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The “hat” (Smith, Myers, Kaplan, Goodman-Strauss,
2023)
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Tiling: covering of the plane using copies of one or more tiles, with no
overlaps and no gaps.
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Tilings with a regular polygon
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Semi-regular tilings

Michaël Rao 5 / 52



Aperiodic Tiling

Periodic tiling: there is a translation which does not change the tiling

previous tilings are periodic

Aperiodic tiling: There is not such translation

Michaël Rao 6 / 52



Aperiodic Tiling

Periodic tiling: there is a translation which does not change the tiling

previous tilings are periodic

Aperiodic tiling: There is not such translation
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Penrose Tiling: a well known aperiodic tiling
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Penrose Tiling IRL

Roger Penrose, Institut Mitchell, Texas A&M University
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Penrose Tiling IRL

By Thomas Fernique and Evgeny Poloskin

http://images.math.cnrs.fr/Un-parquet-de-Penrose.html
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Pinwheel tiling
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Pinwheel tiling
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Pinwheel tiling

Federation Square (Melbourne, Australia)
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Chair Tiling
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Aperiodicity in the nature

Quasiperiodic-crystal: crystal with non periodic structure

Discovered in 1982 by Dan Shechtman. Nobel price in chemistry (2011)

Natural quasiperiodic-crystal discovered in 2009 in Koryak Mountains.

Michaël Rao 14 / 52



Aperiodicity in the nature

Quasiperiodic-crystal: crystal with non periodic structure

Discovered in 1982 by Dan Shechtman. Nobel price in chemistry (2011)

Natural quasiperiodic-crystal discovered in 2009 in Koryak Mountains.
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Force the aperiodicity ?

Suppose you want to find a set of local rules such that the only
crystal/floor/... you can construct is aperiodic

How to “ force” a tiling to be aperiodic ?

A tile-set is aperiodic is it tiles the plane, and all tilings are aperiodic

Of course, we are interested in simple aperiodic tile-sets.
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Penrose with decorations
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Aperiodic tiling with one tile ?

Thare are aperiodic tile-sets with two tiles (e.g.: Penrose,
Ammann–Beenker...)

Is there an aperiodic tile-set with one tile ?

⇒ “Ein-stein” problem (from the German, “one stone”)
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Taylor-Socolar tile (2011)
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Aperiodic tiling with one connected tile ?

Is there an aperiodic tile-set with one connected tile ?

In 2023 : Yes, the “Hat”, Discovered by David Smith.

Michaël Rao 19 / 52



Aperiodic tiling with one connected tile ?

Is there an aperiodic tile-set with one connected tile ?

In 2023 : Yes, the “Hat”, Discovered by David Smith.
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The hat (Smith, Myers, Kaplan, Goodman-Strauss, 2023)
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The spectre (Smith, Myers, Kaplan, Goodman-Strauss,
2023)
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Finding polygons that tile the plane

⇒ try to do an exhaustive search by computer, on polygons.

The space is too big... first add a (strong) constraint

Is there an aperiodic tile-set with one convex tile ?

More generaly:

Wich convex shape tiles the plane ?
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Michaël Rao 22 / 52



Finding polygons that tile the plane

⇒ try to do an exhaustive search by computer, on polygons.

The space is too big...

first add a (strong) constraint

Is there an aperiodic tile-set with one convex tile ?

More generaly:

Wich convex shape tiles the plane ?
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Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Wich convex shape tiles the plane ?

⇒ look at only polygons

All triangles tiles the plane

All quadrilaterals tiles the plane

A convex polygon with 7 or more sides do not tile the plane

Hexagons whichs tiles:

Open question : Pentagons ?
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Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane where
found:

Reinhardt (1918): Types 1 to 5

Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)

James (1975): Type 10

Rice (1977): Types 9, 11, 12 and 13

Stein (1985): Type 14

Mann, McLoud & Von Derau (2015): Type 15.
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(Wikipedia)
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What is a “type” ?

A “type” is a set of pentagons

(a type is not a tiling, neither a set of
tiling...)

A type is all the pentagons that respect

a set Ca of linear conditions on angles (form: v · α = 2π with v ∈ N5)

a set Cl of linear conditions on sides (form: v · ℓ = 0 with v ∈ Z5)

A type tiles : all pentagons in this set tile with a same (periodic) pattern
(but other tilings are possible)

Examples:

Type 1: α1 + α2 = π

Type 2: α1 + α3 = π and ℓ1 = ℓ3

Type 4: α3 = α5 = π/2, ℓ2 = ℓ3 and ℓ4 = ℓ5

...
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Sketch

We present an exhaustive search of all convex pentagons which tile the
plane

Let P be a convex pentagon which tiles the plane.

Part 1: There exist a tiling by P such that each vertex category has
positive density

The set of vertex category (i.e. conditions implied by angles) must be
“good”

Part 2: There are only 371 good sets to consider

Part 3: For each good set : we do an exhaustive search

Result: we found only the 15 known families (and some special cases).

Michaël Rao 28 / 52
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Part 1: positive density tiling and good sets

Let P be a convex pentagon

the vertices are s1, . . . s5, in clockwise order

the angles are respectively α1 × π, . . . , α5 × π

∀1 ≤ i ≤ 5, 0 < αi < 1

5∑
i=1

αi = (1, 1, 1, 1, 1) · α = 3

Let T be tiling of the plane by P (we allow rotation/transtation/mirror)

(Note: no hypothesis on periodicity / transitivity)
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Vector category

Let s be a vertex of T (i.e. a vertex of one pentagon in T )

The vector category of s, denoted V (s), is the vector v ∈ N5 s.t. there are
vi angles si around s.

For every vertex s, V (s) · α = 2
W : set of vectors categories of vertices in T . W is finite

Attention ! Two cases of vertices:

“Half” : s is in the border of a tile P, but not a vertex of P

“Full” : s is a vertex of every tile around s

We have to “correct” the vector category of “half” vertices.
Here, for the sake of simplicity, we do not talk about half vertices...
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Vector category

Let s be a vertex of T (i.e. a vertex of one pentagon in T )

The vector category of s, denoted V (s), is the vector v ∈ N5 s.t. there are
vi angles si around s.

For every vertex s, V (s) · α = 2
W : set of vectors categories of vertices in T .

W is finite

Attention ! Two cases of vertices:

“Half” : s is in the border of a tile P, but not a vertex of P

“Full” : s is a vertex of every tile around s

We have to “correct” the vector category of “half” vertices.
Here, for the sake of simplicity, we do not talk about half vertices...

Part 1/3 : Positive density tiling and good sets Michaël Rao 31 / 52
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A toy problem

Suppose that the density of each vector category is definite.

density(v) =
number of vertices s with V (s) = v

number of tiles

and W is the following:
va = (1, 1, 1, 0, 0)
vb = (0, 0, 0, 2, 2)
vc = (1, 1, 0, 1, 0)

What are the densities of v ’s ?

⇒ dava + dbvb + dcvc = (1, 1, 1, 1, 1)

⇒ da = 1, db = 1
2 , dc = 0

Can we tile only with va and vb ?

Part 1/3 : Positive density tiling and good sets Michaël Rao 32 / 52
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A toy problem

Suppose that the density of each vector category is definite.

density(v) =
number of vertices s with V (s) = v

number of tiles

and W is the following:
va = (1, 1, 1, 0, 0)
vb = (0, 0, 0, 2, 2)
vc = (1, 1, 0, 1, 0)

What are the densities of v ’s ?

⇒ dava + dbvb + dcvc = (1, 1, 1, 1, 1)

⇒ da = 1, db = 1
2 , dc = 0

Can we tile only with va and vb ?

Part 1/3 : Positive density tiling and good sets Michaël Rao 32 / 52



Positive density tilings

Definition (Positive density tiling)

T has positive density if for every v ∈ W, the density of V (s) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything
works as if.

Lemma

If a tiling by P exists, then a tiling of positive density by P exists.

Otherwise, suppose v ∈ W with density 0

There are sub-tilings of an arbitrarily large disk without a vertex v
(take a grid of girth x : if there is a v in every cell → contradiction)

By compactness one can construct a tiling without v

(warning: be careful with half vertices and “fracture lines”)

Part 1/3 : Positive density tiling and good sets Michaël Rao 33 / 52
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(take a grid of girth x : if there is a v in every cell → contradiction)

By compactness one can construct a tiling without v

(warning: be careful with half vertices and “fracture lines”)
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Good set

Definition (Good set)

X ⊆ N5 is good if ∀u ∈ R5 with
∑

u = 0, either:

u · v = 0 for every v ∈ X , or
there are v , v ′ ∈ X such that u · v < 0 < u · v ′.

In the toy example:
v1 = (1, 1, 1, 0, 0)
v2 = (0, 0, 0, 2, 2)
v3 = (1, 1, 0, 1, 0)

{v1, v2, v3} is not good, with u = (1, 0,−1, 0, 0)
{v1, v2} is good since 2× u · v1 + u · v2 = 0
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Positive density imply W is good

Lemma

If T has positive density, then W is good.

Otherwise, suppose u ∈ R5 such that
∑5

i=1 ui = 0 s.t.:

∀v ∈ W, u · v ≥ 0.

there is a v+ ∈ W with u · v+ > 0.

We count the densities of angles in the tiling:∑
v∈W

v × dv = (1, 1, 1, 1, 1)

∑
v∈W

(u · v)× dv = 0

Contradiction since:∑
v∈W

(u · v)× dv ≥ (u · v+)× dv+ > 0
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PX

Let X ⊆ N5

Definition (PX )

PX is the convex polytope of α = (α1, . . . α5) ∈ R5 s.t.

∀i ∈ {1, . . . , 5}, 0 ≤ αi ≤ 1,∑5
i=1 αi = 3,

∀v ∈ X , α · v = 2.

unformally: if X is a set of vector category, PX is the set of the angles of all

possible convex polygons which respect X

In a tiling by a convex pentagon: α ∈ PW , thus PW∩]0, 1[5 ̸= ∅

What are the good sets X such that PX∩]0, 1[5 ̸= ∅ ?

Spoil: only finitely many...
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Part 2: Computation of all good sets

What are the good sets X such that PX∩]0, 1[5 ̸= ∅ ?

We present an algorithm which generates all good sets.

One execution of this algorithms terminates, and returns 371 good
sets.

Moreover, one can show that this algorithm always terminates.

We suppose w.l.o.g. that:

1 ≥ α1 ≥ α2 ≥ α3 ≥ α4 ≥ α5 ≥ 0 (P≥
X instead of PX )

X is maximal, i.e. every condition implied by conditions in X is in X
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1: procedure Recurse(X )
2: X ← Compat(X ) (i.e. complete X to make it maximal)

3: if P≥
X∩]0, 1[5= ∅ then return end if

4: if X is good then
5: Add X to the list of good sets
6: end if
7: Let u ∈ R5 such that:

u · (1, 1, 1, 1, 1) = 0
∀v ∈ X , u · v = 0

∀i ∈ {4, 5}, (mX )i = 0⇒ ui > 0

8: V ← {v ∈ N5 : v · u ≥ 0

and v ·mX ≤ 2

}
9: for every w ∈ V \ X do

10: Recurse(X ∪ {w})
11: end for
12: end procedure

Recurse(X ) computes all max good sets Y ⊇ X with P≥
Y∩]0, 1[5 ̸= ∅

Line 8: V is finite Line 7: such a u always exists
Recurse always terminates: finitely many good sets with P≥

X∩]0, 1[5 ̸= ∅.
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1: procedure Recurse(X )
2: X ← Compat(X ) (i.e. complete X to make it maximal)

3: if P≥
X∩]0, 1[5= ∅ then return end if

4: if X is good then
5: Add X to the list of good sets
6: end if
7: Let u ∈ R5 such that:

u · (1, 1, 1, 1, 1) = 0
∀v ∈ X , u · v = 0
∀i ∈ {4, 5}, (mX )i = 0⇒ ui > 0

8: V ← {v ∈ N5 : v · u ≥ 0 and v ·mX ≤ 2}
9: for every w ∈ V \ X do

10: Recurse(X ∪ {w})
11: end for
12: end procedure

Recurse(X ) computes all max good sets Y ⊇ X with P≥
Y∩]0, 1[5 ̸= ∅

Line 8: V is finite Line 7: such a u always exists
Recurse always terminates: finitely many good sets with P≥

X∩]0, 1[5 ̸= ∅.
Part 2/3: Computing all good sets Michaël Rao 38 / 52



Good sets: results

We execute Recurse(∅) and it finds 193 non-empty sets.

193 non-empty maximal good sets X with P≥
X∩]0, 1[5 ̸= ∅

Take all permutations: 3495 non-empty maximal good sets X with
PX∩]0, 1[5 ̸= ∅
Keep only one represents for each class up to rotation/mirror, one
have the 371 sets.
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Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an
exhaustive search of a tiling.

⇒ solve a Jigsaw puzzle, by computer

We chose a (maximal) good set X .
We do an exhaustive search of all tilings, allowing only “vector categories”
in X .

We backtrack if the conditions (angles and lengths) imply

we are in a known case: known family (Types 1 to 15 in Table 1),
or a special case of a known family (Types 16 to 19)

or no convex pentagon exists with these conditions
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Backtracking: general idea

The object on which we work and backtrack is a pair (G ,Q):

G is a embedded planar graph which represent the partial tiling
(“Tiling graph”)

Q is a set of conditions we know on the lengths of the pentagon: i.e.
a linear program (LP) on ℓ1 . . . ℓ5

We add linear conditions on sides “on the fly”
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Tiling graph

Tiling graph : embedded planar graph with labels on angles and edges

Two types of faces: usual and special

usual: corresponds to a pentagon in the tiling. The degree is 5, and
the angles are marked from 1 to 5 (in CW or CCW)

special: corresponds to frontier between tiles, or an unknown area of
the plane. Angles are marked with ∅, π or ?

A special face is complete if there no “?”
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Tiling graph: example

x

z

y

4

5
1

2

3

∅∅

∅
∅

∅

w

t

s

4

5
1

2

3

u’

r’

x

y

3

2

1
5

4

ut

w’
r

3 2

1

54

s’

t y

z
4

5

1

2

3
∅

∅

∅

Example of a tiling graph (Type 15). Unmarked angles are labeled “?”
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Length suppositions

A run on a special face is a succession of consecutive ∅ and π angles.

Each run corresponds to aligned points in the tiling.

Let s and s ′ be two vertices on a same run.

If Q implies that s and s ′ have the same position, then we merge s
and s ′

If Q does not permit to decide among the 3 possibilities: s < s ′,
s = s ′ and s > s ′, then we branch on the 3 possibilities: we add the
corresponding condition in Q and recurse
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Branching on length suppositions: example

x

z

y

4

5
1

2

3

∅∅

∅
∅

∅

w

t

s

4

5
1

2

3

u’

r’

x

y

3

2

1
5

4

ut

w’
r

3 2

1

54

s’

t y

z
4

5

1

2

3
∅

∅

∅

Q :

ℓ4 − ℓ5 = 0

(y,z) is a complete face. So we (already) have ℓ4 = ℓ5 in the LP Q

(w,t,w’) is a run. the length wt is ℓ3, and the length tw ′ is ℓ3. so we
merge w and w ′, and mark angle (t,w , t) as ∅
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Q : ℓ4 − ℓ5 = 0

(u, t, y , u′) is also a run.
Is u and u′ the same vertex ? Is ℓ3 = ℓ4 + ℓ5 ?
We don’t know. We branch.
first case : add ℓ3 > ℓ4 + ℓ5 to Q and branch
second case : add ℓ3 = ℓ4 + ℓ5 to Q and branch
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(case 2) Q : ℓ4 − ℓ5 = 0, ℓ3 − ℓ4 − ℓ5 = 0

(u, t, y , u′) is a run, and we know that u and u′ have the same position:
we merge u and u′, and the angle (t, u, y) is labeled π.

u is now complete: the angle r , u, r ′ is labeled ∅
in the run (r , u, r ′), r and r ′ have the same position: we merge...
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Branching on length suppositions: example

x

z

y

4

5
1

2

3

∅∅

∅
∅

∅

w
∅

t

s

4

5
1

2

3

u

r
∅

x

y

3

2

1
5

4

u

π

∅

t

w
r3

2
1

5
4

s’

t y

z
4

5

1

2

3
∅

∅

∅

(case 2) Q : ℓ4 − ℓ5 = 0, ℓ3 − ℓ4 − ℓ5 = 0

(u, t, y , u′) is a run, and we know that u and u′ have the same position:
we merge u and u′, and the angle (t, u, y) is labeled π.

u is now complete: the angle r , u, r ′ is labeled ∅
in the run (r , u, r ′), r and r ′ have the same position: we merge...

Part 3/3: Testing a family corresponding to a good set Michaël Rao 46 / 52



Branching on a new tile

In other cases, we add a new tile (a new “usual face”)

We take a non-complete vertex w in the graph, and we try (branch on)
every possibility to add a new face adjacent to w
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Existence of the pentagon

Given the LP Q, we denote by Q the set of solutions ℓ of Q with
∑

ℓ = 1
Let s(α) be the vector such that s(α)i = (i − 1)−

∑i−1
j=1 αi .

One have: ∑
i

ℓi exp(s(α)i × π ×
√
−1) = 0. (1)

We backtrack if there is no convex pentagon exists with the properties,
that is if the following condition is not fulfilled:

∃ℓ ∈ Q∩]0, 1[5, ∃α ∈ P∩]0, 1[5,
∑
i

ℓi exp(s(α)i × π ×
√
−1) = 0 (2)

If dim(P) = 0 then α ∈ Q5, and easy to decide: we compute on
Q[cos (π/q)] for a q ∈ N.

If dim(P) > 0 : we backtrack if we have a certificate (computations in Q)
that there a no solution. Problem: this cannot detect “degenerate case”.
So we manually add some degenerate case. (Types 20 to 24 in Table 1).
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We backtrack if there is no convex pentagon exists with the properties,
that is if the following condition is not fulfilled:

∃ℓ ∈ Q∩]0, 1[5, ∃α ∈ P∩]0, 1[5,
∑
i

ℓi exp(s(α)i × π ×
√
−1) = 0 (2)

If dim(P) = 0 then α ∈ Q5, and easy to decide: we compute on
Q[cos (π/q)] for a q ∈ N.

If dim(P) > 0 : we backtrack if we have a certificate (computations in Q)
that there a no solution. Problem: this cannot detect “degenerate case”.
So we manually add some degenerate case. (Types 20 to 24 in Table 1).
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Conditions for which we backtrack (Table 1)
Type 1
(i=1)

a + b + c = 2π Type 2
(i=2)

a + b + d = 2π C = E

Type 3
(i=31)

3e = 2π
d + 2e = 2π
b + 2e = 2π

C + E = D
A = B

Type 4
(i=6)

a + b + d = 2π
2e = π

D = E
B = C

Type 5
(i=4)

3e = 2π
a + b + d = 2π

D = E
B = C

Type 6
(i=13)

d + 2e = 2π
a + c + d = 2π

C = D = E
A = B

Type 7
(i=17)

d + 2e = 2π
a + 2c = 2π

A = C = D = E Type 8
(i=14)

d + 2e = 2π
2b + c = 2π

A = B = C = D

Type 9
(i=15)

d + 2e = 2π
2a + c = 2π

A = B = C = D Type 10
(i=69)

2c + d = 2π
b + c + e = 2π
a + 2b = 2π

A + C = D = E

Type 11
(i=67)

c + 2d = 2π
b + d + e = 2π
a + 2b = 2π

A = B = C + 2E Type 12
(i=67)

c + 2d = 2π
b + d + e = 2π
a + 2b = 2π

A + C = B = 2E

Type 13
(i=63)

b + 2d = 2π
a + b + d = 2π
2e = π

A = 2B = 2C Type 14
(i=67)

c + 2d = 2π
b + d + e = 2π
a + 2b = 2π

A = B = 2C = 2E

Type 15
(i=303)

c + 2d = 2π
2b + e = 2π
2a + d = 2π
2e = π

B = D = E
C = 2B

Type 16
(i=72)
⊂ T10

b + c + e = 2π
2b + d = 2π
a + 2c = 2π

2A = D = E
A = C

Type 17
(i=25)
⊂ T2

c + 2e = 2π
2b + d = 2π

A = B = C = D = E Type 18
(i=73)
⊂ T2

d + 2e = 2π
c + 2e = 2π
b + d + e = 2π

D = E
A = B

Type 19
(i=23)
⊂ T1

c + 2e = 2π
b + 2d = 2π

A = B = C = D Type 20
(i=2)
degen.

a + b + d = 2π A = C + D
B = E

Type 21
(i=12)
degen.

d + 2e = 2π
2a + b = 2π

A = B
C = D

Type 22
(i=27)
degen.

c + 2e = 2π
a + 2d = 2π

A = B = C = E

Type 23
(i=64)
degen.

2b + d = 2π
a + b + d = 2π
2e = π

A = 2C = 2D Type 24
(i=69)
degen.

2c + d = 2π
b + c + e = 2π
a + 2b = 2π

2D = A + C
2E = A + C
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Part 3: Results

For every family, the exhaustive search is finite

That is: if a pentagon does not respect condition of Type i for a
i ∈ {1, . . . 24}, then it cannot tile the plane.

Types 1 to 15 are the already known families

Types 16 to 19 are special cases of known families

Types 20 to 24 are “degenerate” (dim(P) > 0): there are no convex
pentagons which respects these conditions
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Conclusion

No convex aperiodic tile...

But the techniques can be used on non convex tiles...

and can be used on every polygon with n sides (n fixed)...

But one have a combinatorial explosion:

E.g.: 371 famillies for convex pentagons, and ∼ 6000 families for
non-convex pentagons
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Thanks !
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