OUT OF EQUILIBRIUM FLUCTUATIONS IN AGING SYSTEMS: GELS, POLYMERS

Sergio Ciliberto.

- Summary of the experimental results on the noise in aging materials
 - a) spin-glass, polymers and gels
 - b) local versus global measurements
 - c) The intermittency
 - d) The observable dependence
- The dielectric measurements in PVAc (intermittency ?)
- •The local-global measurements in a gel. The quenching rate
- •The quench at the critical point

Fluctuation Dissipation Ratio (FDR) during aging

In equilibrium
$$\chi(t,t_w) = \frac{1}{k_B T} (C_{\theta}(t,t) - C_{\theta}(t,tw))$$

$$\chi(t,t_w) = \frac{\langle \Delta \rangle}{\Gamma_{ext}} = \int_{t_w}^t R(t,t')dt' \qquad C_{\theta}(t,t_w) = \langle \delta\theta(t)\delta\theta(t_w) \rangle$$

Out equilibrium (Cugliandolo and Kurchan 1992) **FDR**

$$\chi(t,t_w) = \frac{X(t,t_w)}{k_B T} (C_{\theta}(t,t) - C_{\theta}(t,tw)) \qquad \qquad X(t,t_w) = \frac{T}{T_{eff}(t,t_w)}$$

Experimentally this idea has been tested in

- Spin glasses
- Colloids
- Polymers

Magnetic susceptibility Dielectric response Rheology

and the associated noise

Fluctuation Dissipation Ratio (FDR) during aging

In equilibrium
$$\chi(t,t_w) = \frac{1}{k_B T} (C_{\theta}(t,t) - C_{\theta}(t,tw))$$

$$\chi(t,t_w) = \frac{\langle \Delta \rangle}{\Gamma_{ext}} = \int_{t_w}^t R(t,t')dt' \qquad C_{\theta}(t,t_w) = \langle \delta\theta(t)\delta\theta(t_w) \rangle$$

Out equilibrium (Cugliandolo and Kurchan 1992) **FDR**

$$\chi(t,t_w) = \frac{X(t,t_w)}{k_B T} (C_{\theta}(t,t) - C_{\theta}(t,tw)) \qquad \qquad X(t,t_w) = \frac{T}{T_{eff}(t,t_w)}$$

Experimentally this idea has been tested in

• Spin glasses

Controversial results

- Colloids
- Polymers

Need for experiments where the results can be directly compared with theoretical models

Experimental procedure

Temperature controlled system (spin-glasses, polymères and gels)

- I) The sample is prepared at a temperature Ti > Tg
- II) The sample is quenched very fast at a final temperature Tf < Tg
- III) The noise and the response are measured as a function of the time tw spent by the sample at Tf
- IV) The steps I)-III) are repeated many time to increase the statistics

Non thermal systems (colloids)

a) Time evolution after preparation

Experimental problems Tiny quantities : pN, fA, pm, µG Several drawbacks may appear in out of equilibrium

b) Time evolution after shearing or stirring the sample

Center

The experimental system

The fast quench

Spin-Glass experiment (Herisson, Ocio 2002)

Dielectric measurements

The FDT for a dielectric

$$S_Z(t_w, f) = 4 K_B T_{eff}(\omega, t_w) Real[Z(t_w, \omega)]$$

Several experimental difficulties :

- a) Extremely high Z at low frequencies (> $10G\Omega$)
- b) Signal very weak (< 10fA)
- c) Signal to noise ratio always close to 1 at low frequencies.

3 experiments have been performed and show strong intermittency

Epoxy glass former, Lucchesi et al PVAc, N. Israeloff et al Polycarbonate L. Buisson et al.

Dielectric noise polycarbonate

Dielectric measurements on PVAc

Comparisons of two experiments

N.E. Israeloff et al.

J. Non-Crystalline Solids 352 (2006) 4915–4919

C=92pF, Quench from 55°C to 25°C Quenching time =15 sec PVAcTg=34°C

Dielectric measurements on PVAc

Comparisons of two experiments

N.E. Israeloff et al.

J. Non-Crystalline Solids 352 (2006) 4915–4919

A. Naert et al., unpublished

Local Dielectric in PVAc

Hassan Oukris and N. E. Israeloff NATURE PHYSICS, 6, FEBRUARY, 2010

Local Dielectric in PVAc

1.0

С

FDR in gels Previous Results in Laponite

Colloidal Suspension :

discs: d=25 nm, h=1 nm

Fluid -> gel/colloidal glass

Fluid-Colloidal glass transition in a few hours

Prepared under N₂ atmosphere

 Φ_m = 1.2 à 3 wt% in water pH = 10 Ionic Force : I de 10⁻⁴ à 5 10⁻³ M

FDR in gels

Previous Results in Laponite

L. Bellon, S.C. Physica D 168, 325 (2002) **Dielectric measurements**

T_{eff} >>T_{bath} Strong intermittency

Dielectric measurements in Laponite

FDR in gels

Previous Results in Laponite

L. Bellon, S.C. Physica D 168, 325 (2002) **Dielectric measurements**

T_{eff} >>T_{bath} Strong intermittency

Rheology

L. Bellon, S.C. Physica D 168, 325 (2002) Thermal rheometer, global measurements

 $T_{eff} = T_{bath}$

S. Jabbary Farouji et al. PRL 98,108302 (2007) Brownian particle, Active and passive micro-rheology.

B.Abou, F. Gallet, PRL 93,160603, 1-4 (2004) Brownian particle, response and fluctuations

N. Greinert et al PRL 97, 265702 (2006) Brownian particle, energy equipartiction $T_{eff} > T_{bath}$

Thermal rheometer, global measurements

L. Bellon, S.C. Physica D 168, 325 (2002)

Brownian particle, Active and passive micro-rheology.

S. Jabbary Farouji et al. PRL 98,108302 (2007)

TABLE I. The effective temperature obtained for different frequencies averaged over 2 h time intervals. Within the uncertainty in the experiments, $T_{\text{eff}}/T_{\text{baff}} = 1$.

$T_{\rm eff}/T_{\rm bath}$					
t_a	7.5 rad/s	68 rad/s	728 rad/s	6.5 rad/s	75 rad/s
0–2 h	0.75 ± 0.3	1 ± 0.1	0.95 ± 0.1	0.85 ± 0.1	1.0 ± 0.1
2-4 h	1.2 ± 0.3	1 ± 0.1	1 ± 0.1	0.9 ± 0.1	1.0 ± 0.1
4-6 h	1.4 ± 0.3	1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1	1.1 ± 0.1
6-8 h		0.85 ± 0.1	1.0 ± 0.1	1.1 ± 0.1	1.0 ± 0.1

2.8% Wt, Laponite XLG, filtered

Brownian particle, response and fluctuations B.Abou, F. Gallet, PRL 93,160603, 1-4 (2004)

Laponite RD, 2.3 wt%, filtered, 2 µm silica bead

Brownian particle, energy equipartition

N. Greinert et al PRL 97, 265702 (2006)

Laponite RD, 2.4% and 2.8%, filtered 1 um silica beads

We apply four different techniques to measure Teff.

- 1) Active microrheology
- 2) Passive microrheology
 - Equipartition

- Do they give the same results ?
- Kramers-Kroning
- Heat fluctuations

P. Jop, R. Gomez-Solano, A. Petrosyan, S.C., J Stat. Mech. (2009) P04012.

Microrheology

Motion of a Brownian particle trapped by a laser Beam

Viscoelastic Langevin dynamics

$$\int_{-\infty}^t \Gamma(t-t',t_w)\dot{x}(t')dt'+k \ (x-x_o)=\xi(t),$$

The applied oscillating force

$$f_o(t) = k x_o(t, \omega)$$

The linear response
$$\hat{\chi}(\omega,t_w) = rac{\hat{x}(\omega,t_w)}{\hat{f}_0(\omega)}$$

$$|\hat{x}(\omega, t_w)|^2 = \frac{4k_B T_{eff}(\omega, t_w) \ \gamma(\omega, t_w)}{\omega^2 \gamma^2(\omega, t_w) + (k + K_{gel}(\omega, t_w))^2}$$

Passive Rheology - Measure of the T_{eff}

Hp: The global potential (colloid+laser) is harmonic

Equipartition holds out of equilibrium

$$C_i = K_{Lap} + K_i$$
 and $\langle \Delta x_i^2 \rangle = \frac{K_B T_{eff}}{C_i}$

 K_i is the trap stiffness

Measure of the fluctuations for 2 intensities

$$K_B T_{eff} = (K_2 - K_1) \frac{\langle \Delta x_1^2 \rangle \langle \Delta x_2^2 \rangle}{\langle \langle \Delta x_1^2 \rangle - \langle \Delta x_2^2 \rangle \rangle}$$

$$K_{Lap} = \frac{(K_1 < \Delta x_1^2 > -K_2 < \Delta x_2^2 >)}{(<\Delta x_1^2 > -<\Delta x_2^2 >)}$$

Simultaneous measurements of three beads in Laponite

ENS DE LYON

Active microrheology

The three methods give the same results $T_{eff} = T_{bath}$

Heat fluctuations confirm the result

Experiments gives controversial results

Questions

• Spin glasses:

Teff> T good agreement with theory

- a) The local aspect is missed
- b) Statistics of the signals
- c) Teff at very long time
- Colloids : Laponite Teff=T in rheology Teff >>T in dielectric

a) Other gelsb) Quenching ratec) Confinement

• Polymers :

Needs of a more close comparison of theory with experiments a) Local measurements : Teff > T
b) Global measurements
Intermittency, Teff >> T
Teff > T only for very fast quench

New experiments

Improved experimental design in dielectric measurements A. Naert, M. Tanase, L. Bellon, D. Bagchi

Aging at the critical point A. Caussarieu, S. Joubaud, A. Petrosyan

a) More close comparison theory-experimentb) Quenching rate

Confined liquid-gel transition R. Gomez Solano, A. Petrosyan

- a) Other gels
- b) Quenching rate
- c) Confinement

Questions about an aging gel

How is this scenario modified if

- the gel is confined in a volume comparable with the bead size ?
- a very fast quench of 1ms is peformed ?
- the energy instead of the displacement is used as the relevant variable ?

R. Gomez Solano, A. Petrosyan, S.C. arXiv:1102.4750

Gelatine liquid-solid transition

Gelatine :

liquid for Tm>32°C solid for Tg< 28°C

In our experiment we use 10% wt concentration in water

For T<Tg gelatine presents : aging and memory effects

at 10% wt concentration after a cooling at 26°C it takes ~2h to solidify

For T<Tg gelatine presents : aging and memory effects at 10% wt concentration after a cooling at 26°C it takes ~2h to solidify

For T<Tg gelatine presents : aging and memory effects at 10% wt concentration after a cooling at 26°C it takes ~2h to solidify

Gelatine liquid-solid transition (heating)

ENS DE LYON

The temperature around the focus grows till 36°C

A drop of liquid of radius $R_L=10 \ \mu m$ is formed

After a few minutes the infrared laser is switched off

The drop cools in about 1mS

Gelatine liquid-solid transition (quench)

At t=3ms after the switch off

Drop of an unstable liquid at 26°C inside a stable solid

What happens ?

Does the transition start from the frontier ?

How long does it take to solidify ?

Microrheology

Motion of a Brownian particle trapped by a laser Beam

Viscoelastic Langevin dynamics

$$\int_{-\infty}^t \Gamma(t-t',t_w)\dot{x}(t')dt'+k \ (x-x_o)=\xi(t),$$

The applied oscillating force

$$f_o(t) = k x_o(t, \omega)$$

The linear response
$$\hat{\chi}(\omega,t_w) = rac{\hat{x}(\omega,t_w)}{\hat{f}_0(\omega)}$$

$$|\hat{x}(\omega, t_w)|^2 = \frac{4k_B T_{eff}(\omega, t_w) \ \gamma(\omega, t_w)}{\omega^2 \gamma^2(\omega, t_w) + (k + K_{gel}(\omega, t_w))^2}$$

Time evolution of the viscosity and elastic modulus

The gel forms in about 30 min

This time evolution is independent of the distance from the boundary of the drop

Gel/trap elasticity

Gelatine liquid-solid transition

Effective Temperature after the quench

Experiment in gelatine at 10% wt sol-gel transition at 28°C

Heat fluctuations

Energy balance in Langevin equation Sekimoto K, Progress of Theoretical Phys. supplement (130), 17 (1998).

$$\int_{-\infty}^{t} \Gamma(t-t',t_w) \dot{x}(t') dt' + kx = F + \xi(t),$$

Multiplying by $\dot{x}(t)$ and integrating for a time τ starting at t_w :

$$\Delta U_{\tau}(t_w) - W_{\tau} = Q_{\tau}(t_w),$$

$$\Delta U_{\tau}(t_w) = \frac{1}{2}k(x(t_w + \tau)^2 - x(t_w)^2) + \int_{t_w}^{t_w + \tau} \dot{x}(t)(K_t * x)(t, t_w)dt,$$

$$Q_{\tau}(t_w) = \int_{t_w}^{t_w + \tau} \xi(t') \dot{x}(t') dt' - \int_{t_w}^{t_w + \tau} \dot{x}(t') (\gamma_t * \dot{x}) (t, t_w) dt',$$

$$W_{\tau} = \int_{t_w}^{t_w + \tau} F \dot{x} dt$$

Q and W are fluctuating quantities which satisfy Fluctuation Theorem

Heat Fluctuations

For F=0 then:

$$\Delta U_{\tau}(t_w) = Q_{\tau}(t_w)$$

$$\Delta U_{\tau}(t_w) = \frac{1}{2}k(x(t_w + \tau)^2 - x(t_w)^2) + \int_{t_w}^{t_w + \tau} \dot{x}(t)(K_t * x)(t, t_w)dt,$$

for $t_w < 200s$

For $t_w < 200$ s, Q_{τ} can be computed from ΔU_{τ} .

A. Crisanti and F. Ritort, Europhys. Lett. 66, 253 (2004).

Mean heat

Gelatine liquid-solid transition

$$\rho(q_{\tau}) = \log \frac{P(q_{\tau})}{P(-q_{\tau})}$$

$$\rho(q_{\tau}) = -\left(\frac{1}{T_{eff}(t+\tau)} - \frac{1}{T_{eff}(t)}\right)T q_{\tau}$$

Heat Fluctuations for Laponite

 $P(Q_{\tau}) = P(-Q_{\tau})$ for $t_w \leq 350 min$ and $T_{eff} = T$.

Conclusions on local heating of gelatine

The liquid-solid transition is studied inside a drop of liquide

- a) Relaxation dynamics independent of the distance from the boundary of the drop
- b) The dynamics transfers heat towards the bath
- c) The FDT is violated
- d) The fluctuations of heat are asymmetric

Aging at the critical point Fréedericksz transition

A. Caussarieu, S. Joubaud, B. Géraud, A. Petrosyan

Fréedericksz transition

- The Fréederick transition is a second order phase transition
- The order parameter is $\theta_0(x, y)$
- The control parameter is $\epsilon = U^2/U_c^2 1$
- The relaxation time is $\tau_{relax} = \tau_o/\epsilon$
- The correlation length $\xi_r = \frac{L}{\pi\sqrt{\epsilon}}$

A is the measuring area

Space-time dynamics

Time evolution after a quench in LC

Fit function

$$\langle \zeta(t) \rangle = \frac{\langle \zeta(\infty) \rangle}{1 + \left(\frac{\langle \zeta(\infty) \rangle}{\langle \zeta(0) \rangle} - 1\right) \exp\left(-\frac{2\epsilon_0 t}{\tau_0}\right)},$$

with
$$\langle \zeta(\infty) \rangle = \frac{2\epsilon_0}{(2k+\epsilon_0+1)}$$
 and $\langle \zeta(0) \rangle = \frac{2\epsilon_1}{(2k+\epsilon_1+1)}$

Time evolution of ζ after a quench

Quench from $\epsilon_1 \simeq 0.3$ to $\epsilon_0 \simeq 0.01$ $\tau = \frac{\tau_0}{2\epsilon} \simeq 0.22s$

Correlations

 $\zeta(t) = \theta_0(t)^2 = \psi_0^2(t) + 2\psi_0\delta\theta = \langle \zeta(t) \rangle + \delta\zeta(t)$ $\psi_0^2(t) = \langle \zeta(t) \rangle$ $C_{\zeta}(t, t_w) = \langle \delta\zeta(t)\delta\zeta(t_w) \rangle = 4\psi_0(t)\psi_0(t_w) \ C_{\theta}(t, t_w)$

Master curve by rescaling

 $(t-t_w) \rightarrow (t-t_w)/(t+\tau_m)$

FDT in the LC experiment: the measure of the response function

$$\chi(t, t_w) = \frac{\langle \Delta \theta \rangle}{\Gamma_{ext}} = \int_{t_w}^t R(t, t') dt' \qquad C_{\theta}(t, t_w) = \langle \delta \theta(t) \delta \theta(t_w) \rangle$$
FDR
$$\chi(t, t_w) = \frac{1}{k_B T_{eff}(t, t_w)} (C_{\theta}(t, t) - C_{\theta}(t, tw)) \qquad \text{In equilibrium}$$

$$T = T_{eff}$$

Which is the appropriate external torque Γ_{ext} for the LC ?

$$\Delta \theta$$
 is the response of θ to $\delta \epsilon$
 $\tau_0 \Delta \dot{\theta} = [\epsilon - 3 \ \alpha \ \theta_0(t)^2] \ \Delta \theta(t) + \left(\delta \epsilon \ \theta_0(t) \right)$
 Γ_{ext}

FDT in the LC experiment:

$$\delta\theta = \frac{\delta\zeta(t)}{2\psi_0(t)} \qquad \qquad \Gamma_{ext} = 4B\psi_0(t) \ \delta\epsilon$$

Experimental test of these results (JSTAT P01033, 2009) :
) Out of equilibrium, using the Transient Fluctuation Theorem
) FDT in equilibrium

In equilibrium $\psi_0(t) = \psi_0(t_w) = \psi_0$

$$\chi(\tau) = \frac{\langle \Delta(\tau) \rangle}{\Gamma_{ext}} = \frac{\chi_{\zeta,\delta\epsilon}}{4B \ \psi_0^2}$$

$$C_{\zeta}(t,t_w) = 4\psi_0^2 \ C_{\theta}(t,t_w)$$

and FDT

1

2

$$\frac{\chi_{\zeta,\delta\epsilon}}{B} = \frac{1}{k_B T} (C_{\zeta}(t,t) - C_{\zeta}(t,t_w))$$

with $B = \mathcal{A}\pi^2 K_1/4L$

FDT in the LC experiment in equilibrium

at $\epsilon=0.195$, $\frac{B}{k_BT}=8.4~10^8,~~\mathcal{A}=2.4mm^2~~$ and $D_0\simeq 1.8mm$

Response function during aging

$$R(t, t_w) = \frac{\langle \Delta(t) \rangle}{\Gamma_{ext}(t_w)} = \frac{R_{\zeta, \delta\epsilon}(t, t_w)}{4B \ \psi_0(t_w) \ \psi_0(t)}$$

$$\chi(t, t_w) = \frac{\langle \Delta(t) \rangle}{\Gamma_{ext}} = \int_{t_w}^t R(t, t') dt'$$

FDT out of equilibrium: fixed t as a function of tw

L. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55, 3898 (1997). D. Hérisson and M. Ocio, Phys. Rev. Lett. 88, 257202,(2002)

FDT out of equilibrium: fixed t as a function of tw

for $C(t, t_w) > C(t, t^*)$, X = 1 and $T_{eff} = T$ for $C(t, t_w) < C(t, t^*)$, $X \simeq 0.33$ and $T_{eff} \simeq 3T$

 $\frac{t^*}{t} = 1 - \frac{\tau}{t}$ for $t > \tau$ defines the lenght of the equilibrium interval with respect to the total time.

At $\epsilon_0 = 0, \Rightarrow \tau = \infty$: the equilibrium interval does not exist.

FDT out of equilibrium: fixed tw as a function of t

Conclusions on the quench at critical point

Using a liquid crystal driven by an electric field at the Fréedericksz transition we observe that :

- After a quench close to the critical point the system presents power law decay. A rescaling similar to the one used in aging materials, produces a master curve of correlations
- FDT is violated during the decay. The observed violation depends on the procedure used to define t and tw.
- For the "good procedure" an asympothique temperature can be defined, which is not the one computed from mean field.

Perspectives

- Dependence on the observable
- Intermittency
- Confinement
- Space time dependence
- High order moments
- FDT violation versus aging of response