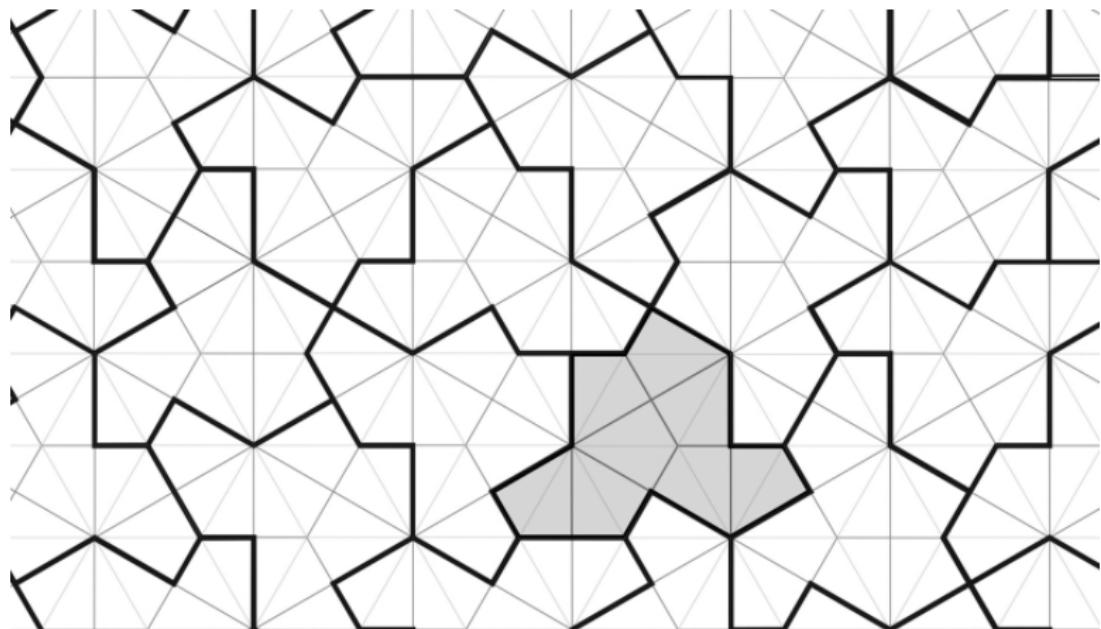


Exhaustive search of convex pentagons which tile the plane

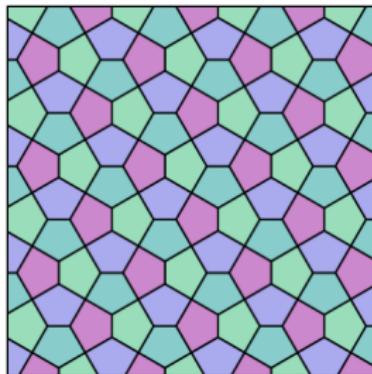
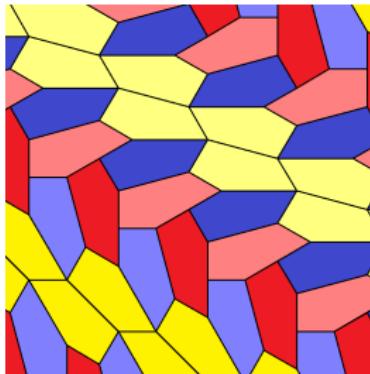
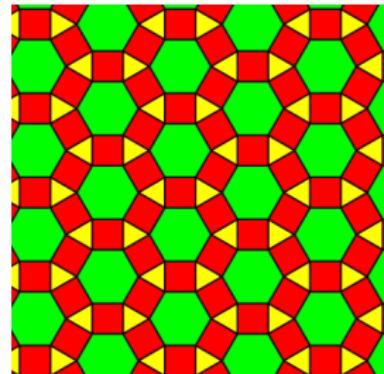
Michaël RAO

CNRS - ENS Lyon
LIP - Laboratoire de l'Informatique du Parallelisme
équipe MC2

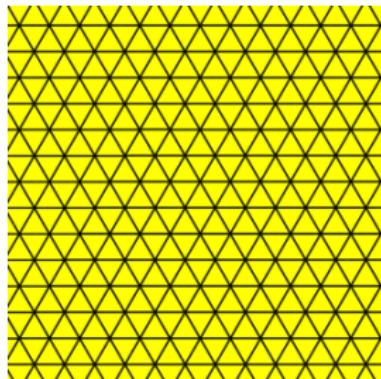
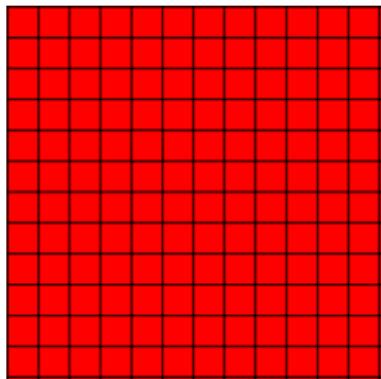
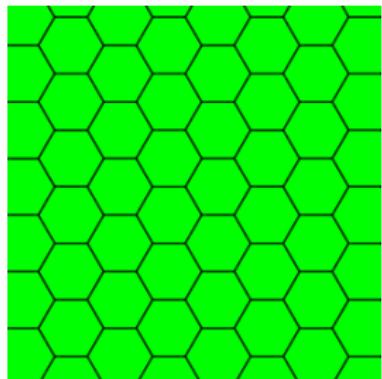
The “hat” (Smith, Myers, Kaplan, Goodman-Strauss, 2023)



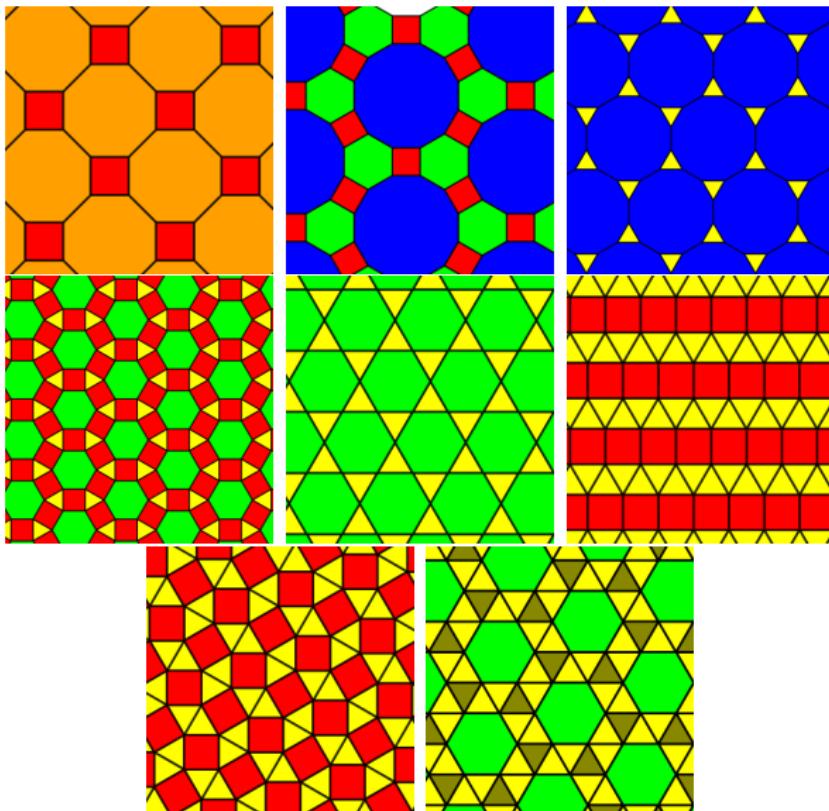
Tiling: covering of the plane using copies of one or more **tiles**, with no overlaps and no gaps.



Tilings with a regular polygon

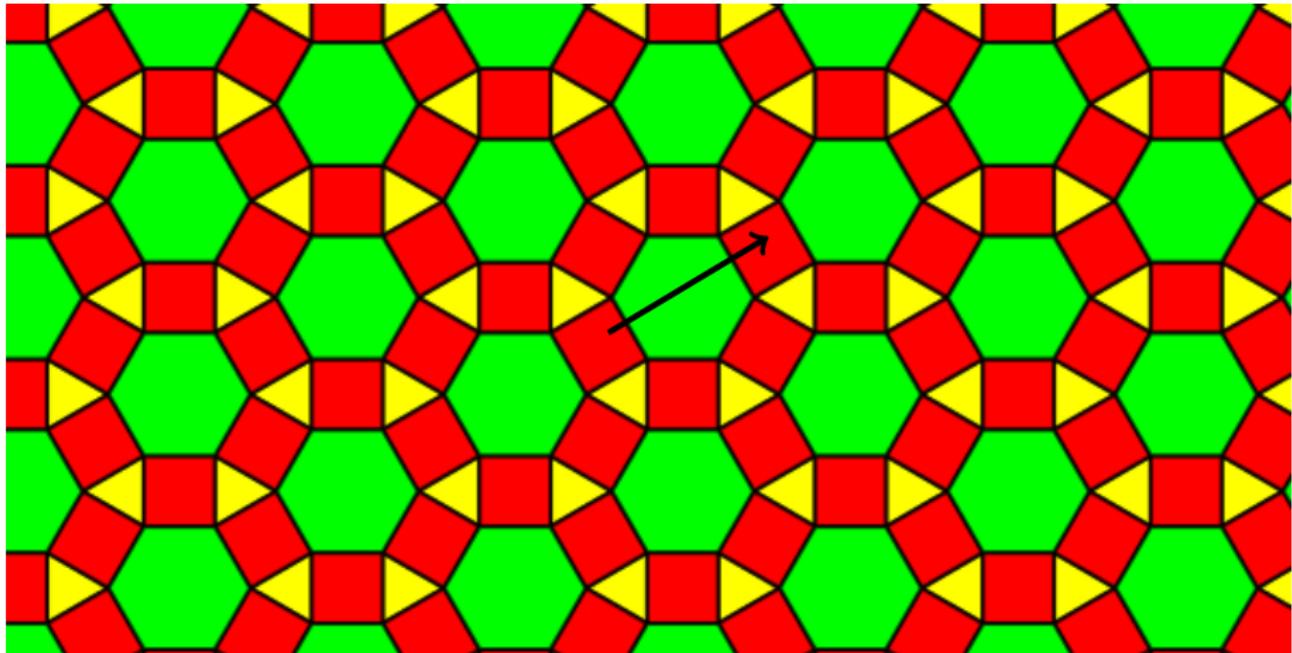


Semi-regular tilings



Aperiodic Tiling

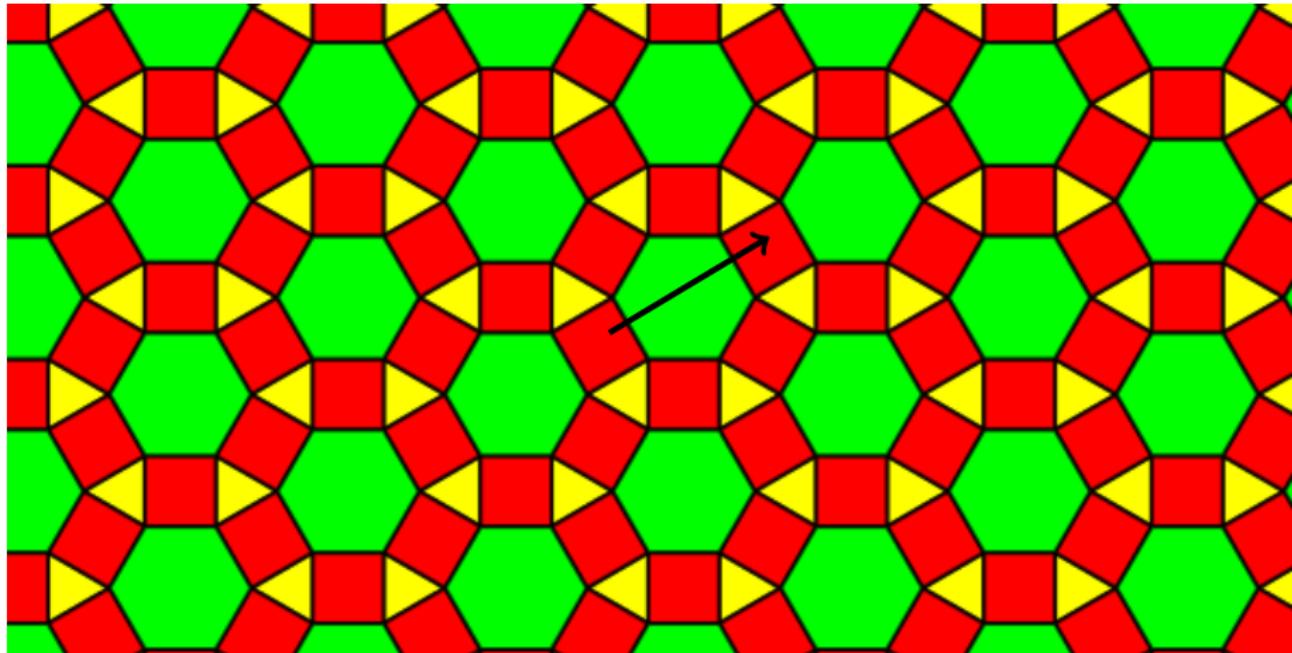
Periodic tiling: there is a translation which does not change the tiling



previous tilings are periodic

Aperiodic Tiling

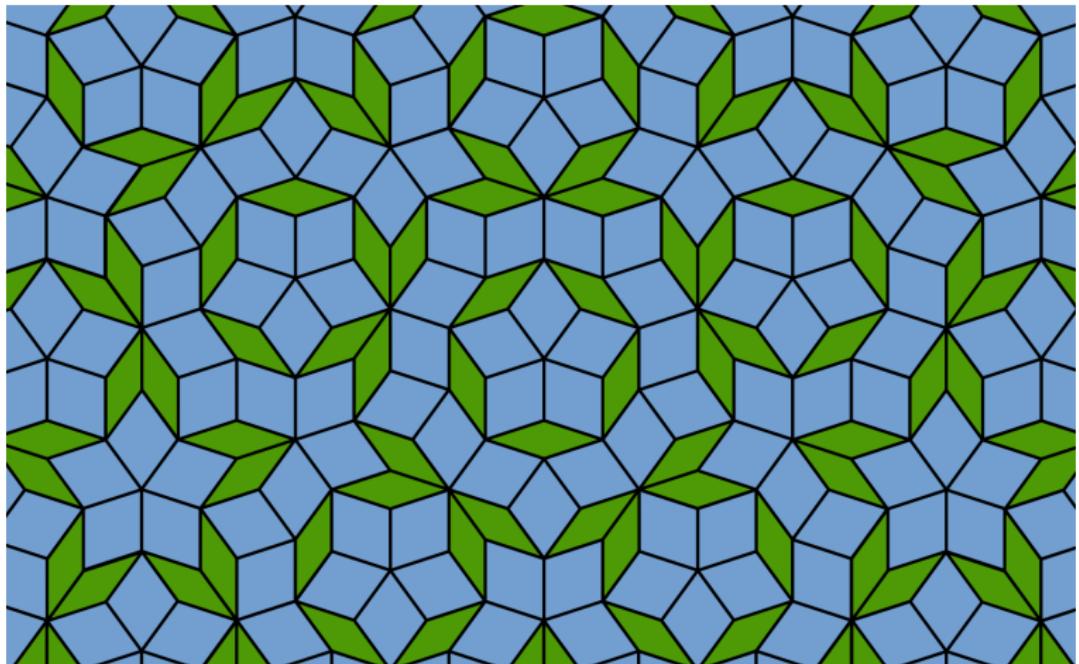
Periodic tiling: there is a translation which does not change the tiling



previous tilings are periodic

Aperiodic tiling: There is not such translation

Penrose Tiling: a well known aperiodic tiling



Penrose Tiling IRL

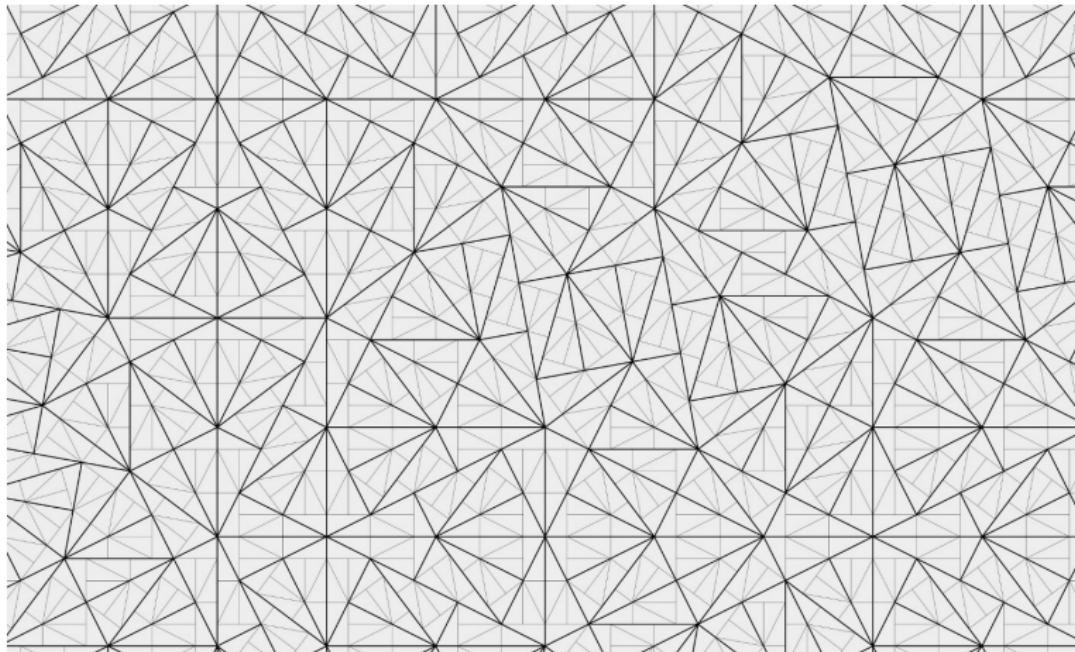
Roger Penrose, Institut Mitchell, Texas A&M University

Penrose Tiling IRL

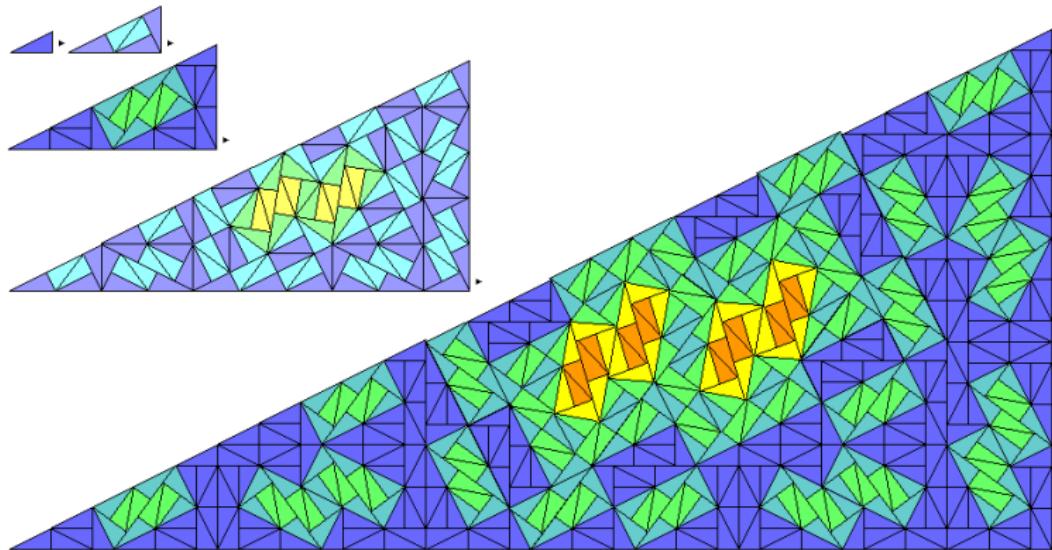
By Thomas Fernique and Evgeny Poloskin

<http://images.math.cnrs.fr/Un-parquet-de-Penrose.html>

Pinwheel tiling



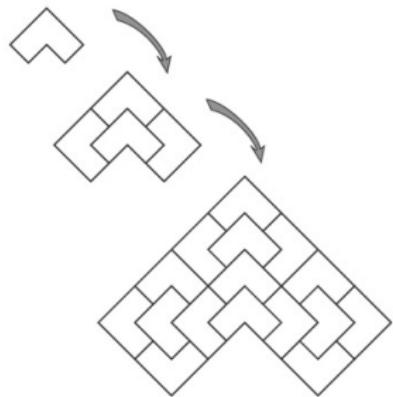
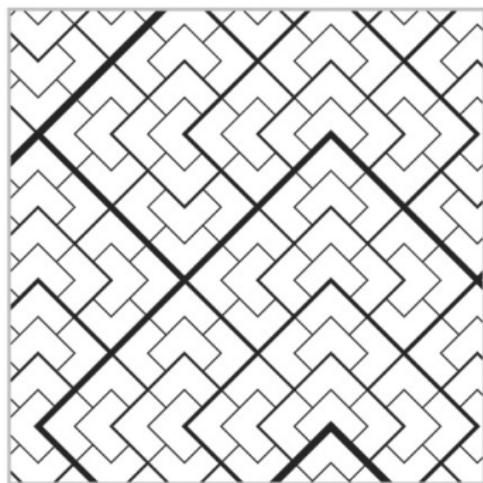
Pinwheel tiling



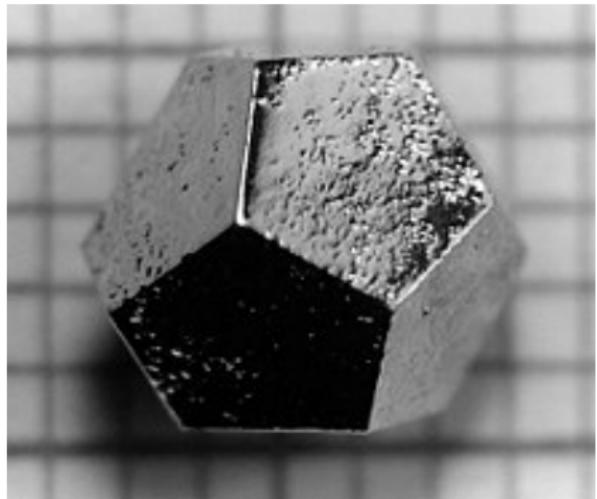
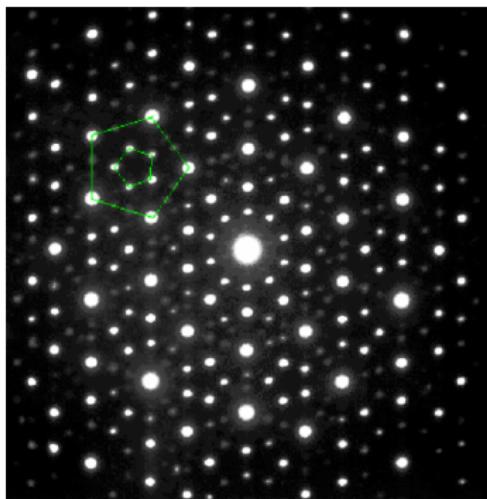
Pinwheel tiling

Federation Square (Melbourne, Australia)

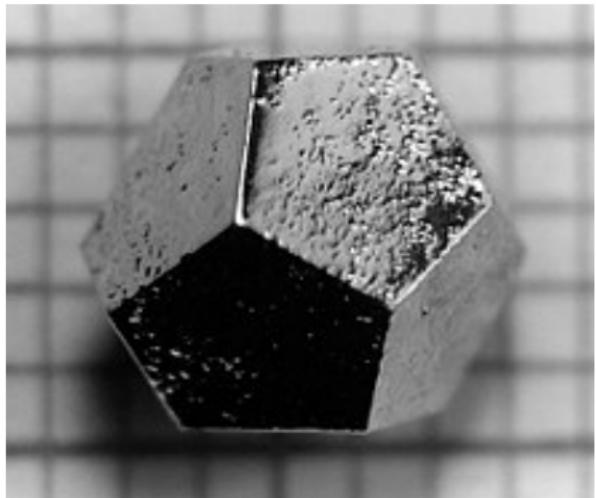
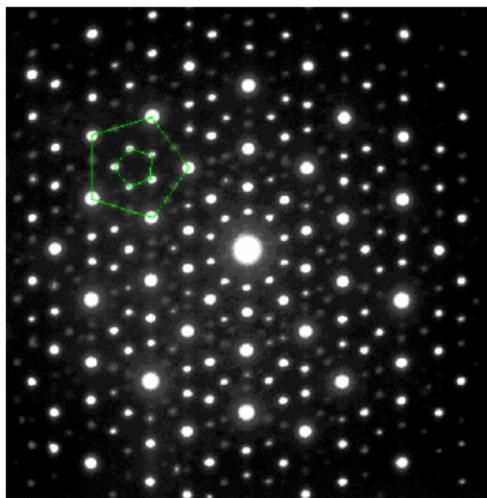
Chair Tiling



Aperiodicity in the nature

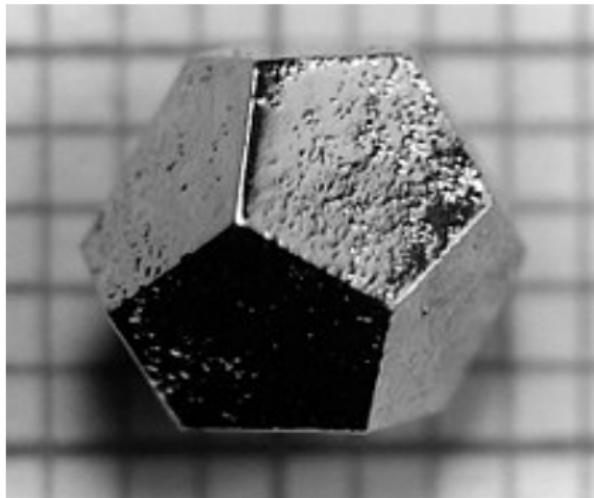
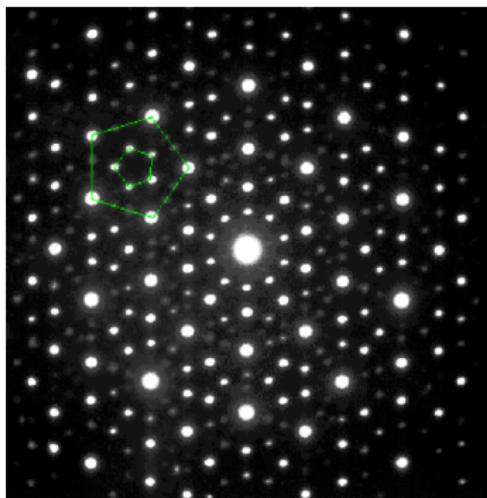


Aperiodicity in the nature



Quasiperiodic-crystal: crystal with non periodic structure

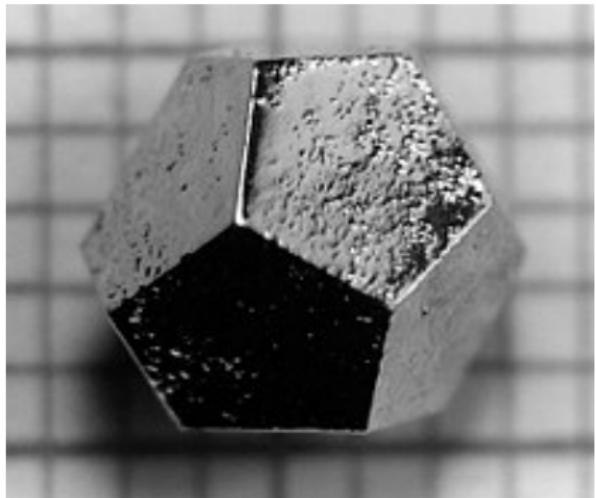
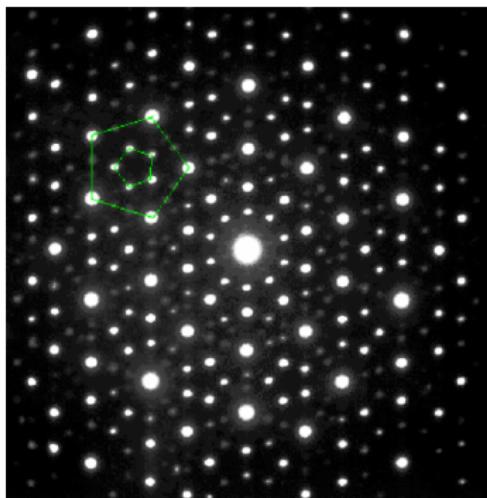
Aperiodicity in the nature



Quasiperiodic-crystal: crystal with non periodic structure

Discovered in 1982 by Dan Shechtman.

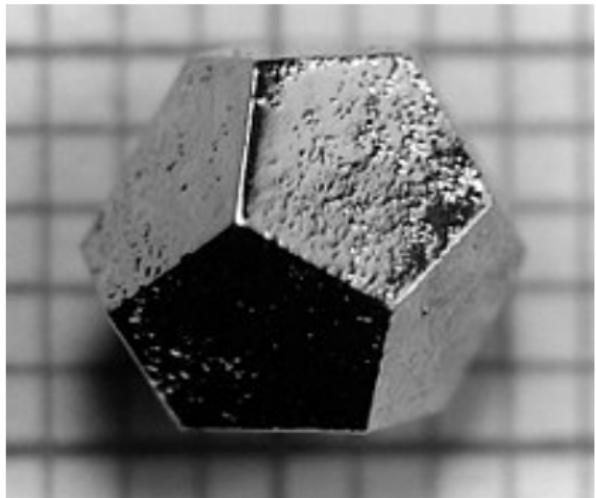
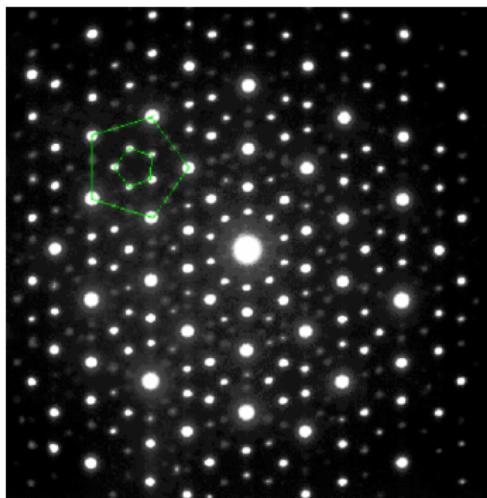
Aperiodicity in the nature



Quasiperiodic-crystal: crystal with non periodic structure

Discovered in 1982 by Dan Shechtman. Nobel price in chemistry (2011)

Aperiodicity in the nature



Quasiperiodic-crystal: crystal with non periodic structure

Discovered in 1982 by Dan Shechtman. Nobel price in chemistry (2011)

Natural quasiperiodic-crystal discovered in 2009 in Koryak Mountains.

Force the aperiodicity ?

Suppose you want to find a set of local rules such that the only crystal/floor/... you can construct is aperiodic

Force the aperiodicity ?

Suppose you want to find a set of local rules such that the only crystal/floor/... you can construct is aperiodic

How to “force” a tiling to be aperiodic ?

Force the aperiodicity ?

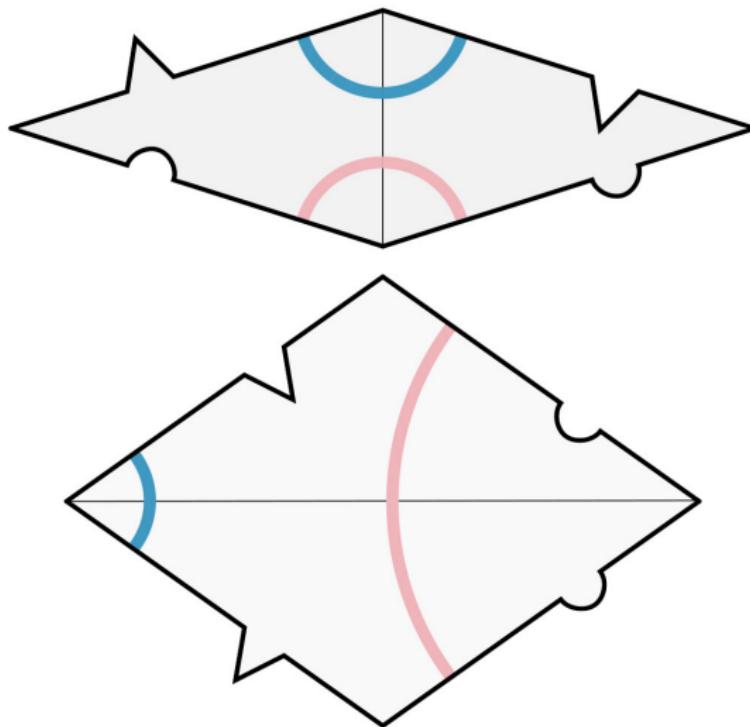
Suppose you want to find a set of local rules such that the only crystal/floor/... you can construct is aperiodic

How to “force” a tiling to be aperiodic ?

A tile-set is **aperiodic** if it tiles the plane, and all tilings are aperiodic

Of course, we are interested in simple aperiodic tile-sets.

Penrose with decorations



Aperiodic tiling with one tile ?

There are aperiodic tile-sets with two tiles (e.g.: Penrose, Ammann–Beenker...)

Is there an aperiodic tile-set with one tile ?

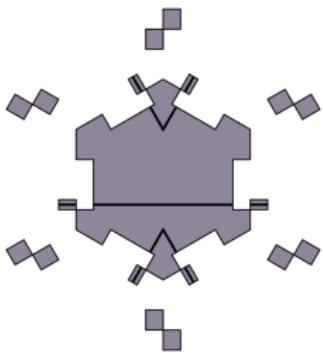
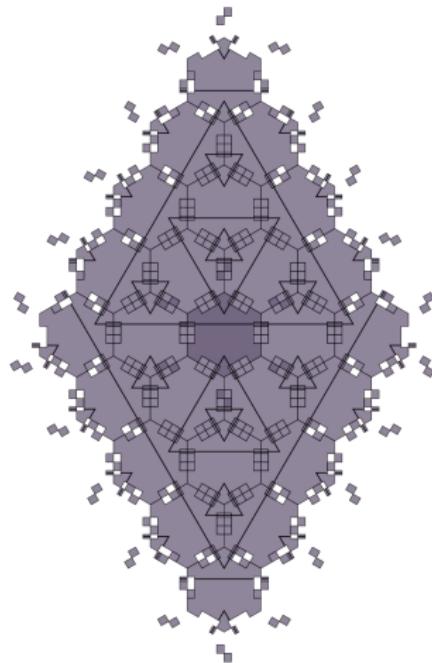
Aperiodic tiling with one tile ?

There are aperiodic tile-sets with two tiles (e.g.: Penrose, Ammann–Beenker...)

Is there an aperiodic tile-set with one tile ?

⇒ “Ein-stein” problem (from the German, “one stone”)

Taylor-Socolar tile (2011)



Aperiodic tiling with one connected tile ?

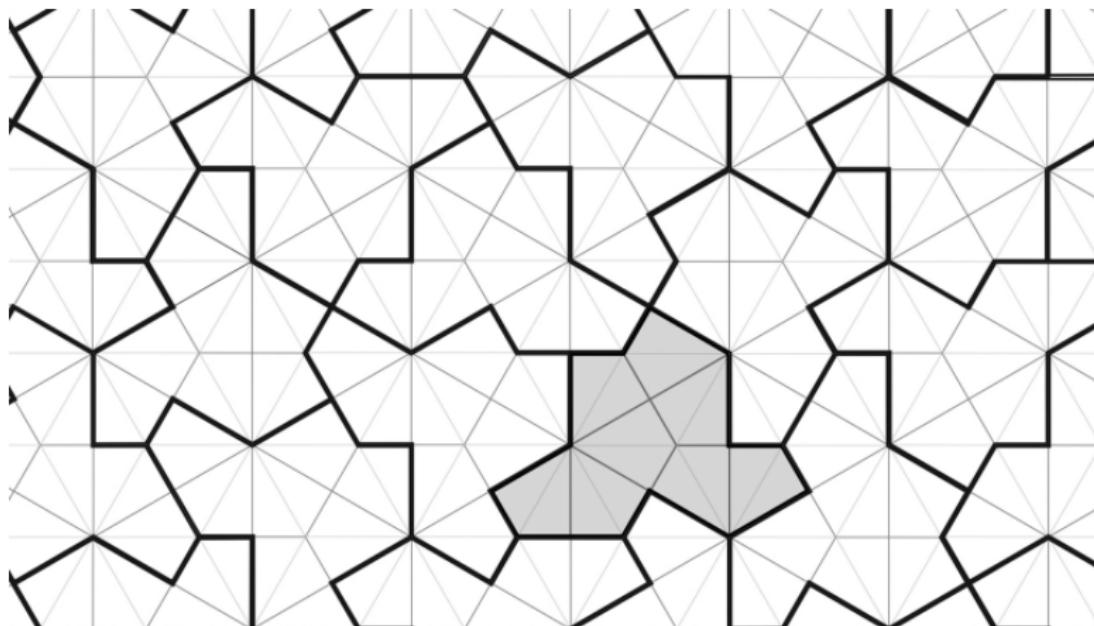
Is there an aperiodic tile-set with one connected tile ?

Aperiodic tiling with one connected tile ?

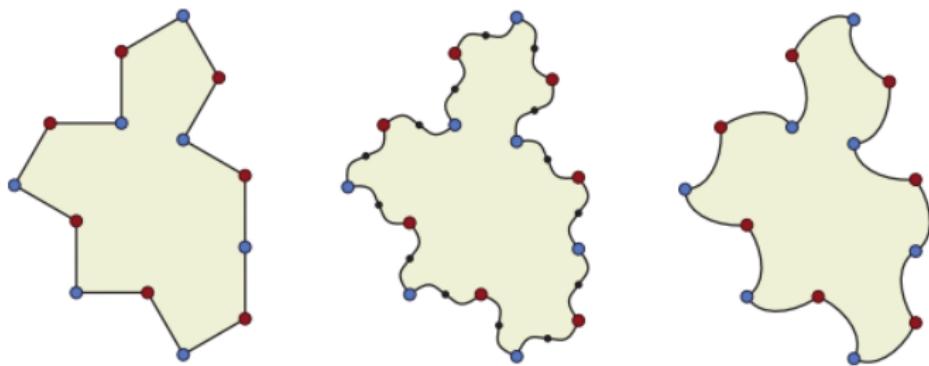
Is there an aperiodic tile-set with one connected tile ?

In 2023 : Yes, the “Hat”, Discovered by David Smith.

The hat (Smith, Myers, Kaplan, Goodman-Strauss, 2023)



The spectre (Smith, Myers, Kaplan, Goodman-Strauss, 2023)



Finding polygons that tile the plane

Finding polygons that tile the plane

⇒ try to do an exhaustive search by computer, on polygons.

Finding polygons that tile the plane

⇒ try to do an exhaustive search by computer, on polygons.

The space is too big...

Finding polygons that tile the plane

⇒ try to do an exhaustive search by computer, on polygons.

The space is too big... first add a (strong) constraint

Finding polygons that tile the plane

⇒ try to do an exhaustive search by computer, on polygons.

The space is too big... first add a (strong) constraint

Is there an aperiodic tile-set with one convex tile ?

More generally:

Which convex shape tiles the plane ?

Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

⇒ look at only polygons

Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

⇒ look at only polygons

- All triangles tile the plane

Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

⇒ look at only polygons

- All triangles tiles the plane
- All quadrilaterals tiles the plane

Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

⇒ look at only polygons

- All triangles tile the plane
- All quadrilaterals tile the plane
- A convex polygon with 7 or more sides do not tile the plane

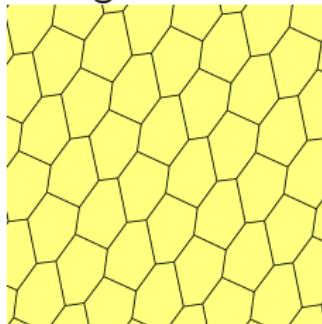
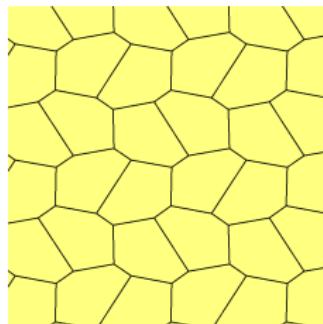
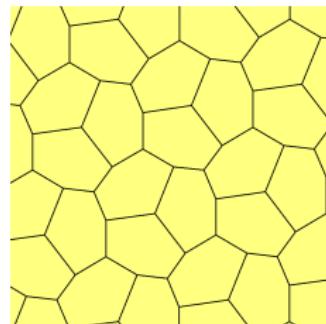
Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

⇒ look at only polygons

- All triangles tiles the plane
- All quadrilaterals tiles the plane
- A convex polygon with 7 or more sides do not tile the plane
- Hexagons whichs tiles:



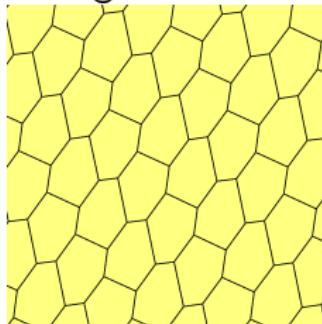
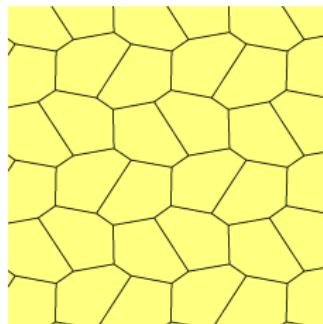
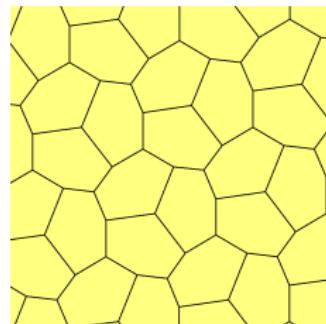
Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Which convex shape tiles the plane ?

⇒ look at only polygons

- All triangles tiles the plane
- All quadrilaterals tiles the plane
- A convex polygon with 7 or more sides do not tile the plane
- Hexagons whichs tiles:



- Open question : Pentagons ?

Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5

Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8

Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)

Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)
- James (1975): Type 10

Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)
- James (1975): Type 10
- Rice (1977): Types 9, 11, 12 and 13

Pentagons: history

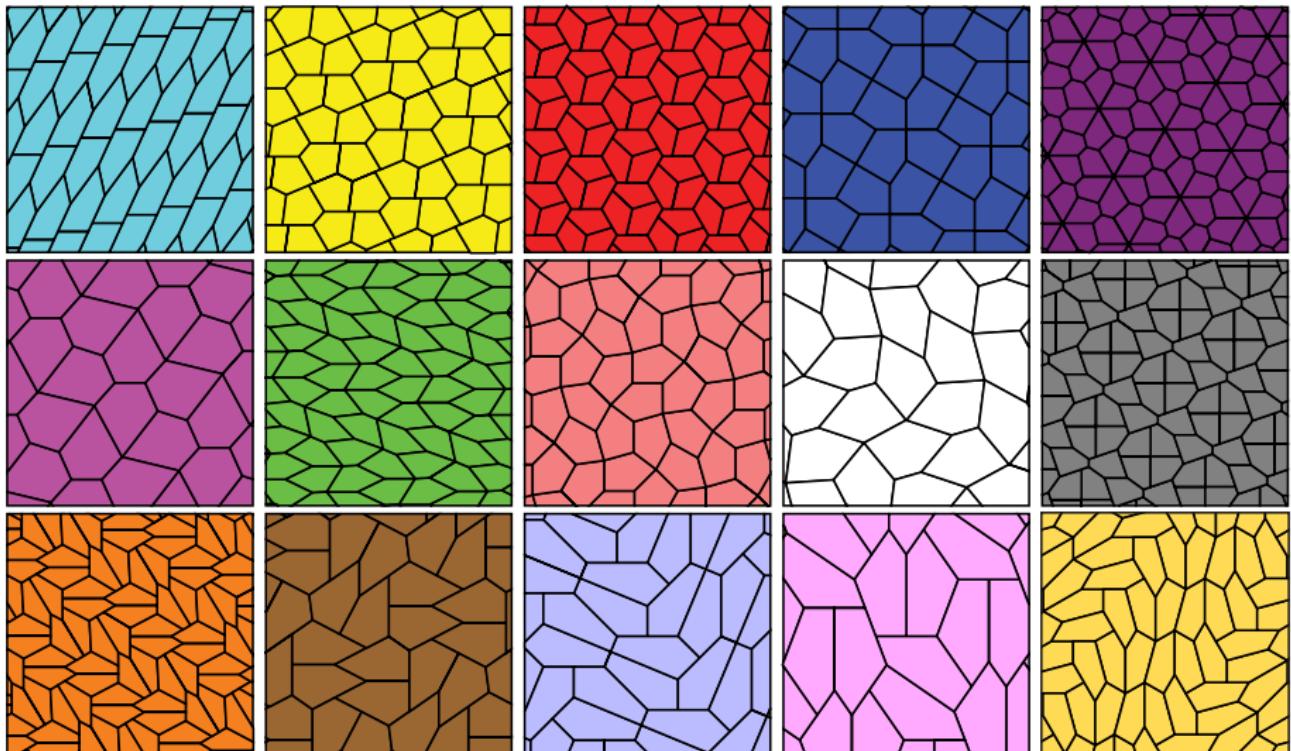
From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)
- James (1975): Type 10
- Rice (1977): Types 9, 11, 12 and 13
- Stein (1985): Type 14

Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)
- James (1975): Type 10
- Rice (1977): Types 9, 11, 12 and 13
- Stein (1985): Type 14
- Mann, McLoud & Von Derau (2015): Type 15.



(Wikipedia)

What is a “type” ?

A “type” is a set of pentagons

What is a “type” ?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

What is a “type” ?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A *type* is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)

What is a “type” ?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A *type* is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)

A type *tiles* : all pentagons in this set tile with a same (periodic) pattern

What is a “type” ?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A *type* is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)

A type *tiles* : all pentagons in this set tile with a same (periodic) pattern (but other tilings are possible)

What is a “type” ?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

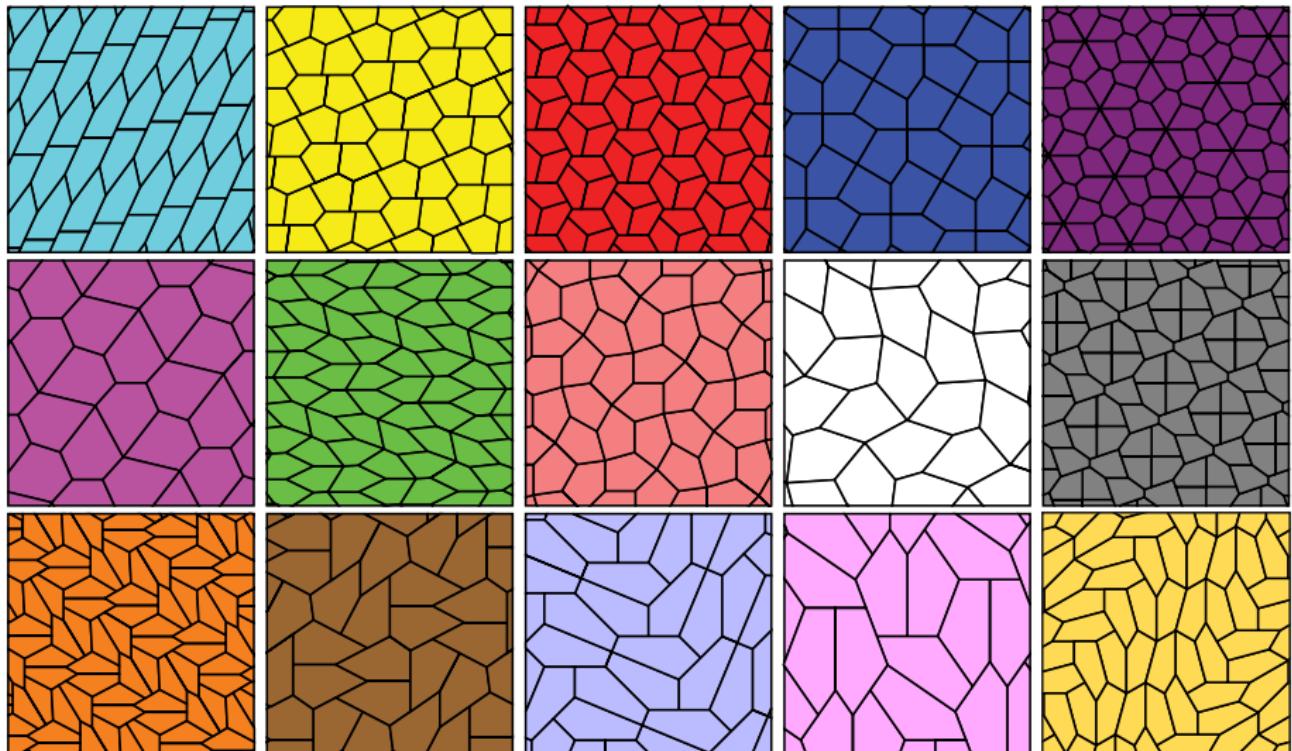
A *type* is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_s of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)

A type *tiles* : all pentagons in this set tile with a same (periodic) pattern (but other tilings are possible)

Examples:

- Type 1: $\alpha_1 + \alpha_2 = \pi$
- Type 2: $\alpha_1 + \alpha_3 = \pi$ and $\ell_1 = \ell_3$
- Type 4: $\alpha_3 = \alpha_5 = \pi/2$, $\ell_2 = \ell_3$ and $\ell_4 = \ell_5$
- ...



(Wikipedia)

Sketch

We present an exhaustive search of all convex pentagons which tile the plane

Sketch

We present an exhaustive search of all convex pentagons which tile the plane

Let \mathcal{P} be a convex pentagon which tiles the plane.

- Part 1: There exist a tiling by \mathcal{P} such that each vertex category has positive density
- The set of vertex category (i.e. conditions implied by angles) must be “good”
- Part 2: There are only 371 good sets to consider
- Part 3: For each good set : we do an exhaustive search
- Result: we found only the 15 known families (and some special cases).

Part 1: positive density tiling and good sets

Let \mathcal{P} be a convex pentagon

- the vertices are s_1, \dots, s_5 , in clockwise order
- the angles are respectively $\alpha_1 \times \pi, \dots, \alpha_5 \times \pi$

$$\forall 1 \leq i \leq 5, \quad 0 < \alpha_i < 1$$

$$\sum_{i=1}^5 \alpha_i = (1, 1, 1, 1, 1) \cdot \alpha = 3$$

Part 1: positive density tiling and good sets

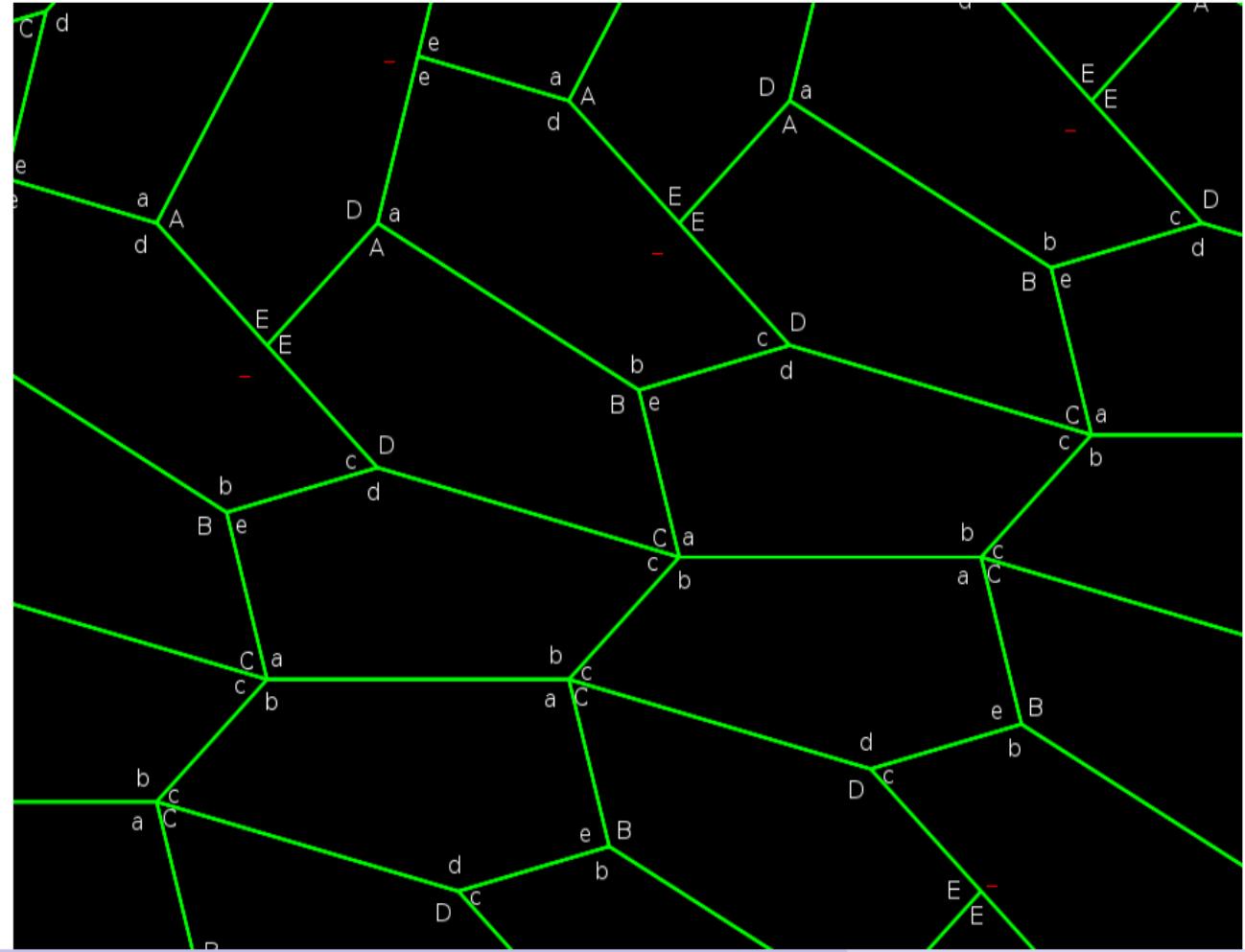
Let \mathcal{P} be a convex pentagon

- the vertices are s_1, \dots, s_5 , in clockwise order
- the angles are respectively $\alpha_1 \times \pi, \dots, \alpha_5 \times \pi$

$$\forall 1 \leq i \leq 5, \quad 0 < \alpha_i < 1$$

$$\sum_{i=1}^5 \alpha_i = (1, 1, 1, 1, 1) \cdot \alpha = 3$$

Let \mathcal{T} be tiling of the plane by \mathcal{P} (we allow rotation/translation/mirror)
(Note: no hypothesis on periodicity / transitivity)



Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The *vector category* of s , denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s .

Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The *vector category* of s , denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s .

For every vertex s , $V(s) \cdot \alpha = 2$

Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The *vector category* of s , denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s .

For every vertex s , $V(s) \cdot \alpha = 2$

\mathcal{W} : set of vectors categories of vertices in \mathcal{T} .

Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The *vector category* of s , denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s .

For every vertex s , $V(s) \cdot \alpha = 2$

\mathcal{W} : set of vectors categories of vertices in \mathcal{T} . \mathcal{W} is finite

Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The *vector category* of s , denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s .

For every vertex s , $V(s) \cdot \alpha = 2$

\mathcal{W} : set of vectors categories of vertices in \mathcal{T} . \mathcal{W} is finite

Attention ! Two cases of vertices:

- “Half” : s is in the border of a tile P , but not a vertex of P
- “Full” : s is a vertex of every tile around s

We have to “correct” the vector category of “half” vertices.

Here, for the sake of simplicity, we do not talk about half vertices...

A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}$$

A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}$$

and \mathcal{W} is the following:

$$v_a = (1, 1, 1, 0, 0)$$

$$v_b = (0, 0, 0, 2, 2)$$

$$v_c = (1, 1, 0, 1, 0)$$

A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}$$

and \mathcal{W} is the following:

$$v_a = (1, 1, 1, 0, 0)$$

$$v_b = (0, 0, 0, 2, 2)$$

$$v_c = (1, 1, 0, 1, 0)$$

What are the densities of v 's ?

A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}$$

and \mathcal{W} is the following:

$$v_a = (1, 1, 1, 0, 0)$$

$$v_b = (0, 0, 0, 2, 2)$$

$$v_c = (1, 1, 0, 1, 0)$$

What are the densities of v 's ?

$$\Rightarrow d_a v_a + d_b v_b + d_c v_c = (1, 1, 1, 1, 1)$$

A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}$$

and \mathcal{W} is the following:

$$v_a = (1, 1, 1, 0, 0)$$

$$v_b = (0, 0, 0, 2, 2)$$

$$v_c = (1, 1, 0, 1, 0)$$

What are the densities of v 's ?

$$\Rightarrow d_a v_a + d_b v_b + d_c v_c = (1, 1, 1, 1, 1)$$

$$\Rightarrow d_a = 1, d_b = \frac{1}{2}, d_c = 0$$

A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}$$

and \mathcal{W} is the following:

$$v_a = (1, 1, 1, 0, 0)$$

$$v_b = (0, 0, 0, 2, 2)$$

$$v_c = (1, 1, 0, 1, 0)$$

What are the densities of v 's ?

$$\Rightarrow d_a v_a + d_b v_b + d_c v_c = (1, 1, 1, 1, 1)$$

$$\Rightarrow d_a = 1, d_b = \frac{1}{2}, d_c = 0$$

Can we tile only with v_a and v_b ?

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling...

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \mathcal{P} exists, then a tiling of positive density by \mathcal{P} exists.

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \mathcal{P} exists, then a tiling of positive density by \mathcal{P} exists.

- Otherwise, suppose $v \in \mathcal{W}$ with density 0

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \mathcal{P} exists, then a tiling of positive density by \mathcal{P} exists.

- Otherwise, suppose $v \in \mathcal{W}$ with density 0
- There are sub-tilings of an arbitrarily large disk without a vertex v

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \mathcal{P} exists, then a tiling of positive density by \mathcal{P} exists.

- Otherwise, suppose $v \in \mathcal{W}$ with density 0
- There are sub-tilings of an arbitrarily large disk without a vertex v (take a grid of girth x : if there is a v in every cell \rightarrow contradiction)

Positive density tilings

Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \mathcal{P} exists, then a tiling of positive density by \mathcal{P} exists.

- Otherwise, suppose $v \in \mathcal{W}$ with density 0
- There are sub-tilings of an arbitrarily large disk without a vertex v (take a grid of girth x : if there is a v in every cell \rightarrow contradiction)
- By compactness one can construct a tiling without v
- (warning: be careful with half vertices and “fracture lines”)

Good set

Definition (Good set)

$\mathcal{X} \subseteq \mathbb{N}^5$ is *good* if $\forall u \in \mathbb{R}^5$ with $\sum u = 0$, either:

- $u \cdot v = 0$ for every $v \in \mathcal{X}$, or
- there are $v, v' \in \mathcal{X}$ such that $u \cdot v < 0 < u \cdot v'$.

Good set

Definition (Good set)

$\mathcal{X} \subseteq \mathbb{N}^5$ is *good* if $\forall u \in \mathbb{R}^5$ with $\sum u = 0$, either:

- $u \cdot v = 0$ for every $v \in \mathcal{X}$, or
- there are $v, v' \in \mathcal{X}$ such that $u \cdot v < 0 < u \cdot v'$.

In the toy example:

$$v_1 = (1, 1, 1, 0, 0)$$

$$v_2 = (0, 0, 0, 2, 2)$$

$$v_3 = (1, 1, 0, 1, 0)$$

- $\{v_1, v_2, v_3\}$ is

Good set

Definition (Good set)

$\mathcal{X} \subseteq \mathbb{N}^5$ is *good* if $\forall u \in \mathbb{R}^5$ with $\sum u = 0$, either:

- $u \cdot v = 0$ for every $v \in \mathcal{X}$, or
- there are $v, v' \in \mathcal{X}$ such that $u \cdot v < 0 < u \cdot v'$.

In the toy example:

$$v_1 = (1, 1, 1, 0, 0)$$

$$v_2 = (0, 0, 0, 2, 2)$$

$$v_3 = (1, 1, 0, 1, 0)$$

- $\{v_1, v_2, v_3\}$ is not good, with $u = (1, 0, -1, 0, 0)$

Good set

Definition (Good set)

$\mathcal{X} \subseteq \mathbb{N}^5$ is *good* if $\forall u \in \mathbb{R}^5$ with $\sum u = 0$, either:

- $u \cdot v = 0$ for every $v \in \mathcal{X}$, or
- there are $v, v' \in \mathcal{X}$ such that $u \cdot v < 0 < u \cdot v'$.

In the toy example:

$$v_1 = (1, 1, 1, 0, 0)$$

$$v_2 = (0, 0, 0, 2, 2)$$

$$v_3 = (1, 1, 0, 1, 0)$$

- $\{v_1, v_2, v_3\}$ is not good, with $u = (1, 0, -1, 0, 0)$
- $\{v_1, v_2\}$ is

Good set

Definition (Good set)

$\mathcal{X} \subseteq \mathbb{N}^5$ is *good* if $\forall u \in \mathbb{R}^5$ with $\sum u = 0$, either:

- $u \cdot v = 0$ for every $v \in \mathcal{X}$, or
- there are $v, v' \in \mathcal{X}$ such that $u \cdot v < 0 < u \cdot v'$.

In the toy example:

$$v_1 = (1, 1, 1, 0, 0)$$

$$v_2 = (0, 0, 0, 2, 2)$$

$$v_3 = (1, 1, 0, 1, 0)$$

- $\{v_1, v_2, v_3\}$ is not good, with $u = (1, 0, -1, 0, 0)$
- $\{v_1, v_2\}$ is good since $2 \times u \cdot v_1 + u \cdot v_2 = 0$

Positive density imply \mathcal{W} is good

Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Positive density imply \mathcal{W} is good

Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^5 u_i = 0$ s.t.:

- $\forall v \in \mathcal{W}, u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

Positive density imply \mathcal{W} is good

Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^5 u_i = 0$ s.t.:

- $\forall v \in \mathcal{W}, u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

We count the densities of angles in the tiling:

$$\sum_{v \in \mathcal{W}} v \times d_v = (1, 1, 1, 1, 1)$$

Positive density imply \mathcal{W} is good

Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^5 u_i = 0$ s.t.:

- $\forall v \in \mathcal{W}, u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

We count the densities of angles in the tiling:

$$\sum_{v \in \mathcal{W}} v \times d_v = (1, 1, 1, 1, 1)$$

$$\sum_{v \in \mathcal{W}} (u \cdot v) \times d_v = 0$$

Positive density imply \mathcal{W} is good

Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^5 u_i = 0$ s.t.:

- $\forall v \in \mathcal{W}, u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

We count the densities of angles in the tiling:

$$\sum_{v \in \mathcal{W}} v \times d_v = (1, 1, 1, 1, 1)$$

$$\sum_{v \in \mathcal{W}} (u \cdot v) \times d_v = 0$$

Contradiction since:

$$\sum_{v \in \mathcal{W}} (u \cdot v) \times d_v \geq (u \cdot v^+) \times d_{v^+} > 0$$

Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition ($\mathfrak{P}_{\mathcal{X}}$)

$\mathfrak{P}_{\mathcal{X}}$ is the convex polytope of $\alpha = (\alpha_1, \dots, \alpha_5) \in \mathbb{R}^5$ s.t.

- $\forall i \in \{1, \dots, 5\}, 0 \leq \alpha_i \leq 1,$
- $\sum_{i=1}^5 \alpha_i = 3,$
- $\forall v \in \mathcal{X}, \alpha \cdot v = 2.$

unformally: if \mathcal{X} is a set of vector category, $\mathfrak{P}_{\mathcal{X}}$ is the set of the angles of all possible convex polygons which respect \mathcal{X}

Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition ($\mathfrak{P}_{\mathcal{X}}$)

$\mathfrak{P}_{\mathcal{X}}$ is the convex polytope of $\alpha = (\alpha_1, \dots, \alpha_5) \in \mathbb{R}^5$ s.t.

- $\forall i \in \{1, \dots, 5\}, 0 \leq \alpha_i \leq 1,$
- $\sum_{i=1}^5 \alpha_i = 3,$
- $\forall v \in \mathcal{X}, \alpha \cdot v = 2.$

unformally: if \mathcal{X} is a set of vector category, $\mathfrak{P}_{\mathcal{X}}$ is the set of the angles of all possible convex polygons which respect \mathcal{X}

In a tiling by a convex pentagon: $\alpha \in \mathfrak{P}_{\mathcal{W}}$, thus $\mathfrak{P}_{\mathcal{W}} \cap]0, 1]^5 \neq \emptyset$

Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition ($\mathfrak{P}_{\mathcal{X}}$)

$\mathfrak{P}_{\mathcal{X}}$ is the convex polytope of $\alpha = (\alpha_1, \dots, \alpha_5) \in \mathbb{R}^5$ s.t.

- $\forall i \in \{1, \dots, 5\}, 0 \leq \alpha_i \leq 1,$
- $\sum_{i=1}^5 \alpha_i = 3,$
- $\forall v \in \mathcal{X}, \alpha \cdot v = 2.$

unformally: if \mathcal{X} is a set of vector category, $\mathfrak{P}_{\mathcal{X}}$ is the set of the angles of all possible convex polygons which respect \mathcal{X}

In a tiling by a convex pentagon: $\alpha \in \mathfrak{P}_{\mathcal{W}}$, thus $\mathfrak{P}_{\mathcal{W}} \cap]0, 1[^5 \neq \emptyset$

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition ($\mathfrak{P}_{\mathcal{X}}$)

$\mathfrak{P}_{\mathcal{X}}$ is the convex polytope of $\alpha = (\alpha_1, \dots, \alpha_5) \in \mathbb{R}^5$ s.t.

- $\forall i \in \{1, \dots, 5\}, 0 \leq \alpha_i \leq 1,$
- $\sum_{i=1}^5 \alpha_i = 3,$
- $\forall v \in \mathcal{X}, \alpha \cdot v = 2.$

unformally: if \mathcal{X} is a set of vector category, $\mathfrak{P}_{\mathcal{X}}$ is the set of the angles of all possible convex polygons which respect \mathcal{X}

In a tiling by a convex pentagon: $\alpha \in \mathfrak{P}_{\mathcal{W}}$, thus $\mathfrak{P}_{\mathcal{W}} \cap]0, 1[^5 \neq \emptyset$

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

Spoil: only finitely many...

Part 2: Computation of all good sets

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

Part 2: Computation of all good sets

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.

Part 2: Computation of all good sets

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.
- One execution of this algorithms terminates, and returns 371 good sets.

Part 2: Computation of all good sets

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.
- One execution of this algorithms terminates, and returns 371 good sets.
- Moreover, one can show that this algorithm always terminates.

Part 2: Computation of all good sets

What are the good sets \mathcal{X} such that $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.
- One execution of this algorithms terminates, and returns 371 good sets.
- Moreover, one can show that this algorithm always terminates.

We suppose w.l.o.g. that:

- $1 \geq \alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \alpha_4 \geq \alpha_5 \geq 0$ ($\mathfrak{P}_{\mathcal{X}}^{\geq}$ instead of $\mathfrak{P}_{\mathcal{X}}$)
- \mathcal{X} is *maximal*, i.e. every condition implied by conditions in \mathcal{X} is in \mathcal{X}

```

1: procedure RECURSE( $\mathcal{X}$ )
2:    $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$  (i.e. complete  $\mathcal{X}$  to make it maximal)
3:   if  $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap ]0, 1[^5 = \emptyset$  then return end if
4:   if  $\mathcal{X}$  is good then
5:     Add  $\mathcal{X}$  to the list of good sets
6:   end if
7:   Let  $u \in \mathbb{R}^5$  such that:
   •  $u \cdot (1, 1, 1, 1, 1) = 0$ 
   •  $\forall v \in \mathcal{X}, u \cdot v = 0$ 

8:    $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0\}$ 
9:   for every  $w \in V \setminus \mathcal{X}$  do
10:    RECURSE( $\mathcal{X} \cup \{w\}$ )
11:   end for
12: end procedure

```

```

1: procedure RECURSE( $\mathcal{X}$ )
2:    $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$  (i.e. complete  $\mathcal{X}$  to make it maximal)
3:   if  $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap ]0, 1[^5 = \emptyset$  then return end if
4:   if  $\mathcal{X}$  is good then
5:     Add  $\mathcal{X}$  to the list of good sets
6:   end if
7:   Let  $u \in \mathbb{R}^5$  such that:
   •  $u \cdot (1, 1, 1, 1, 1) = 0$ 
   •  $\forall v \in \mathcal{X}, u \cdot v = 0$ 

8:    $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0\}$ 
9:   for every  $w \in V \setminus \mathcal{X}$  do
10:    RECURSE( $\mathcal{X} \cup \{w\}$ )
11:   end for
12: end procedure

```

RECURSE(\mathcal{X}) computes all max good sets $\mathcal{Y} \supseteq \mathcal{X}$ with $\mathfrak{P}_{\mathcal{Y}}^{\geq} \cap]0, 1[^5 \neq \emptyset$

```

1: procedure RECURSE( $\mathcal{X}$ )
2:    $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$  (i.e. complete  $\mathcal{X}$  to make it maximal)
3:   if  $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap ]0, 1[^5 = \emptyset$  then return end if
4:   if  $\mathcal{X}$  is good then
5:     Add  $\mathcal{X}$  to the list of good sets
6:   end if
7:   Let  $u \in \mathbb{R}^5$  such that:
     •  $u \cdot (1, 1, 1, 1, 1) = 0$ 
     •  $\forall v \in \mathcal{X}, u \cdot v = 0$ 
     •  $\forall i \in \{4, 5\}, (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0$ 
8:    $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_{\mathcal{X}} \leq 2\}$ 
9:   for every  $w \in V \setminus \mathcal{X}$  do
10:    RECURSE( $\mathcal{X} \cup \{w\}$ )
11:   end for
12: end procedure

```

RECURSE(\mathcal{X}) computes all max good sets $\mathcal{Y} \supseteq \mathcal{X}$ with $\mathfrak{P}_{\mathcal{Y}}^{\geq} \cap]0, 1[^5 \neq \emptyset$

```

1: procedure RECURSE( $\mathcal{X}$ )
2:    $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$  (i.e. complete  $\mathcal{X}$  to make it maximal)
3:   if  $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap ]0, 1[^5 = \emptyset$  then return end if
4:   if  $\mathcal{X}$  is good then
5:     Add  $\mathcal{X}$  to the list of good sets
6:   end if
7:   Let  $u \in \mathbb{R}^5$  such that:
     •  $u \cdot (1, 1, 1, 1, 1) = 0$ 
     •  $\forall v \in \mathcal{X}, u \cdot v = 0$ 
     •  $\forall i \in \{4, 5\}, (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0$ 
8:    $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_{\mathcal{X}} \leq 2\}$ 
9:   for every  $w \in V \setminus \mathcal{X}$  do
10:    RECURSE( $\mathcal{X} \cup \{w\}$ )
11:   end for
12: end procedure

```

RECURSE(\mathcal{X}) computes all max good sets $\mathcal{Y} \supseteq \mathcal{X}$ with $\mathfrak{P}_{\mathcal{Y}}^{\geq} \cap]0, 1[^5 \neq \emptyset$

Line 8: V is finite

```

1: procedure RECURSE( $\mathcal{X}$ )
2:    $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$  (i.e. complete  $\mathcal{X}$  to make it maximal)
3:   if  $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap ]0, 1[^5 = \emptyset$  then return end if
4:   if  $\mathcal{X}$  is good then
5:     Add  $\mathcal{X}$  to the list of good sets
6:   end if
7:   Let  $u \in \mathbb{R}^5$  such that:
     •  $u \cdot (1, 1, 1, 1, 1) = 0$ 
     •  $\forall v \in \mathcal{X}, u \cdot v = 0$ 
     •  $\forall i \in \{4, 5\}, (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0$ 
8:    $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_{\mathcal{X}} \leq 2\}$ 
9:   for every  $w \in V \setminus \mathcal{X}$  do
10:    RECURSE( $\mathcal{X} \cup \{w\}$ )
11:   end for
12: end procedure

```

RECURSE(\mathcal{X}) computes all max good sets $\mathcal{Y} \supseteq \mathcal{X}$ with $\mathfrak{P}_{\mathcal{Y}}^{\geq} \cap]0, 1[^5 \neq \emptyset$

Line 8: V is finite

Line 7: such a u always exists

```

1: procedure RECURSE( $\mathcal{X}$ )
2:    $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$  (i.e. complete  $\mathcal{X}$  to make it maximal)
3:   if  $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap ]0, 1[^5 = \emptyset$  then return end if
4:   if  $\mathcal{X}$  is good then
5:     Add  $\mathcal{X}$  to the list of good sets
6:   end if
7:   Let  $u \in \mathbb{R}^5$  such that:
     •  $u \cdot (1, 1, 1, 1, 1) = 0$ 
     •  $\forall v \in \mathcal{X}, u \cdot v = 0$ 
     •  $\forall i \in \{4, 5\}, (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0$ 
8:    $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_{\mathcal{X}} \leq 2\}$ 
9:   for every  $w \in V \setminus \mathcal{X}$  do
10:    RECURSE( $\mathcal{X} \cup \{w\}$ )
11:   end for
12: end procedure

```

RECURSE(\mathcal{X}) computes all max good sets $\mathcal{Y} \supseteq \mathcal{X}$ with $\mathfrak{P}_{\mathcal{Y}}^{\geq} \cap]0, 1[^5 \neq \emptyset$

Line 8: V is finite Line 7: such a u always exists

RECURSE always terminates: finitely many good sets with $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap]0, 1[^5 \neq \emptyset$.

Good sets: results

We execute $\text{RECURSE}(\emptyset)$ and it finds 193 non-empty sets.

Good sets: results

We execute $\text{RECURSE}(\emptyset)$ and it finds 193 non-empty sets.

- 193 non-empty maximal good sets \mathcal{X} with $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap]0, 1[^5 \neq \emptyset$

Good sets: results

We execute $\text{RECURSE}(\emptyset)$ and it finds 193 non-empty sets.

- 193 non-empty maximal good sets \mathcal{X} with $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap]0, 1[^5 \neq \emptyset$
- Take all permutations: 3495 non-empty maximal good sets \mathcal{X} with $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$

Good sets: results

We execute $\text{RECURSE}(\emptyset)$ and it finds 193 non-empty sets.

- 193 non-empty maximal good sets \mathcal{X} with $\mathfrak{P}_{\mathcal{X}}^{\geq} \cap]0, 1[^5 \neq \emptyset$
- Take all permutations: 3495 non-empty maximal good sets \mathcal{X} with $\mathfrak{P}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset$
- Keep only one represents for each class up to rotation/mirror, one have the 371 sets.

Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

⇒ solve a Jigsaw puzzle, by computer

Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

⇒ solve a Jigsaw puzzle, by computer

We chose a (maximal) good set \mathcal{X} .

We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X} .

Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

⇒ solve a Jigsaw puzzle, by computer

We chose a (maximal) good set \mathcal{X} .

We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X} .

We backtrack if the conditions (angles and lengths) imply

Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

⇒ solve a Jigsaw puzzle, by computer

We chose a (maximal) good set \mathcal{X} .

We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X} .

We backtrack if the conditions (angles and lengths) imply

- we are in a known case: known family (Types 1 to 15 in Table 1), or a special case of a known family (Types 16 to 19)

Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

⇒ solve a Jigsaw puzzle, by computer

We chose a (maximal) good set \mathcal{X} .

We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X} .

We backtrack if the conditions (angles and lengths) imply

- we are in a known case: known family (Types 1 to 15 in Table 1), or a special case of a known family (Types 16 to 19)
- or no convex pentagon exists with these conditions

Backtracking: general idea

The object on which we work and backtrack is a pair (G, Q) :

- G is a embedded planar graph which represent the partial tiling (“Tiling graph”)
- Q is a set of conditions we know on the lengths of the pentagon: *i.e.* a linear program (LP) on $\ell_1 \dots \ell_5$

We add linear conditions on sides “on the fly”

Tiling graph

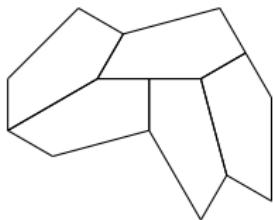
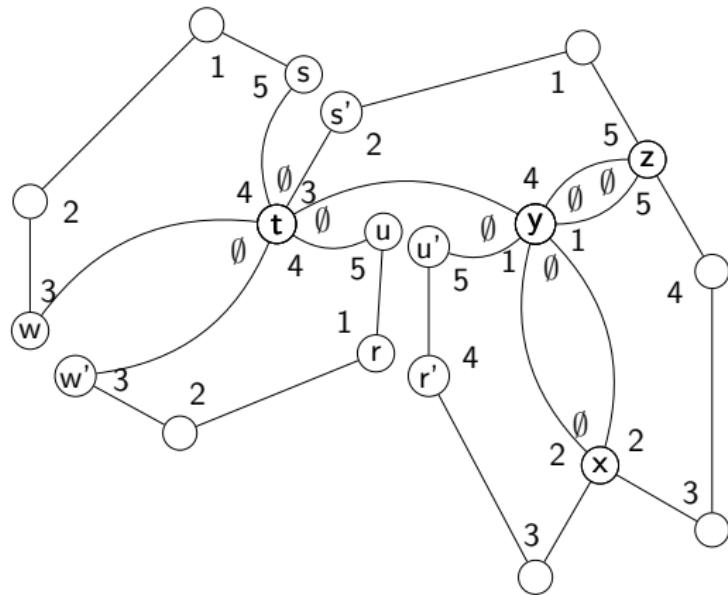
Tiling graph : embedded planar graph with labels on angles and edges

Two types of faces: usual and special

- usual: corresponds to a pentagon in the tiling. The degree is 5, and the angles are marked from 1 to 5 (in CW or CCW)
- special: corresponds to frontier between tiles, or an unknown area of the plane. Angles are marked with \emptyset , π or ?

A special face is *complete* if there no “?”

Tiling graph: example



Example of a tiling graph (Type 15). Unmarked angles are labeled “?”

Length suppositions

A *run* on a special face is a succession of consecutive \emptyset and π angles.

Length suppositions

A *run* on a special face is a succession of consecutive \emptyset and π angles.
Each run corresponds to aligned points in the tiling.

Length suppositions

A *run* on a special face is a succession of consecutive \emptyset and π angles.

Each run corresponds to aligned points in the tiling.

Let s and s' be two vertices on a same run.

- If Q implies that s and s' have the same position, then we merge s and s'

Length suppositions

A *run* on a special face is a succession of consecutive \emptyset and π angles.

Each run corresponds to aligned points in the tiling.

Let s and s' be two vertices on a same run.

- If Q implies that s and s' have the same position, then we merge s and s'
- If Q does not permit to decide among the 3 possibilities: $s < s'$, $s = s'$ and $s > s'$, then we branch on the 3 possibilities:

Length suppositions

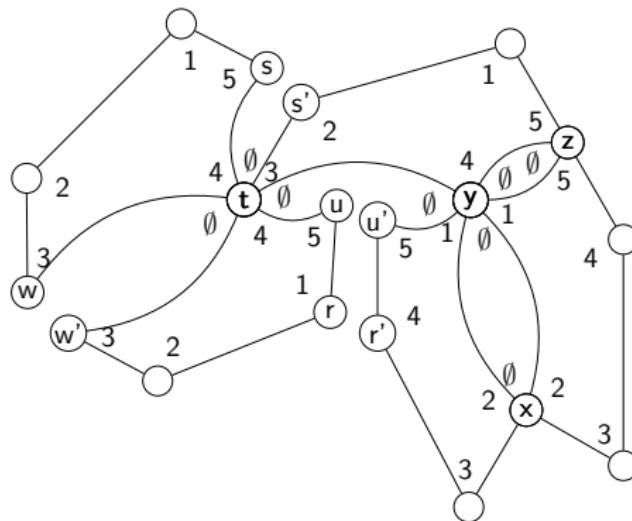
A *run* on a special face is a succession of consecutive \emptyset and π angles.

Each run corresponds to aligned points in the tiling.

Let s and s' be two vertices on a same run.

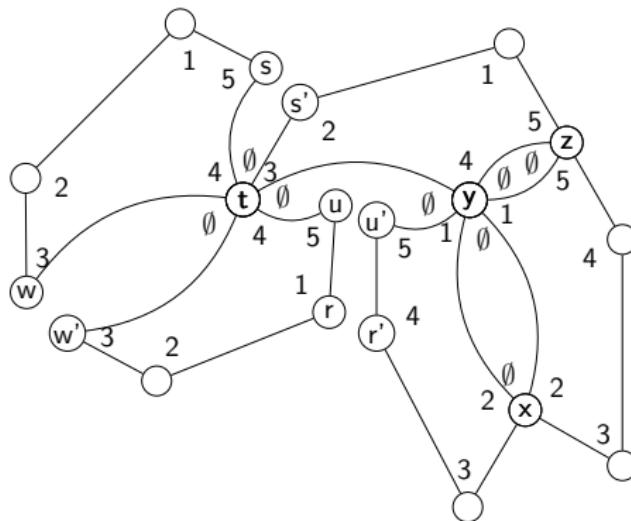
- If Q implies that s and s' have the same position, then we merge s and s'
- If Q does not permit to decide among the 3 possibilities: $s < s'$, $s = s'$ and $s > s'$, then we branch on the 3 possibilities: we add the corresponding condition in Q and recurse

Branching on length suppositions: example



Q :

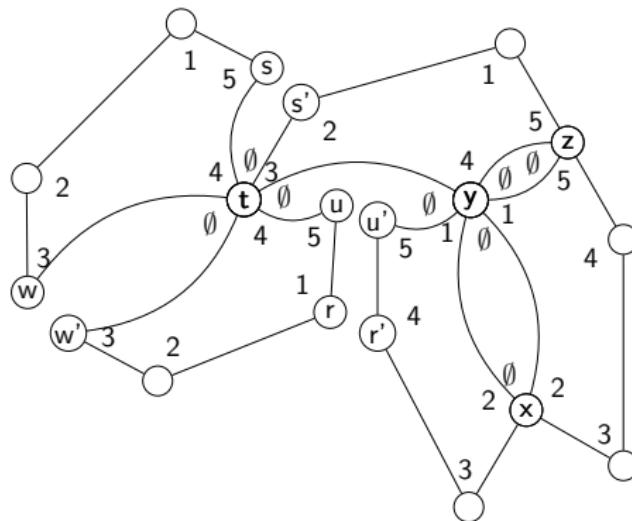
Branching on length suppositions: example



$$Q : \ell_4 - \ell_5 = 0$$

(y, z) is a complete face. So we (already) have $\ell_4 = \ell_5$ in the LP Q

Branching on length suppositions: example

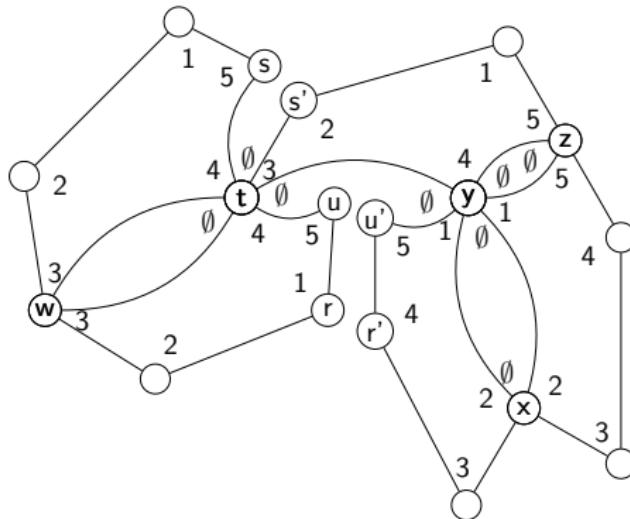


$$Q : \ell_4 - \ell_5 = 0$$

(y, z) is a complete face. So we (already) have $\ell_4 = \ell_5$ in the LP Q

(w, t, w') is a run. the length wt is ℓ_3 , and the length tw' is ℓ_3 . so we merge w and w' ,

Branching on length suppositions: example

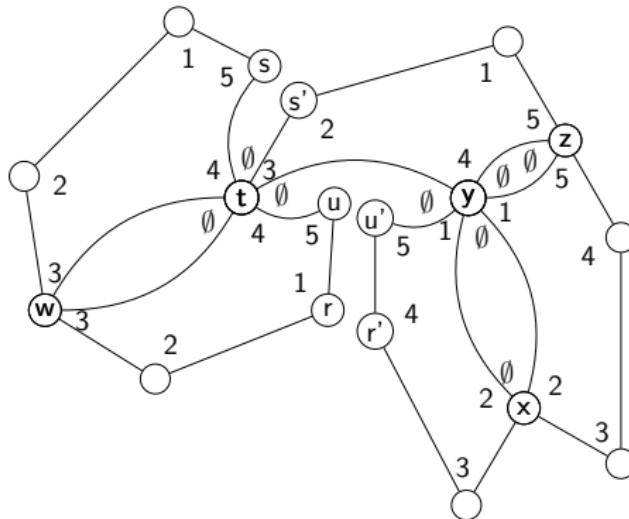


$$Q : \ell_4 - \ell_5 = 0$$

(y, z) is a complete face. So we (already) have $\ell_4 = \ell_5$ in the LP Q

(w, t, w') is a run. the length wt is ℓ_3 , and the length tw' is ℓ_3 . so we merge w and w' ,

Branching on length suppositions: example

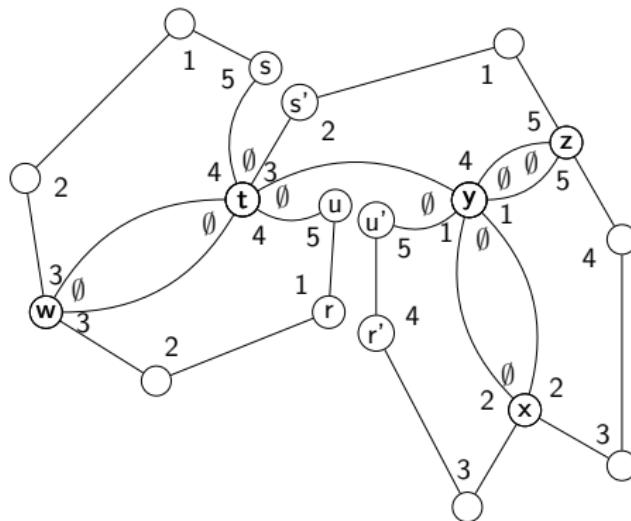


$$Q : \ell_4 - \ell_5 = 0$$

(y, z) is a complete face. So we (already) have $\ell_4 = \ell_5$ in the LP Q

(w, t, w') is a run. the length wt is ℓ_3 , and the length tw' is ℓ_3 . so we merge w and w' , and mark angle (t, w, t) as \emptyset

Branching on length suppositions: example

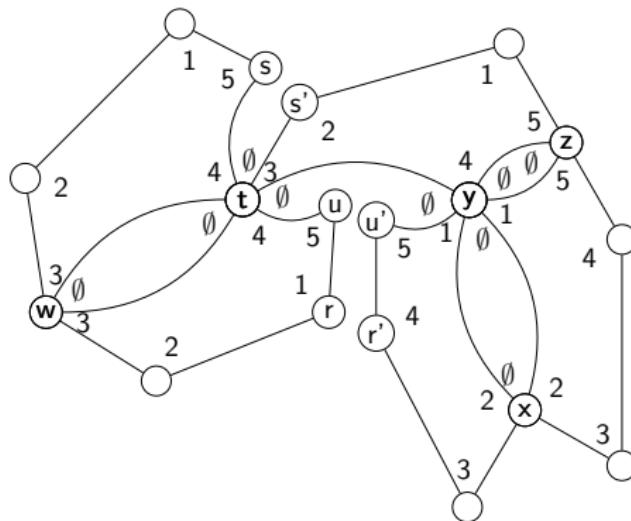


$$Q : \ell_4 - \ell_5 = 0$$

(y, z) is a complete face. So we (already) have $\ell_4 = \ell_5$ in the LP Q

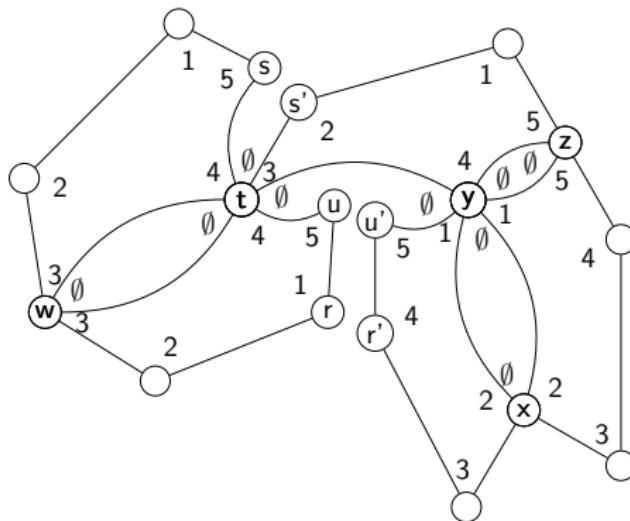
(w, t, w') is a run. the length wt is ℓ_3 , and the length tw' is ℓ_3 . so we merge w and w' , and mark angle (t, w, t) as \emptyset

Branching on length suppositions: example



$$Q : \ell_4 - \ell_5 = 0$$

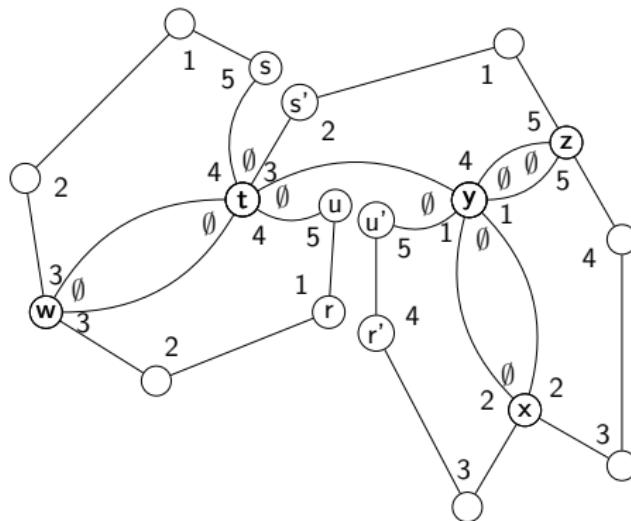
Branching on length suppositions: example



$$Q : \ell_4 - \ell_5 = 0$$

(u, t, y, u') is also a run.

Branching on length suppositions: example

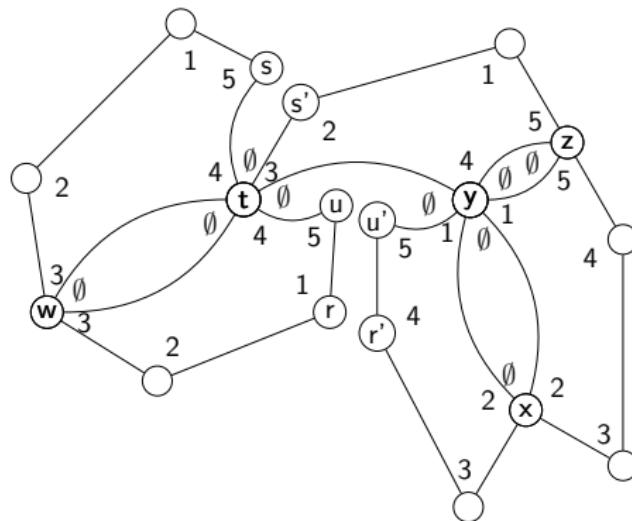


$$Q : \ell_4 - \ell_5 = 0$$

(u, t, y, u') is also a run.

Is u and u' the same vertex ?

Branching on length suppositions: example

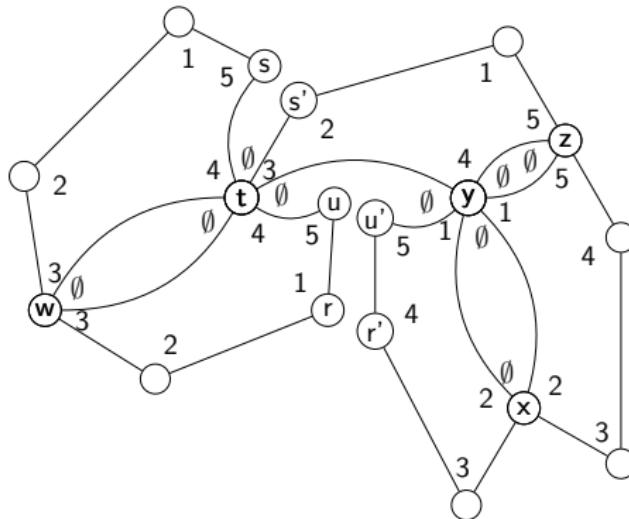


$$Q : \ell_4 - \ell_5 = 0$$

(u, t, y, u') is also a run.

Is u and u' the same vertex ? Is $\ell_3 = \ell_4 + \ell_5$?

Branching on length suppositions: example



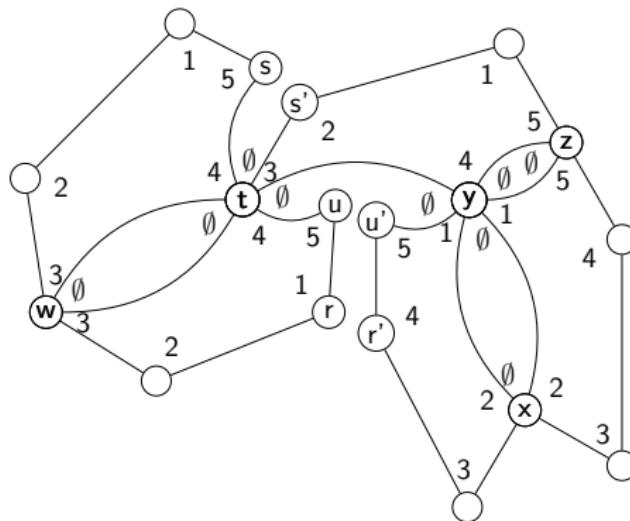
$$Q : \ell_4 - \ell_5 = 0$$

(u, t, y, u') is also a run.

Is u and u' the same vertex ? Is $\ell_3 = \ell_4 + \ell_5$?

We don't know. We branch.

Branching on length suppositions: example



$$Q : \ell_4 - \ell_5 = 0$$

(u, t, y, u') is also a run.

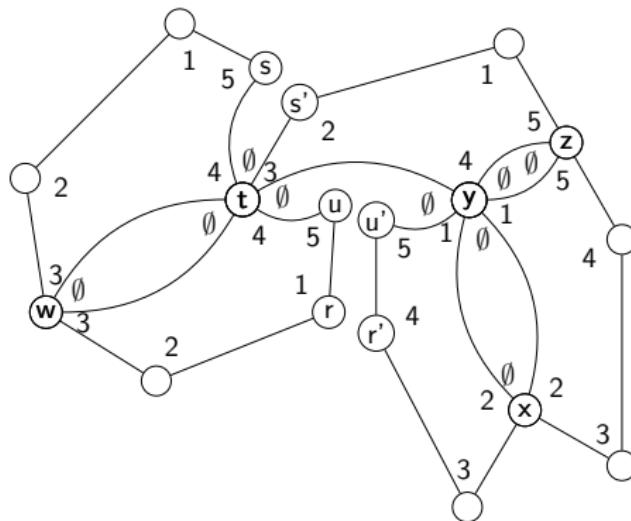
Is u and u' the same vertex ? Is $\ell_3 = \ell_4 + \ell_5$?

We don't know. We branch.

first case : add $\ell_3 > \ell_4 + \ell_5$ to Q and branch

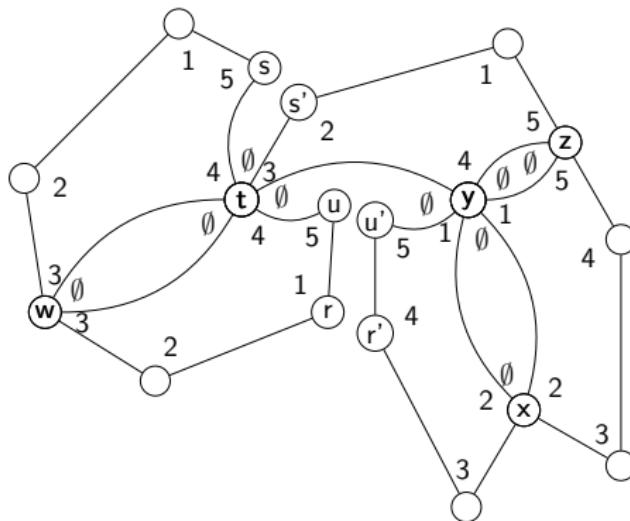
second case : add $\ell_3 = \ell_4 + \ell_5$ to Q and branch

Branching on length suppositions: example



(case 2) $Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0$

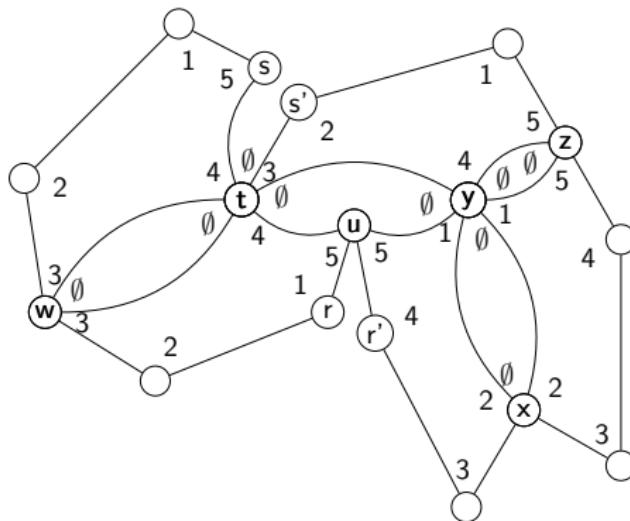
Branching on length suppositions: example



(case 2) $Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0$

(u, t, y, u') is a run, and we know that u and u' have the same position:
we merge u and u' ,

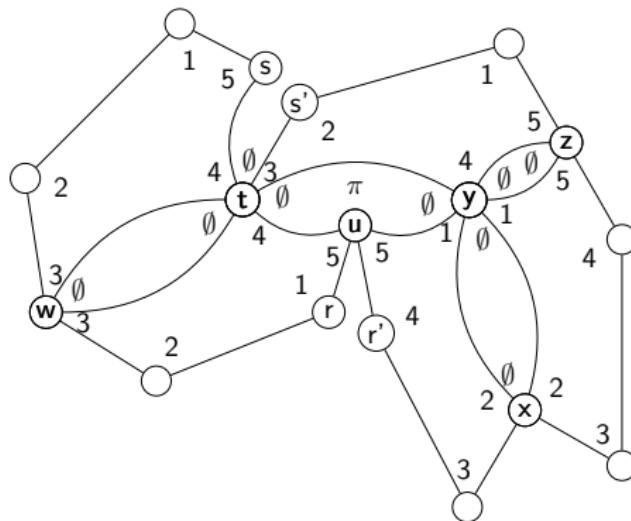
Branching on length suppositions: example



(case 2) $Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0$

(u, t, y, u') is a run, and we know that u and u' have the same position:
we merge u and u' ,

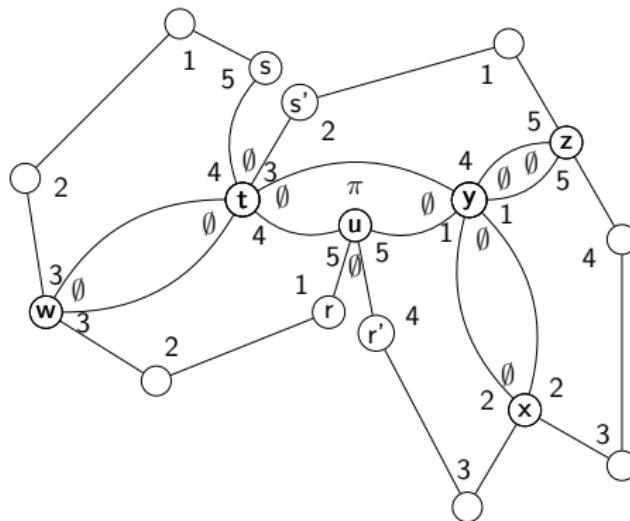
Branching on length suppositions: example



(case 2) $Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0$

(u, t, y, u') is a run, and we know that u and u' have the same position: we merge u and u' , and the angle (t, u, y) is labeled π .

Branching on length suppositions: example

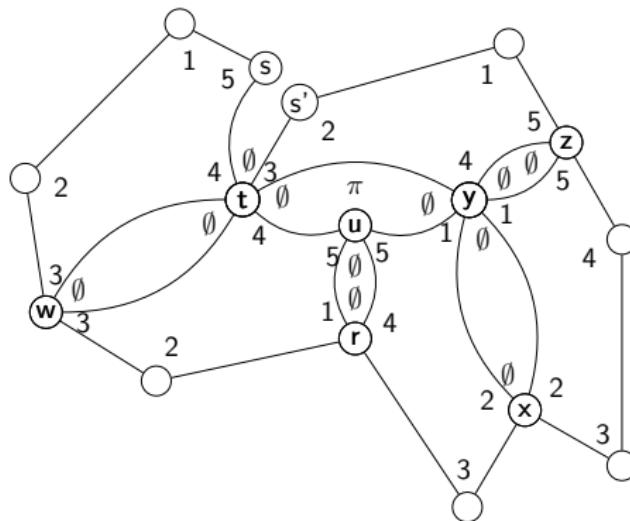


(case 2) $Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0$

(u, t, y, u') is a run, and we know that u and u' have the same position: we merge u and u' , and the angle (t, u, y) is labeled π .

u is now complete: the angle r, u, r' is labeled \emptyset

Branching on length suppositions: example



(case 2) $Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0$

(u, t, y, u') is a run, and we know that u and u' have the same position: we merge u and u' , and the angle (t, u, y) is labeled π .

u is now complete: the angle r, u, r' is labeled \emptyset

in the run (r, u, r') , r and r' have the same position: we merge...

Branching on a new tile

In other cases, we add a new tile (a new “usual face”)

Branching on a new tile

In other cases, we add a new tile (a new “usual face”)

We take a non-complete vertex w in the graph, and we try (branch on) every possibility to add a new face adjacent to w

Existence of the pentagon

Given the LP Q , we denote by \mathfrak{Q} the set of solutions ℓ of Q with $\sum \ell = 1$.
Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i-1) - \sum_{j=1}^{i-1} \alpha_j$.

One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

Existence of the pentagon

Given the LP Q , we denote by \mathfrak{Q} the set of solutions ℓ of Q with $\sum \ell = 1$. Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i-1) - \sum_{j=1}^{i-1} \alpha_j$.

One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

We backtrack if there is no convex pentagon exists with the properties, that is if the following condition is not fulfilled:

$$\exists \ell \in \mathfrak{Q} \cap [0, 1]^5, \exists \alpha \in \mathfrak{P} \cap [0, 1]^5, \sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0 \quad (2)$$

Existence of the pentagon

Given the LP Q , we denote by \mathfrak{Q} the set of solutions ℓ of Q with $\sum \ell = 1$. Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i-1) - \sum_{j=1}^{i-1} \alpha_j$. One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

We backtrack if there is no convex pentagon exists with the properties, that is if the following condition is not fulfilled:

$$\exists \ell \in \mathfrak{Q} \cap [0, 1]^5, \exists \alpha \in \mathfrak{P} \cap [0, 1]^5, \sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0 \quad (2)$$

If $\dim(\mathfrak{P}) = 0$ then $\alpha \in \mathbb{Q}^5$, and easy to decide: we compute on $\mathbb{Q}[\cos(\pi/q)]$ for a $q \in \mathbb{N}$.

Existence of the pentagon

Given the LP Q , we denote by \mathfrak{Q} the set of solutions ℓ of Q with $\sum \ell = 1$. Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i-1) - \sum_{j=1}^{i-1} \alpha_j$.

One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

We backtrack if there is no convex pentagon exists with the properties, that is if the following condition is not fulfilled:

$$\exists \ell \in \mathfrak{Q} \cap [0, 1]^5, \exists \alpha \in \mathfrak{P} \cap [0, 1]^5, \sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0 \quad (2)$$

If $\dim(\mathfrak{P}) = 0$ then $\alpha \in \mathbb{Q}^5$, and easy to decide: we compute on $\mathbb{Q}[\cos(\pi/q)]$ for a $q \in \mathbb{N}$.

If $\dim(\mathfrak{P}) > 0$: we backtrack if we have a certificate (computations in \mathbb{Q}) that there is no solution. Problem: this cannot detect “degenerate case”. So we manually add some degenerate case. (Types 20 to 24 in Table 1).

Conditions for which we backtrack (Table 1)

Type 1 (i=1)	$a + b + c = 2\pi$		Type 2 (i=2)	$a + b + d = 2\pi$	$C = E$
Type 3 (i=31)	$3e = 2\pi$ $d + 2e = 2\pi$ $b + 2e = 2\pi$	$C + E = D$ $A = B$	Type 4 (i=6)	$a + b + d = 2\pi$ $2e = \pi$	$D = E$ $B = C$
Type 5 (i=4)	$3e = 2\pi$ $a + b + d = 2\pi$	$D = E$ $B = C$	Type 6 (i=13)	$d + 2e = 2\pi$ $a + c + d = 2\pi$	$C = D = E$ $A = B$
Type 7 (i=17)	$d + 2e = 2\pi$ $a + 2c = 2\pi$	$A = C = D = E$	Type 8 (i=14)	$d + 2e = 2\pi$ $2b + c = 2\pi$	$A = B = C = D$
Type 9 (i=15)	$d + 2e = 2\pi$ $2a + c = 2\pi$	$A = B = C = D$	Type 10 (i=69)	$2c + d = 2\pi$ $b + c + e = 2\pi$ $a + 2b = 2\pi$	$A + C = D = E$
Type 11 (i=67)	$c + 2d = 2\pi$ $b + d + e = 2\pi$ $a + 2b = 2\pi$	$A = B = C + 2E$	Type 12 (i=67)	$c + 2d = 2\pi$ $b + d + e = 2\pi$ $a + 2b = 2\pi$	$A + C = B = 2E$
Type 13 (i=63)	$b + 2d = 2\pi$ $a + b + d = 2\pi$ $2e = \pi$	$A = 2B = 2C$	Type 14 (i=67)	$c + 2d = 2\pi$ $b + d + e = 2\pi$ $a + 2b = 2\pi$	$A = B = 2C = 2E$
Type 15 (i=303)	$c + 2d = 2\pi$ $2b + e = 2\pi$ $2a + d = 2\pi$ $2e = \pi$	$B = D = E$ $C = 2B$	Type 16 (i=72) $\subset T10$	$b + c + e = 2\pi$ $2b + d = 2\pi$ $a + 2c = 2\pi$	$2A = D = E$ $A = C$
Type 17 (i=25) $\subset T2$	$c + 2e = 2\pi$ $2b + d = 2\pi$	$A = B = C = D = E$	Type 18 (i=73) $\subset T2$	$d + 2e = 2\pi$ $c + 2e = 2\pi$ $b + d + e = 2\pi$	$D = E$ $A = B$
Type 19 (i=23) $\subset T1$	$c + 2e = 2\pi$ $b + 2d = 2\pi$	$A = B = C = D$	Type 20 (i=2) degen.	$a + b + d = 2\pi$	$A = C + D$ $B = E$
Type 21 (i=12) degen.	$d + 2e = 2\pi$ $2a + b = 2\pi$	$A = B$ $C = D$	Type 22 (i=27) degen.	$c + 2e = 2\pi$ $a + 2d = 2\pi$	$A = B = C = E$
Type 23 (i=64) degen.	$2b + d = 2\pi$ $a + b + d = 2\pi$ $2e = \pi$	$A = 2C = 2D$	Type 24 (i=69) degen.	$2c + d = 2\pi$ $b + c + e = 2\pi$ $a + 2b = 2\pi$	$2D = A + C$ $2E = A + C$

Part 3: Results

For every family, the exhaustive search is finite

That is: if a pentagon does not respect condition of Type i for a $i \in \{1, \dots, 24\}$, then it cannot tile the plane.

- Types 1 to 15 are the already known families
- Types 16 to 19 are special cases of known families
- Types 20 to 24 are “degenerate” ($\dim(\mathfrak{P}) > 0$): there are no convex pentagons which respects these conditions

Conclusion

- No convex aperiodic tile...

Conclusion

- No convex aperiodic tile...
- But the techniques can be used on non convex tiles...
- and can be used on every polygon with n sides (n fixed)...

Conclusion

- No convex aperiodic tile...
- But the techniques can be used on non convex tiles...
- and can be used on every polygon with n sides (n fixed)...
- But one have a combinatorial explosion:
- E.g.: 371 families for convex pentagons, and ~ 6000 families for non-convex pentagons

