Local fluctuations and responses in glassy polymers

Nathan Israeloff, Hassan Oukris and Ryan Sweeney

Northeastern University Boston

Outline

Experiments probing nanodielectric response and fluctuations

• Search for a dynamical correlation length using noise

fluctuations

• Local FDR in a fragile structural glass.

Spatio-temporal images of fluctuations and responses

• Violation factor X(C) *suggests* continuous replica

symmetry breaking

Jamming

Key (yet unproven) idea:

Dynamical correlation length, $\xi \sim 1-3$ nm determines behavior near the glass transition (N_{corr} ~ 100 molecules)

- Grows slowly or rapidly on approach to glass transition?
- Behavior tests competing theories
 - Random first-order transitions (RFOT) (Wolynes)
 - Kinetically constrained models (Garrahan and Chandler)

Simulations and colloidal experiments: 4th order correlation function measures number of correlated molecules $N_{corr} = \chi_4(t) = N < \delta C(t)^2 >$ Indirect exp. evidence for weak growth from *dynamic susceptibilities*

$$\chi_4(t) \ge \frac{k_B}{c_P} T^2 \chi_T^2(t)$$

Berthier et. al. Science 2005

Nanodielectric spectroscopy

 $V = V_0 \sin \omega t$

Measure local ac susceptibility using response of f_{res} to applied ac voltages

$$\delta f_{res} = \frac{1}{8k} \frac{\partial^2 C}{\partial z^2} (V_0 - V_P)^2 f_{res}$$

Offset voltage V_p arises from dc polarization

Crider, et. al. *NanoLett* 2006, *APL* 2007, *J. Chem. Phys* 2008; Riedel et. al. APL 2010 Nanodielectric spectroscopy of polymer blend PVAc has glass transition at 32 C

Phase in PS/PVAc blend @ 50Hz

Local noise spectroscopy $< \delta P^2 >= \frac{k_B T \chi(t)}{V}$ Polarization noise in PVAc/PS

Time (200s)

Imaging spatio-temporal noise near T_g

Can study various correlation functions C(x,t)

- e.g. global C(t) averaged over x
- $C(t) = << V_p (t')V_p (t'+t)>_{t'}>_x$

Detect dynamic correlations with fluctuations in noise power? χ_4 from dynamic susc Predicts noise variance

Fluctuation-Dissipation Relations (FDR)

Stokes-Einstein Relation D= $k_B T / 6\pi \eta_0 r$

Nyquist Relation $S_I = 4k_BT/R$ Diffusion constant scales inversely with viscosity (1906)

Current noise scales inversely with resistance (1928)

Violations expected in systems far from equilibrium

Aging glass: ideal system to study *non-equilibrium* FDR Cugliandolo and Kurchan, PRL 1993, PRE 1997, ...MFT Proposed: $T_{eff} = S_I R/4k_B$

- •T_{eff} behave like a real temperature?
- •Universality in the violations?
- Model-dependent scaling?

• X(C) reflects glass order parameter distribution(Parisi 1997)

•X(C) is *discontinuous* in MFT of one-step replica symmetry (RSB) breaking models *and* RFOT theory of structural glasses.

•X(C) is continuous in continuous RSB models such as Sherrington-Kirkpatrick spin glass models

FDR violations observed in spin glasses

Only experiment thus far in strong aging regime with t-t_w >t_w

Herisson and Ocio PRL 2002

But instrumentally and statistically challenging to measure in *strong* aging regime $t-t_w > t_w$ or $ft_w < 1$

Experiments thus far focused on Weak aging quasi-equilibrium regime

(voltage)

FDR:
$$S_i = 4k_b TC_0 \omega \epsilon''$$

Summary of experimental results structural/colloidal glasses

Material	Property	FDR violations?	<u>(</u> t-t _w)/tw	Ref.
Glycerol	electrical	small	< 1	Grigera, 1999
Laponite	electrical	large	< 1	Buisson, 2003
Laponite	rheological	none	< 1	Buisson, 2004
"	11	large	<< 1	Abou, 2004
"	"	large	<< 1	Strachan, 2006
"	11	large	<< 1	Bartlett, 2006
"	"	none	<< 1	Jabbari-Farouji, 2007
Poly-				
carbonate	electrical	large	<1	Buisson, 2005

Nanodielectric spectroscopy

$$F = -dU/dz = -\frac{1}{2} \frac{\partial C_{tip}(\epsilon)}{\partial z} V^{2}$$

Detect with shift in f_{res} $\delta f = \frac{1}{8k} \frac{\partial^{2} C_{tip}}{\partial z^{2}} V^{2} f_{res}$

-

Polarization produces surface potential , $V_{\mbox{\tiny p}}$, which offsets applied voltage Response to ac or dc voltages.

$$\delta f = \frac{1}{8k} \frac{\partial^2 C}{\partial z^2} (V_0 - V_P)^2 f_{res} \qquad \mathbf{V} = \mathbf{V}_{dc} + \mathbf{V}_0 \sin \omega t$$

Crider, et. al. NanoLett 2006, APL 2007, J. Chem. Phys 2008

Apply ac + dc bias step----measure polarization relaxation

Imaging spatio-temporal noise near T_g

Can study various correlation functions C(x,t)

- e.g. global C(t) averaged over x
- $C(t) = << V_p (t')V_p (t'+t)>_{t'}>_x$

Relaxation and correlation: equilibrium and aging

Noise: compressed

FDR for this measurement:

has the form:

$$\chi_{\rm ex}(t) = \frac{C_{\rm tip}^{\rm eff}}{k_{\rm B}T} [C(0) - C(t)]$$

FDR for this measurement:

Equilibrium

χ(t)

<u>، 802.5</u> ۱

$$\chi_{ex}(t) = \frac{C_{tip}^{eff}}{k_B T} [C(0) - C(t)]$$

$$C_{tip}^{eff} = 7aF$$

303.5 K

C (t)

305.5 K

Aging 298K

$$\chi_{ex}(t,t_w) = \frac{C_{tip}^{eff}}{k_B T} [C(t_w,t_w) - C(t,t_w)]$$

Collapse of FDR violations

Violation factor

$$X = -slope = T_{eff}/T$$

 $X(t,t_w) \rightarrow X(C)$ continuous

X(C) is a power-law similar to SK model of continuous RSB

Disagrees with single-step RSM Models and RFOT

Oukris, Israeloff Nature Physics (2010)

0.1

Local aging is heterogeneous in a model spin glass Castillo, Chamon, Cugliandolo, Kennett PRL 2002

Castillo, Parsaeian, Nature Physics 2007

2.5

2

1.5

0.5

0

 $\rho(C_r)$

Fluctuations are heterogeneous but single $\rm T_{eff}$ found

RFOT theory (Wolynes) predicts local variations in $\rm T_{\rm eff}$

 C_r is correlation function (noise) χ_r is response function

° C_r

-0.5

 $t/t_{w} = 2$

 $t/t_w = 8$

 $t/t_{w} = 32$

0.5

Local experiments can answer this question

FDR violations in aging structural glass

Summary

•Aging relaxation-time spectrum is stretched for relaxation, compressed for

noise in strongly aging polymer glass. Also true for rapid cooling regime.

• Produces FDR violations which collapse to a single scaling function X(C).

•FDR violation factor $X(t,t_w) \rightarrow X(C) \sim \text{power-law}$, consistent with continuous RSM.

•Why is $T_{eff} >> T_{initial}$? Is this a property of fragile glasses?

•Need deeper quenches

Thanks to:

H. OukrisR. SweeneyP. S. CriderM. E. MajewskiJ. Zhang

C. Riedel, R. Arinero (Montpelier)

NSF-DMR

Aging in structural glasses –shallow quench

Evolution of relaxation time from short to long (but finite)

Aging model from Lunkenheimer, PRL 2005 Relaxation rate evolves from value at T_F to T_{Stop}

Polarization fluctuations images in PVAc near T_g

Measure rms $\langle \delta V_P \rangle = 25 \pm 4 \text{ mV}$

$$C_{tip}^{eff} = 6.5 \pm 2aF$$