \Rightarrow there is an $r \in [0,1]$ such that $F_{ijk} = 2\pi$ iff 6i + 3j + 2k > 12 and i + j + k < 6

 \Rightarrow finite number of (i, j, k) with a solution

$$j$$
 is even; if $j = 0$ then $i = 0$ or $k = 0$

Corona \rightarrow value of r: properties



$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha'$$
 $\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta'$$

$$r$$
-corona \Longrightarrow

equation on α, β' :

$$i\alpha + j\beta' + k\frac{\pi}{3} = 2\pi$$

1-corona

equation on α', β : $I \alpha' + m \beta + n \frac{\pi}{3} = 2\pi$

$$I\alpha + m\beta + n\frac{\pi}{3} = 2\pi$$

trivial solution: i=j=l=m=0, k=n=6 — phase separation no 1r contact, cannot use both disks ⇒ at least one of equations should have a non-trivial solution

how many solutions (another method)

$$F_{ijk} = i \, \alpha + j \, \beta' + k \, rac{\pi}{3}$$
 is decreasing on $r \Rightarrow \forall (i,j,k)$, at most one value of r such that $F_{ijk}(r) = 2\pi$ $\Rightarrow \forall (i,j,k), \, \forall r \in (0,1) \, F_{ijk}(0) > F_{ijk}(r) > F_{ijk}(1)$

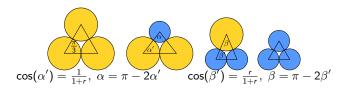
$$\lim_{r\to 0} F_{ijk}(r) = i \pi + j \frac{\pi}{2} + k \frac{\pi}{3} > F_{ijk}(r) = 2\pi > F_{ijk}(1) = (i+j+k) \frac{\pi}{3}$$

 \Rightarrow there is an $r \in [0,1]$ such that $F_{ijk} = 2\pi$ iff 6i + 3j + 2k > 12 and i + j + k < 6

 \Rightarrow finite number of (i,j,k) with a solution

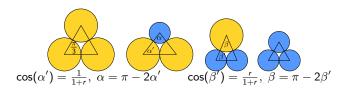
j is even; if j = 0 then i = 0 or k = 0 what are the remaining (i, j, k)? (exercise) Daria Pchelina Packings on the plane

Simple example in detail



Example: l=8, m=n=0 1-corona 1r1r1r1r i=4, j=k=0 r-corona 1111

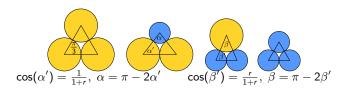
Simple example in detail



Example: l=8, m=n=0 1-corona 1r1r1r1r i=4, j=k=0 r-corona 1111

$$8\alpha' = 2\pi$$
 $4\alpha = 2\pi$ $\alpha' = \frac{\pi}{4}$ $\alpha = \frac{\pi}{2}$

Simple example in detail



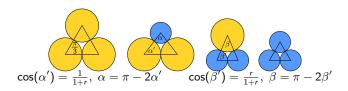
Example: l=8, m=n=0 1-corona 1r1r1r1r i=4, j=k=0 r-corona 1111

$$8\alpha' = 2\pi \qquad 4\alpha = 2\pi$$

$$\alpha' = \frac{\pi}{4} \qquad \alpha = \frac{\pi}{2}$$

$$r = \frac{1}{\cos(\alpha')} - 1 = \frac{1}{\cos(\frac{\pi}{4})} - 1 = \sqrt{2} - 1$$

Simple example in detail



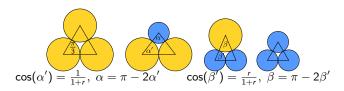
Example: l=8, m=n=0 1-corona 1r1r1r1r

i = 4, j = k = 0 r - corona 1111

$$8\alpha' = 2\pi$$
 $4\alpha = 2\pi$ $\alpha' = \frac{\pi}{4}$ $\alpha = \frac{\pi}{2}$

$$r = \frac{1}{\cos(\alpha')} - 1 = \frac{1}{\cos(\frac{\pi}{4})} - 1 = \sqrt{2} - 1$$

Simple example in detail



Example: l=8, m=n=0 1-corona 1r1r1r1r

i = 4, j = k = 0 r-corona 1111

$$8\alpha' = 2\pi$$

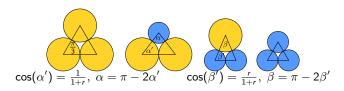
$$\alpha' = \frac{\pi}{4}$$

$$4\alpha = 2\pi$$

$$\alpha = \frac{\pi}{2}$$

$$r = \frac{1}{\cos(\alpha')} - 1 = \frac{1}{\cos(\frac{\pi}{4})} - 1 = \sqrt{2} - 1$$

Simple example in detail



Example: l=8, m=n=0 1-corona 1r1r1r1r

i = 4, j = k = 0 r-corona 1111

$$8\alpha' = 2\pi$$

$$\alpha' = \frac{\pi}{4}$$

$$4\alpha = 2\pi$$

$$\alpha = \frac{\pi}{2}$$

$$r = \frac{1}{\cos(\alpha')} - 1 = \frac{1}{\cos(\frac{\pi}{4})} - 1 = \sqrt{2} - 1$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow$$

$$\cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$

$$\begin{aligned} \cos(\alpha') &= \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \\ \sin^2(\alpha') &= \frac{2r+r^2}{(1+r)^2} \\ \sin(\alpha') &= \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \end{aligned}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \qquad \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$
$$\sin^2(\alpha') = \frac{2r + r^2}{(1+r)^2} \qquad \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \qquad \qquad \sin^2\alpha = \frac{4(r^2 + 2r)}{(1+r)^4}$$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \qquad \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$
$$\sin^2(\alpha') = \frac{2r+r^2}{(1+r)^2} \qquad \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \qquad \qquad \sin^2\alpha = \frac{4(r^2+2r)}{(1+r)^4}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+2r}{(1+r)^2}
\sin^2(\beta') = \frac{1+2r}{(1+r)^2}
\sin^2(\beta) = \frac{4r^2(1+2r)}{(1+r)^4}$$

$$\begin{aligned} \cos(\alpha') &= \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow & \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2} \\ \sin^2(\alpha') &= \frac{2r+r^2}{(1+r)^2} & \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 & \sin^2\alpha = \frac{4(r^2+2r)}{(1+r)^4} \end{aligned}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+2r}{(1+r)^2} \qquad \qquad \sin^2\beta = \frac{4r^2(1+2r)}{(1+r)^4}$$

Example:
$$l=12$$
, $m=6$, $n=0$ 1-corona $1rr1rr1rr1rr1rr1rr$

$$i=1, j=2, k=1$$
 r -corona $11rr$

$$12\alpha' + 6\beta = 2\pi$$

$$\alpha + 2\beta' + \frac{\pi}{3} = 2\pi$$

Another example in detail

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \qquad \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$
$$\sin^2(\alpha') = \frac{2r+r^2}{(1+r)^2} \qquad \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \qquad \qquad \sin^2\alpha = \frac{4(r^2+2r)}{(1+r)^4}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+2r}{(1+r)^2}$$

 $\sin^2 \beta = \frac{4r^2(1+2r)}{(1+r)^4}$

Example: l=12, m=6, n=0 1-corona 1rr1rr1rr1rr1rr1rr

$$i=1, j=2, k=1$$
 r-corona $11rr$

$$12\alpha' + 6\beta = 2\pi$$

$$\alpha + 2\beta' + \frac{\pi}{3} = 2\pi$$

 $\cos^2 \alpha' \cos^3 \beta - 66 \cos^3 \alpha' \cos^5 \beta \sin^2 \alpha' + 495 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' + 495 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' + 66 \cos^2 \alpha' \cos^5 \beta \sin^3 \alpha' + 66 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' + 36 \cos^3 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^5 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^3 \alpha' \cos^3 \beta \sin^3 \alpha' \sin^3 \beta + 36 \cos^3 \alpha' \cos^3$

 $-\frac{1}{2}\sqrt{3}\cos^2\beta'\sin\alpha - \sqrt{3}\cos\alpha\cos\beta'\sin\beta' + \frac{1}{2}\sqrt{3}\sin\alpha\sin^2\beta' + \frac{1}{2}\cos\alpha\cos^2\beta' - \cos\beta'\sin\alpha\sin\beta' - \frac{1}{2}\cos\alpha\sin^2\beta' = 1$

Another example in detail

$$\begin{aligned} \cos(\alpha') &= \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow & \cos(\alpha) &= -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2} \\ \sin^2(\alpha') &= \frac{2r + r^2}{(1+r)^2} & \sin(\alpha') &= \frac{X_1}{1+r}, \ X_1^2 &= 2r + r^2 \end{aligned}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+2r}{(1+r)^2}$$

 $\sin^2 \beta = \frac{4r^2(1+2r)}{(1+r)^4}$

Example: l=12, m=6, n=0 1-corona 1rr1rr1rr1rr1rr1rr1rr

$$i=1, j=2, k=1$$
 r-corona $11rr$

$$12\alpha' + 6\beta = 2\pi$$

$$\alpha + 2\beta' + \frac{\pi}{3} = 2\pi$$

 $-144r^2 - 72X_1^2r^2 - 912r^2 + 720X_1^2r^2 + 708r^2r^2 + 708r^2r^2 + 200X_1^2r^2 + 1202X_1^2r^2 + 1202X_1^2r^2 - 1402X_1^2r^2 + 2202X_1^2r^2 + 2202X_1^2r$

$$-2\sqrt{3}X_1r^3 - r^4 - 5\sqrt{3}X_1r^2 - 10r^3 + 4\sqrt{3}X_1r - 22r^2 + \sqrt{3}X_1 - 8r - 1$$

Another example in detail

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \qquad \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$

$$\sin^2(\alpha') = \frac{2r+r^2}{(1+r)^2} \qquad \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \qquad \qquad \sin^2\alpha = \frac{4(r^2+2r)}{(1+r)^4}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+r^2}{(1+r)^2}$$

$$\sin^2\beta = \frac{4r^2(1+2r)}{(1+r)^4}$$

Example: l=12, m=6, n=0 1-corona 1rr1rr1rr1rr1rr1rr

$$i=1, j=2, k=1$$
 r-corona $11rr$

$$12\alpha' + 6\beta = 2\pi$$

$$\alpha + 2\beta' + \frac{\pi}{3} = 2\pi$$

$$-144\,r^{23} - 984\,r^{22} + 7552\,r^{21} + 26655\,r^{20} - 249564\,r^{19} - 797105\,r^{18} + 1656078\,r^{17} + 4852206\,r^{16} - 11042680\,r^{15} - 26531163\,r^{14} + 20520174\,r^{13} + 52701610\,r^{12} + 20520174\,r^{13} + 20520174\,r^{13$$

$$-22259880\,r^{11} - 58054275\,r^{10} - 6445302\,r^9 + 16576710\,r^8 + 4352616\,r^7 - 1088797\,r^6 - 375462\,r^5 - 56541\,r^4 - 6556\,r^3 + 4836\,r^2 - 288\,r^2 + 1084676710\,r^2 + 1084797\,r^2 + 10847977\,r^2 + 1084797\,r^2 + 10847977\,r^2 + 1084797\,r^2 + 1084797\,r^2 + 1084797\,r^2 + 1084797\,r^2$$

$$-2\sqrt{3}X_1r^3 - r^4 - 5\sqrt{3}X_1r^2 - 10r^3 + 4\sqrt{3}X_1r - 22r^2 + \sqrt{3}X_1 - 8r - 1$$

Another example in detail

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \qquad \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$

$$\sin^2(\alpha') = \frac{2r+r^2}{(1+r)^2} \qquad \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \qquad \qquad \sin^2\alpha = \frac{4(r^2+2r)}{(1+r)^4}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+r^2}{(1+r)^2}$$

$$\sin^2\beta = \frac{4r^2(1+2r)}{(1+r)^4}$$

Example: l=12, m=6, n=0 1-corona 1rr1rr1rr1rr1rr1rr1rr

$$i=1, j=2, k=1 r$$
-corona $11rr$

$$12\alpha' + 6\beta = 2\pi$$

$$\alpha + 2\beta' + \frac{\pi}{3} = 2\pi$$

$$-144\,r^{23} - 984\,r^{22} + 7552\,r^{21} + 26655\,r^{20} - 249564\,r^{19} - 797105\,r^{18} + 1656078\,r^{17} + 4852206\,r^{16} - 11042680\,r^{15} - 26531163\,r^{14} + 20520174\,r^{13} + 52701610\,r^{12} + 20520174\,r^{13} + 20520174\,r^{13$$

$$-22259880\,r^{11} - 58054275\,r^{10} - 6445302\,r^9 + 16576710\,r^8 + 4352616\,r^7 - 1088797\,r^6 - 375462\,r^5 - 56541\,r^4 - 6556\,r^3 + 4836\,r^2 - 288\,r^2 + 1088797\,r^2 + 108$$

$$-2\sqrt{3}X_1r^3 - r^4 - 5\sqrt{3}X_1r^2 - 10r^3 + 4\sqrt{3}X_1r - 22r^2 + \sqrt{3}X_1 - 8r - 1$$

$$X_1^2 = 2r + r^2 \quad \sqrt{3}^2 = 3$$

Polynomial system of equations with variables $r \in [0,1]$ and $X_1 > 0$

Another example in detail

 $\sin^2(\beta') = \frac{1+2r}{(1+r)^2}$

$$\cos(\alpha') = \frac{1}{1+r}, \ \alpha = \pi - 2\alpha' \Rightarrow \qquad \cos(\alpha) = -\cos(2\alpha') = 1 - 2\cos^2(\alpha') = 1 - \frac{2}{(1+r)^2}$$

$$\sin^2(\alpha') = \frac{2r+r^2}{(1+r)^2} \qquad \sin(\alpha') = \frac{X_1}{1+r}, \ X_1^2 = 2r + r^2 \qquad \qquad \sin^2\alpha = \frac{4(r^2+2r)}{(1+r)^4}$$

$$\cos(\beta') = \frac{r}{1+r}, \ \beta = \pi - 2\beta' \Rightarrow \qquad \cos(\beta) = 1 - \frac{2r^2}{(1+r)^2}$$

$$\sin^2(\beta') = \frac{1+2r}{(1+r)^2}$$

$$\sin^2\beta = \frac{4r^2(1+2r)}{(1+r)^4}$$

Example: l=12, m=6, n=0 1-corona 1rr1rr1rr1rr1rr1rr1rr

$$i=1, j=2, k=1$$
 r-corona $11rr$

$$12\alpha' + 6\beta = 2\pi$$

$$\alpha + 2\beta' + \frac{\pi}{3} = 2\pi$$

$$-144\,r^{23} - 984\,r^{22} + 7552\,r^{21} + 26655\,r^{20} - 249564\,r^{19} - 797105\,r^{18} + 1656078\,r^{17} + 4852206\,r^{16} - 11042680\,r^{15} - 26531163\,r^{14} + 20520174\,r^{13} + 52701610\,r^{12}$$

$$-22259880\,r^{11} - 58054275\,r^{10} - 6445302\,r^9 + 16576710\,r^8 + 4352616\,r^7 - 1088797\,r^6 - 375462\,r^5 - 56541\,r^4 - 6556\,r^3 + 4836\,r^2 - 288\,r^2 + 1088797\,r^2 + 108$$

$$-2\sqrt{3}X_1r^3 - r^4 - 5\sqrt{3}X_1r^2 - 10r^3 + 4\sqrt{3}X_1r - 22r^2 + \sqrt{3}X_1 - 8r - 1$$

$$X_1^2 = 2r + r^2 \quad \sqrt{3}^2 = 3$$

Polynomial system of equations with variables $r \in [0, 1]$ and $X_1 > 0$ $r = 5 - 2\sqrt{6} \approx 0.10102$

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona:

 b_0,\ldots,b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
b ₄	400	1111	$2 - \sqrt{1}$	0.4142
b_5	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona:

 b_0,\ldots,b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
b4	400	1111	$2 - \sqrt{1}$	0.4142
b_5	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
b9	121	11 <i>rr</i>	$5 - 2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
b ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b2	221	111 <i>rr</i>	P(r) = 0	0.5452
b ₃	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
b ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b ₇	220	111r	$(\sqrt{17}-3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

O Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b_5	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

O Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
b ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b2	221	111 <i>rr</i>	P(r) = 0	0.5452
b ₃	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
b ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b ₇	220	111r	$(\sqrt{17}-3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

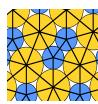
	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b2	221	111 <i>rr</i>	P(r) = 0	0.5452
b ₃	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b_5	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

O Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b_5	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
b ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010



Triangulated packings

O Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
b ₉	121	11 <i>rr</i>	$5-2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b ₃	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5 - 2\sqrt{6}$	0.1010

Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i į k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
<i>b</i> ₂	221	111 <i>rr</i>	P(r) = 0	0.5452
b ₃	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> 9	121	11 <i>rr</i>	$5 - 2\sqrt{6}$	0.1010
<i>b</i> ₉	121	11 <i>rr</i>	5 − 2√6	0.10

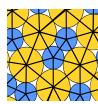
Triangulated packings

Oo Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b_2	221	111 <i>rr</i>	P(r) = 0	0.5452
b_3	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
<i>b</i> ₄	400	1111	$2 - \sqrt{1}$	0.4142
b_5	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
b ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5 - 2\sqrt{6}$	0.1010

only 9 of them, b_1, \ldots, b_9 , also allow a 1-corona



Triangulated packings

Kennedy, 2006

(Packings by disks of radii 1 and r) There are 10 values of r allowing an r-corona: b_0, \ldots, b_9 :

	i j k	r-corona	exact	decimal
<i>b</i> ₀	500	11111	$(1 - \sin(\pi/5))/\sin(\pi/5)$	0.7013
<i>b</i> ₁	320	1111r	$r^4 - 10r^2 - 8r + 9 = 0$	0.6376
b ₂	221	111 <i>rr</i>	P(r) = 0	0.5452
b ₃	140	1r1r1	$8r^3 + 3r\sqrt{2} - 2r - 1 = 0$	0.5333
b ₄	400	1111	$2 - \sqrt{1}$	0.4142
b ₅	122	1rrr1	$[2\sqrt{3} + 1 - \sqrt{2}\sqrt{1+3}]/3$	0.3861
<i>b</i> ₆	041	1rr1r	$\sin(\pi/12)/(1-\sin(\pi/12))$	0.3492
b7	220	111r	$(\sqrt{17} - 3)/4$	0.2808
<i>b</i> ₈	300	111	$2/\sqrt{3}-1$	0.1547
<i>b</i> ₉	121	11 <i>rr</i>	$5 - 2\sqrt{6}$	0.1010

only 9 of them, b_1, \ldots, b_9 , also allow a 1-corona

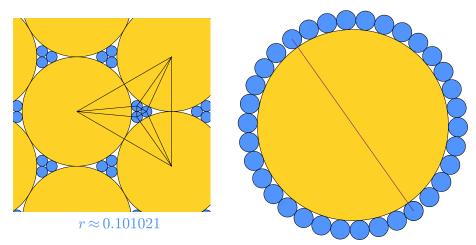
 b_1, \ldots, b_9 allow triangulated packings of the plane:

 $\delta^* \approx 91.1\%$ $r \approx 0.54$ $\delta^* \approx 91.1\%$ $r \approx 0.53$ $\delta^* \approx 91.4\%$ $r \approx 0.41$ $\delta^* \approx 92\%$ $r \approx 0.38$ $\delta^* \approx 92\%$

 $r \approx 0.34 \ \delta^* \approx 92.5\% \ r \approx 0.28 \ \delta^* \approx 93.2\% \ r \approx 0.15 \ \delta^* \approx 95\% \ r \approx 0.1$

Corollary

If there is an r-corona of disks of radii 1, r then $r \in \{b_0, \dots, b_9\}$ so $r \ge b_9 = 5 - 2\sqrt{6}$.



Then 1-corona has at most 34 disks.

- Introduction
- 2 Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

- What is the number (from 1 to 164) of the packing depicted on slide 1 using the numbering from Fernique, Hashemi, Sizova 2021? How did you find it?
- **9*** Find 5 pairs (i,j) $1 \le i < j \le 9$ such that $(1,b_i,b_j)$ admist a triangulated packing using all three disks. Find 4 pairs (i,j) $1 \le i \ne j \le 9$ such that $(1,b_i,b_i\cdot b_j)$ admist a triangulated packing using all three disks. Provide triangulated packings for each pair.

LETEX-generated pdfs, txt, anything except handwriting to be submitted by email to: daria.pchelina@ens-lyon.fr

Deadline: beginning of the lecture in one week (16/12, 15h45)

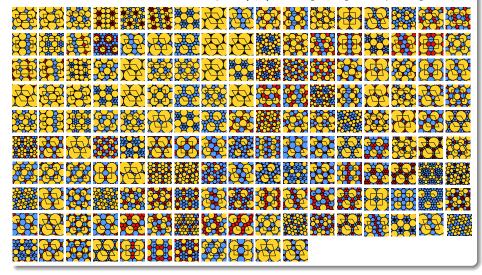
- Introduction
- 2 Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

Theorem (O • Fernique, Hashemi, Sizova 2019)

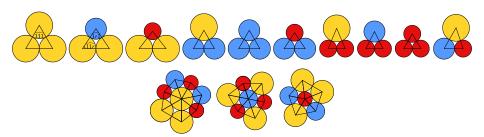
Disks of radii 1, r and s: there are 164 pairs (r, s) allowing triangulated packings.

Theorem (Oo• Fernique, Hashemi, Sizova 2019)

Disks of radii 1, r and s: there are 164 pairs (r, s) allowing triangulated packings.



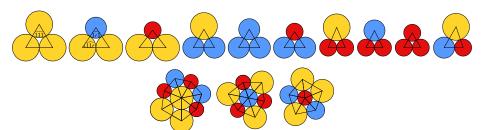
s-coronas



s-corona equation:
$$S_{\overrightarrow{k}}(r,s) = k_1 \widehat{1s1} + k_2 \widehat{1sr} + k_3 \widehat{1ss} + k_4 \widehat{rsr} + k_5 \widehat{rss} + k_6 \widehat{sss}$$
.

find all
$$\overrightarrow{k}$$
 having a solution (r,s) $1>r>s>0$ of $S_{\overrightarrow{k}}(r,s)=2\pi$

s-coronas



s-corona equation: $S_{\overrightarrow{l}}(r,s) = k_1 \widehat{1s1} + k_2 \widehat{1sr} + k_3 \widehat{1ss} + k_4 \widehat{rsr} + k_5 \widehat{rss} + k_6 \widehat{sss}$.

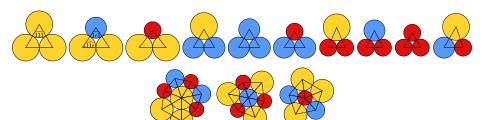
find all \overrightarrow{k} having a solution (r,s) 1>r>s>0 of $S_{\overrightarrow{k}}(r,s)=2\pi$

decreases on s, increases on r: $S_{\overrightarrow{k}}(r,s) \leq \lim_{r \to 1} S_{\overrightarrow{k}}(r,s) = k_1 \pi + k_2 \pi + k_3 \frac{\pi}{2} + k_4 \pi + k_5 \frac{\pi}{2} + k_6 \frac{\pi}{3}$.

 \rightarrow 383 \overrightarrow{k} $k_1 + k_2 + k_3 + k_4 + k_5 + k_6 < 6 < 3k_1 + 3k_2 + \frac{3}{2}k_3 + 3k_4 + \frac{3}{2}k_5 + k_6$

Daria Pchelina Packings on the plane 14 / 39

s-coronas



s-corona equation: $S_{\overrightarrow{L}}(r,s) = k_1 \widehat{1s1} + k_2 \widehat{1sr} + k_3 \widehat{1ss} + k_4 \widehat{rsr} + k_5 \widehat{rss} + k_6 \widehat{sss}$.

find all \overrightarrow{k} having a solution (r,s) 1>r>s>0 of $S_{\overrightarrow{k}}(r,s)=2\pi$

decreases on s, increases on r: $S_{\overrightarrow{k}}(r,s) \leq \lim_{\substack{r \to 1 \\ s \to 0}} S_{\overrightarrow{k}}(r,s) = k_1 \pi + k_2 \pi + k_3 \frac{\pi}{2} + k_4 \pi + k_5 \frac{\pi}{2} + k_6 \frac{\pi}{3}$.

$$k_1 + k_2 + k_3 + k_4 + k_5 + k_6 < 6 < 3k_1 + 3k_2 + \frac{3}{2}k_3 + 3k_4 + \frac{3}{2}k_5 + k_6$$
 $\rightarrow 383 \overrightarrow{k}$

existance of a symbolic corona with these angles

S k_3 k_5

 \rightarrow 56 \overrightarrow{k}

 \overrightarrow{k} should correspond to a cycle in the graph

s-coronas \rightarrow polynomials

$$\cos \widehat{1s1} = 1 - \frac{2}{(1+s)^2}, \dots, \cos \widehat{sss} = \frac{\pi}{3}$$

$$\sin^2 \widehat{1s1} = \frac{4s(s+2)}{(s+1)^4}, \dots, \sin^2 \widehat{sss} = \frac{3}{4}$$

$$\sin \widehat{1s1} = \frac{X_1}{(s+1)^2}, \dots, \sin \widehat{sss} = \frac{X_6}{2}$$

$$X_1^2 = 4s(s+2), \dots, X_6^2 = 3$$

$$\cos \left(S_{\overrightarrow{L}}(r,s)\right) = 1 \longrightarrow \text{ system of polynomial equations on } r, s, X_1, \dots, X_6$$

s-coronas \rightarrow polynomials

$$\cos \widehat{1s1} = 1 - \frac{2}{(1+s)^2}, \dots, \cos \widehat{sss} = \frac{\pi}{3}$$

$$\sin^2 \widehat{1s1} = \frac{4s(s+2)}{(s+1)^4}, \dots, \sin^2 \widehat{sss} = \frac{3}{4}$$

$$\sin \widehat{1s1} = \frac{X_1}{(s+1)^2}, \dots, \sin \widehat{sss} = \frac{X_6}{2}$$

$$X_1^2 = 4s(s+2), \dots, X_6^2 = 3$$

$$\cos\left(S_{\overrightarrow{k}}(r,s)\right)=1$$
 — system of polynomial equations on $r,\,s,\,X_1,\ldots,X_6$

for 10 s-coronas without r-disk, do not depend on $r: s = b_0, \ldots, b_9$

degrees of polynomials of remaining coronas:

there is an s-corona $\overrightarrow{k} \Rightarrow$ the system has a solution 0 < s < r < 1

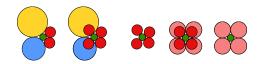
r-coronas

How many *r*-coronas are there?

r-coronas

How many r-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an *r*-corona.

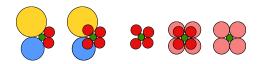


r-coronas

How many r-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an r-corona.

Proof: consider an s-corona, deflate all 1-disks to r-disks: there is some free space

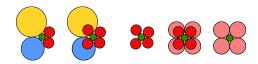


r-coronas

How many *r*-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an r-corona.

Proof: consider an s-corona, deflate all 1-disks to r-disks: there is some free space inflate r to r' > r until disks are tangent again, we get an s-corona with s and r' disks

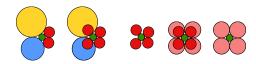


r-coronas

How many *r*-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an r-corona.

Proof: consider an *s*-corona, deflate all 1-disks to *r*-disks: there is some free space inflate *r* to r' > r until disks are tangent again, we get an *s*-corona with *s* and r' disks \Rightarrow it is one of the binary coronas we found before: $\frac{s}{r'} = b_i$ for some $i = 0, \dots 9$



r-coronas

How many *r*-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an r-corona.

Proof: consider an *s*-corona, deflate all 1-disks to *r*-disks: there is some free space inflate *r* to r' > r until disks are tangent again, we get an *s*-corona with *s* and r' disks \Rightarrow it is one of the binary coronas we found before: $\frac{s}{r'} = b_i$ for some $i = 0, \dots 9$

$$\Rightarrow \frac{5}{r} > \frac{5}{r'} = b_i \ge b_9 = 5 - 2\sqrt{6}$$

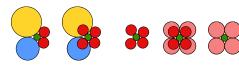
r-coronas

How many *r*-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an r-corona.

Proof: consider an *s*-corona, deflate all 1-disks to *r*-disks: there is some free space inflate *r* to r' > r until disks are tangent again, we get an *s*-corona with *s* and r' disks \Rightarrow it is one of the binary coronas we found before: $\frac{s}{r'} = b_i$ for some $i = 0, \dots 9$

$$\Rightarrow \frac{5}{r} > \frac{5}{r'} = b_i \ge b_9 = 5 - 2\sqrt{6}$$



we bounded the number of disk in every r-corona \Rightarrow finite number of possible r-coronas

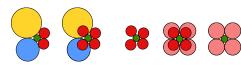
r-coronas

How many *r*-coronas are there?

Idea: bound $\frac{5}{r}$ from below by $5-2\sqrt{6} \Rightarrow$ bound the number of disks in an r-corona.

Proof: consider an *s*-corona, deflate all 1-disks to *r*-disks: there is some free space inflate *r* to r' > r until disks are tangent again, we get an *s*-corona with *s* and r' disks \Rightarrow it is one of the binary coronas we found before: $\frac{s}{r'} = b_i$ for some $i = 0, \dots 9$

$$\Rightarrow \frac{s}{r} > \frac{s}{r'} = b_i \ge b_9 = 5 - 2\sqrt{6}$$



we bounded the number of disk in every r-corona \Rightarrow finite number of possible r-coronas precise bound on number of compatible r-coronas for each s-corona in function on what we get when deflate $1 \to r$

s — corona	rrrrr	rrrrs	rrrss	rrsrs	rrrr	rrsss	rsrss	rrrs	rrr	rrss
b _i approximation	0.701	0.637	0.545	0.533	0.414	0.386	0.349	0.280	0.154	0.101
upper bound on number of r - coronas	84	94	130	143	197	241	272	386	889	1654

pairs of coronas

$1 \rightarrow r$ deflation equivalence classes:

rrrrr	rrrrs	rrrss	rrsrs	rrrr	rrsss	rsrss	rrrs	rrr	rrss
11111	1111s	111ss	11s1s	1111	11sss	1s1ss	111s	111	11ss
1111r	111rs	11rss	11srs	111r	1rsss	1srss	11rs	11r	1rss
111rr	11r1s	1r1ss	1rs1s	11rr			1r1s	1rr	
11r1r	11rrs	1rrss	1rsrs	1r1r			1rrs		
11rrr	1r1rs	r1rss	rrs1s	1rrr			r1rs		
1r1rr	1rr1s								
1rrrr	1rrrs								
	r11rs								
	r1rrs								
8	10	6	6	6	3	3	6	4	3

Number of pairs of coronas:

 $(84, 94, 130, 143, 197, 241, 272, 386, 889) \cdot (8, 10, 6, 6, 6, 3, 3, 6, 4, 3) = 16805$

huge polynomials: s-corona 11rrs, r-corona $11rrs^12$ polynomials of degree 28 and 416 (1.4Mo in txt)

Gröbner basis, resultants

too many solutions: filter them with interval arithmetic

exact filtering (check the equations)

find packings: all preiodic, by hand

- Introduction
- Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

Find 4-disk triangulated packings?

Disks of radii 1 > r > s > t > 0

we need 3 coronas to obtain a polynomial system of equations determining (r, s, t)

Find 4-disk triangulated packings?

Disks of radii 1 > r > s > t > 0

we need 3 coronas to obtain a polynomial system of equations determining (r, s, t)

t-corona

smallest disk, so < 5 disks in any non-trivial corona

Find 4-disk triangulated packings?

Disks of radii 1 > r > s > t > 0

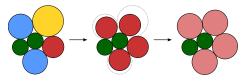
we need 3 coronas to obtain a polynomial system of equations determining (r, s, t)

t-corona

smallest disk, so < 5 disks in any non-trivial corona

5-corona

bound $\frac{t}{s} > 5 - 2\sqrt{6}$ as for 3-disk \Rightarrow finite number of s-coronas



Find 4-disk triangulated packings?

Disks of radii 1 > r > s > t > 0

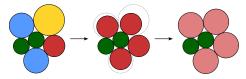
we need 3 coronas to obtain a polynomial system of equations determining (r, s, t)

t-corona

smallest disk, so < 5 disks in any non-trivial corona

• s-corona

bound $\frac{t}{s} > 5 - 2\sqrt{6}$ as for 3-disk \Rightarrow finite number of s-coronas



r-corona

try to bound $\frac{s}{r}$ from below given existence of an s-corona?

Find 4-disk triangulated packings?

Disks of radii 1 > r > s > t > 0

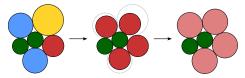
we need 3 coronas to obtain a polynomial system of equations determining (r, s, t)

t-corona

smallest disk, so < 5 disks in any non-trivial corona

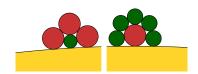
5-corona

bound $\frac{t}{s} > 5 - 2\sqrt{6}$ as for 3-disk \Rightarrow finite number of s-coronas



r-corona

try to bound $\frac{s}{r}$ from below given existence of an s-corona? no



Find 4-disk triangulated packings?

Disks of radii 1 > r > s > t > 0

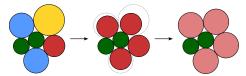
we need 3 coronas to obtain a polynomial system of equations determining (r, s, t)

t-corona

smallest disk, so < 5 disks in any non-trivial corona

5-corona

bound $\frac{t}{s} > 5 - 2\sqrt{6}$ as for 3-disk \Rightarrow finite number of s-coronas



r-corona solution: look further try to bound from below given existence of an s-corona? no $\frac{5}{2}$ > 0.054

suppose ş very small, prove that no possible packing

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

r_n-corona

smallest disk, so < 5 disks in any non-trivial corona

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

• r_n -Corona smallest disk, so < 5 disks in any non-trivial corona

• r_{n-1} -corona bound $\frac{r_n}{r_{n-1}} > 5 - 2\sqrt{6}$ as for 3,4-disk \Rightarrow finite number of r_{n-1} -coronas

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

• r_n -corona smallest disk, so < 5 disks in any non-trivial corona

• r_{n-1} -corona bound $\frac{r_n}{r_{n-1}} > 5 - 2\sqrt{6}$ as for 3,4-disk \Rightarrow finite number of r_{n-1} -coronas

• r_{n-2} -Corona probably can generalize 4-disk approach to get $\frac{r_{n-2}}{r_{n-1}} > \epsilon > 0$

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

•
$$r_n$$
-corona smallest disk, so < 5 disks in any non-trivial corona

•
$$r_{n-1}$$
-corona bound $\frac{r_n}{r_{n-1}} > 5 - 2\sqrt{6}$ as for 3,4-disk \Rightarrow finite number of r_{n-1} -coronas

•
$$r_{n-2}$$
-corona probably can generalize 4-disk approach to get $\frac{r_{n-2}}{r_{n-1}} > \epsilon > 0$

•
$$r_{n-2}$$
-corona probably can generalize 4-disk approach to get $\frac{r_{n-2}}{r_{n-1}} > \epsilon > 0$
• $r_2, \dots r_{n-2}$ -coronas

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

• r_n -Corona smallest disk, so < 5 disks in any non-trivial corona

• r_{n-1} -corona bound $\frac{r_n}{r_{n-1}} > 5 - 2\sqrt{6}$ as for 3,4-disk \Rightarrow finite number of r_{n-1} -coronas

• r_{n-2} -corona probably can generalize 4-disk approach to get $\frac{r_{n-2}}{r_{n-1}} > \epsilon > 0$

• $r_2 \dots r_{n-2}$ -coronas

very big coronas: even if we can bound $\frac{r_n}{r_{n-1}} > \epsilon_{n-1}$, $\cdots \frac{r_3}{r_2} > \epsilon_2$, we only get

 $\frac{r_n}{r_2} > \prod_{i=2}^{n-1} \epsilon_i \to 0 \Rightarrow$ huge number of disks in r_2 -corona

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

•
$$r_n$$
-corona smallest disk, so < 5 disks in any non-trivial corona

•
$$r_{n-1}$$
-corona bound $\frac{r_n}{r_{n-1}} > 5 - 2\sqrt{6}$ as for 3,4-disk \Rightarrow finite number of r_{n-1} -coronas

•
$$r_{n-2}$$
-corona probably can generalize 4-disk approach to get $\frac{r_{n-2}}{r_{n-1}} > \epsilon > 0$

•
$$r_{n-2}$$
 coronas probably can generalize $\frac{1}{r_{n-1}} > \frac{1}{r_{n-1}} >$

very big coronas: even if we can bound $\frac{r_n}{r_{n-1}} > \epsilon_{n-1}, \cdots, \frac{r_3}{r_2} > \epsilon_2$, we only get

$$\frac{r_n}{r_2} > \prod_{i=2}^{n-1} \epsilon_i \to 0 \Rightarrow$$
 huge number of disks in r_2 -corona

more variables and higher degrees of polynomials \rightarrow hard to find exact solutions

n-disk triangulated packings?

 $\forall n$ there is finitely many (r_1, r_2, \dots, r_n) such that $1 = r_1 > r_2 > \dots > r_n > 0$ allowing triangulated packings using all of these disk radii Messerschmidt 2022

n > 4 challenges:

need n-1 coronas to find a solution:

• r_n -corona smallest disk, so < 5 disks in any non-trivial corona

• r_{n-1} -corona bound $\frac{r_n}{r_{n-1}} > 5 - 2\sqrt{6}$ as for 3,4-disk \Rightarrow finite number of r_{n-1} -coronas

• r_{n-2} -corona probably can generalize 4-disk approach to get $\frac{r_{n-2}}{r_{n-1}} > \epsilon > 0$

• $r_2 \dots r_{n-2}$ -coronas

very big coronas: even if we can bound $\frac{r_n}{r_{n-1}} > \epsilon_{n-1}, \cdots \frac{r_3}{r_2} > \epsilon_2$, we only get

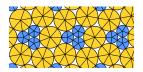
 $\frac{r_n}{r_2} > \prod_{i=2}^{n-1} \epsilon_i o 0 \Rightarrow$ huge number of disks in r_2 -corona

more variables and higher degrees of polynomials ightarrow hard to find exact solutions

given a solution with coronas, automatize search for packing (search for a periodic tiling)

Packings and tilings

triangulated packings



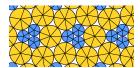
tilings by triangles with local rules

density = weighted proportion of tiles

Packings and tilings

triangulated packings

tilings by triangles with local rules



density = weighted proportion of tiles

Domino Problem

Given a set of Wang tiles, is there a valid tiling of the plane?

 \forall tileset with valid tilings, one is periodic

decidable

(Wang algorithm: search for a period)

Packings and tilings

Domino Problem

Given a set of Wang tiles, is there a valid tiling of the plane?

∃ tileset with valid tilings which are all non-periodic

undecidable

Packings and tilings

Triangulated Packing Problem

algebraic numbers represented by polynomials and intervals

excludes hexagonal packing

Given k disk radii r_1, \dots, r_k , is there a triangulated packing of density

$$>\frac{\pi}{2\sqrt{3}}$$

 $\forall r_1, \dots, r_k$ with triangulated packings, one is periodic

decidable

(Wang algorithm: search for a period)

 $\exists r_1, \cdots, r_k$ whose triangulated packings are all non-periodic

undecidable?

Packings and tilings

Dense Packing Problem

algebraic numbers represented by polynomials and intervals Given k disk radii r_1, \dots, r_k , is there a

excludes hexagonal packing

packing of density

 $\forall r_1, \dots, r_k$ with dense packings, one is periodic

decidable

(interval arithmetic and subdivision until needed precision)

not possible!

 $\exists r_1, \dots, r_k$ whose dense packings are all non-periodic

- Introduction
- 2 Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

Binary triangulated packings

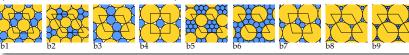
Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Binary triangulated packings

Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:



Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

Binary triangulated packings

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

- Heppes: b_4 , b_1 , b_3 , b_6 , b_7
- Kennedy: b₂
- Bedaride and Fernique: b₅, b₉

- by hand
- by computer
- by computer

Binary triangulated packings

O Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

Heppes: b₄, b₁, b₃, b₆, b₇

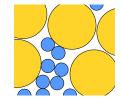
• Kennedy: b2

• Bedaride and Fernique: b₅, b₉

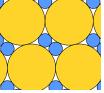
by hand

by computer

by computer



P of density $\delta(P)$

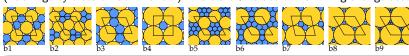


 P^* of density δ^*

Binary triangulated packings

O Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:



Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

• Heppes: b_4 , b_1 , b_3 , b_6 , b_7

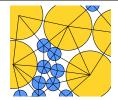
• Kennedy: b2

• Bedaride and Fernique: b₅, b₉

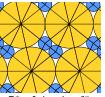
by hand

by computer

by computer



P of density $\delta(P)$



 P^* of density δ^*

Binary triangulated packings

Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

Heppes: b₄, b₁, b₃, b₆, b₇

• Kennedy: b₂

Bedaride and Fernique: b₅, b₉

by hand by computer

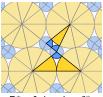
by computer

P of density $\delta(P)$

Triangles in P^* have different densities:

$$\delta\left(\right) < \delta^* < \delta\left(\right)$$

Hopeless to bound the density by δ^* in each triangle...



 P^* of density δ^*

Binary triangulated packings

O Kennedy, 2006

(Packings by discs of radii $\frac{1}{2}$ and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

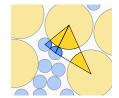
Heppes: b₄, b₁, b₃, b₆, b₇

• Kennedy: b2

• Bedaride and Fernique: b_5 , b_9

by hand

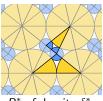
by computer by computer



P of density $\delta(P) \leq \delta'(P)$

redistributed density $\delta' \geq \delta$:

dense triangles share their density with empty neighbors



 P^* of density δ^*

Binary triangulated packings

Kennedy, 2006

(Packings by discs of radii $\frac{1}{2}$ and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

Heppes: b₄, b₁, b₃, b₆, b₇

• Kennedy: b₂

Refinedly. b₂
 Bedaride and Fernique: b₅, b₉

by hand

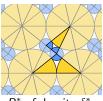
by computer by computer

re

P of density $\delta(P) \leq \delta'(P)$

redistributed density $\delta' \geq \delta$:

dense triangles share their density with empty neighbors



 P^* of density δ^*

Binary triangulated packings

Kennedy, 2006

(Packings by discs of radii $\frac{1}{r}$ and $\frac{1}{r}$) There are 9 values of $\frac{1}{r}$ allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

• Heppes: b_4 , b_1 , b_3 , b_6 , b_7

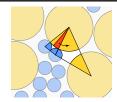
• Kennedy: *b*₂

Bedaride and Fernique: b₅, b₉

by computer

by hand

by computer

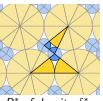


$$P$$
 of density $\delta(P) \leq \delta'(P)$
 $\forall \Delta, \ \delta'(\Delta) < \delta^*$

$$\delta(P) \le \delta'(P) \le \delta^*$$

redistributed density $\delta' > \delta$:

dense triangles share their density with empty neighbors



of density δ^*

Spin systems → **disk** packings

Kennedy 2005

spin system: graph, each vertex has a "spin" taking values in a small set two spins interact iff connected by an edge

total energy = sum of local interaction energies on edges: $\sum_{(i,j) \text{ adjacent}} E(\sigma_i, \sigma_j)$

ground state: configuration of spins that minimizes the total energy

spin system: graph, each vertex has a "spin" taking values in a small set two spins interact iff connected by an edge

total energy = sum of local interaction energies on edges: $\sum_{(i,j) \text{ adjacent}} E(\sigma_i, \sigma_j)$

ground state: configuration of spins that minimizes the total energy

Example: Ising model each spin is +1 or -1

Ferromagnetic interaction: adjacent spins prefer to be the same:

 $E(\sigma_i, \sigma_j)$ minimized when $\sigma_i = \sigma_j$:

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

 $E(\sigma_i, \sigma_i)$ minimized when $\sigma_i = -\sigma_i$:

$$E(\sigma_i, \sigma_i) = \sigma_i \cdot \sigma_i$$

 $E(\sigma_i, \sigma_i) = -\sigma_i \cdot \sigma_i$

Spin systems \rightarrow disk packings

Kennedy 2005

spin system: graph, each vertex has a "spin" taking values in a small set two spins interact iff connected by an edge

total energy = sum of local interaction energies on edges: $\sum_{(i,j) \text{ adjacent}} E(\sigma_i, \sigma_j)$

ground state: configuration of spins that minimizes the total energy

Example: Ising model each spin is +1 or -1

Ferromagnetic interaction: adjacent spins prefer to be the same:

$$E(\sigma_i, \sigma_i)$$
 minimized when $\sigma_i = \sigma_i$:

$$E(\sigma_i, \sigma_j) = -\sigma_i \cdot \sigma_j$$

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

$$E(\sigma_i, \sigma_j)$$
 minimized when $\sigma_i = -\sigma_j$:

 $E(\sigma_i,\sigma_j)=\sigma_i\cdot\sigma_j$

frustrated spin system: all local interactions can not be minimized at the same time

Spin systems → disk packings

Kennedy 2005

spin system: graph, each vertex has a "spin" taking values in a small set two spins interact iff connected by an edge

total energy = sum of local interaction energies on edges: $\sum_{(i,j) \text{ adjacent}} E(\sigma_i, \sigma_j)$

ground state: configuration of spins that minimizes the total energy

Example: Ising model each spin is +1 or -1

Ferromagnetic interaction: adjacent spins prefer to be the same:

$$E(\sigma_i, \sigma_j)$$
 minimized when $\sigma_i = \sigma_j$:

$$E(\sigma_i,\sigma_j)=-\sigma_i\cdot\sigma_j$$

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

$$E(\sigma_i, \sigma_j)$$
 minimized when $\sigma_i = -\sigma_j$:

 $E(\sigma_i,\sigma_j)=\sigma_i\cdot\sigma_j$

frustrated spin system: all local interactions can not be minimized at the same time **frustration** in general: when local optimal pieces cannot be assembled consistently into a global optimum

frustation in multi-disk packings: the locally densest triangle **>** cannot tile the plane:

Solution to frustration: m-potentials

spin system: lattice vertices V, spin set $S = \{+1, -1\}$ configuration: $\sigma = \{\sigma_i\}_{i \in V} \in V^S$

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

$$E_{(i,j)}$$
 minimized when $\sigma_i = -\sigma_j$: $E_{(i,j)}(\sigma) = \sigma_i \cdot \sigma_j$ if (i,j) adjacent else 0

frustration: no configuration in a triangle satisfies all local minimization conditions (i,j,k) is a triangle, $\forall \sigma \ E_{(i,j)}(\sigma) + E_{(i,k)}(\sigma) + E_{(k,j)}(\sigma) \ge -1 > -3 = 3 \min E_{(i,j)}$

Solution to frustration: m-potentials

spin system: lattice vertices V, spin set $S = \{+1, -1\}$ configuration: $\sigma = \{\sigma_i\}_{i \in V} \in V^S$

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

$$E_{(i,j)}$$
 minimized when $\sigma_i = -\sigma_j$: $E_{(i,j)}(\sigma) = \sigma_i \cdot \sigma_j$ if (i,j) adjacent else 0

frustration: no configuration in a triangle satisfies all local minimization conditions (i,j,k) is a triangle, $\forall \sigma \ E_{(i,j)}(\sigma) + E_{(i,k)}(\sigma) + E_{(k,j)}(\sigma) \geq -1 > -3 = 3 \min E_{(i,j)}$

example: $\Phi_{(i,j,k)}(\sigma) = \frac{1}{2}(\sigma_i \sigma_i + \sigma_i \sigma_k + \sigma_k \sigma_i)$ if (i,j,k) is a triangle

triangle potential: Φ such that $\Phi_{(i,j,k)}(\sigma) = 0 \quad \forall \sigma \text{ if } (i,j,k) \text{ is not a triangle}$

 Φ is **equivalent** to E if \forall finite subset $F \subset V$

$$\Phi_{V \setminus F} = E_{V \setminus F}$$

$$\sum_{i,j,k \in V \setminus F} \Phi_{(i,j,k)} = \sum_{i,j \in V \setminus F} E_{(i,j)}$$

equivalent to
$$E$$

Daria Pchelina Packings on the plane 24 / 39

Solution to frustration: m-potentials

spin system: lattice vertices V, spin set $S = \{+1, -1\}$ configuration: $\sigma = \{\sigma_i\}_{i \in V} \in V^S$

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

$$E_{(i,j)}$$
 minimized when $\sigma_i = -\sigma_j$: $E_{(i,j)}(\sigma) = \sigma_i \cdot \sigma_j$ if (i,j) adjacent else 0

frustration: no configuration in a triangle satisfies all local minimization conditions (i,j,k) is a triangle, $\forall \sigma \ E_{(i,j)}(\sigma) + E_{(i,k)}(\sigma) + E_{(k,j)}(\sigma) \geq -1 > -3 = 3 \min E_{(i,j)}$

has the same ground states

triangle potential: Φ such that $\Phi_{(i,j,k)}(\sigma) = 0 \quad \forall \sigma \text{ if } (i,j,k) \text{ is not a triangle}$

 Φ is **equivalent** to E if \forall finite subset $F \subset V$

$$\Phi_{V\setminus F} = E_{V\setminus F}$$

$$\sum_{i,i,k\in V\setminus F} \Phi_{(i,j,k)} = \sum_{i,i\in V\setminus F} E_{(i,j)}$$

example: $\Phi_{(i,i,k)}(\sigma) = \frac{1}{2}(\sigma_i\sigma_i + \sigma_i\sigma_k + \sigma_k\sigma_i)$ if (i,j,k) is a triangle

equivalent to \boldsymbol{E}

 Φ is m-potential: there is a cofiguration σ_{opt} such that $\Phi_F(\sigma_{\text{opt}}) = \min_{\sigma \in V^S} \Phi_F(\sigma) \ \forall$ finite F

Φ has locally optimal ground state configurations

no frustration

Solution to frustration: m-potentials

spin system: lattice vertices V, spin set $S = \{+1, -1\}$ configuration: $\sigma = \{\sigma_i\}_{i \in V} \in V^S$

Antiferromagnetic interaction: adjacent spins prefer to be opposite:

$$E_{(i,j)}$$
 minimized when $\sigma_i = -\sigma_j$: $E_{(i,j)}(\sigma) = \sigma_i \cdot \sigma_j$ if (i,j) adjacent else 0

frustration: no configuration in a triangle satisfies all local minimization conditions (i,j,k) is a triangle, $\forall \sigma \ E_{(i,j)}(\sigma) + E_{(i,k)}(\sigma) + E_{(k,j)}(\sigma) \geq -1 > -3 = 3 \min E_{(i,j)}$

triangle potential: Φ such that $\Phi_{(i,j,k)}(\sigma) = 0 \quad \forall \sigma \text{ if } (i,j,k) \text{ is not a triangle}$

$$\Phi$$
 is **equivalent** to E if \forall finite subset $F \subset V$

$$\Phi_{V\setminus F} = E_{V\setminus F}$$

$$\sum_{i,i,k\in V\setminus F} \Phi_{(i,j,k)} = \sum_{i,i\in V\setminus F} E_{(i,j)}$$

example:
$$\Phi_{(i,j,k)}(\sigma) = \frac{1}{2}(\sigma_i\sigma_j + \sigma_i\sigma_k + \sigma_k\sigma_j)$$
 if (i,j,k) is a triangle

equivalent to E

 Φ is m-potential: there is a cofiguration σ_{opt} such that $\Phi_F(\sigma_{\text{opt}}) = \min_{\sigma \in V^S} \Phi_F(\sigma) \ \forall$ finite F

Φ has locally optimal ground state configurations

no frustration

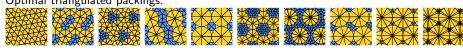
ightarrow find ground state configurations for E

Triangulated = optimal?

Optimal triangulated packings:

Triangulated = **optimal?**

Optimal triangulated packings:



Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optimal.

Triangulated = **optimal?**

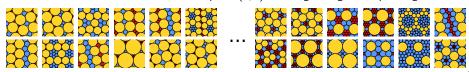
Optimal triangulated packings:

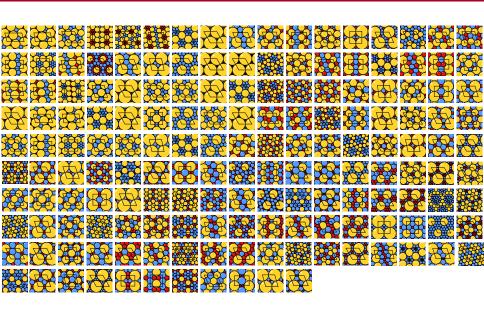
Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optimal.

Theorem (Oo Fernique, Hashemi, Sizova 2019)

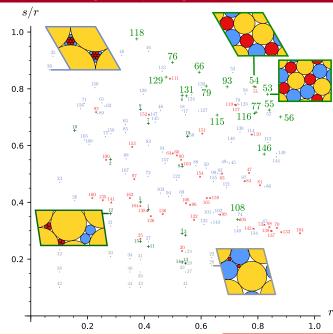
Discs of radii 1, r and s: there are 164 pairs (r, s) allowing triangulated packings.





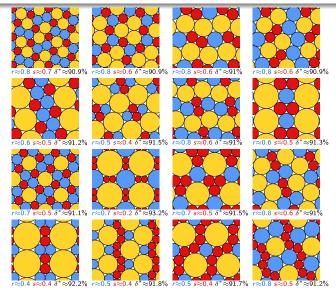
164 (r, s) allowing triangulated packings:

- 15 cases: non saturated
- 16+16 cases:
 a ternary or binary
 triangulated packing
 is densest
- 45 cases: a binary non triangulated packing is denser

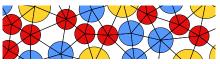


Theorem (Fernique, P 2023)

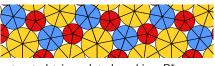
Each of the following packings is optimal for discs of radii 1, r and s:



Emptiness instead of density

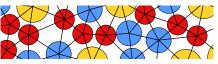


saturated packing P with the same discs density δ , FM-triangulation $\mathcal T$



saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Emptiness instead of density



saturated packing P with the same discs density δ , FM-triangulation \mathcal{T}

saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Density function is not additive: $\delta \left(\begin{array}{c} \\ \\ \end{array} \right) + \delta \left(\begin{array}{c} \\ \\ \end{array} \right) \neq \delta \left(\begin{array}{c} \\ \\ \end{array} \right)$

Emptiness instead of density

saturated packing P with the same discs density δ , FM-triangulation \mathcal{T}

saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

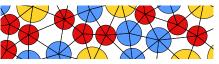
Density function is not additive: $\delta \left(\begin{array}{c} \\ \\ \end{array} \right) + \delta \left(\begin{array}{c} \\ \\ \end{array} \right) \neq \delta \left(\begin{array}{c} \\ \\ \end{array} \right)$

Emptiness of a triangle $\Delta \in \mathcal{T}$: $E(\Delta) = \delta^* \times area(\Delta) - area(\Delta \cap P)$

 $E(\Delta) > 0$ iff the density of Δ is less than δ^* $E(\Delta) < 0$ iff the density of Δ is greater than δ^*

Additive!

Emptiness instead of density



saturated packing P with the same discs density δ , FM-triangulation $\mathcal T$

saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Density function is not additive:
$$\delta$$
 $\bigg(\bigg) + \delta \bigg(\bigg) \neq \delta \bigg(\bigg) \bigg) \longrightarrow \delta \bigg(\bigg)$

Emptiness of a triangle
$$\Delta \in \mathcal{T}$$
: $E(\Delta) = \delta^* \times area(\Delta) - area(\Delta \cap P)$
 $E(\Delta) > 0$ iff the density of Δ is less than δ^*
 $E(\Delta) < 0$ iff the density of Δ is greater than δ^*

Additive!

$$\delta^* \geq \delta \iff \sum_{\Delta \in \mathcal{T}} E(\Delta) \geq 0$$

Potential is a redistribution of emptiness

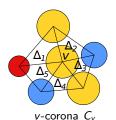
We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}_{\text{vertices}}$$
 such that

$$\forall$$
 triangle $\Delta \in \mathcal{T}$, $U(\Delta) \leq E(\Delta)$ (Δ)

We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}_{\text{vertices}}$$
 such that

$$\forall$$
 triangle $\Delta \in \mathcal{T}$, $U(\Delta) \leq E(\Delta)$ (Δ)

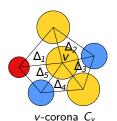
$$\forall \text{ vertex } v \in \mathcal{T}, \sum_{\Delta \in C_v} \dot{U}_{\Delta}^v \geq 0 \qquad (\bullet)$$



We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^{A} + \dot{U}_{\Delta}^{B} + \dot{U}_{\Delta}^{C}}_{\text{vertices}}$$
 such that

$$\forall$$
 triangle $\Delta \in \mathcal{T}$, $U(\Delta) \leq E(\Delta)$ (Δ)

$$\forall \text{ vertex } v \in \mathcal{T}, \sum_{\Delta \in \mathcal{C}_v} \dot{U}^v_\Delta \geq 0 \qquad (\bullet) \ \Rightarrow \sum_{\Delta \in \mathcal{T}} \textit{U}(\Delta) \geq 0$$

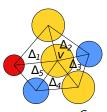


We construct a **potential**
$$U(\Delta) := \overbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}^{\text{vertices}}$$
 such that

$$\forall \ \mathsf{triangle} \ \Delta \in \mathcal{T}, \ \mathit{U}(\Delta) \leq \mathit{E}(\Delta) \ (\Delta)$$

$$\forall \ \mathsf{vertex} \ \mathit{v} \in \mathcal{T}, \sum_{\Delta \in \mathit{C}_{\mathit{v}}} \dot{\mathit{U}}_{\Delta}^{\mathit{v}} \geq 0 \qquad (\bullet) \ \Rightarrow \sum_{\Delta \in \mathcal{T}} \mathit{U}(\Delta) \geq 0$$

$$\Rightarrow \sum_{\Delta \in \mathcal{T}} \mathit{E}(\Delta) \geq 0 \Rightarrow \delta^* \geq \delta$$

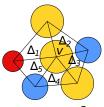


We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}_{\text{vertices}}$$
 such that

$$\forall \ \mathsf{triangle} \ \Delta \in \mathcal{T}, \ \mathit{U}(\Delta) \leq \mathit{E}(\Delta) \ (\Delta)$$

$$\forall \ \mathsf{vertex} \ \mathit{v} \in \mathcal{T}, \sum_{\Delta \in \mathit{C}_{\mathit{v}}} \dot{\mathit{U}}_{\Delta}^{\mathit{v}} \geq 0 \qquad (\bullet) \ \Rightarrow \sum_{\Delta \in \mathcal{T}} \mathit{U}(\Delta) \geq 0$$

$$\Rightarrow \sum_{\Delta \in \mathit{T}} \mathit{E}(\Delta) \geq 0 \Rightarrow \delta^* \geq \delta$$



If such U exists then $\delta^* > \delta$

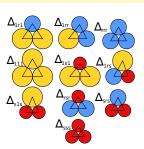
Construct it in way that (\bullet) holds and then prove (Δ)

v-corona C_v

Choosing U to assure (\bullet)

 Δ_{xyz} \widehat{xyz} V_{xyz}

tight triangle: tangent discs of radii x,y,z angle of Δ_{xyz} in the center of the y-disc potential of Δ_{xyz} in the center of the y-disc



Choosing U to assure (\bullet)

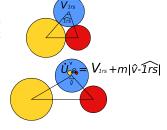
 Δ_{xyz} \widehat{xyz} V_{xyz}

tight triangle: tangent discs of radii x, y, z angle of Δ_{xyz} in the center of the y-disc potential of Δ_{xyz} in the center of the y-disc

potential of a triangle Δ in v:

$$\dot{U}^{\rm v}_{\Delta} \coloneqq V_{\rm xyz} + m |\hat{v} - \widehat{\rm xyz}|$$

measures how "far" Δ is from being tight



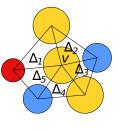
Choosing U to assure (\bullet)

potential of a triangle Δ in v:

$$\dot{U}^{\rm v}_{\Delta} \coloneqq V_{\rm xyz} + m|\hat{\rm v} - \widehat{\rm xyz}|$$

measures how "far" Δ is from being tight

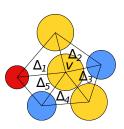
measures how "far"
$$\Delta$$
 is from being tight
$$\text{Choose } m \text{ to satisfy } \sum_{\Delta \in \mathcal{C}_v} \dot{\mathcal{U}}_\Delta^v \geq \sum_{\substack{x,y,z \\ \text{disc radii of}}} V_{xyz} + m \times |2\pi - \sum_{\substack{x,y,z \\ \text{disc radii of}}} \widehat{xyz}| \geq 0 \text{ for all coronas } \mathcal{C}_v$$



 $\Delta \in C_{v}$

Choosing U to assure (\bullet)

 Δ_{xyz} tight triangle: tangent discs of radii x, y, z \widehat{xyz} angle of Δ_{xyz} in the center of the y-disc V_{xyz} potential of Δ_{xyz} in the center of the y-disc



potential of a triangle Δ in v:

$$\dot{U}^{\mathsf{v}}_{\Delta} \coloneqq V_{\mathsf{x}\mathsf{y}\mathsf{z}} + m|\hat{\mathsf{v}} - \widehat{\mathsf{x}\mathsf{y}\mathsf{z}}|$$

measures how "far" Δ is from being tight

Choose
$$m$$
 to satisfy $\sum_{\Delta \in C_v} \dot{U}^v_{\Delta} \ge \sum_{\substack{x,y,z \ \text{disc radii of} \ \Delta \in C_v}} V_{xyz} + m \times |2\pi - \sum_{\substack{x,y,z \ \text{disc radii of} \ \Delta \in C_v}} \widehat{xyz}| \ge 0$ for all coronas C_v

angle values do not matter \Rightarrow

sequence of disc radii $S(C_{\nu})$

FM-triangulation \Rightarrow

bounded $|S(C_v)|$

finite number of linear inequalities on m \Rightarrow computer search

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (ullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation \Rightarrow uniform bound on edge length of triangles

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length of triangles

• Interval arithmetic:

instead of verifying
$$U(\Delta_{a,b,c}) \leq E(\Delta_{a,b,c})$$
 for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$,

we verify
$$[\underline{U},\overline{U}] \leq [\underline{E},\overline{E}]$$
 where $[\underline{E},\overline{E}] = E(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]}),\ [\underline{U},\overline{U}] = U(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$

• If $[\underline{U},\overline{U}]$ and $[\underline{E},\overline{E}]$ intersect, recursive subdivision:

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation \Rightarrow uniform bound on edge length of triangles

• Interval arithmetic:

instead of verifying
$$U(\Delta_{a,b,c}) \leq E(\Delta_{a,b,c})$$
 for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$,

we verify
$$[\underline{U},\overline{U}] \leq [\underline{E},\overline{E}]$$
 where $[\underline{E},\overline{E}] = E(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]}),\ [\underline{U},\overline{U}] = U(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$

• If $[\underline{U},\overline{U}]$ and $[\underline{E},\overline{E}]$ intersect, recursive subdivision:

QED

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length of triangles

• Interval arithmetic:

instead of verifying
$$U(\Delta_{a,b,c}) \leq E(\Delta_{a,b,c})$$
 for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$,

we verify
$$[\underline{U},\overline{U}] \leq [\underline{E},\overline{E}]$$
 where $[\underline{E},\overline{E}] = E(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]}),\ [\underline{U},\overline{U}] = U(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$

• If $[\underline{U}, \overline{U}]$ and $[\underline{E}, \overline{E}]$ intersect, recursive subdivision:

never stops if
$$U(\Delta) = E(\Delta)$$

OED ?

Local optima

On tight triangles, $\mathit{U}(\Delta_{\scriptscriptstyle X\!y\!z}) := \mathit{E}(\Delta_{\scriptscriptstyle X\!y\!z}) o \mathsf{impossible}$ to use interval method around them

 ϵ -triangles \mathcal{T}_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

Local optima

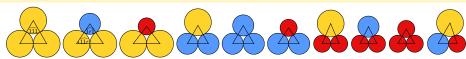
On tight triangles, $U(\Delta_{xyz}):=E(\Delta_{xyz}) o ext{impossible to use interval method around them}$

 ϵ -triangles T_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths x_i to check that:

$$\max_{T_{\epsilon}} \frac{\partial U}{\partial x_i} \Delta x_i < \min_{T_{\epsilon}} \frac{\partial E}{\partial x_i} \Delta x_i,$$

Local optima



On tight triangles, $U(\Delta_{xyz}) := E(\Delta_{xyz}) \to \text{impossible to use interval method around them}$

 ϵ -triangles \mathcal{T}_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths x_i to check that:

$$\max_{T_{\epsilon}} \frac{\partial U}{\partial x_{i}} \Delta x_{i} < \min_{T_{\epsilon}} \frac{\partial E}{\partial x_{i}} \Delta x_{i},$$

- \Rightarrow Δ_{xyz} is the maximum of U-E on T_{ϵ}
- \Rightarrow for all triangles Δ from T_{ϵ} , $U(\Delta) \leq E(\Delta)$

Local optima

On tight triangles, $U(\Delta_{xyz}) := E(\Delta_{xyz}) o \text{impossible to use interval method around them}$

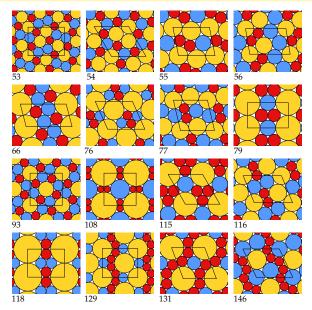
 ϵ -triangles T_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths x_i to check that:

$$\max_{T_{\epsilon}} \frac{\partial U}{\partial x_{i}} \Delta x_{i} < \min_{T_{\epsilon}} \frac{\partial E}{\partial x_{i}} \Delta x_{i},$$

- \Rightarrow Δ_{xyz} is the maximum of U-E on T_{ϵ}
- \Rightarrow for all triangles Δ from T_{ϵ} , $U(\Delta) \leq E(\Delta)$

The proof worked for these cases:



And these:

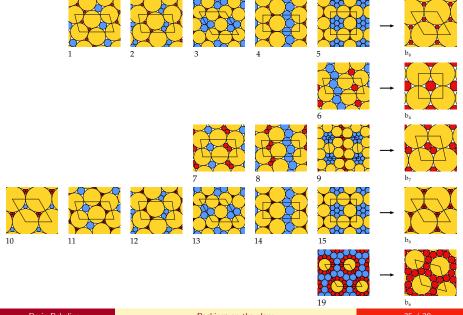
$$\delta^* \approx 92\%$$

And these:

$$\delta^* \approx 93\%$$

$$\delta^* \approx 92\%$$

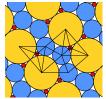
And these:



45 counter examples: flip-and-flow method

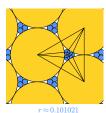
When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing



 $\delta \le 0.931369 \ s \approx 0.121445$

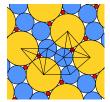
dense binary packing



45 counter examples: flip-and-flow method

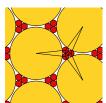
When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing



 $\delta \le 0.931369 \ s \approx 0.121445$

dense non-triangulated packing

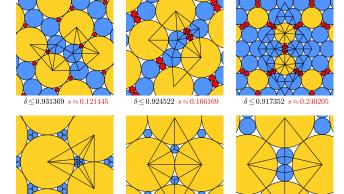


 $\delta > 0.937371 \ s \approx 0.121445$

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing



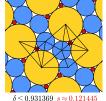
 $\delta \approx 0.950308 \ r \approx 0.154701$

dense binary packing

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

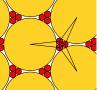
triangulated ternary packing

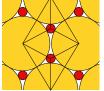


 $\delta \le 0.931369 \ s \approx 0.121445$

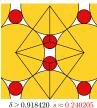
 $\delta \le 0.917352 \ s \approx 0.240205$

dense non-triangulated packing

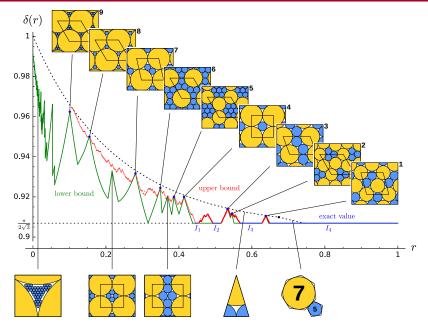




 $\delta > 0.939305 \ s \approx 0.166169$



 $\delta > 0.937371 \ s \approx 0.121445$ Daria Pchelina



What's next?

When the proof does not work, need to look further?

Possibility to derive bounds on optimal density for 3-disk packings

- Introduction
- 2 Find triangulated binary packings
- Homework I
- Find triangulated ternary packings
- More disks more questions
- Optimal triangulated packings
- Homework II

11/12-18/12

The Appolonian-type packing of level 1 is the hexagonal packing of unit disks.

Given the set \mathbb{A}_n of Appolonian-type packings of level n, the set \mathbb{A}_{n+1} is constructed by inserting disks in packings from the previus level as follows:

For each packing $P \in \mathbb{A}_n$, let T(P) denote the set of triangles in its FM-triangulation,

let R denote the radius of the largest support circle of a triangle from T(P),

let SC(P) be the packing P where we insert disks of radius R until it is saturated.

If there is at least one equilateral triangle in T(P) (formed by three identical disks) let r be the disk radius of the largest of them, called t.

Packing ET(P) is obtained from the packing P by insertion of triplets of disks of radius $(5-2\sqrt{6})r$ in each

triangle t in the only possible way:

We define \mathbb{A}_{n+1} as the set of all packings SC(P) and ET(P) for $P\in\mathbb{A}_n$:

$$\mathbb{A}_{n+1} = \{SC(P)|P \in \mathbb{A}_n\} \cup \{ET(P)|P \text{ has equlateral FM-triangles and } P \in \mathbb{A}_n\}$$

- Prove that Appolonian-type packings are triangulated. What is the densest Appolonian-type packing of level 3?
- **③*** What is the densest Appolonian-type packing of level n? What are the disk radii present in packings from \mathbb{A}_n ?

Laria.pchelina@ens-lyon.fr

Deadline: beginning of the lecture in one week (18/12, 10h15)