Lengthscales in amorphous materials

Ludovic Berthier

Laboratoire Charles Coulomb Université de Montpellier 2 & CNRS

Mini-workshop on glasses - Lyon, April 12, 2011

Coworkers

- On-going work with:
- W. Kob (Montpellier)
- Related work with:
- S. Roldan-Vargas (Granada)
- Discussions with:
- C. Cammarota (Saclay) G. Biroli (Saclay)

Good old glass problem

- Very little structural change at g(r) level.
- Small cause big effects, or some new physics?

- Glass transition: fluid amorphous solid transition at low T.
- Rapid increase of viscosity, or relaxation time.
- Glass = liquid "too viscous" to flow-ill-defined.

Glasses—across the scales

[Berthier & Biroli, Rev. Mod. Phys. 2011]

Analogies don't work-or do they?

- (a) Crystals are solid because they are ordered: symmetry breaking.
- (c) Critical slowing if critical fluctuations: diverging length scale.
- (b) Why viscous liquids? "Hidden" criticality?
- (b) Why amorphous solids? "Hidden" symmetry breaking?

Dynamic heterogeneity

 When density is large, particles must move in a correlated way. New transport mechanisms revealed over the last decade: fluctuations matter.

Experimentally challenging in liquids—easier in soft matter & grains.

"Dynamic criticality" in liquids

• Local dynamics is an "order parameter" with growing spatial fluctuations.

- Criticality revealed by multipoint dynamic susceptibilities.
- Theory suggests experimentally measurable fluctuations " χ_4 " to quantify typical correlation volume.

[Berthier et al., Science '05]

• Spatial fluctuations grow (modestly) near the glass transition.

Dynamical heterogeneities in glasses, colloids and granular materials (Oxford, June 2011) Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos.

Back to the local structure

- Are we missing something?
- E.g., specific geometric motifs? [Coslovich, Tarjus, Kurchan, etc.]

Why confinement?

• Confinement is a way to probe static and dynamic lengthscales: perturb at ${\bf r}$, and measure effect at ${\bf r}+{\bf r}'$.

• Long history in supercooled liquids and polymers (interfaces, films, etc.)

 \rightarrow *n*-body static correlations: How does the position of (n - 1) particles influence the *position* of the *n*th particle?

 \rightarrow *n*-body dynamic correlations: How does the position of (n - 1) particles influence the *dynamics* of the *n*th particle?

• Confining the liquid "by itself". (1) Probe equilibrium correlations; (2) No "direct" effect on averaged fluid properties (e.g. no layering). [Scheidler *et al.*, 90's]

Point-to-set correlations

• Pin a 'set' of particles from equilibrium configuration at t = 0. Perform equilibrium average with pinning field at t > 0. [Montanari & Semerjian '08]

(1) How far does the system escape from t = 0 config? Overlap $\langle Q \rangle = \langle q(t \to \infty) \rangle$ with $q(t) = \mathcal{N}^{-1} \sum_i n_i(t) n_i(0) \approx F(q, t)$.

Fluctuations of $q(t \to \infty)$: P(Q), $\chi = N[\langle Q^2 \rangle - \langle Q \rangle^2]$.

(2) How fast does the system escape? $Q_{self}(t) \approx F_s(q, t)$.

• Project config. at $t \to \infty$ onto config. at t = 0. Natural thermodynamic analog of dynamic heterogeneity studies (χ_4).

• Note: Pinning field prevents the system from fully escaping the t = 0 configuration. We are probing metastability.

What geometry?

• Qualitatively different choices for 'set' of pinned particles at at t = 0.

(a) Cavity. Probe one point (center), system is finite. [Biroli *et al.*, '08]

(b) Sandwich. Probe an infinite plane (middle), d - 1 dimensions.

(c) Pinned. Probe all free particles, homogeneous, infinite, *d*dimensional.

(d) Wall. Probe profile; bulk recovered for $z \to \infty$. [Kob *et al.*, '11]

• Standard critical point: one length to rule them all.

Confinement & RFOT mosaic length

• RFOT theory: glass transition controlled by existence and evolution of metastable states, $s_c(T)$. [Kirkpatrick, Thirumalai, Wolynes '89]

 The 'mosaic' length, ℓ ~ σ/(Ts_c), emerges as a competition between: -mismatch between states: σℓ^{d-1};
-entropic gain due to state multiplicity: Ts_cℓ^d.

• Point-to-set correlation in closed cavity: crossover between low and high $\langle Q \rangle$ when $d \sim \ell$. [Bouchaud, Biroli JCP '04]

• Wall geometry: no surface/bulk competition, but thermal fluctuations near the wall of width controlled by ℓ (power law? log?)

• Sandwich and pinned geometries: The "crossover" at $\Delta \sim \ell$ and $c^{-1/d} \sim \ell$ concerns an infinite number of particles \rightarrow ideal glass transition in confinement is predicted. [Cammarota, Biroli, '11]

Numerical comparison

The Wall

• We use the liquid as a template for itself. How far does "hidden order" propagate?

• "Amorphous order" propagates over larger length scales at lower T.

[Kob, Soldan-Vargas, Berthier, submitted '11]

Pinned particles: statics

• Temperature evolution: $\langle Q \rangle$ increases when T decreases \rightarrow less particles are needed to pin the initial configuration.

• Limited data again suggests slowly increasing static lengthscale. Consistent with wall (Kob *et al.*) and cavity (Biroli *et al.*) geometries.

Pinned particles: dynamics

- It is easy to prepare equilibrium glass configurations.
- For some parameters (N, T, c), equilibrium can be maintained.

 \rightarrow We believe we can study the ideal glass transition for the first time.

First results for (small) systems

Random first order transition?

• Average overlap becomes more abrupt at low *T*.

• P(Q) becomes bimodal, time series reminiscent of first order transitions.

• The susceptibility χ develops a maximum.

These data suggest we might be able to establish the presence of an ideal glass transition in (c, T) plane. \rightarrow Finite size scaling.

Conclusions

• On-going effort to measure relevant thermodynamic spatial correlations in glass-forming liquids—beyond pair correlation level.

 Point-to-set correlations measured by confining the liquid by itself, various geometries.

 Pinned particles: seems an ideal geometry to measure static lengthscales and probe directly a microscopic mechanism of the glass transition.

 \bullet Will the random first order transition resist finite size scaling and larger N studies?