

Mini-workshop on glasses ENS at Lyon, April 12, 2011

<u>Chiral Order in Spin Glasses</u>

Hikaru Kawamura Osaka University

Collaborator: Dao Xuan Viet

ReviewH.K. JPSJ 79, 011007 (2010)articleH.K. J.Phys.Conf.Ser. 233, 012012 (2010)

CuMn, AuFe, etc.

Heisenberg system with weak random magnetic anisotropy

Frustration & randomenss

Experimentally, thermodynamic SG transition and a SG ordered state has been established.

The true nature of the SG transition and the SG order state? \rightarrow still at issue

[Canella and Mydosh, 1972]

Model of spin glasses

3D Edwards-Anderson model

$$H = -J_{ij} \Sigma_{ij} S_i - S_j$$

 $\begin{cases} Si = S_{iz} : \text{Ising spin} \quad (\text{FeMnTiO}_3) \\ S_i = (S_{ix}, S_{iy}, S_{iz}) : \text{Heisenberg spin} \\ (\text{canonical SG}) \end{cases}$

 J_{ij} : nearest-neighbor random coupling with zero mean and variance J^2 Gaussian or binary ($\pm J$)

Numerical results on the 3D EA SG models * 3D Ising SG

The existence of a finite-temperature SG transition established in zero field. The nature of the ordered state still under debate.

* <u>3D isotropic Heisenberg SG</u>

Earlier studies suggested no finite-T transition [Olive,Young, Sherrington, '86, F. Matsubara et al '91]
The possibility of a finite-T transition in the *chiral* sector was suggested [H.K., '92] --- chiral glass state

spin-chirality decoupling $T_{SG} < T_{CG}$

Chirality scenario of experimental SG transition [H.K. '92]

Heisenberg SG possesses a new degree of freedom which is absent in Ising SG

Chirality scenario of SG transiton [H.K. '92~]

- * Isotropic Heisenberg SG in 3D exhibits a spin-chirality decoupling, with the chiral-glass ordered phase not accompanying the standard SG order.
- * Chirality is a hidden order parameter of real SG transitions. Experimental SG transition is a "disguized" chiral-glass transition: The spin is recoupled to the chirality, *i.e.*, mixed into the chirality via the random magnetic anisotropy.

[chiral-glass state]

Spin-chirality decoupling in the 3D isotropic Heisenberg SG

Recent controversy on the 3D Heisenberg SG

- Due to the progress in the computer ability and simulation teqnique, significant numerical study now becomes possible for the 3D Heisenberg SG.
- Consensus in recent numerical studies: The 3D Heisenberg SG exhibits a finite-T transition. However, its nature has still been largely controversial. Spin & chirality are decoupled or not ?
- * Yes, decoupling occurs $(T_{SG} < T_{CG})$ H.K.' 98, K.Hukushima & H.K. ' 00 ' 05
- * No decoupling $(T_{SG} = T_{CG} > 0)$

F.Matsubara, T.Shirakura et al, B.W.Lee & A.P.Young '03; '07 I.Campos et al '06 L.Fernandez et al '09 Chirality scenario

has been contested !

Our MC simulation on the 3D Gaussian Heisenberg SG

[D.X.Viet and H.K, PRL102, 027202 ('09); PRB80, 064418 ('10)]

* Heat bath and over-relaxation method, combined with the temperature exchange technique
* System as large as L=32 equilibrated well below T_g
* Sample # large (~ 10³ samples averaged)

Various independent quantities including the correlation length ratio ξ/L , Binder ratio g, and the glass order parameter $q^{(2)}$ are calculated, Spin and chirality correlation length ratio ξ/L --- a quantity most intensively studied

The transition temperature can be estimated from the size and temperature dependence of the dimensionless ratio ξ/L

Correlation length ratios ξ/L [D.X. Viet and H.K., '10]

Binder ratio

[D.X. Viet and H.K., '10]

Critical properties of the chiral-glass transition of the 3D Gaussian Heisenberg SG

Finite-size scaling plots with the leading correction-to-scaling

chiral-glass exponents

$$v_{CG} = 1.4(2)$$

 $\eta_{CG} = 0.6(2)$

differ from the 3D Ising values ! ν ~ 2.5 η ~ - 0.40 Chirality hypothsis

Isotropic (ideal) system → "<u>spin-chirality decoupling</u>"

Real system is weakly anisotropic ! Spin is "recoupled " to the chirality due to the weak random magnetic anisotropy *D*.

Critical properties of canonical SG

	β	γ	ν	η	
CuMn & AgMn [de Courtenary <i>et al.</i>]	1.0±0.1	2.2±0.1	≃ 1.4	≈ 0.4 C	anonical
AgMn [Bouchiat] AgMn [Levy <i>et al.</i>] CuAlMn [Simpsons] PdMn [Coles and Williams] AuFe [Taniguchi & Miyako]	1.0 ± 0.1	2.2 ± 0.2	≃ 1.4	≃ 0.4 <mark>S</mark>	G Exp.
	$0.9 {\pm} 0.2$	2.1 ± 0.1	≃ 1.3	≃ 0.4	
	≃ 1.0	≃ 1.9	≃ 1.3	≃ 0.5	
	$0.9 {\pm} 0.15$	2.0 ± 0.2	≃ 1.3	≃ 0.4	
	1.0 ± 0.2	2.0 ± 0.2	≃ 1.3	≃ 0.5	
CdCr _{2×0.85} In _{2×0.85} S ₄ [Vincent <i>et al.</i>]	0.75 ± 0.10	2.3 ± 0.4	≃ 1.3	≃ 0.2	Ising
$\pm J$ Campbell <i>et al.</i> $\pm J$ Hasenbusch <i>et al.</i>	≈ 0.82	≃ 6 .5	$2.72 {\pm} 0.08$	-0.40 ± 0.04	8
	≃ 0.77	≃ 5.8	$2.45 {\pm} 0.15$	$-0.375 {\pm} 0.010$	
Fe0.5Mn0.5Tio3 [Gunnarsson <i>et al.</i>]	≃ 0.54	4.0±0.3	≃ 1.7	≃ −0.35	

Chiral (Heisenberg) γ~2 v~1.4 η~0.6 **β~1**

Direct test of the chirality scenario

→ needs to measure the chirality directly
 <u>Use an anomalous Hall effect</u>
 <u>as a probe of chiral order !</u>

Measurements of linear and nonlinear chiral susceptibilities, X_{χ} & $X_{\chi nl}$, becomes possible via measurements of Hall coefficient R_s .

[G. Tatara & H.K. '02, H.K. '03]

 $R_{s} = \rho_{xy} / M$ $= -A\rho - B\rho^{2} - CD [X_{\chi} + X_{\chi nl} (DM)^{2} + ...]$

What is the nature of the chiral-glass ordered state ?

Is there an RSB? If so, what type ? SG ordered state might possess $F([m_i])$ a complex phase-space structure RSB (replica-symmetry Possible multi-valley breaking) structure in SG q: overlap **Droplet** P(d) $q=(1/N) \Sigma_i S_i^{(a)} S_i^{(b)}$ q_{EA} $q_{E\!A}$ picture (No RSB) **Fisher Hierarchical RSB** & Huse Parisi (c) P(d) P(d) **One-step Overlap RSB** distribution function: P(q)

Overlap distribution of the isotropic model

How to measure P(q) experimentally? SG in off-equilibrium In equilibrium, FDT holds $R(t_1, t_2)$; response function $C(t_1, t_2)$; correlation function **T**; heat bath temperature $R(t_1, t_2) = (1/k_{\rm B}T) \left[dC(t_1, t_2) / dt_1 \right]$ In off-equilibrium, FDT does not hold, but there is an off-equilibrium counterpart $R(t_1, t_2) = (X(t_1, t_2) / k_B T) [dC(t_1, t_2) / dt_1]$ $1/k_{\rm B}T_{\rm eff}$ In the limit of $t_1, t_2 \rightarrow \infty$, $X(t_1,t_2) \rightarrow X(C(t_1,t_2))$ [L.F. Kugliandolo and J. Kurchan '93] P(q) = d X(q) / dq P(q); overlap distribution function

Susceptibility $\chi(t_1, t_2)$ vs. Correlation $C(t_1, t_2)$

(a) No RSB
(b) full-step RSB
(c) 1-step RSB
(d) combination of (b)+(c)

Off-equilibrium MC simulation [нк, '98] of the <u>isotropic</u> 3D Gaussian Heisenberg SG

Off-equilibrium simulation of the weakly anisotropic $3D \pm J$ Heisenberg SG

[HK, '03]

 $Tg \sim 0.21$ **D=0.01**

Experiment on Heisenberg-like SG

CdCr_{1.7}In_{0.3}S₄ [D.Herisson and M.Ocio, '02] 1-step-like ? $T_{eff} \sim 1.9 T_g$ (measured at $T=0.8T_g$)

c.f. Lennard-Jones fluid simulation [J.-L. Barrat and W. Kob, '99]

 $T_{eff} \sim 1.5 T_{mc}$ (irrespective of T) T_{mc} : mode-coupling temperature SG (chiral-glass) ordered state of canonical SG might exhibit a one-step-like RSB

Analogy to molecular glasses Dynamical equations describing structural glass are similar to MF SG models exhibiting a 1-step RSB [T.E. Kirkpatrick, D. Thirumalai, P.G. Wolynes '87]

1. Discontinuous 1-step RSB (discontinuous q_{EA} at T=Tg) p>2-spin MF SG, p>4 state MF Potts SG dynamical T_D and static Tg ($T_D > Tg$)

 \rightarrow

structural glass

2. Continuous 1-step RSB (continuous q_{EA} at T=Tg)

2 state MF Potts SG

No dynamical T_D

→ Heisenberg-like SG

Reference model

1D Heisenberg SG model with a long-range power-law interaction

$$H = -\sum_{i,j} J_{ij} \vec{S}_i \cdot \vec{S}_j \qquad J_{ij} = c(\sigma) \frac{\epsilon_{ij}}{r_{ij}^{\sigma}}$$

Eij: Gaussian with zero mean and standard deviation unity

σ -d correspondence expected

Varying σ of 1D LR model ~ varying d of SR modes

 $\sigma \rightarrow 0 \quad \Leftrightarrow \quad d = \infty$

 σ large \Leftrightarrow d=1

- $\sigma = 2/3 \Leftrightarrow d = 6 \text{ (ucd)}$ $\sigma \sim 0.9 \Leftrightarrow d = 3$
- $\sigma = 1.0 \Leftrightarrow \text{between } d = 2 \& d = 3$

Another 1D LR model[A. Sharma & A.P. Young, '11]- randomly diluted model $\sigma = 0.85$

Choose nonzero J_{ij} with probability $z \times p_{ij}$ (z=6) $p_{ij} = \frac{r_{ij}^{-2\sigma}}{\sum_{j \ (j \neq i)} r_{ij}^{-2\sigma}}$,

Summary

*An intriguing "spin-chirality decoupling" phenomenon occurs in Heisenberg-like SGs.

* SG (chiral-glass) ordered state of canonical SG might exhibit a 1-step-like RSB.

* Chirality scenario might solve the long-standing puzzles of experimental SG ordering.

Chirality might be a missing link in spin glasses ?!

mirror