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Coworkers

e On-going work with:

W. Kob (Montpellier) 080 Ogo
« Related work with: % 080 ‘
e Discussions with:

C. Cammarota (Saclay) OO

G. Biroli (Saclay)

S. Roldan-Vargas (Granada)



Good old glass problem

e Glass transition: fluid - amor-
phous solid transition at low T'.

e Rapid increase of viscosity, or
relaxation time.

e Glass = liquid “too viscous” to
flow—ill-defined.

e Very little structural change at
g(r) level.

e Small cause big effects, or
some new physics?




Glasses—across the scales

[Berthier & Biroli, Rev. Mod. Phys. 2011]



Analogies don’t work—or do they?
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e (a) Crystals are solid because they are ordered: symmetry breaking.

e (c) Critical slowing if critical fluctuations: diverging length scale.

e (b) Why viscous liquids? “Hidden” criticality?

e (b) Why amorphous solids? “Hidden” symmetry breaking?



Dynamic heterogeneity

e When density is large, particles must move in a correlated way. New
transport mechanisms revealed over the last decade: fluctuations matter.
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[Dauchot et al., '05]

e Experimentally challenging in liquids—easier in soft matter & grains.



“Dynamic criticality” in liguids

e Local dynamics is an “order parameter” with growing spatial fluctuations.

10% F
10t
Silica, -- ® -- 1
Lennard-Jones
< 100 N Hard spheres ——< - —
BPM --4--
Glycerol ---a --
OTP —v—
Salol ——v—-
Propylene carbonate --¢--
10_1 — 3-Fluoroaniline - _|
Propylene glycol i
B203 -- X
m-toluidine -- @ --
Decaline --O--
10_2 | | 1 |

Ta/to

e Criticality revealed by multi-
point dynamic susceptibili-
ties.

e Theory suggests experi-
mentally measurable fluctua-
tions “y4” to quantify typical
correlation volume.

[Berthier et al., Science '05]

e Spatial fluctuations grow
(modestly) near the glass
transition.

Dynamical heterogeneities in glasses, colloids and granular materials (Oxford, June 2011)

Eds.: Berthier, Biroli, Bouchaud, Cipelletti, van Saarloos.



Back to the local structure
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e E.g., specific geometric motifs? [Coslovich, Tarjus, Kurchan, etc.]

e Are we missing something?



Why confinement?

e Confinement is a way to probe static and dynamic lengthscales: perturb
at r, and measure effect at r +r’.

e Long history in supercooled liquids and polymers (interfaces, films, etc.)

— n-body static correlations: How does the position of (n — 1) particles
influence the position of the nt" particle?

— n-body dynamic correlations: How does the position of (n — 1) particles
influence the dynamics of the n*" particle?

e Confining the liquid “by itself”. (1) Probe equilibrium correlations; (2) No
“direct” effect on averaged fluid properties (e.g. no layering).
[Scheidler et al., 90’s]



Point-to-set correlations

e Pin a ‘set’ of particles from equilibrium configuration at ¢ = 0. Perform
equilibrium average with pinning field at ¢ > 0. [Montanari & Semerjian '08]

(1) How far does the system escape from ¢t = 0 config?
Overlap (Q) = (q(t — o0)) with g(t) = N 71 37, n;(t)ni(0) = F(g,1).

Fluctuations of ¢(t — oo): P(Q), x = N[(Q?) — (Q)?].

(2) How fast does the system escape? Qsas(t) ~ Fs(q,1).

e Project config. at t — oo onto config. at ¢t = 0. Natural thermodynamic
analog of dynamic heterogeneity studies (x4).

e Note: Pinning field prevents the system from fully escaping the ¢t =0
configuration. We are probing metastability.



What geometry?

e Qualitatively different choices for ‘set’ of pinned particles at at t = 0.

(a) Cavity. Probe one point (center),
system is finite. [Biroli et al., '08]

(b) Sandwich. Probe an infinite
plane (middle), d — 1 dimensions.

(c) Pinned. Probe all free par-
ticles, homogeneous, infinite, d-
dimensional.

O (d) Wall. Probe profile; bulk recov-
ered for z — oo. [Kob etal,, '11]

e Standard critical point: one length
to rule them all.




Confinement & RFOT mosaic length

e RFQOT theory: glass transition controlled by existence and evolution of
metastable states, s.(7T"). [Kirkpatrick, Thirumalai, Wolynes "89]

e The ‘mosaic’ length, ¢ ~ ¢ /(T's.), emerges as a competition between:

-mismatch between states: o/9-1;
-entropic gain due to state multiplicity: T's.¢<.

e Point-to-set correlation in closed cavity: crossover between low and high
(@) when d ~ ¢. [Bouchaud, Biroli JCP '04]

e Wall geometry: no surface/bulk competition, but thermal fluctuations
near the wall of width controlled by ¢ (power law? log?)

e Sandwich and pinned geometries: The “crossover” at A ~ ¢ and

¢~1/% ~ ¢ concerns an infinite number of particles — ideal glass transition
In confinement is predicted. [Cammarota, Biroli, "11]



Numerical comparison
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[Berthier, Kob, unpublished]



The Wall

e We use the liquid as a template for itself. How far does “hidden order”
propagate?
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e “Amorphous order” propagates over larger length scales at lower T.
[Kob, Soldan-Vargas, Berthier, submitted '11]



Pinned particles: statics

e Temperature evolution: (Q)) increases when 7' decreases — less
particles are needed to pin the initial configuration.
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e Limited data again suggests slowly increasing static lengthscale.
Consistent with wall (Kob et al.) and cavity (Biroli et al.) geometries.



Pinned particles: dynamics
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e It is easy to prepare equilibrium glass configurations.
e For some parameters (N, T, ¢), equilibrium can be maintained.

— We believe we can study the ideal glass transition for the first time.



First results for (small) systems
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Random first order transition?

0.8

0.6

N =64,T = 10,c = 0.22

] ] ]
0 1000 2000 3000 4000
t/2.10°

e Average overlap becomes
more abrupt at low T.

e P(Q) becomes bimodal, time
series reminiscent of first order
transitions.

e The susceptibility y develops
a maximum.

These data suggest we might
be able to establish the pres-
ence of an ideal glass transi-
tionin (¢, T) plane.

— Finite size scaling.



Conclusions

e On-going effort to measure relevant thermodynamic spatial correlations
In glass-forming liquids—beyond pair correlation level.

e Point-to-set correlations measured by confining the liquid by itself,
various geometries.

e Pinned particles: seems an ideal geometry to measure static
lengthscales and probe directly a microscopic mechanism of the glass
transition.

e Will the random first order transition resist finite size scaling and larger v
studies?
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