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1 Introduction

1.1 General Motivation

In this report, we consider a random Ising model in transverse field described
by the Hamiltonian

H = −
∑

<ij>

Jijσ
z
i σ

z
j −
∑

i

hiσ
x
i (1)

that we place on a d-dimensional lattice. Here σi designs the Pauli spin matrices
and < ij > means pairs of nearest neighbours in the d-dimensional lattice.
The system is subject to some random influences: there exist site dependant
magnetic fields hi as well as random couplings Jij between spins at sites i and j.
The Ising spin glass corresponds to the case of couplings Jij of arbitrary signs.

We face the classical Ising spin glass if all random fields are zero {hi} ≡ 0,
finding an Hamiltonian consisting of commutating operators.

One of the interesting properties of such spin glasses is that their ground
state is “a frozen disordered one, rather than the kind of uniform or periodic
pattern we are accustomed to finding in conventional magnets”1.

A phenomenon often encountered with spin glasses is that of “frustation”.
Responsable for frustration in the above model are the negative couplings. They
- in the search for the ground state of the system - lead to a competition be-
tween all the couplings “in the sense that no single configuration of the spins is
uniquely favoured by all the interactions”2. One can check the presence of frus-
tration in the following way: Choose some closed loop consisting of couplings
between lattice sites. Count then the number of negative couplings involved. If
this number is even there will be no frustration in the loop. But should this
number be odd then you will encounter a conflict trying to put the spins at the
intervening sites and to satisfy all the bonds, you have found a frustrated loop
and one of the spins will get “frustrated”.

Now appearently in the above model (1) frustration can only be found in
dimension d ≥ 2 because in the one-dimensional case one can not construct a
closed loop. So in the first part of this work we will not be worrying about
frustration. But then we introduce to our model (small) random couplings
between next nearest neighbour couplings, too, and in the following also can
find frustrated loops.

Such classical - and already very complicated - systems can be shown to have
a very slow dynamics (“aging”) due to high energy barriers.

Admitting now random transverse fields hi we enter the regime of the “Quan-
tum Ising Spin Glass”, [5]. One of its additional features are appearing quantum
fluctuations enabling the system to overcome energy barriers by tunneling effect.

Why should we now deal with disordered systems in one dimension when
our real world is three-dimensional?

Sometimes our real world is very complex and not easy to understand. One
of the materials that can be described in the terms of the Hamiltonian (1) in
dimension d = 3 is the substance LiHoxY1−xF4, [3], however its properties are
far from being understood. In such cases it can be useful to examine first -

1[4], page 2
2ibid.
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of the quantum Ising spin chain.

magnetically ordered
phase

T = 0

ordered phase

1 h/J

m

0

magnetically dis!

1

Figure 2: Schematic diagram of the
magnetisation of the quantum Ising
spin chain at zero temperature.

instead of the actual system - some simpler model that does not represent all
“real” aspects very well. Its study can give an intuition of what is going on in
reality. In spite of its appearent distance from reality sometimes this model even
can share some of the properties of the true system. The examination of such
models can help to develop mathematical methods that could find application
in the analysis of the more complex case.

Furthermore, the magnetic system that we are going to analyse can find some
reinterpretation in the general class of two-level-systems (amorphous solides at
very low temperatures, noise in 1/f).

So in this work we are going to deal with the one-dimensional case d = 1 of
(1). In order to handle the present disorder we are going to use a renormalisation
group approach in a functional space, developed in [1] and [2]. We find a new
fixed point where positive and negative couplings are equally distributed. We
then examine its stability and calculate some of its magnetic properties.

In the following we will shortly recall some results about the quantum Ising
spin chain which is the pure, that is randomness-free model associated to our
model of interest. We then explain the mentionned renormalisation procedure
by reproducing the case of the nearest neighbour chain with only non negative
couplings, treated by Fisher in [2]. Afterwards we are going to examine the
more general case of the nearest neighbour chain with couplings of arbitrary
signs and then concentrate our attention to the fixed point that we will find.

1.2 The Quantum Ising Spin Chain

The quantum Ising spin chain is the pure, randomness-free counterpart to the
system of our interest (1) and for this reason we shortly recall some of its
properties. It is given by the Hamiltonian

H = −J
∑

i

σz
i σ

z
i+1 − h

∑

i

σx
i . (2)

with some constants J, h ≥ 0. The main ingredient of this model is a struggle
between the spin couplings - that tend to order the system trying to set up all
the spins in parallel σz-eigenstates - and the magnetic fields - with tendence to
disorder the system by favouring spins that are in the low energy σx-eigenstate.
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One can identify the order parameter of the system to be the magnetisation
per site3 m :=< σz

i >. We give a schematic phase diagram of the system in
figure 1. It shows two phases, a magnetically ordered one with non vanishing
magnetisation m and a magnetically disordered one with magnetisation m = 0.
The ordered phase is uniquely realised at zero temperature T = 0 and for fields
h < J .

For h < J there exists a phase transition at T = 0 where thermal fluctuations
of the system finally disappear. Furthermore at zero temperature there exists
another phase transition induced by fluctuations of quantum mechanical nature.
This transition is therefore called a quantum phase transition. One can go
through it for example by varying the field h.

In figure 2 we also give an illustration of the magnetisation of the chain at
zero temperature.

We point out that in this model the field constant h and the coupling con-
stant J have in some sense symmetric roles: There exists a “duality transfor-
mation” from site to bond variables {σi} → {τ i} given by

τx
i := σz

i σz
i+1, τz

i :=
∏

j≤i

σx
j (3)

that yields exactly the same system (2) but with h and J interchanged. From
this observation one can - knowing that there exists a quantum phase transistion
at T = 0 - easily determine the transistion point to be h = J because the
assumptions h < J or h > J lead - after performing the duality transformation
- to a contradiction. We will retrieve this “duality” also in our disordered model
(1).

2 The Renormalisation Group Approach of Das-
gupta - Ma

One of the most important instruments in our examinations of the chain (1)
is a renormalisation group approach developed by Dasgupta and Ma, [1], and
later revived by Fisher, see e. g. [2]. They introduced a real space renormal-
isation scheme for concrete finite spin chains and used this one to propose a
functional renormalisation procedure, that is a renormalisation procedure act-
ing in a functional space, the space of the probability distributions for fields and
couplings.

We explain in this section the renormalisation of a concrete spin chain and
show in the next section - treating a special example - how one can then establish
the functional renormalisation procedure.

The proposed renormalisation scheme is a technique designed for very inho-
mogenous spin chains, that means spin chains where the occuring random fields
and couplings are all of very different values. Or - still expressed in another way
- this corresponds to spin chains that follow very broad probability distributions
for fields and couplings. This condition is crucial. We will see that it is well
satisfied in the cases we are going to examine.

3We note < A > the mean value of an observable A in the statistical ensemble.

3



Let us now describe the renormalisation scheme. We consider a very long
but finite spin chain (1) that is some realisation of very broad probability dis-
tributions for fields and couplings. Now we are interested in the low energy
behavior - the behavior at small temperatures or in small external magnetic
fields, for instance - of this chain. We remark that excited states of the chain
with an energy gap to the ground state much greater than the energy at which
we observe the system will practically not be realised. That is why we are going
to throw them out, projecting the system (1) on a low energy subspace of the
original Hilbert space. In this way we reduce the degrees of freedom of our
system.

In order to determine the high energy states of the chain we look for the
highest field or coupling in the chain. We then have a closer look to the asso-
ciated subsystem in the chain - the two strongly coupled spins or the one spin
interacting with its high field - and throw out the easily findable high energy
states of this subsystem. Depending on whether having found a field or coupling
there are two processes to consider.

Having identified a high random field hi we consider for a moment the asso-
ciated spin not to be influenced by the rest of the chain but only by this high
field. It then will be realised in one of the two eigenstates of the σx opera-
tor. Between these two states there is a large energy gap and if we consider
the system at sufficiently small energies the eigenstate of higher energy will not
occure. We throw it out and thus “freeze” this spin variable to the low energy
eigenstate. We later refer to this procedure as the “decimation of a field”.

Having found a coupling of high value we examine the subsystem of the two
coupled spins and neglect for a short time other influences to these two spins.
The two spins can then take one of the four states where every spin is in a σz-
eigenstate and the orientation of the two spins one towards the other is either
parallel or antiparallel. Depending on the sign of the found coupling either
the two parallel or the two antiparallel states will be the ground states of the
system. Between these two pairs of states there exists a large energy gap and
if we - again - consider the system at sufficiently low energies the two excited
states will not be realised. Therefore we throw them out and ban the two spins
to act collectively, being always either parallel or antiparallel depending on the
sign of the coupling. We call this process the “decimation of a coupling”.

The interactions between the local subsystem - the two strongly bound spin
variables or the one spin variable gouverned by its high transversal field - and
the rest of the chain are then rewritten with the help of second order perturba-
tion theory. This yields the actual renormalisation group transformation. Here
the mentionned condition to face broad probability distributions for fields and
couplings intervenes: In this case the fields and couplings in the environment of
the identified highest one will be - with high probability - very different from
it, that is they will be much smaller and so the perturbational treatment is
justified.

Let us summarise this procedure once again: We try to establish a renormal-
isation scheme for spin chains. Each renormalisation step consists of two parts,
these are

(i) First, one identifies the highest field or coupling in the chain. Next one
determines the associated excited state(s) and throws it(them) out. Thus
one restricts the space of states of the system to some low energy subspace
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Figure 3: Decimation of a field at
site i, transformation from (a) to
(b). The lines represent the behav-
ior of the couplings under the renor-
malisation procedure. Here a new
effective nearest neighbour coupling
(dashed line) between sites i−1 and
i + 1 is created.
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Figure 4: Decimation of a nearest
neighbour coupling between sites i
and i + 1 yielding one new effective
spin (drawn in a checkered pattern)
in a new effective field.

of the original Hilbert space and decreases the degrees of freedom of the
system.

(ii) One can then use perturbation theory to rewrite the original Hamiltonian
in the low energy subspace of the space of states. After this, one can hope
to be able to redefine the spin variables in the chain so that one recovers
a new system described by an Hamiltonian of the form of the original one
but with one spin variable less. Thus one has mapped the restriction of
the Hilbert space from (i) to the elimination of some spin variable. In this
way one has realised the idea of a renormalisation group transformation.

We anticipate the results of the following calculations. It turns out that the
system (1) can be treated in this way: We illustrate the decimation of a field
or of a coupling in figures 3 and 4. By appropriate redefinition of spin variables
both decimation of a field or a coupling yield a new system that is described
by a Hamiltonian of the structure of the original one (1) but with exactly one
spin variable less. Spins that - resulting from a field decimation - are forced to
one special state - the lower energy σx-eigenstate - are thrown out of the chain,
constituting no degree of freedom anymore. Those spins bound strongly by the
decimation of a coupling are seen to act as one new “effective spin”.

We now place these ideas on firmer ground. We explain the essential but
somewhat lengthy perturbational treatment in appendix A. In the next section
we use the results of this perturbational calculation to explain how to establish
then the functional renormalisation procedure.

3 The Random Ferromagnetic Quantum Spin
Chain revisited

This case has been solved by Fisher[2]. We are going to present it in order to
make clear the starting point for our future considerations and to introduce the
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details of the renormalisation scheme in the functional space of the probability
distributions.

3.1 Renormalisation in a functional space

We are facing the hamiltonian

H = −
∑

i

(
J (1)

i,i+1σ
z
i σ

z
i+1 + hiσ

x
i

)
, {hi}, {J (1)

i,i+1} ≥ 0, (4)

admitting - for the moment - only non negative fields and couplings. Later we
show how the following considerations can be extended to the more general case.
We denote in general J (L)

i,i+L a coupling between the sites i and i+L, so between
sites of a distance L.

We are interested in finding possible phases and phase transitions of the
system at low temperature

The idea is the following: We imagine to be given some probability dis-
tributions for fields and couplings and a very long chain which is a concrete
realisation of these distributions. For sufficiently long chains one concrete reali-
sation will contain (almost) the same amount of information as the probability
distributions and all realisations will be equivalent for our intended purpose. We
simplify that chain as proposed in the last section by decimating the highest
field or coupling - using the results of the perturbational calculations of appendix
A. Simultaneously we keep readjusting the associated probability distributions
and thus find the functional renormalisation scheme. We explain how to find a
set of differential equations that describe the renormalisation of the probability
distributions and then indicate fixed points and phase transistions.

As a measure for the effectuated renormalisation steps we add a parameter
Ω := maxi{hi, J

(1)
i,i+1} to the probability distributions, it yields the value of the

highest left field or coupling and decreases during the renormalisation procedure.
The spin chain at renormalisation step Ω is described by the number of

remaining spins (its length) N (Ω) as well as N (h)(h,Ω), N (1)(J (1),Ω) which
are the number of random fields of value h and the number of nearest neighbour
couplings J (1), respectively, present in the chain. The probability distributions
for fields and couplings are then in the case of very long chains given by

P̃(h)(h,Ω) dh =
N (h)(h,Ω)

N (Ω)
, P̃(1)(J,Ω) dJ =

N (1)(J,Ω)
N (Ω)

, (5)

respectively.
Now we consider one renormalisation step and decimate the highest energy

fields and couplings, that is all fields and couplings J (1)
i , hi ∈ [Ω− dΩ,Ω], with

some small dΩ. This shortens the spin chain and yields its new length

N (Ω− dΩ) = N (Ω) − dΩ N (Ω)
[
P̃(h)(h = Ω,Ω) + P̃(1)(J = Ω,Ω)

]
(6)

The balance equations for N (h) and N (1) are found as follows: We specialise
the perturbative treatment of appendix A to the current case (4) and see that
in fact by the variable redefinitions as given in this appendix section we can
establish a renormalisation group scheme. We find that decimation of a field
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at site i or of a coupling between sites i and i + 1 results in throwing out one
spin and taking care of interactions between the decimated system parts and
the rest of the system in writing effective couplings or fields

J̃ (1)
i−1,i+1 =

J (1)
i−1,iJ

(1)
i,i+1

hi
, h̃i,i+1 =

hihi+1

J (1)
i,i+1

, (7)

respectively4. We have illustrated already the decimation procedure in figures
3 and 4. So the decimation of a field hi at site i destructs the couplings J (1)

i−1,i,

J (1)
i,i+1 and constructs out of them the new coupling J̃ (1)

i−1,i+1 = J(1)
i−1,iJ

(1)
i,i+1

hi
. On

the other hand the decimation of a coupling J (1)
i,i+1 between sites i, i+1 destructs

the two magnetic fields associated to these sites, hi and hi+1, and creates out
of them the new effective field h̃i,i+1 = hihi+1

J(1)
i,i+1

to the new effective spin.

We find

N (h)(h,Ω− dΩ) = N (h)(h,Ω) + dΩ N (1)(J = Ω,Ω) ×

×
∫ Ω

0
dh1 dh2 P̃(h)(h1,Ω) P̃(h)(h2,Ω)

[
δ(h − h1h2

Ω
) − δ(h − h1) − δ(h − h2)

]

N (1)(J,Ω− dΩ) = N (1)(J,Ω) + dΩ N (h)(h = Ω,Ω) ×

×
∫ Ω

0
dJ1 dJ2 P̃(1)(J1,Ω) P̃(1)(J2,Ω)

[
δ(J − J1J2

Ω
) − δ(J − J1) − δ(J − J2)

]

(8)

where the first occuring delta distribution in each equation takes account of
the creation of a new field or coupling and the following two represent the
destruction of the two original fields or couplings.

With the division of these balance equations by (6) and taking the limit
dΩ → 0 our considerations result in a set of two coupled differential equations
for the two probabiliy distributions. Its solutions for given initial distributions
describe the evolution of the probability distributions during the renormalisation
procedure.

Before writing down that system we perform a variable transformation pro-
posed by Fisher, [2], which is more adapted to the problem

(h,Ω) →
(
β := ln

Ω
h

, Γ := ln
Ω0

Ω

)
,

(J,Ω) →
(
ζ := ln

Ω
J

, Γ := ln
Ω0

Ω

)
, (9)

with Ω0 being the value of the highest initial field or coupling, thus the start-
ing value for the renormalisation step parameter Ω. The logarithmic variables
introduced make the relations (7) take a simple form. Remark that high fields
or couplings now correspond to small β, ζ and we always have β, ζ ≥ 0.

4In these equations - and also in all following relations - we see that fields and couplings
have perfectly symmetric roles. We refind the “duality” already encountered at the pure
model, section 1.2. The explanation is that also the Hamiltonian (1) is transformed to itself
by the duality transformation (3), but with the h’s and J’s interchanged.
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The probability distributions in the new variables are derived from (8) by
P̃(h)(h,Ω) =: P(h)(β,Γ) |∂β(h,Ω)

∂h | and P̃(1)(J,Ω) =: P(1)(ζ,Γ) |∂ζ(J,Ω)
∂J | so that

we finally find

∂P (h)(β,Γ)
∂Γ

=
∂P (h)(β,Γ)

∂β
+ P (h)(β,Γ)

(
P (h)(0,Γ) − P (1)(0,Γ)

)
+

+P (1)(0,Γ)
∫ ∞

0
dβ1 dβ2 P (h)(β1,Γ) P (h)(β2,Γ) δ(β − β1 − β2),

∂P (1)(ζ,Γ)
∂Γ

=
∂P (1)(ζ,Γ)

∂ζ
+ P (1)(ζ,Γ)

(
P (1)(0,Γ) − P (h)(0,Γ)

)
+

+P (h)(0,Γ)
∫ ∞

0
dζ1 dζ2 P (1)(ζ1,Γ) P (1)(ζ2,Γ) δ(ζ − ζ1 − ζ2).

(10)

Note that the transformation of variables (9) lets enter a derivative with respect
to β or ζ and so we now face a set of two coupled partial integro-differential
equations that describe the renormalisation flow in the functional space of the
probability distributions.

3.2 Fixed point distributions

Fisher studied these flow equations (10) and found that almost all initial distri-
butions evolve towards one of two possible scenarios: either most of the random
fields will become smaller than all coupling constants - this corresponds to an
ordered case - or, inversely, the random fields will be dominant - corresponding
to a disordered case. Furthermore, it exists exactly one physical fixed point
in the probability distributions - related to the quantum phase transition be-
tween these two phases. At that fixed point fields and couplings have the same
importance and because of the duality one can anticipate that the associated
probability distributions will take exactly the same form. We define

PF (α,Γ) :=
e−α/Γ

Γ
(11)

and then the fixed point is given by
(
P(h)(β,Γ) = PF (β,Γ), P(1)(ζ,Γ) = PF (ζ,Γ), no couplings between

sites of distances ≥ 2

)
.

(12)
The found fixed point probability distribution is extremely broad. In fact in
the course of the renormalisation - with Γ increasing - it broadens even indef-
initely. That is why Fisher called that fixed point an “Infinite Disorder Fixed
Point”. The extreme broadness of the fixed point probability distributions jus-
tifies a posteriori the effected perturbative treatment, at least near the fixed
point: Having identified at some renormalisation step the highest energy field
or coupling in the chain it is overwhelmingly probable that all other interactions
of the concerned spins with their environment - via couplings and fields - are
much smaller.

We can rewrite the fixed point (12) explicitely independent of Γ by passing
to the correct scaling variables via

(β,Γ) → (θ :=
β

Γ
,Γ), (ζ,Γ) → (η :=

ζ

Γ
,Γ). (13)
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The new probability distributions p(h)(θ,Γ), p(1)(η,Γ) for fields and couplings
in these variables let (12) take the form

(
p(h)(θ,Γ) = e−θ, p(1)(η,Γ) = e−η,

no couplings between
sites of distances ≥ 2

)
. (14)

Let us finish in commenting on the stability of the fixed point with respect
to perturbations to field and nearest neighbour distributions. Linearising the
flow equations (10) around the fixed point (12) Fisher found that there are only
exactly two physical eigenperturbations. One of them is irrelevant, correspond-
ing to deforming in a certain manner the two fixed point distributions (12)
pointwise symmetrically. The other one is relevant and corresponds to a certain
deformation of the fixed point distributions pointwise antisymmetrically, thus
favouring one of the two parties - fields and couplings - in their struggle and
destroying the equilibrium of forces. Every generic perturbation can then be
rewritten as a projection to these two eigenperturbations and a fast decaying
remainder.

3.3 Susceptibility

We are now interested in the magnetic properties of the spin chain exactly at
the fixed point. Therefore we switch on a small magnetic field h yielding the
system

H = −
∑

i

(
J (1)

i,i+1σ
z
i σ

z
i+1 + hiσ

x
i + hµiσ

z
i

)
, {hi}, {J (1)

i,i+1} ≥ 0. (15)

We associate magnetic moments µi with each site and set them initially to 1. We
define the magnetisation operator M :=

∑
i µiσz

i and the (linear) susceptibility
as a function of temperature

χ(T ) :=
[

∂

∂h

∣∣∣∣
h=0

< M >
H({hi,J

(1)
i,i+1}, h)

]

av

. (16)

Here

< A >H := tr A+(H), +(H) :=
eH

tr eH
(17)

denotes the mean value in the statistical ensemble with respect to the Hamilto-
nian H and

[
A({hi, J

(1)
i,i+1})

]

av
:=

∫ (∏

i

dhi P̃(h)(hi,Ω)

) (
∏

i

dJ (1)
i,i+1 P̃(1)(J (1)

i,i+1,Ω)

)
A({hi, J

(1)
i,i+1})

(18)

denotes the average over the random fields and couplings.
Let us calculate < M >

H({hi,J
(1)
i,i+1}, h)

for h ' T and sufficiently small
temperatures T at the fixed point and therefore - following Fisher [2] - take profit
once again of the introduced renormalisation procedure. The renormalisation
of an Hamiltonian of the form (15) is clear from the considerations in A.1 and

9



A.2. Remark that by decimating a coupling the magnetic moment of the new
effective spin is the sum of the original magnetic moments µ̃i,i+1 = µi + µi+1.
The idea is that - being at the fixed point with broad probability distributions -
present fields or couplings will be either much smaller or much greater than T.
So we carry out renormalisation down to an energy scale Ω = T , neglect thus
high energy degrees of freedom and then consider the remaining effective fields
and couplings in the renormalised Hamiltonian - which are much smaller than
T - to be 0. So we face a system of free effective spins

HΩ=T ≈ −h

N (Ω=T )∑

i=1

µiσ
z
i (19)

with known magnetisation and find

< M >
H({hi,J

(1)
i,i+1}, h)

∣∣∣
h$T

≈ < M >HΩ=T =
N (Ω=T )∑

i=1

µi th (βhµi) . (20)

The random nature of the problem is now present nowhere but in the distribu-
tion of the magnetic moments associated with the effective spins. We describe
how to perform averaging over the random influences. Therefore we write

χ(T ) = β

N (Ω=T )∑

i=1

µ2
i = β N (Ω = T ) µ2(Ω = T ) (21)

where we introduced the average value of the squared magnetic moments µ2(Ω).
Then the last equality is justified for sufficiently long renormalised chains.

Solving equation (6) at the fixed point (12), so for the known fixed point
probability distributions, we calculate the number of effective spins at (logarith-
mic) renormalisation step Γ = ln(Ω0/Ω) as

N (Γ) ∝ Γ−2. (22)

Fisher found - in a rather long analysis of the problem and not keeping trace of
magnetic moments µi but bond and site lengths - that

µ̄(Γ) ∼ Γφ, with φ =
1 +

√
5

2
. (23)

Supposing the probability distribution of the magnetic moments to satisfy a
scaling form

p(µ,Γ) ∼ f(
µ

Γφ
), µ ∈ N (24)

with some function f we get then

µ2(Γ) =
∑

µ∈N
µ2 p(µ,Γ) ∼ Γ2φ

∑

µ∈N

( µ

Γφ
)2

f(
µ

Γφ
) ∝ Γ2φ . (25)

Thus we finally find from equation (21) that

χ(T ) ∼ Γ2φ−2

β
∼ | ln T |2φ−2

T
. (26)
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1 2 3 4

(II)

1 2 3 4 5 6 7 8 9 10 11

(I)

Figure 5: Repeated application of the renormalisation group transformation
following the two steps on page 4. Illustration for a chain of initial length 11 and
7 RG-transformations. In (II) we show the result after having performed always
the complete RG-transformation while in (I) we renounced to perform step (ii).
- Filled circles symbolise active spins, unfilled are non active spins. Bold lines
represent decimated couplings that hence bound spins strongly, normal lines
stand for not yet decimated couplings. Circles in a checkered pattern mean
effective spins.

We still want to think about why the renormalisation scheme is compatible
with the calculation of magnetic properties of the chain.

We therefore have again a look at the renormalisation scheme, see points (i)
and (ii) on page 4. The result of step (i) is to throw high energy configurations
out of the space of states of the chain. Point (ii) has rather been crucial to realise
then the idea of a renormalisation scheme by a redefinition of spin variables.
We consider some spin chain in its initial configuration and are interested in its
magnetisation < M >

H({hi,J
(1)
i,i+1}, h)

in an external field h ' T for sufficiently
small temperatures T.

The essential remark is the following: The trace intervening in the calcula-
tion of statistical mean values, (17), can be taken over every basis of the Hilbert
space, for example B := {⊗i {↑i, ↓i}}. However, vectors containing high energy
configurations of the chain will not contribute much. The repeated application
of the renormalisation group (RG) transformation can now be seen to do nothing
else but to succesively restrict the space of states of the chain to some subspace
spanned by vectors significantly contributing to mean values in the statistical
ensemble, we explicitly renounce to perform step (ii) here. We illustrate this
iterative process in figure 5.

Let us introduce some notions in the context of this “incomplete RG trans-
formation”(that forgets step (ii)): We call a set of spins that are forced to act
collectively a “cluster”. We call a spin “active” if it has not yet been banned to
the state | →>:= |↑>+|↓>√

2
. In the course of the decimation procedure we will

encounter active and non active clusters, e.g. clusters of active and non active
spins, respectively.

11



In this way we successively restrict B to vectors where field-dominated sites
are in the ground state | →> and coupling-dominated spins are forced to be
parallel and act collectively5. We throw out the high energy states associated to
all fields and couplings present in the chain that are greater than the tempera-
ture T of interest and then consider all still present fields and couplings to be 0 -
taking profit once again of the fact to face very broad probability distributions.
Then we perform the “trace” in the calculation of statistical mean values only
by involving the vectors remaining in B.

So we find a non interacting randomness free system of active and non active
clusters of collectively acting spins.

The statistical mean value of the magnetisation M =
∑

i σ
z
i of such a system

is the sum of statistical mean magnetisations in the non interacting subsystems.
We enumerate active and non active clusters by capital letters and define CI as
the set of spin sites belonging to cluster I.

The statistical mean magnetisation of an active cluster I of µI spins is easily
calculated: The cluster can exist only in the two states where either all spins
are up or down and it is thus

< MI >:=

∑
|ϕ> < ϕ|

∑
i∈CI

σz
i eβh

P
i∈CI

σz
i |ϕ >

∑
|ϕ> < ϕ|eβh

P
i∈CI

σz
i |ϕ >

= µI th(µIβh), (27)

so its contribution to susceptibility is χI = ∂
∂h

∣∣
h=0

< MI >= βµ2
I .

On the other hand non active clusters will not contribute to susceptibility.
This is not that evident and we show it for the case of a non active cluster of
one spin (what can easily be extended to the case of µI spins). Let us consider
a spin i that has been frozen to the state | →> at renormalisation step ω / T
and is thus described now by the Hamiltonian H = −hσz − ωσx. Then the
corresponding statistical mean magnetisation given by < Mi >= tr σze−βH

tr e−βH can
be simply evaluated after performing a rotation of the system around the y-axis
by an angle ϕ with cosϕ = βh√

(βh)2+(βω)2
, sinϕ = βω√

(βh)2+(βω)2
yielding new

spin variables σ̃. It is

< Mi > =
tr (− sinϕ σ̃x + cosϕ σ̃z)e

√
(βh)2+(βω)2 σ̃z

tr e
√

(βh)2+(βω)2 σ̃z
=

=
th
√

(βh)2 + (βω)2√
h2 + ω2

. (28)

Remark that limω→∞ < Mi >= 0 ∀ h, so there is no magnetisation in the
case h ' T ' ω that we consider and non active spins do not contribute to
magnetisation. (By the way it is χi = ∂

∂h

∣∣
h=0

< Mi >= 0 even for all finite
ω 1= 0, so the (linear) susceptibility vanishes even in finite cases).

Our considerations yield now the magnetisation

< M >
H({hi,J

(1)
i,i+1}, h)

∣∣∣
h$T

≈
∑

Active clusters I at
temperature T

µI th (βhµI) . (29)

Now remark that an active cluster of µI spins corresponds exactly to an
“effective spin” of a magnetic moment µI in the terminology of the renormal-
isation scheme, as well as non active spins correspond to spins that have been

5Note that the vectors constructed in this manner are in general not eigenvectors of H.
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directly thrown out by a field decimation during the renormalisation. So we
can finally justify the calculation of magnetic properties in the renormalisation
picture: Spins whose field has been decimated do not need to be considered.
Active clusters and effective spins contribute in the same way, compare (29) and
(20).

4 The Quantum Spin Glass Chain

Let us consider once again the spin chain of the last section, given by (4),

H = −
∑

i

(
J (1)

i,i+1σ
z
i σ

z
i+1 + hiσ

x
i

)
, (30)

and this time not restrict us to non negative couplings.
We first describe how to overtake easily some of the results of the last sec-

tion to this more general case. Nevertheless we then perform explicitely the
renormalisation for this new case and will be able to characterise this system
still more in detail.

4.1 Gauge transformation

So far we restricted the discussion to non negative fields and couplings. Let
us now regard the case of a chain of fields and couplings of arbitrary signs
and remark that we can always unitarily transform this system to the previous
random ferromagnetic chain (4). The unitary operator

Rl := e
i
2πσ

x
l = iσx

l (31)

effects a rotation in the Hilbert space, transforming operators by Õ := R−1
i O Ri,

so that spin variables at site i become σ̃x
i = σx

i , σ̃z
i = −σz

i .
Given a special chain with positive and negative couplings {J (1)

i,i+1} we con-
struct the set A := {i | J (1)

i−1,i < 0} containing the ending positions of the
negative couplings in the chain. Then the operator

U :=
∏

l∈A




∏

k≥l

Rk



 (32)

is a unitary transformation of the given chain to one with non negative couplings.
Note that the transformation rotates for every negative coupling all spins on
the right side of it. Let us still observe that there exists a unique sequence (εi)
of values in {0, 1} which is determined by

U =
∏

l

e
i
2πεlσ

x
l , (33)

that is in terms of which U can be expressed particularly simply as a product
of identity operators (εl = 0) and rotations (εl = 1) on the sites {l}. We find
explicitely

εi =
{

0 number of elements in {l ∈ A | l ≤ i} is even
1 number of elements in {l ∈ A | l ≤ i} is odd ,

(34)
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so the spin variable at the site i will be rotated by the transformation if there
is an odd number of negative couplings in front of it - and remain unchanged
in the other case.

Analogously, by appropriate rotations around the z-axis we can always with-
draw to the case {hi} ≥ 0.

Now let us take profit of this gauge transformation in the examination of
the spin glass chain (30). First - because of the unitary character of this gauge
transformation - we remark that we can associate to every spin glass chain a
ferromagnetic chain with the same energy spectrum. Furthermore, in applying
first these transformations we can then perform the renormalisation procedure
of subsection 3.1 for the new, more general case (30), recover the fixed point
(12) and get at least some information about the renormalisation of the absolute
value of couplings.

4.2 Renormalisation of the Spin Glass Chain

With the help of the gauge transformation (32) we know already much about
the system (30). However some of the properties of interest - e.g. magnetic
properties or the behavior of the separated probability distributions of positive
and negative couplings - are somewhat distorted by the gauge transformation.
That is why we now carry out the renormalisation for the more general case
(30). We withdraw to the case {hi} ≥ 0.

As in section 3 we use the described renormalisation procedure to establish
differential flow equations for the probability distributions of fields and cou-
plings, the essential points remain the same. Perturbation theory tells us that
decimations of fields and couplings are still gouverned by (7). The only difference
is that we have to account for negative couplings. We thus count couplings by
N (1)(J,Ω) and note the probability distribution for couplings P̃(1)(J,Ω) where
now J ∈ [−Ω,Ω]. Furthermore, also negative couplings J (1)

i,i+1 < 0 will be subject
to decimation at renormalisation step Ω if |J (1)

i,i+1| ∈ [Ω− dΩ,Ω].
Thus, the length of the spin chain, equation (6) in the last section, behaves

as

N (Ω− dΩ) = N (Ω) − dΩ N (Ω)
[
P̃(h)(h = Ω,Ω) +

+P̃(1)(J = Ω,Ω) + P̃(1)(J = −Ω,Ω)
]

, (35)

and the balance equations for the number of fields and couplings, equations (8)
before, now take the form

N (h)(h,Ω− dΩ) = N (h)(h,Ω) + dΩ
[
N (1)(J = Ω,Ω) + N (1)(J = −Ω,Ω)

]
×

×
∫ Ω

0
dh1 dh2 P̃(h)(h1,Ω) P̃(h)(h2,Ω)

[
δ(h − h1h2

Ω
) − δ(h − h1) − δ(h − h2)

]

N (1)(J,Ω− dΩ) = N (1)(J,Ω) + dΩ N (h)(h = Ω,Ω) ×

×
∫ Ω

−Ω
dJ1 dJ2 P̃(1)(J1,Ω) P̃(1)(J2,Ω)

[
δ(J − J1J2

Ω
) − δ(J − J1) − δ(J − J2)

]
.

(36)
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In order to pass to logarithmic variables, (9), we split up N (1)(J,Ω) where
J ∈ [−Ω,Ω] into balances for positive and negative couplings, N (1+)(J,Ω) and
N (1−)(J,Ω), respectively, where J ∈ [0,Ω]. We therefore define

N (1)(J,Ω) =: Θ(J) N (1+)(J,Ω) +Θ(−J) N (1−)(−J,Ω) (37)

with the Heaviside step function Θ(x). Thus we get separate balance equations
for positive and negative couplings. Next we define the probability distributions
for positive and negative couplings by P̃(i)(J,Ω) dJ := N (i)(J,Ω)/N (Ω), i ∈
{1+, 1−} and then perform the variable transformation to logarithmic variables
(9). This yields a system of 3 differential equations for the probability distribu-
tions P(h)(β,Γ), P(1+)(ζ,Γ) and P(1−)(ζ,Γ).

As a last step, we still pass to new functions P(1) := P(1+) + P(1−) and
D := P(1+) − P(1−) in order to decouple the system of equations and recover -
as one could have expected - for P(h) and P(1) the system (10) of section 3. As
to D, we find that it is determined by the same equation as P(1),

∂D(ζ,Γ)
∂Γ

=
∂D(ζ,Γ)

∂ζ
+ D(ζ,Γ)

(
D(0,Γ) − P (h)(0,Γ)

)
+

+P (h)(0,Γ)
∫ ∞

0
dζ1 dζ2 D(ζ1,Γ) D(ζ2,Γ) δ(ζ − ζ1 − ζ2),

(38)

but with the important difference that we now allow positive and negative values
for D.

4.3 Fixed point distributions

We are looking for fixed points in these three distributions P(h), P(1), D. Note
that Fisher found the only physical fixed point to equations (10) as (12), so in
our case we have necessarily P(h) = P(1) = PF . It is now interesting to ask how
at this point P(h) = P(1) = PF positive and negative couplings can be “fixedly”
distributed. The answer is given by the fixed points of (38). Without effort we
discover two solutions as D = PF and D ≡ 0 yielding the two fixed points

(
P(h) = PF , P(1+) = PF , P(1−) ≡ 0,

no couplings between
sites of distances ≥ 2

)
, (39)

which was already found in section 3, and
(
P(h) = PF , P(1+) = P(1−) =

1
2
PF ,

no couplings between
sites of distances ≥ 2

)
, (40)

respectively6.
This new fixed point (40) corresponds to an equal repartition of random

positive and negative couplings. We loosely call it the spin glass fixed point as
well as we call the first one, (39), the ferromagnetic fixed point.

We are now going to investigate the stability of these fixed points with re-
spect to small perturbations that change the proportion of positive and negative
couplings, so perturbations that are somewhat “in the direction” of D. We keep

6We do not know if there exist other well-behaved fixed points.
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P(h) = P(1) = PF fixed and linearize (38) for some perturbation ε(ζ,Γ) around
D = PF and D ≡ 0.

In the second case, D ≡ 0, the evolution of ε is then given by

(∂Γ − ∂ζ) ε(ζ,Γ) = − 1
Γ

ε(ζ,Γ). (41)

This equation can be solved by introducing light cone variables Γ± ζ yielding

ε(ζ,Γ) =
f(ζ + Γ)
Γ

(42)

for some arbitrary differentiable function f . We consider the evolution of the
norm of ε given by ‖ε‖ζ(Γ) = 1

Γ

∫∞
0 dζ |f(ζ + Γ)| = 1

Γ

∫∞
Γ dζ |f(ζ)|. The

existence of the integral for all Γ ≥ Γ0 is clear from the initial condition
‖ε‖ζ(Γ0) < ∞ and we then see that both factors of the last member decrease
monotonic in Γ so that the perturbation ε(ζ,Γ0) renormalises to zero.

Linearizing around the fixed point (39), D = PF , we get

(∂Γ−∂ζ) ε(ζ,Γ) = ε(0,Γ)+
2
Γ

∫ ∞

0
dζ1 dζ2 ε(ζ1,Γ) PF (ζ2,Γ) δ(ζ−ζ1−ζ2). (43)

We integrate both members over ζ in the interval [0,∞[ , assume naturally
ε(ζ → ∞,Γ) ≡ 0 and set α(Γ) :=

∫∞
0 dζ ε(ζ,Γ). Thus we find

(∂Γ − 2
Γ

) α(Γ) = 0 (44)

with the solution

α(Γ) = α(Γ0)
(
Γ
Γ0

)2

(45)

that increases monotonic in Γ and shows that during renormalisation ε(ζ,Γ) be-
comes at least in one region of couplings greater and greater, so the perturbation
gets more and more important.

The results (42) and (45) show that the ferromagnetic fixed point is unstable
with respect to the introduction of negative couplings while the spin glass fixed
point is attractive.

We remark that the stability examinations of Fisher with respect to small
perturbations to the probability distributions P(h)(β,Γ) and P(1)(ζ,Γ) - origi-
nally carried out for the fixed point (12) - apply in this more general case, too.
Thus in these “directions” in the functional space, P(h) and P(1), there exist
exactly two physical eigenperturbations, one of them is relevant and the other
one is irrelevant.

4.4 Magnetic properties of the new fixed point

Let us characterise the fixed point (40) by calculating some of its magnetic
properties. Therefore we proceed in the same manner as for the chain with
exclusively positive couplings, subsection 3.3, and exploit the found results -
making use of the gauge transformation from subsection 4.1.

We first examine in a closer way the gauge transformation (33) for (initial)
chains following the fixed point distributions (40). The concrete gauge transfor-
mation is entirely given by the sequence εi, (34). Now we are at a fixed point
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with the same probability = 1/2 to meet a positive or a negative coupling. We
find - considering the spin variable at some special site i - the probability for
εi = 0 to be the sum of the probabilities of having an even number of nega-

tive couplings in front of it,
∑i−1

l=0, l even

(
i − 1

l

)(
1
2

)i−1 = 1
2 . So spins will

be rotated by the gauge transformation with probability 1/2, what is the same
distribution as that for the signs of the couplings.

The basic idea in subsection 3.3 has been to determine with the help of
the renormalisation procedure high energy configurations of the chain and to
neglect them in the calculation of mean values in the statistical ensemble. In
fact, in this case there is not so much that changes. We treat the problem in the
same way and overtake notions introduced in this subsection. We remark that
the gauge transformation - because of its unitarity - lets invariant especially the
matrice elements of the (original) Hamiltonian. So the negligible high energy
configurations of the chain with positive and negative couplings can be identified
in the following way: Interested in the behavior of the chain at temperature T ,
we gauge transform our system (30) to the one with exclusively non negative
couplings, then apply the renormalisation procedure as described in subsection
3.3 up to the step Ω = T and thus find the only vectors contributing significantly
to the trace involved in the statistical mean. We retransform these vectors with
the gauge transformation to our original system and thus reencounter a system
of free active and non active clusters. This time the collectively acting spins in
an active cluster are not necessarily forced to be parallel but can also be - as a
result of the occuring negative couplings - antiparallel.

Let us now apply this strategy and deal with the magnetisation in a small
field h ' T for sufficiently small temperatures T . We combine gauge transfor-
mation and renormalisation as described above and find a system of free active
and non active clusters. We again can neglect non active clusters. But we
now consider a special active cluster I with nI spins and have to rethink its
contribution to magnetisation

< MI >:=

∑
|ϕ> < ϕ|

∑
i∈CI

σz
i eβh

P
i∈CI

σz
i |ϕ >

∑
|ϕ> < ϕ|eβh

P
i∈CI

σz
i |ϕ >

. (46)

Again the cluster can only exist in one of two states, however now some of its
spins - those forced to be antiparallel instead of parallel - will compensate their
contribution to magnetisation. We find from (46)

< MI >= µI th(µIβh), (47)

where µI , 0 ≤ µI ≤ nI , is the number of “uncompensated” spins in the cluster,
so the difference between the number of spins in the cluster that are forced to
be in one direction and those pointing in the opposite one. Then it follows

< M >=
∑

active
clusters I

< MI >=
∑

active
clusters I

µI th(µIβh) (48)

as the total magnetisation.
How can we determine µI? We already have shown that in an active cluster

spins will be up or down with probability 1/2. In order to determine the number
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of uncompensated spins µI in a cluster of nI spins we are facing a problem similar
to a symmetric random walk of nI steps with final position µI but where at the
end we identify negative final positions to the positive ones, µI ≥ 0. In fact we
will be interested only in the even moments of this process, for these this last
detail is unimportant and we can use the known results about random walks.
We denote Pn(µ) the probability that a cluster of n spins has µ uncompensated
spins and denote the α-th moment of this process µα(n) :=

∑
µ≥0 µα Pn(µ).

Then we find

µ2(n) :=
∑

µ≥0

µ2 Pn(µ) ∝ n ,

µ4(n) :=
∑

µ≥0

µ4 Pn(µ) ∝ n2 . (49)

Finally we know - from subsection 3.3, argueing once again with the gauge
transformation - that the number of active clusters at renormalisation step Γ
is still N (Γ) ∝ Γ−2, see (22), and that the probability distribution for cluster
lengths n follows p(n,Γ) ∼ f( n

Γφ ), n ∈ N with φ = 1+
√

5
2 , see (24).

With these results we can attack the calculation of the linear susceptibility
χ(T ), see definition (16), and find

χ(T )
(48)
= ∂h|h=0

∑

active
clusters I

µI th(µIβh) = β

N (Γ)∑

I=1

µ2
I

large N (Γ)
≈ βN (Γ) µ2 =

= βN (Γ)
∑

µ≥0

µ2
∑

n≥0

p(n,Γ) Pn(µ)
(49)
∝ βN (Γ)

∑

n≥0

n p(n,Γ)
(24)∼

∼ βN (Γ) Γφ ∼ β Γφ−2 ∼ | ln T |φ−2

T
. (50)

Note the change of the exponent with respect to the ferromagnetic case (26).
Next we define the non linear susceptibility

χnl(T ) :=
[

∂3

∂h3

∣∣∣∣
h=0

< M >
H({hi,J

(1)
i,i+1}, h)

]

av

. (51)

which we calculate analogously to be

χnl(T )
(48)
= ∂3

h

∣∣
h=0

∑

active
clusters I

µI th(µIβh) = −2β3
N (Γ)∑

I=1

µ4
I

large N (Γ)
≈ −2β3N (Γ) µ4 =

= −2β3N (Γ)
∑

µ≥0

µ4
∑

n≥0

p(n,Γ) Pn(µ)
(49)
∝ β3N (Γ)

∑

n≥0

n2 p(n,Γ)
(24)∼

∼ β3N (Γ) Γ2φ ∼ β3 Γ2φ−2 ∼ | ln T |2φ−2

T 3
. (52)

In the case of a classical spin glass the appropriate order parameter is that
of Edwards-Anderson. It can be defined as

qEA(T, h) :=
[

< σz
i >2

H({hi,J
(1)
i,i+1},h)

]

av

. (53)
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Let us now calculate its behavior in the quantum case.
We remark that spins i in non active clusters do not contribute once again.

Now imagine that the site i belongs to an active cluster CI with µI “uncom-
pensated” spins, then it is

< σz
i >2
∣∣
i∈CI

= th2(βµIh)
βµIh$1

≈ (βµIh)2. (54)

The probability for having an active spin at site i is proportional to the number
of active spins in the chain ∝ Γφ−2 and so we have

qEA(T, h) ∼ h2 β2Γφ−2−2φ ∼ h2 | ln T |−φ−2

T 2
(55)

5 Effects of couplings between next nearest neigh-
bours

We are going to consider the spin chain near the fixed point (12), perturbed
by small next nearest neighbour couplings. In this way we introduce now the
possibility of frustration to our one dimensional system.

We examine the case of {J (1)
i,i+1} ≥ 0 but with J (2)

i,i+2 of arbitrary signs

H = −
∑

i

(
J (1)

i,i+1σ
z
i σ

z
i+1 + J (2)

i,i+2σ
z
i σ

z
i+2 + hiσ

x
i

)
, {J (1)

i,i+1} ≥ 0 (56)

Let us assume that the next nearest neighbour couplings will always be very
small in the following sense:

(i) a J (2)
i,i+2 ≥ 0 will never constitute the highest energy in the system and

therefore never be decimated
(ii) in sums, the J (2)

i,i+2 are negligible with respect to J (1)
i,i+1 with high

probability
(iii) creation of third neighbour couplings out of second neighbour couplings

can be neglected. (57)

We show that initial probability distributions verifying these conditions (57)
are renormalised to distributions that satisfy (57) even better and better. We
conclude that the fixed point (12) is stable with respect to small perturbations
caused by next nearest neighbour couplings.

5.1 Establishment of the flow equations for the probability
distributions

Let us apply the developed decimation procedure to this case making use of
(57). We give some illustration by the figures 6 and 7.

The decimation of a field hi produces first of all the changes of couplings

J̃ (1)
i−1,i+1 =

J (1)
i−1,iJ

(1)
i,i+1

hi
,

J̃ (2)
i−2,i+1 =

J (2)
i−2,iJ

(1)
i,i+1

hi
, J̃ (2)

i−1,i+2 =
J (1)

i−1,iJ
(2)
i,i+2

hi
, (58)
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i!1i!2 i i+1 i+2

i!1i!2 i+1 i+2

(a)

(b)

Figure 6: Decimation of a field at
site i. The lines represent the behav-
ior of the couplings under the renor-
malisation procedure: Dashed lines
symbolize couplings that are mod-
ified by the renormalisation proce-
dure, the dotted one is simply de-
structed.

(a)

(b)

i!1i!2 i i+1 i+2 i+3

i!1i!2 i+2 i+3

Figure 7: Decimation of a nearest
neighbour coupling between sites i
and i + 1. Solid couplings are over-
taken without change, the dotted
couplings in the original chain are
thrown out without any other effect,
the dotted next nearest neighbour
coupling in the resulting chain is of
value zero.

see appendix A.
The decimation of a J (1)

i,i+1 takes some of the original couplings - without
change - as the couplings to the new spin variable. The field of the new spin is

h̃i,i+1 =
hihi+1

J (1)
i,i+1

(59)

and the sites i − 1 and i + 2 will remain uncoupled, so

J̃ (2)
i−1,i+2 = 0. (60)

We remark that we just extend the case examined by Fisher, equations (7).
We proceed in the same way as in section 3 and adopt the notations intro-

duced there. We refind the balance equations (8) for fields and nearest neighbour
couplings as well as the chain length balance (6), because next nearest neigh-
bour couplings are never decimated. Using equations (58)-(60) and taking care
of destructed couplings (see figures 6 and 7) we find7

N (2)(J,Ω− dΩ) = N (2)(J,Ω) + dΩ N (h)(h = Ω,Ω) ×

×
∫ Ω

0
dJ1

∫ Ω

−Ω
dJ2 dJ3 P̃(1)(J1,Ω) P̃(2)(J2,Ω) P̃(2)(J3,Ω) ×

×
[
2δ(J − J1J2

Ω
) − 2δ(J − J2) − δ(J − J3)

]
+

+dΩ N (1)(J = Ω,Ω)
∫ Ω

−Ω
dJ1 dJ2 P̃(2)(J1,Ω) P̃(2)(J2,Ω) ×

×
[
−2δ(J − J1) + α δ(J − Λ̃Ω) + (1 − α) δ(J + Λ̃Ω)

]
(61)

7In order to keep the probability distributions normalised we have to care for every deci-
mated or created coupling, even if it is of value zero.
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For being able to pass later to logarithmic variables we take care of (60) not by
creating a zero coupling but by creating a small coupling of absolute value Λ̃Ω
where Λ̃ is an arbitrary small constant fixed at the beginning of the renormali-
sation procedure. We also introduced a constant α ∈ [0, 1] to decide about the
sign of this coupling and will find later that this constant α is unimportant.

Now we split up (61) in balances for positive and negative next nearest neigh-
bour couplings by defining N (2)(J,Ω) =: Θ(J) N (2+)(J,Ω)+Θ(−J) N (2−)(−J,Ω),
we write - as in the last section - the differential equations for the probability
distributions and perform the change of variables (9), yielding in particular the
evolution of the distributions of positive and negative next nearest neighbour
couplings, P(2+)(ζ,Γ) and P(2−)(ζ,Γ). Finally, being interested in the evolu-
tion of the absolute values of next nearest neighbour couplings but not in their
signs we define P(2)(ζ,Γ) := P(2+)(ζ,Γ) + P(2−)(ζ,Γ) and obtain a system
of three differential equations describing the renormalisation of the probability
distributions. As expected, we find that the probability distributions for fields
and nearest neighbour couplings, P(h) and P(1), follow the system of equations
(10) already found in subsection 3.1. The evolution of the distribution of next
nearest neighbour couplings is determined by

∂P (2)(ζ,Γ)
∂Γ

=
∂P (2)(ζ,Γ)

∂ζ
− P (2)(ζ,Γ)

(
2P (h)(0,Γ) + P (1)(0,Γ)

)
+

+2P (h)(0,Γ)
∫ ∞

0
dζ1 dζ2 P (1)(ζ1,Γ) P (2)(ζ2,Γ) δ(ζ − ζ1 − ζ2) +

+P (1)(0,Γ) δ(ζ − Λ)
(62)

with Λ = ln(1/Λ̃). Note that α disappeared from (62).

5.2 Examination of the stability

We are now interested in the evolution during renormalisation of initial proba-
bility distributions P(h)(ζ,Γ0) = P(1)(ζ,Γ0) = PF (ζ,Γ0) and some P(2)(ζ,Γ0)
verifying (57).

Due to the assumptions (57), fields and nearest neighbour couplings renor-
malise as (10) without taking note of the existence of next nearest neighbour
couplings. Thus, the associated distributions will keep their form PF .
Inserting the special form ofP(h), P(1) in (62) and Laplace transformingP(2)(ζ,Γ)
in ζ to p(z,Γ) we obtain

(∂Γ − z +
3
Γ
− 2
Γ2z + Γ

) p(z,Γ) = −P(2)(ζ = 0,Γ) +
e−zΛ

Γ
. (63)

Before solving this equation let us think about information directly accessible
from the Laplace transformed p. Introducing a norm for integrable functions on
[ 0,∞ [ by ‖Q(ζ,Γ)‖ζ :=

∫∞
0 dζ |Q(ζ,Γ)| we remark that for functions Q(ζ,Γ)

that are everywhere non negative this is the same as their Laplace transformed
q(z,Γ) evaluated at z = 0. Furthermore, derivatives with respect to z of q(z,Γ)
taken at z = 0 yield the moments of Q(ζ,Γ).

By construction we have ‖P(2)(ζ,Γ)‖ζ = 1 ∀ Γ and thus p(z = 0,Γ) ≡ 1.
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Evaluating (63) at z = 0 we find8

P(2)(ζ = 0,Γ) ≡ 0. (64)

The solution of (63) knowing (64) can be written as the sum of the solution to
the homogenous equation and a special solution to the inhomogenous equation
p(z,Γ) = ph(z,Γ) + ps(z,Γ) with

ph(z,Γ) = q(z)
Γ0

Γ
(zΓ0 + 1)2

(zΓ+ 1)2
ez(Γ−Γ0)

ps(z,Γ) =
ez(Γ−Λ)

Γ (zΓ+ 1)2

[
e−zΓ0

z

(
(zΓ0 + 1)(zΓ0 + 3) + 2

)
+

−e−zΓ

z

(
(zΓ+ 1)(zΓ+ 3) + 2

)]
(65)

for an initial value Γ0 of Γ and the initial condition p(z,Γ0) = q(z).
Let us have a closer look to this function describing the evolution of the

perturbation in question. First we remark that the linearity of the Laplace
transform and its inverse yields the solution P(2) = P(2)

h + P(2)
s of (62) as

the sum of the inversely Laplace transformed ph, ps. We note that the initial
conditions P(2)(ζ,Γ0) only occur in P(2)

h . We calculate the norm of the two
parts of the solution

‖P(2)
h ‖ζ = lim

z→0
ph(z,Γ) =

Γ0

Γ
, ‖P(2)

s ‖ζ = lim
z→0

ps(z,Γ) = 1 − Γ0

Γ
(66)

and find that during the renormalisation P(2)
h becomes more and more unim-

portant. Thus, the system “forgets” its initial conditions and flows to a general
state gouverned by P(2)

s .
Next we show consistency of our calculations by verifying (57) at every renor-

malisation step, at least at every sufficiently late renormalisation step accepting
to make faults during the initial renormalisation period. Point (i) is clear from
(64). As to condition (ii) we calculate the mean value of the couplings

< ζ(2)
Γ >Q:=

∫ ∞

0
dζ ζ Q(ζ,Γ) = − lim

z→0
∂zq(z,Γ), (67)

We find

< ζ(2)
Γ >P(2)

h
= Γ0 +

< ζ(2)
Γ0

>P(2)
h

−Γ0

Γ
Γ+Γ0≈ Γ0,

< ζ(2)
Γ >P(2)

s
=
(

1 − Γ0

Γ

)(
Λ+

Γ− Γ0

2

)
Γ+Γ0≈ Λ+

Γ
2

, (68)

what we have to compare to the mean value of the nearest neighbour couplings

< ζ(1)
Γ >P(1)≡PF

= Γ. (69)

8This result confirms that the solutions P(2) to be found are compatible with point (i) of
(57). Thus, we are not working towards a contradiction.
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Therefore, we consider some finite or infinite chain in a concrete realisation. We
first decide to renormalise up to some finite step9 Γf > Γ0. We now choose -
before starting renormalisation - some Λ/ Γf and find hence with (68), (69)

< ζ(2)
Γ >P(2) / < ζ(1)

Γ >P(1) ∀ Γ ≤ Γf . (70)

In this sense we now understand the limit of an infinite number of renormalisa-
tion steps (for infinite chains) as the limit Γf → ∞ and know (70) verified for all
Γf . More mathematically, the physics tells us to take the limit Λ → ∞ before
Γ → ∞. The relation (70) is a first support for (ii), but for broad probability
distributions not sufficient.

That is why we now calculate the probability that at renormalisation step Γ
a drawn next nearest neighbour coupling ζ(2) is of higher energy than a drawn
nearest neighbour coupling ζ(1). We get

ProbabilityΓ( “ζ(2) < ζ(1)” ) =
∫ ∞

0
dζ2 P(2)(ζ2,Γ)

∫ ∞

ζ2

dζ1 P(1)(ζ1,Γ) =

= p(z = 1/Γ,Γ)
Γ+Γ0≈ (5e − 10)/4 e−Λ/Γ . (71)

Hence, we find - taking the limits as explained above - that it vanishes for
sufficiently large Γ/ Γ0 what justifies (ii).

Concerning point (iii) we argue that couplings between third neighbours are
only created when a field, say hi, is decimated, see (80) and (83), and then are of

value J
(2)
i−2,iJ

(2)
i,i+2

hi
what is much smaller than all other energies in the environment

of the ancient site i. So generated couplings between sites of distance ≥ 3 should
be irrelevant.

In the above argumentation we came to see that initially small next near-
est neighbour couplings renormalise in such a way that they fulfill (57) better
and better. They evolve to energies considerably smaller and smaller than the
energies of the other parts - fields and nearest neighbour couplings - present
in the system and so the system renormalises to the fixed point (12). As a
consequence, such next nearest neighbour couplings do not modify the critical
behavior of the system and thus correspond to an irrelevant perturbation.

We now can generalise the considerations of this section to the case of present
nearest and small next nearest neighbour couplings both of arbitrary signs. We
can show by an explicit calculation that in this case next nearest neighbour
couplings remain irrelevant. A less involved way is to use once again the gauge
transformation (32) to map the general Hamiltonian including positive and neg-
ative nearest and next nearest neighbour couplings to the Hamiltonian (56).
Then one can apply the renormalisation scheme as in this section to the new
Hamiltonian and recover thus the irrelevance of small next nearest neighbour
couplings of arbitrary signs.

5.3 Arbitrary large next nearest neighbour couplings

We now advance to regimes where next nearest neighbour couplings are not any
more negligible, so we forget the conditions (57). In this case the application

9In the case of a finite chain, renormalisation stops having reached a chain of length 1 and
Γf has to be smaller than the well-defined strength of the magnetic field associated to the
last remaining effective spin.
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Figure 8: Decimation of a field hi at
site i in the next nearest neighbour
chain. There is created a coupling
between new third nearest neigh-
bours.
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Figure 9: Decimation of a next
neighbour coupling J (2)

i−1,i+1 between
sites i − 1 and i + 1. This makes us
leave the chain-topology of the lat-
tice.

of the renormalisation procedure, that has been that useful up to now, gets
problematic because the Hamiltonian (56) has no more a closed form. On the
one hand we will encounter non negligible couplings between third and higher
nearest neighbours and on the other hand we will even leave the topology of a
spin chain. We describe the basic processes causing these effects.

We still use the results of subsection A, equations (80) and (83). Let us first
consider the decimation of a field, e. g. hi, and follow the procedure illustrated
in figure 8. We see that out of the two couplings J (2)

i−2,i and J (2)
i,i+2 a new third

nearest neighbour coupling of value J(2)
i−2,iJ

(2)
i,i+2

hi
is created. Once third neighbour

couplings created, further field decimations will make arise couplings between
sites of distance four and so on. So in fact, we now have to take in account
couplings between sites of any distance, e. g. we have to trace an infinity of
probability distributions, that is one for all couplings between sites of a fixed
distance.

Next we consider the decimation of a next nearest neighbour coupling - a
process that we did not allow in the discussion of subsection 5.1. We show a
picture of that in figure 9, here the next nearest neighbour coupling J (2)

i−1,i+1 is
decimated. It appears now a part of the shape of a “T” in the chain and we
leave the initial linear topology of the lattice. Further decimations of couplings
between sites of distances ≥ 2 can produce a very complicated topology.

It is not clear how to deal with this case. We do not see how to establish a
manageable renormalisation scheme for this system.

6 Final Flow Diagram

Let us summarise our considerations of the quantum Ising spin glass (1) and try
to draw a diagram reflecting the renormalisation group flows near the identified
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fixed points.
We consider three “directions” in the functional space of the probability

distributions for magnetic fields P̃(h)(h,Ω), positive and negative nearest neigh-
bour couplings P̃(1+)(J,Ω) and P̃(1−)(J,Ω) as well as next nearest neighbour
couplings P̃(2)(J,Ω) given by the parameters

δ := [ ln|h| ]av −
[

ln|J (1)|
]

av
:=

=
∫ ∞

−∞
dh P̃(h)(h,Ω) ln |h|−

∫ ∞

0
dJ
(
P̃(1−)(J,Ω) + P̃(1+)(J,Ω)

)
ln J

κ := ‖ P̃(1+)(J,Ω) ‖ − ‖ P̃(1−)(J,Ω) ‖ :=

=
∫ ∞

0
dJ P̃(1+)(J,Ω) −

∫ ∞

0
dJ P̃(1−)(J,Ω)

λ :=
[
|J (2)|

]

av
:=
∫ ∞

−∞
dJ P̃(2)(J,Ω) |J |. (72)

The parameter δ is an appopriate measure for the distance from the fixed
point in the “direction” of the “proportion of forces” of the fields and nearest
neighbour couplings in their struggle about order and disorder, see [2]. For
δ < 0 the system is in the ordered phase and for δ > 0 in the disordered one,
δ = 0 corresponds to the phase transistion associated to the fixed point (12).

We use κ to measure the distribution of the signs of the nearest neighbour
couplings. In subsection 4.3 we found the “ferromagnetic” fixed point (39) and
the “spin glass” fixed point (40) and examined their stability. We do not know
if there exist further fixed points, the following diagram assumes that there are
no other ones.

Finally, λ measures the presence of next nearest neighbour couplings. In
subsection 5.2 we found that every fixed point on the axis δ = λ = 0 will be
stable with respect to their introduction.

We thus get the schematic flow diagram in figure 6. The “spin glass” fixed
point (40) found in 4.3 is the most important attractor.

7 Conclusions

In this work we considered the quantum Ising spin glass in one dimension.
We have been interested in its possible phases and phase transitions at zero
temperature.

Our most important tool for handling disorder has been a functional renor-
malisation group transformation developed by Dasgupta and Ma. Fisher later
has shown that this method can be applied with great succes to the examination
of the random ferromagnetic quantum Ising chain and other models.

Following this renormalisation scheme we established a set of differential
equations describing the flow of the probability distributions of fields and cou-
plings during renormalisation. We found a fixed point in these probability dis-
tributions where positive and negative nearest neighbour couplings are equally
distributed. We associate this fixed point to the quantum phase transition of
the spin glass chain.

We then concentrated on the examination of this fixed point. We have shown
that it is stable with respect to perturbations caused by the introduction of
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Figure 10:
Schematic flow
diagram for the
Quantum Ising
Spin Glass in one
dimension.

next nearest neighbour couplings as well as perturbations deforming the equal
distribution of positive and negative nearest neighbour couplings. Thus, the
fixed point turned out to be the most important attractor. We were then able
to find the behavior of some of the magnetic properties of this fixed point.

It will be worthwhile to retrace the results found in this work by establishing
the renormalisation scheme numerically.

Furthermore, after having characterised the fixed point representing the zero
temperature phase transition in the spin glass chain it will be an interesting
project to examine now the two different phases that it separates. One would
like to reveal their magnetic properties and especially to identify an appropriate
order parameter.

J’aimerais remercier mes mâıtres de stage, Pierre Pujol et David Carpentier,
pour tout le temps qu’ils ont pris pour moi.

A Simplification of the spin chain by perturba-
tion theory

We describe how perturbation theory can be used to find a low energy approx-
imation for some given spin chain. It prooves useful to consider the general
Hamiltonian

H = −
∑

i




∑

l≥1

J (l)
i,i+lσ

z
i σ

z
i+l + hiσ

x
i + hµiσ

z
i



 (73)
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involving couplings between all sites and - to measure susceptibility - includ-
ing an arbitrary small constant field h in z-direction and associated magnetic
moments µi to each spin.

In what follows we treat the decimation of couplings and fields. We use
perturbation theory of degenerated states carried up to second order. We recall
the formulae for the energy corrections in first and second order E(1) and E(2):
Let us consider the perturbation H1 to a system H0 and denote D0 ⊂ the
corresponding degenerate subspace of interest (spanned by eigenvectors of H0)
in our Hilbert space , D := \D0 the complementary space. Then the energy
corrections are given by the eigenvalues of the following matrices

< ϕi
D0

|H1|ϕj
D0

> yields {E(1)
ij }

< ϕi
D0

|
∑

|ϕk
D> ∈

basis of D

H1|ϕk
D >< ϕk

D|H1

E(0) − Ek
D

|ϕj
D0

> yields {E(2)
ij } (74)

for the vectors |ϕi
D0

> and |ϕk
D > of an arbitrary basis of D0 and D, respectively,

and E(0) the H0-eigenvalue in the degenerate subspace D0.

A.1 Decimation of a coupling J (L)
i,i+L between sites i and

i + L

Let us suppose that one of the random couplings, say J (L)
i,i+L, is responsable for

the largest energy gap in the spin chain, that means all fields and couplings
in the chain are smaller than it and (at least) those in its environment are
even much smaller. For this reason we decimate it. With the help of second
order perturbation theory we will find a new, simpler spin chain as a low energy
appoximation for the original chain. The calculations for different L are the
same and that is why we immediately treat the general case of arbitrary L.

For simplicity we consider exclusively the subsystem of the chain described
by the parts of the Hamiltonian (73) that involve the sites i or i + L (the other
parts do not enter the perturbational treatment) given by HJ = HJ

0 + HJ
1 with

HJ
0 = −J (L)

i,i+Lσ
z
i σ

z
i+L, HJ

1 = HJ
1,x + HJ

1,z

HJ
1,x = −hiσ

x
i − hi+Lσ

x
i+L

HJ
1,z = −

∑

l/∈{i,i+L}

(
J (|i−l|)

l,i σz
l σ

z
i + J (|i+L−l|)

l,i+L σz
l σ

z
i+L

)
− h(µiσ

z
i + µi+Lσ

z
i+L)

(75)

For HJ
0 there are two eigenvalues, −J (L)

i,i+L and +J (L)
i,i+L, corresponding to two

degenerate subspaces D0 and D of the Hilbert space and we are always going
to choose D0 as the subspace corresponding to the smaller eigenvalue, so it is

D0 := span{| ↑i↑i+L>, | ↓i↓i+L>}⊗ remaining sites

D := span{| ↑i↓i+L>, | ↓i↑i+L>}⊗ remaining sites (76)

for J (1)
i,i+L > 0 and vice versa in the other case. Here | ↑i>, | ↓i> design the

eigenstates of σz
i to characterise the quantum state on site i.
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We neglect the states in D, which are the high energy states, throwing them
out. We then rewrite approximatively the action of HJ

1 in D0 by making use of
the perturbation theory. The matrix elements mentionned above are calculated
to be

E(1)
ij =< ϕi

D0
|HJ

1 |ϕ
j
D0

>=< ϕi
D0

|HJ
1,z|ϕ

j
D0

> (77)

and

E(2)
ij = < ϕi

D0
|
∑

|ϕk
D> ∈

basisof D

HJ
1 |ϕk

D >< ϕk
D|HJ

1

E(0) − Ek
D

|ϕj
D0

>

= < ϕi
D0

|
∑

|ϕk
D> ∈

basisof D

HJ
1,x|ϕk

D >< ϕk
D|HJ

1,x

∓2J (L)
i,i+L

|ϕj
D0

>

= < ϕi
D0

|
∑

|ϕk
D> ∈

basisof D0∪D

HJ
1,x|ϕk >< ϕk|HJ

1,x

∓2J (L)
i,i+L

|ϕj
D0

>

=
< ϕi

D0
|
(
HJ

1,x

)2 |ϕj
D0

>

−2|J (L)
i,i+L|

(78)

where here and in the following the signs ± are chosen +(−) if J (L)
i,i+L > (<)0.

Now in D0 we have the identity σz
i = ±σz

i+L and we use it to define a new
effective spin σ̃i,i+L by

σ̃x
i,i+L := σx

i σ
x
i+L

σ̃z
i,i+L :=

{
+σz

i if (J (L)
i,i+L > 0) or (J (L)

i,i+L < 0 and µi > µi+L)
−σz

i (J (L)
i,i+L < 0 and µi < µi+L)

(79)

This reflects the fact that in D0 (and in D too) the two spins act like only one
spin in a certain sense. The definition of σ̃z

i,i+L is chosen in a way that the
magnetic moment of the new effective spin is non negative, µ̃i,i+L = |µi±µi+L|.

So we find (in D0) the approximation

HJ = HJ
0 + HJ

1,z −
(
HJ

1,x

)2

2|J (L)
i,i+L|

+ o(

(
1

J (L)
i,i+L

)2

)

= −
{
|J (L)

i,i+L| +
h2

i + h2
i+L

2|J (L)
i,i+L|

+
hihi+L

|J (L)
i,i+L|

σ̃x
i,i+L + h |µi ± µi+L| σ̃z

i,i+L +

+
∑

j /∈{i,i+L}

(
J (|i−j|)

i,j ± J (|i+L−j|)
i+L,j

)
σz

jσ
z
i + o(

(
1

J (L)
i,i+L

)2

)
}

(80)

where the σz
i occuring in the last sum can be expressed in terms of the new spin

variable by inversion of (79).
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A.2 Decimation of a transverse field hi

Let now one of the random transverse fields, say hi, be responsable for the
largest energy gap in the spin chain: We suppose that all fields and couplings
in the chain are smaller than hi and (at least) those in its environment are even
much smaller.

In this case we deal with the subsystem

Hh = −




hiσ
x
i +
∑

l .=i

J (|l−i|)
i,l σz

i σ
z
l + hµiσ

z
i




 (81)

and identify

D0 := span
(
| ↑i> +| ↓i>√

2

)
⊗ remaining sites

D := span
(
| ↑i> −| ↓i>√

2

)
⊗ remaining sites (82)

as the subspaces to eigenvalues −hi and +hi, respectively.
We calculate the matrix elements of the perturbative operator as in the

precedent case and then find an effective Hamiltonian

Hh = −
{

hi +

∑
l .=0

(
J (|l|)

i,i+l

)2
+ (hµi)2

2hi
+

+
hµi

hi

∑

l .=i

J (|l−i|)
i,l σz

l +
1

2hi

∑

l,n .=i
n.=l

J (|l−i|)
i,l J (|n−i|)

i,n σz
l σ

z
n

}
. (83)

References

[1] C.Dasgupta and S.K.Ma, Phys. Rev. B 22, 1305 (1980).

[2] D.S.Fisher, Phys. Rev. B 51, 6411 (1995).

[3] G.Aeppli, T.F.Rosenbaum et al., Phys. Rev. Lett. 59, 1969 (1987).

[4] K.H.Fischer and J.A.Hertz: Spin Glasses. Cambridge UP. Cambridge 1991.

[5] H.Rieger and A.P.Young, preprint cond-mat/9607005.

[6] S.Sachdev: Quantum Phase Transistions. Cambridge UP. Cambridge 2001.

29


