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Using waves to probe matter

Various methods to probe (soft) condensed matter 
using coherent diffusion of light / acoustic waves : 

• Simple diffusion 
(radar, seismic detector, 
doppler velocimetry, etc)

• Multiple diffusion : use of correlation
Diffusion (acoustic) / coda wave spectroscopy, etc

Source

Detector

Source

Detector

Output : speckle 
no imaging possible



Coherent mult. diffusion : acoustic wave spectroscopy 

• Output : speckle
➡ too difficult to analyze / use to probe

• Idea : analyze change of output when 
the diffusing medium is modified

Source

Detector

R. Snieder and J. Page, Physics Today (2007)

~ Interferometer

Source

Detector

Intensity modified by small 
variations of diffusion medium
➡good sensitivity



Coherent mult. diffusion : acoustic wave spectroscopy 

Source

Detector

• Procedure : 
1. At time T1 : send a pulse 
2. Record the transmitted amplitude ψ(T1,t) 

as a function of time 
3. Repeat another trace ψ(T2,t) at time T2= T1+ΔT
4. etc

• Correlation between traces : mean relative displacement in the 
medium   g(ΔT) ≈ ∫ ψ(T,t) ψ*(T+ΔT,t) dT≈ exp(- N(t)k2 <Δr2(ΔT)>)

the particle velocity correlation function, whose correlation
length ξ measures the range over which the particles move to-
gether. Because the complex motions are difficult to model ac-
curately, new methods to probe the spatial correlations and
fluctuations are potentially important for understanding the
physics of fluidized or sedimenting suspensions, as well as re-
lated problems in the physics of mixing.

As a model system, consider a suspension of 1-mm-
diameter glass spheres in a liquid consisting of a mixture of
water and glycerol. When the wavelength of incident ultra-
sound is comparable to the particle size, the system exhibits
strong multiple scattering for a wide range of particle volume
fractions φ; for the example shown in figure 4a, φ = 0.40 and
the mean free scattering time is 0.5 µs, so that the waves at
the longest propagation times shown have been scattered
many times. As the particles move, the changes in the scat-
tered wave field, shown in the right side of figure 4a, exhibit
no net time shift to earlier or later times but are instead char-
acterized by fluctuations in both amplitude and phase. These
temporal field fluctuations can be quantitatively related to
the motion of the particles by looking at the autocorrelation
function of the scattered wave field at a given propagation
time t (see the box on page 53). Selecting a long propagation
time maximizes sensitivity to small particle displacements; a
short propagation time allows the evolving dynamics to be
watched for long time intervals.

If all scatterers were to move together uniformly, the
speckle pattern would simply move too (at least for a pla-
nar incident pulse), since the paths between scatterers
would remain fixed. In the more interesting case of nonuni-
form motion, the change in the scattered waves is governed
by the relative motion of the scatterers. As discussed in the
box, the field autocorrelation function is directly related to
the relative mean square displacement 〈∆r2

rel(∆T,l*)〉, during
the evolution time interval ∆T, of particles separated by the
transport mean free path l*, the average step length of the
sound’s random-walk paths through the sample.2 Measur-
ing the relative motion of particles separated by a known av-
erage distance gives valuable information about the fluctu-
ations and correlations of the particle displacements as a
function of time.

Figure 5 presents representative data and analysis.
There, 〈∆r2

rel(∆T,l*)〉 is found to increase quadratically with
evolution time. Thus, at least for short evolution times, 
the particles move with constant velocities along ballistic
trajectories with a root mean square relative velocity
∆Vrel(l*) = √〈∆r2

rel(∆T,l*)〉/(∆T)2 that can be determined di-
rectly. By varying the ultrasound frequency, one can vary the
strength of the scattering and hence l*, so the relative veloc-
ity of particles in the suspension can be measured over a
wide range of distances between particles. At short distances
the relative velocity increases with distance, but at large dis-
tances it levels off to √2Vrms , where Vrms is the absolute rms
particle velocity (see figure 5b). From such data, the particle
velocity correlation function can be determined. Measure-
ments of the correlation function show an exponential decay
with distance, and the decay rate gives the correlation length
ξ. For separations below ξ, the particles move more or less
in unison.2

Such measurements are important for helping to under-
stand the mechanisms that determine the magnitude of the
correlation length, which plays a key role in governing the
dynamics. Thus, multiply scattered ultrasonic waves can pro-
vide quantitative information on the dynamics of suspen-
sions, information that is relevant both to fundamental stud-
ies of the motion in suspensions and turbulent fluids and to

practical applications such as monitoring mixing processes,
fluidized beds, and slurry flow.

Monitoring Mount Merapi
Multiply scattered waves are also used in seismology, on time
and length scales very different from those of acoustic waves
in suspensions. To illustrate the technique, we consider data
acquired on Mount Merapi.5 In contrast to acoustic waves
scattered by particles in suspension, the multiply scattered
waves recorded on Mount Merapi show a distinct phase shift
but little change in the wave shape (see figure 4b). Such data
indicate a change in seismic velocity.

These changes in the waveforms can be extracted using
the time-shifted cross-correlation of the waveforms at differ-
ent evolution times (see the box). In the Merapi data, the
dominant change in the waveforms is a change in the arrival
time of the coda waves. That change can be extracted from
the time-shifted cross-correlation for several nonoverlapping
time windows, such as the time intervals indicated in fig-
ure 2. For a spatially homogeneous velocity change ∆c/c, the
travel-time change 〈τ〉 for a time interval centered at time t is
given by 〈τ〉/t = ∆c/c.4 Splitting the data into several nonover-
lapping time windows makes it possible to quantify the un-
certainty in the inferred change of the seismic velocity, but
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Figure 4. Signatures of change. (a) Segments of multiply
scattered ultrasonic waves transmitted through a particu-
late suspension, monitored at three evolution times 60 ms
apart. The waveforms are similar for short propagation
times, but they show strong variations in amplitude and
phase at later propagation times. (b) Waveforms excited
by an air gun on Mount Merapi on 30 June (red) and
14 July 1998 (blue) and recorded on a seismograph
about 2 km away. A change in the sound speed can be
inferred from the distinct phase shift. (Data courtesy of
Michael Cowan and Ulrich Wegler.)

R. Snieder and J. Page, Physics Today (2007)

the particle velocity correlation function, whose correlation
length ξ measures the range over which the particles move to-
gether. Because the complex motions are difficult to model ac-
curately, new methods to probe the spatial correlations and
fluctuations are potentially important for understanding the
physics of fluidized or sedimenting suspensions, as well as re-
lated problems in the physics of mixing.

As a model system, consider a suspension of 1-mm-
diameter glass spheres in a liquid consisting of a mixture of
water and glycerol. When the wavelength of incident ultra-
sound is comparable to the particle size, the system exhibits
strong multiple scattering for a wide range of particle volume
fractions φ; for the example shown in figure 4a, φ = 0.40 and
the mean free scattering time is 0.5 µs, so that the waves at
the longest propagation times shown have been scattered
many times. As the particles move, the changes in the scat-
tered wave field, shown in the right side of figure 4a, exhibit
no net time shift to earlier or later times but are instead char-
acterized by fluctuations in both amplitude and phase. These
temporal field fluctuations can be quantitatively related to
the motion of the particles by looking at the autocorrelation
function of the scattered wave field at a given propagation
time t (see the box on page 53). Selecting a long propagation
time maximizes sensitivity to small particle displacements; a
short propagation time allows the evolving dynamics to be
watched for long time intervals.

If all scatterers were to move together uniformly, the
speckle pattern would simply move too (at least for a pla-
nar incident pulse), since the paths between scatterers
would remain fixed. In the more interesting case of nonuni-
form motion, the change in the scattered waves is governed
by the relative motion of the scatterers. As discussed in the
box, the field autocorrelation function is directly related to
the relative mean square displacement 〈∆r2

rel(∆T,l*)〉, during
the evolution time interval ∆T, of particles separated by the
transport mean free path l*, the average step length of the
sound’s random-walk paths through the sample.2 Measur-
ing the relative motion of particles separated by a known av-
erage distance gives valuable information about the fluctu-
ations and correlations of the particle displacements as a
function of time.

Figure 5 presents representative data and analysis.
There, 〈∆r2

rel(∆T,l*)〉 is found to increase quadratically with
evolution time. Thus, at least for short evolution times, 
the particles move with constant velocities along ballistic
trajectories with a root mean square relative velocity
∆Vrel(l*) = √〈∆r2

rel(∆T,l*)〉/(∆T)2 that can be determined di-
rectly. By varying the ultrasound frequency, one can vary the
strength of the scattering and hence l*, so the relative veloc-
ity of particles in the suspension can be measured over a
wide range of distances between particles. At short distances
the relative velocity increases with distance, but at large dis-
tances it levels off to √2Vrms , where Vrms is the absolute rms
particle velocity (see figure 5b). From such data, the particle
velocity correlation function can be determined. Measure-
ments of the correlation function show an exponential decay
with distance, and the decay rate gives the correlation length
ξ. For separations below ξ, the particles move more or less
in unison.2

Such measurements are important for helping to under-
stand the mechanisms that determine the magnitude of the
correlation length, which plays a key role in governing the
dynamics. Thus, multiply scattered ultrasonic waves can pro-
vide quantitative information on the dynamics of suspen-
sions, information that is relevant both to fundamental stud-
ies of the motion in suspensions and turbulent fluids and to

practical applications such as monitoring mixing processes,
fluidized beds, and slurry flow.

Monitoring Mount Merapi
Multiply scattered waves are also used in seismology, on time
and length scales very different from those of acoustic waves
in suspensions. To illustrate the technique, we consider data
acquired on Mount Merapi.5 In contrast to acoustic waves
scattered by particles in suspension, the multiply scattered
waves recorded on Mount Merapi show a distinct phase shift
but little change in the wave shape (see figure 4b). Such data
indicate a change in seismic velocity.

These changes in the waveforms can be extracted using
the time-shifted cross-correlation of the waveforms at differ-
ent evolution times (see the box). In the Merapi data, the
dominant change in the waveforms is a change in the arrival
time of the coda waves. That change can be extracted from
the time-shifted cross-correlation for several nonoverlapping
time windows, such as the time intervals indicated in fig-
ure 2. For a spatially homogeneous velocity change ∆c/c, the
travel-time change 〈τ〉 for a time interval centered at time t is
given by 〈τ〉/t = ∆c/c.4 Splitting the data into several nonover-
lapping time windows makes it possible to quantify the un-
certainty in the inferred change of the seismic velocity, but
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Figure 4. Signatures of change. (a) Segments of multiply
scattered ultrasonic waves transmitted through a particu-
late suspension, monitored at three evolution times 60 ms
apart. The waveforms are similar for short propagation
times, but they show strong variations in amplitude and
phase at later propagation times. (b) Waveforms excited
by an air gun on Mount Merapi on 30 June (red) and
14 July 1998 (blue) and recorded on a seismograph
about 2 km away. A change in the sound speed can be
inferred from the distinct phase shift. (Data courtesy of
Michael Cowan and Ulrich Wegler.)

ultrasonic pulse in 
particulate suspension

sismographic wave transmitted 
near Mount Merapi

from R. Snieder and J. Page, Physics Today (2007)



What about electronic waves ? 

• waves diffusion : necessity to be phase coherent  
‣ electrons interact with environment (phonons, other electrons, impurities) 
‣ randomization of its phase 
‣ “looses memory of its phase” over coherence length

➡ electronic transport is classical in “standard situations” (Ohm’s law)
but quantum at low T (fewer phonons), and small length (few μm)

• only total flux (current) detected : no angle information, no speckle
• advantages : charge (sensitive to magnetic flux), spin (use it here). 

Lφ(T )

Lφ(T )

L ≥ Lφ(T )classical diffusion, 
Ohm’s Law

quantum diffusion



General Idea of this work

Lx, Ly

Lz � Lφ

P. de Vegvar, L. Lévy, and T. Fulton, Phys. Rev. Lett. 66, 2380 (1991)
D.C. and E. Orignac, Phys. Rev. Lett. 100 (2008) 

L. Lévy et al. : 1000ppm Cu:Mn, 

(dSS � 23Å), L � 1µm, Lφ � 0.5µm,

Ly � 900Å, N⊥
spins � 40

• How to measure correlations between different 
spin configurations ? 

• Our proposal : use coherent electronic transport 
to probe of a spin configuration :
correlation of spin configurations ⇔ 
correlation of transport properties

Quantity analogous to Speckle ? 

• Coherent transport regime : transport on distances      
comparable with the coherence length scale             : small 
wires (                )

•             is limited by inelastic scattering : 

• phonons ⇒ low temperatures (T~ 100 mK)

•  inelastic magnetic scattering : reduced in spin glass !!!                 

                 increases in the Spin Glass phase 

• Transport in a wire : 

Lz
Lφ(T )

Lφ(T )

Lz � µm

Lφ(T )

Lx, Ly � Lz, Lφ



Transport probe : Classical ≠ Quantum Diffusion

• Probability to diffuse from    to 

• Phase variation along a diffusion path :                       ⇒ random in a metal

• Average interferences vanish, 
except if               (reversed ring)

➡Quantum correction : loop contributions
(weak localization : first signs of Anderson Localization of waves)

�r �r�

P (�r → �r�) ∝

������

�

path C�r→�r�

AC

������

2

=
�

C
|AC |2 +

�

C �=C�
ACA

∗
C�

δφC = 2π
LC
λF

Classical 
Interferences

”C = C�”

O

E. Akkermans and G. Montambaux, Mesoscopic 
Physics of electrons and photons, 2007



Transport probe : Magnetic field effects

Application of a magnetic field : dephase 

path with respect to each other :

➡quantum corrections affected with 2 consequences : O

δφC,C� = 2πΦC,C�/Φ0

E. Akkermans and G. Montambaux, Mesoscopic 
Physics of electrons and photons, 2007
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Transport probe : Magnetic field effects

Application of a magnetic field : dephase 

path with respect to each other :

➡quantum corrections affected with 2 consequences : O

δφC,C� = 2πΦC,C�/Φ0

E. Akkermans and G. Montambaux, Mesoscopic 
Physics of electrons and photons, 2007
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universal conductance fluctuations : 
fingerprint of disorder configurations

conductance

Quantity analogous to Speckle 

�(δG(B, V ))2�B = �(δG(B, V ))2�V = c
e2

h

Ergodic Hypothesis : 
Changing random potential (length of paths) or 
applying B : similar statistical  dephasing

➡averaging over B or V equivalent

Crucial for theoretician 

P (�r → �r�) ∝

������

�

path C�r→�r�

AC

������
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=
�

C
|AC |2 +

�

C �=C�
ACA
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�
δG

�
B, {S(1)
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�

δG
�
B, {S(2)

j }
��

B

G
�
B, {S(1)

j }
�

, G
�
B, {S(2)

j }
�

General Idea of this work (2)

Lx, Ly

Lz � Lφ

correlation of spin configurations ⇔ 

correlation of transport properties

• Measure traces G(B) in 1 sample, but for 
2 spin configurations

• Consider average correlation between the 
two traces : 

➡ Provides a measure of correlation 
between the spin configurations  ?
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D.C. and E. Orignac, Phys. Rev. Lett. 100 (2008)



• Depending on concentration : 

‣ Probing a 3D spin glass through 1D coherent electronic diffusion (                           )

‣ Probing 1D/3D cross-over through 1D coherent electronic diffusion

1D Diffusion but 3D Spin Glass !

• In theory : no Spin Glass phase in d=1,2 
(Ising SG) 

• Typical number of spins in a section : 

• putative overlap / equilibration length      
for a 3D spin glass            

• Evaluation of                from field change 
experiments and recent simulations (Ising 
SG) : 

Lx, Ly

Lz � Lφ

(dSS � 23Å), L � 1µm,Lφ � 0.5µm,Ly � 900Å, N⊥
spins � 40

L. Lévy et al. (1991) : 1000ppm Cu:Mn, 

N⊥ � 40

N (3D)
eq (t)

N (3D)
eq (t)

N (3D)
eq (tw = 1000s) � 30− 50spins

N⊥ ≥ N (3D)
eq (tw)

J.-P. Bouchaud, V. Dupuis, J. Hammann, and E. 
Vincent, Phys. Rev. B 65, 024439 (2001)
S. Jimenez, V. Martin-Mayor, and S. Perez-Gaviro, 
Phys. Rev. B 72, 054417 (2005).



Brief history

Pioneering work of L. Lévy et al.:

➡ Coupling between SG freezing 
and electronic transport 

➡ Electron’s transport is coherent

de Vegvar et al. PRL (1991)

P. de Vegvar, L. Lévy, and T. Fulton, Phys. Rev. Lett. 66, 2380 (1991) 
N. Israeloff,  et al. , Phys. Rev. Lett. 63, 794 (1989). 
G. Alers, M. Weissman, and N. Israeloff, Phys. Rev. B 46, 507 (1992). 
J. Jaroszynski, et al. Phys. Rev. Lett. 80, 5635 (1998)
G. Neuttiens, et al. , Phys. Rev. B 62, 3905 (2000). 

• But most focused electronic 
(1/f) noise 

• Signature of slow relaxation of 
SG ? but difficult to interpret 
(see M. Weissman RMP (1993))

Here  focus on correlations !

Jaroszynski et al., PRL (1998) Neuttiens et al. PRB (2000)
diluted magn. semicond. Cd0,93 Mn0,07Te AuFe wires @ 5% at.

1000ppm Cu:Mn
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Theoretical Model

• Spins assumed randomly frozen ➡ Anderson model + Spins
‣ scalar disorder                                                 (characterizes a sample)

‣ Frozen spins : randomly oriented, but correlated between configurations
                                                                                                              (characterizes a Spin Glass state)

• Spins of magnetic impurities : dephasing of 
electrons ➡ new length 
diffuson/Cooperon : reduction of UCF 

• General idea here : 
‣ consider a given sample : 
‣ 2 spin config.           and              (2 Spin Glass states)

➡Study correlation between                        and 

• Ergodic Hypothesis : corresponds to correlation 
between magnetoconductance traces in 2 Spin Glass
states                        and 

B. Alʼtshuler and B. Spivak, JETP Lett. 42, 447 (1985)
M. G. Vavilov, L. I. Glazman, and A. I. Larkin, Phys. Rev. B 68, 
075119 (2003)
D.C. and E. Orignac, Phys. Rev. Lett. 100 (2008)
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�Si

vi ∈ [−W/2,+W/2]

Techniques 

• Spins assumed randomly frozen ➡ Anderson model + Spins

‣ scalar disorder                                                 (characterizes a sample)

‣ Frozen spins : randomly oriented, but correlated between configurations
                                                                                                              (characterizes a Spin Glass state)

• Quantitative conductance correlations in a spin glass : 

✓Weak localization diagrammatic (perturb.)   (D.C. and E. Orignac, Phys. Rev. Lett. 100 (2008))

magnetic dephasing of the “cooperons” and “diffusons”

✓Field Theory (non-linear Sigma) (A.A. Fedorenko and D.C., arXiv:0904.1011, EPL 2010)

study crossover between orthogonal and unitary classes, extend to calculations of 
conductance correlations

✓Numerical Landauer method (G. Paulin and D.C., arXiv:0910.4341)



φ(C, {�S(1)})

φ(C, {�S(2)})

Flavor of diagrammatic... (or why this idea can work) 

• We consider the correlation �
δG

�
V, {S(1)

j }
�

δG
�
V, {S(2)

j }
��

V

• The 2 components of propagating Diffuson / Cooperon see different spin configurations  

• If two spin configurations similar : weak relative dephasing

• if two spin configurations different : strong relative dephasing 

L(D,S) = Lm/
�

1−Q12, L(D,T ) = Lm/
�

1 + Q12/2

• Along a diffusion path :                                                    + work to lower order in J

➡ different dephasing rate/length for singlet / triplet component of the Diffuson / Cooperon :

➡  dependance on  the overlap   

�

j

ei(JS)Ŝ(1)
j .�σ(1)

e±i(JS)Ŝ(2)
j .�σ(2)

L−2
m = 2πρ0nimpD

−1J2�S2�

Q12 =
1

Nimp

Nimp�

i=1

�S(1)
i .�S(2)

i

D.C. and E. Orignac, Phys. Rev. Lett. 100 (2008)

Same sample (positions of impurities)
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Lm(J) : cross-over length scale
G. Paulin and D.C., unpublished
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τe =
1

2πρ0niv2
0

le = vF τe, ξloc � N⊥le

Lm

Lm(J) : cross-over length scale
G. Paulin and D.C., unpublished
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Length of wire L
UCF (universal metal)

Strong magnetic disorder : Unitary Class
Sensitive to few spin flips
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2πρ0niv2
0

le = vF τe, ξloc � N⊥le

Lm

Lm(J) : cross-over length scale
G. Paulin and D.C., unpublished

H =
�

<i,j>

t c
†
i cj + h.c. +

�

i

vic
†
i ci +

�

i

J c
†
i�σci.

�Si

Elastic scattering time : 

τm =
1

2πρ0niJ2�S2�
Lm =

�
Dτm

D = v2
F

�
1
τe

+
1

τm

�−1
Elastic scattering time : 

weak J

le ξloc
Lφ(T )

Length of wire L
UCF (universal metal)

Very Weak magnetic disorder : Orthogonal Class
Not Sensitive to spins



τe =
1

2πρ0niv2
0

le = vF τe, ξloc � N⊥le

Lm

Lm(J) : cross-over length scale
G. Paulin and D.C., unpublished

H =
�

<i,j>

t c
†
i cj + h.c. +

�

i

vic
†
i ci +

�

i

J c
†
i�σci.

�Si

Elastic scattering time : 

τm =
1

2πρ0niJ2�S2�
Lm =

�
Dτm

D = v2
F

�
1
τe

+
1

τm

�−1
Elastic scattering time : 

weak J

le ξloc
Lφ(T )

Length of wire L
UCF (universal metal)

Weak magnetic disorder : Cross-over
Sensitive to rearrangement of config. of spins



Numerical Landauer Method

• Transport in Nanowires : Landauer formula

• Scattering Matrix S obtained through the Fisher-Lee relations : 

‣ wave function              of mode    , velocity 

‣ transmission coefficient (       electronic Green’s function) :  

• Green’s function : recursive method 

‣ Dyson eq. : 

‣ Build wire row by row

‣ Connect the reservoirs

R,T
j

j

j

j

1

1

2

2

R R

LL

2
µ

1
µ

Réservoir 1 Réservoir 2

φα(y, x) α vα

GR

GR = GR
0 + GR

0 V G +

GR(L + 1, L + 1)
GR(1, L + 1)GR(1, L)

V

++

g

S

GR

G. Paulin and D.C., arXiv:0910.4341
G. Paulin and D.C., arXiv:0910.4270

g =
e2

h

�

modes α,β

Tαβ

tαβ = i�√vαvβ

� �
dyαdyβ φα(yα, x = 0)GR(yα, x = 0|yβ , x = L)φβ(yβ , x = L)
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Perspectives

•  Specificities a spin glass nanowire :

‣ dimensional cross-over of dynamics ?

‣ Effects of short range correlations between spins (T>Tg)

‣ new type of material (spins implanted in pure metal)

• Perspectives : 

‣ characterization of T-chaos, aging, comparison between successives 
quenches

‣ magnetoconductance at lower fields B

‣ dynamics at low T (<Tg/10) and high fields (AT line ?)

Thank You !


