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The “hat” (Smith, Myers, Kaplan, Goodman-Strauss,
2023)
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Tiling: covering of the plane using copies of one or more tiles, with no
overlaps and no gaps. J
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Tilings with a regular polygon
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Semi-regular tilings
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Aperiodic Tiling

eriodic tiling: there is a translation which does not change the tiling

previous tilings are periodic
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Aperiodic Tiling

eriodic tiling: there is a translation which does not change the tiling

previous tilings are periodic

Aperiodic tiling: There is not such translation
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Penrose Tiling: a well known aperiodic tiling

Michaél RA0 7/52



Penrose Tiling IRL

Roger Penrose, Institut Mitchell, Texas A&M University
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Penrose Tiling IRL

By Thomas Fernique and Evgeny Poloskin
http://images.math.cnrs.fr/Un-parquet-de-Penrose.html
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Pinwheel tiling
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Pinwheel tiling
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Pinwheel tiling

== — R,
Federation Square (Melbourne, Australia)
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Chair Tiling




Aperiodicity in the nature
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Quasiperiodic-crystal: crystal with non periodic structure
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Aperiodicity in the nature

Quasiperiodic-crystal: crystal with non periodic structure

Discovered in 1982 by Dan Shechtman. Nobel price in chemistry (2011)

Natural quasiperiodic-crystal discovered in 2009 in Koryak Mountains.
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Force the aperiodicity 7

Suppose you want to find a set of local rules such that the only
crystal/floor/... you can construct is aperiodic
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Force the aperiodicity 7

Suppose you want to find a set of local rules such that the only
crystal/floor/... you can construct is aperiodic

How to “ force” a tiling to be aperiodic ?

A tile-set is aperiodic is it tiles the plane, and all tilings are aperiodic

Of course, we are interested in simple aperiodic tile-sets.
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Penrose with decorations

Michaél Rao 16 / 52



Aperiodic tiling with one tile ?

Thare are aperiodic tile-sets with two tiles (e.g.: Penrose,
Ammann—Beenker...)

Is there an aperiodic tile-set with one tile ? J
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Aperiodic tiling with one tile ?

Thare are aperiodic tile-sets with two tiles (e.g.: Penrose,
Ammann—Beenker...)

Is there an aperiodic tile-set with one tile ? J

= "Ein-stein” problem (from the German, “one stone") J
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Taylor-Socolar tile (2011)
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Aperiodic tiling with one connected tile 7

Is there an aperiodic tile-set with one connected tile 7 )
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Aperiodic tiling with one connected tile 7

Is there an aperiodic tile-set with one connected tile 7 |

In 2023 : Yes, the “Hat”, Discovered by David Smith.
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The hat (Smith, Myers, Kaplan, Goodman-Strauss, 2023)
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The spectre (Smith, Myers, Kaplan, Goodman-Strauss,
2023)
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Finding polygons that tile the plane

Michaél Rao 22 /52



Finding polygons that tile the plane

= try to do an exhaustive search by computer, on polygons.
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Finding polygons that tile the plane

= try to do an exhaustive search by computer, on polygons.

The space is too big... first add a (strong) constraint

Is there an aperiodic tile-set with one convex tile ?

More generaly:

Wich convex shape tiles the plane ?
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Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Wich convex shape tiles the plane ? J
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@ All triangles tiles the plane

Michaél Rao

23 / 52



Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Wich convex shape tiles the plane ?

= look at only polygons
@ All triangles tiles the plane
o All quadrilaterals tiles the plane
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Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Wich convex shape tiles the plane ?

= look at only polygons
@ All triangles tiles the plane
o All quadrilaterals tiles the plane
@ A convex polygon with 7 or more sides do not tile the plane
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Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Wich convex shape tiles the plane ? J

= look at only polygons

All triangles tiles the plane
All quadrilaterals tiles the plane
A convex polygon with 7 or more sides do not tile the plane

Hexagons whichs tiles:
' /
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Tile the plane with convex polygons

Question from Karl Reinhardt in 1918:

Wich convex shape tiles the plane ? J

= look at only polygons

All triangles tiles the plane
All quadrilaterals tiles the plane
A convex polygon with 7 or more sides do not tile the plane

Hexagons whichs tiles:
' /

@ Open question : Pentagons ?
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Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane where
found:

@ Reinhardt (1918): Types 1 to 5
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Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane where
found:

@ Reinhardt (1918): Types 1 to 5

o Kershner (1968): Types 6, 7, 8
(and announces, without proof, that the list is complete)

e James (1975): Type 10

e Rice (1977): Types 9, 11, 12 and 13

@ Stein (1985): Type 14

e Mann, McLoud & Von Derau (2015): Type 15.
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(Wikipedia)

25 / 52

Michaél Rao



A “type” is a set of pentagons



What is a “type” 7

A “type” is a set of pentagons (a type is not a tiling, neither a set of
tiling...)
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What is a “type” 7

A “type” is a set of pentagons (a type is not a tiling, neither a set of
tiling...)
A type is all the pentagons that respect

@ a set G, of linear conditions on angles (form: v -« = 27 with v € N°)

e a set C of linear conditions on sides (form: v - ¢ = 0 with v € Z°)

A type tiles : all pentagons in this set tile with a same (periodic) pattern
(but other tilings are possible)
Examples:

o Typel: g +ap=m

@ Type2: a; +az3=mand {1 =/3

o Type 4: a3 =a5 =7/2, lp = V{3 and {4y = U5
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Sketch

We present an exhaustive search of all convex pentagons which tile the
plane
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Sketch

We present an exhaustive search of all convex pentagons which tile the
plane

Let P be a convex pentagon which tiles the plane.

@ Part 1: There exist a tiling by P such that each vertex category has
positive density

@ The set of vertex category (i.e. conditions implied by angles) must be
“goodll

@ Part 2: There are only 371 good sets to consider
@ Part 3: For each good set : we do an exhaustive search

@ Result: we found only the 15 known families (and some special cases).
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Part 1: positive density tiling and good sets

Let P be a convex pentagon
@ the vertices are sy, ...ss, in clockwise order

@ the angles are respectively a3 X m,...,a5 X 7

V1<i<5h O0<ai<l1

5
Za;:(l,l,l,l,l)-a:3
i=1

Part 1/3 : Positive density tiling and good sets
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Part 1: positive density tiling and good sets

Let P be a convex pentagon
@ the vertices are sy, ...ss, in clockwise order

@ the angles are respectively a3 X m,...,a5 X 7

V1<i<5h O0<ai<l1

5
Za;:(l,l,l,l,l)-a:3
i=1

Let 7 be tiling of the plane by P (we allow rotation/transtation/mirror)

(Note: no hypothesis on periodicity / transitivity)

Part 1/3 : Positive density tiling and good sets Michaél Rao 29 / 52



Part 1/3 : Positive density tiling and good sets




Vector category

Let s be a vertex of T (i.e. a vertex of one pentagon in 7))

The vector category of s, denoted V/(s), is the vector v € N® s.t. there are
v; angles s; around s.
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Vector category

Let s be a vertex of T (i.e. a vertex of one pentagon in 7))

The vector category of s, denoted V/(s), is the vector v € N® s.t. there are
v; angles s; around s.

For every vertex s, V(s) - oo =2
W : set of vectors categories of vertices in T . W is finite

Attention ! Two cases of vertices:
@ “Half” : sis in the border of a tile P, but not a vertex of P
@ “Full” : s is a vertex of every tile around s

We have to “correct” the vector category of “half” vertices.
Here, for the sake of simplicity, we do not talk about half vertices...

Part 1/3 : Positive density tiling and good sets Michaél Rao 31/52



A toy problem

Suppose that the density of each vector category is definite.

number of vertices s with V(s) = v

densit =
ensi Y(V) number of tiles
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A toy problem

Suppose that the density of each vector category is definite.

number of vertices s with V(s) = v
number of tiles

density(v) =

and W is the following:
va=(1,1,1,0,0)
vy, = (0,0,0,2,2)
ve =(1,1,0,1,0)
What are the densities of v's ?
= dava+ dpvp + deve = (1,1,1,1,1)

Part 1/3 : Positive density tiling and good sets Michaél Rao 32 /52



A toy problem

Suppose that the density of each vector category is definite.

number of vertices s with V(s) = v
number of tiles

density(v) =

and W is the following:
va=(1,1,1,0,0)
vy, = (0,0,0,2,2)
ve =(1,1,0,1,0)
What are the densities of v's 7
= dava+ dpvp + deve = (1,1,1,1,1)
= dy=1,dy=3,d =0
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A toy problem

Suppose that the density of each vector category is definite.

number of vertices s with V(s) = v

densit =
ensi Y(V) number of tiles

and W is the following:
va=(1,1,1,0,0)
vy, = (0,0,0,2,2)
ve =(1,1,0,1,0)
What are the densities of v's 7
= dava+ dpvp + deve = (1,1,1,1,1)
= dy=1,dy=3,d =0

Can we tile only with v; and v, 7

Part 1/3 : Positive density tiling and good sets Michaél Rao 32 /52



Positive density tilings

Definition (Positive density tiling)
T has positive density if for every v € W, the density of V/(s) is positive. J
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Positive density tilings

Definition (Positive density tiling)

T has positive density if for every v € W, the density of V/(s) is positive.

Problem: the density is not always defined for an arbitrary tiling...
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Positive density tilings

Definition (Positive density tiling)
T has positive density if for every v € W, the density of V/(s) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything
works as if.
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Definition (Positive density tiling)
T has positive density if for every v € W, the density of V/(s) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything
works as if.

Lemma

If a tiling by P exists, then a tiling of positive density by P exists. (

@ Otherwise, suppose v € W with density 0

Part 1/3 : Positive density tiling and good sets Michaél Rao 33 /52



Positive density tilings

Definition (Positive density tiling)
T has positive density if for every v € W, the density of V/(s) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything
works as if.

Lemma

If a tiling by P exists, then a tiling of positive density by P exists. {

@ Otherwise, suppose v € W with density 0

@ There are sub-tilings of an arbitrarily large disk without a vertex v
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Positive density tilings

Definition (Positive density tiling)
T has positive density if for every v € W, the density of V/(s) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything
works as if.

Lemma

If a tiling by P exists, then a tiling of positive density by P exists. (

@ Otherwise, suppose v € W with density 0

@ There are sub-tilings of an arbitrarily large disk without a vertex v
(take a grid of girth x: if there is a v in every cell — contradiction)
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Positive density tilings

Definition (Positive density tiling)
T has positive density if for every v € W, the density of V/(s) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything
works as if.

Lemma

If a tiling by P exists, then a tiling of positive density by P exists. (

@ Otherwise, suppose v € W with density 0

@ There are sub-tilings of an arbitrarily large disk without a vertex v
(take a grid of girth x: if there is a v in every cell — contradiction)

@ By compactness one can construct a tiling without v

o (warning: be careful with half vertices and “fracture lines")

Part 1/3 : Positive density tiling and good sets Michaél Rao 33 /52



Good set

Definition (Good set)
X C N is good if Yu € R® with 3" u = 0, either:
@ u-v=_0forevery velX, or

o thereare v,v € X suchthat u-v<0<u-Vv.

Part 1/3 : Positive density tiling and good sets Michaél Rao 34 /52
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Definition (Good set)
X C N is good if Yu € R® with 3" u = 0, either:
@ u-v=_0forevery veX, or

o thereare v,v € X suchthat u-v<0<u-Vv.

In the toy example:
Vi = (]_, ]_, ]_, 07 0)
vo» =(0,0,0,2,2)
vz =(1,1,0,1,0)

o {vi,w,v3}is
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Good set

Definition (Good set)
X C N is good if Yu € R® with 3" u = 0, either:
@ u-v=_0forevery veX, or

o thereare v,v € X suchthat u-v<0<u-Vv.

In the toy example:
Vi = (]_, ]_, ]_, 07 0)
vo» =(0,0,0,2,2)
vz =(1,1,0,1,0)
e {vi1, v, v3} is not good, with v = (1,0,—1,0,0)
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Good set

Definition (Good set)
X C N is good if Yu € R® with 3" u = 0, either:
@ u-v=_0forevery veX, or

o thereare v,v € X suchthat u-v<0<u-Vv.

In the toy example:
Vi = (]_, ]_, ]_, 07 0)
vo» =(0,0,0,2,2)
vz =(1,1,0,1,0)
e {vi1, v, v3} is not good, with v = (1,0,—1,0,0)

o {vi,wn}is
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Good set

Definition (Good set)
X C N is good if Yu € R® with 3" u = 0, either:
@ u-v=_0forevery veX, or

o thereare v,v € X suchthat u-v<0<u-Vv.

In the toy example:
Vi = (]_, ]_, ]_, 07 0)
vo» =(0,0,0,2,2)
vz =(1,1,0,1,0)
e {vi1, v, v3} is not good, with v = (1,0,—1,0,0)

o {vi,w}isgoodsince2xu-vi+u-vu=0

Part 1/3 : Positive density tiling and good sets Michaél Rao
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Positive density imply WV is good

Lemma
If T has positive density, then VW is good.
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Positive density imply WV is good

Lemma

If T has positive density, then VW is good.

Otherwise, suppose u € R such that Z?:l ui=0s.t.:
eVveW, u-v>0.

@ thereisa vt € W with u- vt > 0.

Part 1/3 : Positive density tiling and good sets Michaél Rao

35 / 52



Positive density imply WV is good

Lemma

If T has positive density, then VW is good.

Otherwise, suppose u € R such that Z?:l ui=0s.t.:
eVveW, u-v>0.
@ thereisa vt € W with u-v' > 0.

We count the densities of angles in the tiling:

> vxd, =(1,1,1,1,1)

vew
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Positive density imply WV is good

Lemma

If T has positive density, then VW is good.

Otherwise, suppose u € R such that Z?:l ui=0s.t.:
eVveW, u-v>0.
@ thereisa vt € W with u-v' > 0.

We count the densities of angles in the tiling:

> vxd, =(1,1,1,1,1)

vew

Z(u-v)xdvzo

vew
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Positive density imply WV is good

Lemma
If T has positive density, then VW is good.

Otherwise, suppose u € R such that Z?:l ui=0s.t.:
eVveW, u-v>0.

@ thereisa vt € W with u-v' > 0.
We count the densities of angles in the tiling:

> vxd, =(1,1,1,1,1)

vew

Z (u-v)xd, =0
vew
Contradiction since:

Z(u-v)deZ(u-v+)xdv+>0
vew

Part 1/3 : Positive density tiling and good sets Michaél Rao 35 /52



B

Let X C N°
Definition (P )

B is the convex polytope of a = (ag,...as5) € R® s.t.
o Vie{l,...,5},0<¢a; <1,

OZ?:la,'::'S,
eVve X, a-v=2.

unformally: if X is a set of vector category, By is the set of the angles of all
possible convex polygons which respect X
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Let X C N°
Definition (Px)

B is the convex polytope of a = (ag,...as5) € R® s.t.
o Vie{l,...,5},0<¢a; <1,

OZ?:la,':fS,
eVve X, a-v=2.

unformally: if X is a set of vector category, By is the set of the angles of all
possible convex polygons which respect X

In a tiling by a convex pentagon: a € Py, thus PyyN]0, 1[°# 0
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B

Let X C N°
Definition (Px)

B is the convex polytope of a = (ag,...as5) € R® s.t.
o Vie{l,...,5},0<q; <1,
° Y ai=3
eVve X, a-v=2.

unformally: if X is a set of vector category, By is the set of the angles of all
possible convex polygons which respect X

In a tiling by a convex pentagon: a € Py, thus PyyN]0, 1[°# 0

What are the good sets X' such that BN]0, 1[># 0 ? J
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B

Let X C N°
Definition (Px)

B is the convex polytope of a = (ag,...as5) € R® s.t.
o Vie{l,...,5},0<¢a; <1,

OZ?:la,':fS,
eVve X, a-v=2.

unformally: if X is a set of vector category, By is the set of the angles of all
possible convex polygons which respect X

In a tiling by a convex pentagon: a € Py, thus PyyN]0, 1[°# 0

What are the good sets X' such that BN]0, 1[># 0 ? J

Spoil: only finitely many...
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Part 2: Computation of all good sets

What are the good sets X’ such that BN]0, 1[># 0 ? ]
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Part 2: Computation of all good sets

What are the good sets X’ such that BN]0, 1[># 0 ? )

@ We present an algorithm which generates all good sets.

@ One execution of this algorithms terminates, and returns 371 good
sets.

@ Moreover, one can show that this algorithm always terminates.
We suppose w.l.o.g. that:
l>a1>a>az3>as > a5 >0 (‘p;{ instead Ofm)()

@ X is maximal, i.e. every condition implied by conditions in X" is in X
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1: procedure RECURSE(X)
2: X + Compat(X) (i.e. complete X’ to make it maximal)
3. if P2N]0,1[°= 0 then return end if
4: if X' is good then
5: Add X to the list of good sets
6 end if
7 Let u € R® such that:
o u-(1,1,1,1,1) =0
eVve X, u-v=0

8: V{veN:v.-u>0 }
9: for every w € V' \ X do
10: RECURSE(X U {w})

11: end for
12: end procedure
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4: if X' is good then
5: Add X to the list of good sets
6 end if
7 Let u € R® such that:
o u-(1,1,1,1,1) =0
eVve X, u-v=0
o Vie {4,5}, (mx)i=0=u; >0
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1: procedure RECURSE(X)
2: X + Compat(X) (i.e. complete X’ to make it maximal)
3. if P2N]0,1[°= 0 then return end if
4: if X' is good then
5: Add X to the list of good sets
6 end if
7 Let u € R® such that:
o u-(1,1,1,1,1) =0
eVve X, u-v=0
o Vie {4,5}, (mx)i=0=u; >0

8: Ve {veN:v.-u>0and v -my <2}
9: for every w € V' \ X do
10: RECURSE(X U {w})

11: end for
12: end procedure

RECURSE(X) computes all max good sets J) O X' with ‘1332,0]0, 1P#£0 J

Line 8: V is finite Line 7: such a u always exists
RECURSE always terminates: finitely many good sets with ‘BEH]O, 1[>#£ 0.
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Good sets: results

We execute RECURSE(() and it finds 193 non-empty sets.
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Good sets: results

We execute RECURSE(() and it finds 193 non-empty sets.
@ 193 non-empty maximal good sets X’ with ‘Biﬂ]o, 1P#0

@ Take all permutations: 3495 non-empty maximal good sets X with

‘Bxﬂ]o, ].[57'é 0
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Good sets: results

We execute RECURSE(() and it finds 193 non-empty sets.
@ 193 non-empty maximal good sets X’ with PzN]0, 1[># 0
@ Take all permutations: 3495 non-empty maximal good sets X with
Pan]0,1# 0
@ Keep only one represents for each class up to rotation/mirror, one
have the 371 sets.
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Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an
exhaustive search of a tiling.
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We do an exhaustive search of all tilings, allowing only “vector categories”
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For each family in the 371 families of maximal good sets, we do an
exhaustive search of a tiling.
= solve a Jigsaw puzzle, by computer

We chose a (maximal) good set X'.

We do an exhaustive search of all tilings, allowing only “vector categories”
in X.

We backtrack if the conditions (angles and lengths) imply

@ we are in a known case: known family (Types 1 to 15 in Table 1),
or a special case of a known family (Types 16 to 19)
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Part 3 : Testing a family corresponding to a good set

For each family in the 371 families of maximal good sets, we do an
exhaustive search of a tiling.
= solve a Jigsaw puzzle, by computer

We chose a (maximal) good set X'.

We do an exhaustive search of all tilings, allowing only “vector categories”
in X.

We backtrack if the conditions (angles and lengths) imply

@ we are in a known case: known family (Types 1 to 15 in Table 1),
or a special case of a known family (Types 16 to 19)

@ or no convex pentagon exists with these conditions
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Backtracking: general idea

The object on which we work and backtrack is a pair (G, Q):
@ G is a embedded planar graph which represent the partial tiling
(“Tiling graph™)
@ @ is a set of conditions we know on the lengths of the pentagon: i.e.
a linear program (LP) on ¢1... /45

We add linear conditions on sides “on the fly”
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Tiling graph

Tiling graph : embedded planar graph with labels on angles and edges

Two types of faces: usual and special

@ usual: corresponds to a pentagon in the tiling. The degree is 5, and
the angles are marked from 1 to 5 (in CW or CCW)

@ special: corresponds to frontier between tiles, or an unknown area of
the plane. Angles are marked with ), w or ?

A special face is complete if there no “?"
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Tiling graph: example

Example of a tiling graph (Type 15). Unmarked angles are labeled “?"
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Length suppositions

A run on a special face is a succession of consecutive () and 7 angles.
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Length suppositions

A run on a special face is a succession of consecutive () and 7 angles.

Each run corresponds to aligned points in the tiling.

Let s and s’ be two vertices on a same run.

o If Q implies that s and s’ have the same position, then we merge s
and ¢’

Part 3/3: Testing a family corresponding to a good set Michaél Rao 45 / 52



Length suppositions

A run on a special face is a succession of consecutive () and 7 angles.

Each run corresponds to aligned points in the tiling.

Let s and s’ be two vertices on a same run.

o If Q implies that s and s’ have the same position, then we merge s
and ¢’

o If Q does not permit to decide among the 3 possibilities: s < ¢/,
s =5s"and s > ¢, then we branch on the 3 possibilities:
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Length suppositions

A run on a special face is a succession of consecutive () and 7 angles.

Each run corresponds to aligned points in the tiling.

Let s and s’ be two vertices on a same run.

o If Q implies that s and s’ have the same position, then we merge s
and ¢’

o If Q does not permit to decide among the 3 possibilities: s < ¢/,
s=2s"and s > s/, then we branch on the 3 possibilities: we add the
corresponding condition in @ and recurse
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Branching on length suppositions: example
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Branching on length suppositions: example

Q:ly—1ls=0
(v,z) is a complete face. So we (already) have ¢4 = /5 in the LP Q
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Branching on length suppositions: example

0254—65:0
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Branching on length suppositions: example

0254—65:0

(u,t,y,u') is also a run.
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Q:ly—1ls=0
(u,t,y,u') is also a run.
Is u and ' the same vertex ?
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Branching on length suppositions: example

Q:ly—1ls=0

(u,t,y,u') is also a run.

Is u and ' the same vertex ? Is f3 = {4 + {5 ?
We don't know. We branch.

Part 3/3: Testing a family corresponding to a good set Michaél Rao 46 / 52



Branching on length suppositions: example

Q:ly—1ls=0

(u,t,y,u') is also a run.

Is u and ' the same vertex ? Is f3 = {4 + {5 ?
We don’t know. We branch.

first case : add ¢3 > ¢4 + {5 to Q and branch
second case : add /3 = ¢4 + ¢5 to Q and branch
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Branching on length suppositions: example

(case 2) Q : 4y — U5 = 0,03 — gy — U5 =0
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Branching on length suppositions: example

O
(case 2) Q : 4y — U5 = 0,03 — gy — U5 =0
(u,t,y,u') is a run, and we know that v and v’ have the same position:
we merge u and o/,
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(u,t,y,u') is a run, and we know that v and v’ have the same position:
we merge u and v/, and the angle (¢, u,y) is labeled 7.
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Branching on length suppositions: example

O
(case 2) Q : 4y — U5 = 0,03 — gy — U5 =0
(u,t,y,u') is a run, and we know that v and v’ have the same position:
we merge u and v/, and the angle (¢, u,y) is labeled 7.

u is now complete: the angle r, u, r’ is labeled ()
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Branching on length suppositions: example

O
(case 2) Q : 4y — U5 = 0,03 — gy — U5 =0
(u,t,y,u') is a run, and we know that v and v’ have the same position:
we merge u and v/, and the angle (¢, u,y) is labeled 7.

u is now complete: the angle r, u, r’ is labeled ()

in the run (r,u, r'), r and r’ have the same position: we merge...
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Branching on a new tile

In other cases, we add a new tile (a new “usual face")
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Branching on a new tile

In other cases, we add a new tile (a new “usual face")

We take a non-complete vertex w in the graph, and we try (branch on)
every possibility to add a new face adjacent to w
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Existence of the pentagon

Given the LP @, we denote by 9 the set of solutions £ of @ with ) /=1
Let s(«) be the vector such that s(«a); = (i — 1) — ZJ';} ;.
One have:

Zeexp )i x ™ x v/—1) = 0. (1)
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Existence of the pentagon

Given the LP Q, we denote by 9 the set of solutions ¢ of Q with Y ¢ =1

Let s(«) be the vector such that s(a); = (i — 1) — ZJ';} Q.
One have:

Zeexp )i X T x /=1) = 0. (1)

We backtrack if there is no convex pentagon exists with the properties
that is if the following condition is not fulfilled:

30 € M0, 1P, I € PJ0, 17, > Liexp(s(e)i x 7 x V=1) =0  (2)
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Existence of the pentagon

Given the LP @, we denote by 9 the set of solutions £ of @ with ) /=1
Let s(«) be the vector such that s(«a); = (i — 1) — ZJ';} ;.
One have:

Zeexp )i x ™ x v/—1) = 0. (1)

We backtrack if there is no convex pentagon exists with the properties
that is if the following condition is not fulfilled:

30 € M0, 1P, I € PJ0, 17, > Liexp(s(e)i x 7 x V=1) =0  (2)

If dim(*3) = 0 then o € Q5, and easy to decide: we compute on
Q[cos (7/q)] for a g € N.
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Existence of the pentagon

Given the LP @, we denote by 9 the set of solutions £ of @ with ) /=1
Let s(«) be the vector such that s(«a); = (i — 1) — ZJ';} ;.

One have:
Zeexp )i X T x /=1) = 0. (1)

We backtrack if there is no convex pentagon exists with the properties,
that is if the following condition is not fulfilled:

30 € M0, 1P, I € PJ0, 17, > Liexp(s(e)i x 7 x V=1) =0  (2)

If dim(*3) = 0 then o € Q5, and easy to decide: we compute on
Q[cos (7/q)] for a g € N.

If dim(3) > 0 : we backtrack if we have a certificate (computations in Q)
that there a no solution. Problem: this cannot detect “degenerate case”.
So we manually add some degenerate case. (Types 20 to 24 in Table 1).
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Conditions for which we backtrack (Table 1)

Type 1 at+b+c=2m Type 2 a+b+d=2m C=E
(i=1) (i=2)
Type 3 3e =2m C+E=D Type 4 a+b+d=2m D=E
(i=31) d+2e =27 A=B (i=6) 2e=m B=C

b+2e =27
Type 5 3e =2m D=E Type 6 d+2e =27 C=D=E
(i=4) atb+d=27w B=C (i=13) atc+d=2xw A=B
Type 7 d+2e =27 A=C=D=E Type 8 d+2e =27 A=B=C=D
(i=17) a+2c=2m (i=14) 2b+c=2r
Type 9 d+2e=2m A=B=C=D Type 10 2c+d=2m A+C=D=E
(i=15) 2a+c=2m (i=69) b+c+e=2m

a+2b=2m

Type 11 c+2d =2m A=B=C+2E Type 12 c+2d =2~ A+ C=B=2E
(i=67) b+d+e=27m (i=67) b4+d+e=27m

a+2b=2m a+2b=2mw
Type 13 b+2d =2m A=2B=2C Type 14 c+2d =27 A=B=2C=2E
(i=63) at+b+d=2n (i=67) b+d+e=2m

2e=m a+2b=2m
Type 15 c+2d =27 B=D=E Type 16 b+c+e=2m 2A=D=E
(i=303) | 2b+e=2m c=28B (i=72) 2b+d=2n A=C

2a+d =27 C T10 a+2c=2m

2e=m
Type 17 c+2e=2m A=B=C=D=E Type 18 d+2e =27 D=E
(i=25) 2b+d=2m (i=73) c+2e=2n A=B
C T2 C T2 b+d+e=2m
Type 19 c+2e=2m A=B=C=D Type 20 at+b+d=2n A=C+D
(i=23) b+2d =2r (i=2) B=E
cT1 degen.
Type 21 d+2e =27 A=B Type 22 c+2e=2m A=B=C=E
(i=12) 2a+b=2m c=D (i=27) a+2d=2m
degen. degen.
Type 23 2b+d =2m A=2C=2D Type 24 2c+d =2m 2D=A+C
(i=64) a+b+d=2r (i=69) btcte=2r | 2E=A+C
degen. e=m degen. a+2b=2m
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Part 3: Results

For every family, the exhaustive search is finite

That is: if a pentagon does not respect condition of Type i for a
i€ {1,...24}, then it cannot tile the plane.

@ Types 1 to 15 are the already known families

@ Types 16 to 19 are special cases of known families

o Types 20 to 24 are "degenerate” (dim(*B) > 0): there are no convex
pentagons which respects these conditions
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Conclusion

@ No convex aperiodic tile...
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Conclusion
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@ But the techniques can be used on non convex tiles...

@ and can be used on every polygon with n sides (n fixed)...
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Conclusion

No convex aperiodic tile...
But the techniques can be used on non convex tiles...
and can be used on every polygon with n sides (n fixed)...

But one have a combinatorial explosion:

E.g.: 371 famillies for convex pentagons, and ~ 6000 families for
non-convex pentagons
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