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Abstract. We study the fine grained complexity of the DFA non-
emptiness of intersection problem parameterized by the number k of
input automata (k-DFA-NEI). More specifically, we are given a list
〈A1, ..., Ak〉 of DFA’s over a common alphabet Σ, and the goal is to
determine whether

⋂k
i=1 L(Ai) �= ∅. This problem can be solved in time

O(nk) by applying the classic Rabin-Scott product construction. In this
work, we show that the existence of algorithms solving k-DFA-NEI in
time slightly faster than O(nk) would imply the existence of determinis-
tic sub-exponential time algorithms for the simulation of nondetermin-
istic linear space bounded computations. This consequence strengthens
the existing conditional lower bounds for k-DFA-NEI and implies new
non-uniform circuit lower bounds.
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1 Introduction

1.1 History

In the DFA non-emptiness of intersection problem (DFA-NEI), the input con-
sists of a list 〈A1, ...,Ak〉 of DFA’s over a common alphabet Σ, and the goal is
to determine whether the intersection of the languages L(A1), ...,L(Ak) is non-
empty. When no restriction is imposed on the input, DFA-NEI is a PSPACE-
complete problem [18]. Nevertheless, the classic Rabin-Scott product construc-
tion for finite automata yields a simple algorithm that solves DFA-NEI in time
O(nk) where n is the number of states and k is the number of input automata.
Therefore, for a fixed number of input automata, the problem can be solved in
polynomial time.

In this work, we study the fine grained complexity of DFA-NEI parameter-
ized by the number of input automata k. For clarity, we refer to this parame-
terized version as k-DFA-NEI. Interestingly, Rabin and Scott’s six-decades-old
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time O(nk) algorithm for k-DFA-NEI remains unimproved, and in particular,
time O(n2) is still the best we can get for deciding non-emptiness of intersection
for two DFA’s.

Kasai and Iwata [17] are believed to be the first to provide conditional lower
bounds for k-DFA-NEI. They showed that k-DFA-NEI requires deterministic
time Ω(n(k−2)/2) under the conjecture that NSPACE[k · log n] �⊂ DTIME[nk−ε]
for all ε > 0.

Almost two decades later, Karakostas, Lipton, and Viglas showed that faster
algorithms for certain variants of k-DFA-NEI would imply both faster algo-
rithms for certain NP-hard problems and new complexity class separations [16].
In particular, they showed that an algorithm solving k-DFA-NEI in time no(k)

would have two consequences. First, this would imply that the well studied sub-
set sum problem can be solved in time O(2ε·n) for every ε > 0. Second, this
would imply that NTIME[n] ⊆ DTIME[2o(n)]. They also showed some remark-
able consequences of the existence of algorithms solving k-DFA-NEI in time
s · ro(k) where s is the number of states in the largest input automaton and r
is the number of states in the second largest input automaton. In particular,
such an algorithm would imply that NSPACE[O(log s)] ⊂ DTIME[s1+ε] for all
ε > 0, which would further imply that P �= NL. Additionally, by padding, we
would also have NSPACE[s] ⊆ DTIME[2o(s)]. It is worth noting that this last
result strongly requires that the runtime has only a marginal dependence on the
size s of the largest automaton. Further, this last result is in a similar spirit as
conditional lower bounds for weighted satisfiability problems from [8–10].

It was shown by Fernau and Krebs [12], and independently in [30], that an
algorithm solving k-DFA-NEI in time no(k) would contradict the celebrated
exponential time hypothesis (ETH). Using a refinement of the proof technique
introduced in [16], it was shown in [29,30] that if k-DFA-NEI can be solved in
time no(k), then P �= NL. Additional results on the parameterized complexity of
non-emptiness of intersection for DFA’s are presented in [17,19,26] and results
on the fine grained complexity of non-emptiness of intersection specifically for
two and three DFA’s are presented in [23].

1.2 Our Results

Finer Simulations for Nondeterministic Linear Space. Our first result
(Theorem 1) provides a finer reduction from the problem of simulating a non-
deterministic space bounded Turing machine to k-DFA-NEI. The following
two corollaries of Theorem 1 fill in some gaps in the literature related to non-
emptiness of intersection. In this work, NSPACE[n] denotes the class of functions
computable by 2-tape Turing Machines over a binary alphabet using at most n
bits on its work tape.

(Corollary 1.1) If we can solve k-DFA-NEI in time no(k), then NSPACE[n] ⊆
DTIME[2o(n)] [28].1

1 This work was not formally published.



On the Fine Grained Complexity of Finite Automata Intersection 71

(Corollary 1.2) If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then NSPACE[n+ o(n)] ⊆ DTIME[2(1−δ)n] for some
δ > 0 [30].

As mentioned in the first part of the introduction, the conclusion that
NSPACE[n] ⊆ DTIME[2o(n)] can be obtained from the results in [16] under
the assumption that there exists an algorithm for k-DFA-NEI running in time
s · ro(k) where s is the size of the largest automaton and r is the size of the
second largest automaton. Corollary 1.1 relaxes this assumption to the existence
of an algorithm running in time no(k), with no regard to the way in which the
sizes of the input automata compare with each other. We observe that the same
assumption as ours was shown in [16] to imply that NTIME[n] ⊆ DTIME[2o(n)].
Therefore, we improve the consequence in [16] from NTIME[n] ⊆ DTIME[2o(n)]
to NSPACE[n] ⊆ DTIME[2o(n)].

Corollary 1.2 states that for each k > 1, any additive constant improvement
on the running time of the Rabin-Scott algorithm for k-DFA-NEI would imply
the existence of faster than state-of-the art algorithms for the simulation of
nondeterministic linear space bounded computations. In particular, an algorithm
solving non-emptiness of intersection for two DFA’s in time O(n2−ε), for some
ε > 0, would imply that NSPACE[n + o(n)] ⊆ DTIME[2(1−δ)n] for some δ > 0.

Contradicting Stronger Versions of ETH and SETH. In the satisfiability
problem for Boolean formulas (SAT), we are given a Boolean formula. The goal
is to determine if there exists an assignment that satisfies the formula. It is
common to restrict the inputs for SAT to formulas in conjunctive normal form
(CNF-SAT). Further, it is common to restrict the inputs for SAT to formulas
in conjunctive normal form with clause width at most k (k-CNF-SAT) for some
fixed number k.

The Exponential Time Hypothesis (ETH) asserts that for some ε > 0, 3-
CNF-SAT cannot be solved in time (1 + ε)n [14]. The strong exponential time
hypothesis (SETH) asserts that for every ε > 0, there is a large enough integer k
such that k-CNF-SAT cannot be solved in time (2−ε)n [7,14,15]. ETH has been
used to rule out the existence of subexponential algorithms for many decision
problems [14], parameterized problems [8,20], approximation problems [22], and
counting problems [11]. On the other hand, SETH has been useful in establish-
ing tight lower bounds for many problems in P such as Edit Distance [3],
k-Dominating Set [24], k-DFA-NEI [30], and many other problems [2,27,33].

Our next results state that slightly faster algorithms for k-DFA-NEI would
contradict much stronger versions of ETH and SETH. First, we show that if
there exists k ≥ 2 such that k-DFA-NEI can be solved in time O(nk−ε) for
some ε > 0, then satisfiability for n-variable Boolean formulas of size 2o(n) can
be solved in time O(2(1−δ)n) for some δ > 0 (Corollary 2). The inexistence of
such fast algorithms for satisfiability for n-variable Boolean formulas of sub-
exponential size is a safer assumption than SETH. Going further, we show that
if k-DFA-NEI can be solved in time no(k), then satisfiability for n-input fan-
in-2 Boolean circuits of depth O(n) and size 2o(n) can be solved in time 2o(n)
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(Corollary 3). We note that this consequence is stronger than the existence of
algorithms solving CNF-SAT in sub-exponential time. Indeed, CNF formulas of
polynomial size are a very weak model of computation, which are unable, for
instance, to compute the parity of their input bits [13]. On the other hand, cir-
cuits of linear depth can already simulate complicated cryptographic primitives.
Therefore, the inexistence of satisfiability algorithms for such circuits is a safer
assumption than ETH.

Non Uniform Circuit Lower Bounds. Finally, from the results mentioned
above together with results obtained within the context of Williams’ algorithms
versus lower bounds framework [1,31,32] (as well as [4]), we infer that faster
algorithms for k-DFA-NEI would imply non-uniform circuit lower bounds that
are sharper than what is currently known. In particular, an algorithm running
in time no(k) for k-DFA-NEI would imply that there are problems in ENP that
cannot be solved by non-uniform fan-in-2 Boolean circuits of linear depth and
sub-exponential size (Corollary 4). We note that currently it is still open whether
every problem in ENP can be solved by non-uniform fan-in-2 Boolean circuits
of linear size. Additionally, we show that an algorithm running in time O(n2−ε)
for 2-DFA-NEI would imply that there are problems in ENP that cannot be
solved by non-uniform Boolean formulas of sub-exponential size (Corollary 5).

Further, we have that even polylogarithmic improvements for the running
time of algorithms solving 2-DFA-NEI would imply interesting lower bounds.
More specifically, if 2-DFA-NEI can be solved in time O(n2/ logc n) for every
c > 0, then there are functions that can be computed in NTIME[2O(n)] but not
by non-uniform NC1 circuits.

Analogous conditional non-uniform circuit lower bounds have been obtained
in [1] under the assumptions that the Edit Distance problem can be computed
in time O(n2−ε) for some ε > 0 and in time O(n2/ logc n) for every c ≥ 1. It
is worth noting that Theorem 5 which establishes conditional lower bounds for
fan-in-2 Boolean circuits of linear depth and sub-exponential size is not explic-
itly stated in [1] and no parallel to the associated conditional lower bound for
k-DFA-NEI is given for Edit Distance.

2 Reducing Acceptance in NSPACE[n] to DFA-NEI

In this section we provide a reduction from the problem of simulating 2-tape
Turing machines to DFA-NEI. For any k, the reduction in Theorem 1 outputs
k DFA’s each with at most O(m2 ·n·σ1+c·2σ

k ) states where m denotes the number
of states in the Turing machine, n denotes the input string length, σ denotes the
amount of space on the binary work tape, and c denotes the maximum number of
occurrences of a special delimiter symbol # that can simultaneously appear on
the work tape during the computation. The parameter c is a constant associated
with the Turing machine and is independent of the parameters n and σ.

2-tape Turing Machines: A 2-tape Turing machine with binary alphabet is a
machine with a two-way read-only input tape and a two-way binary work tape.
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More formally, it is a tuple M = (Q, {0, 1}, c, q0, F, δ) where Q is a set of states,
c is the maximum number of occurrences of special delimiter symbol #, q0 ∈ Q
is an initial state, F is a set of final states, and

δ : Q × ({0, 1} ∪ {#})2 → P(Q × {−1, 0, 1}2 × ({0, 1} ∪ {#}))

is a partial transition function that assigns to each triple

(q, b1, b2) ∈ Q × ({0, 1} ∪ {#})2,

a set of tuples

δ(q, b1, b2) ⊆ Q × {−1, 0, 1}2 × ({0, 1} ∪ {#}).

We say that a tuple

(q, d, d′, w) ∈ Q × {−1, 0, 1}2 × ({0, 1} ∪ {#})

is an instruction that sets the machine to state q, moves the input head from
position p to position p + d, moves the work head from position p′ to position
p′ + d′, and writes symbol w at position p′ on the work tape. The transition
function δ specifies that if the machine M is currently at state q, reading symbol
b1 on the input tape and symbol b2 on the work tape, then the next instruction
of the machine must be an element of the set δ(q, b1, b2).

Configurations: A space-σ configuration for M on input x ∈ {0, 1}∗ is a tuple

(q, h, h′, y) ∈ Q × [|x|] × [σ] × ({0, 1} ∪ {#})σ

where intuitively, q ∈ Q is the current state of M , h ∈ [|x|] is the position
of M ’s input tape head, h′ ∈ [σ] is the position of M ’s work tape head, and
y ∈ ({0, 1} ∪ {#})σ is the binary string (containing at most c special delimiter
symbols) corresponding to the first σ symbols on the work tape of M .

Configuration Sequences: A space-σ configuration sequence for M on input
x ∈ {0, 1}∗ is a sequence of the form

S ≡ (q0, h0, h
′
0, y0)

(q1,d1,d′
1,r1,r′

1,w1)−−−−−−−−−−−−→ (q1, h1, h
′
1, y1)

(q2,d2,d′
2,r2,r′

2,w2)−−−−−−−−−−−−→ (q2, h2, h
′
2, y2)

...

(qk,dk,d′
k,rk,r′

k,wk)−−−−−−−−−−−−→ (qk, hk, h′
k, yk)

satisfying the following conditions.

1. For each i ∈ {0, 1, ..., k}, (qi, hi, h
′
i, yi) is a space-σ configuration for M on x.

2. q0 is the initial state of M , y0 = 0σ, meaning that the work tape is initialized
with zeros, and h0 = h′

0 = 1, meaning that the input tape head and work
tape head are in the first position of their respective tapes.
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3. For each i ∈ {1, ..., k}, (qi, di, d
′
i, wi) ∈ δ(qi−1, x[hi−1], yi−1[h′

i−1]), meaning
the state of the machine at time i, the directions taken by both heads at time
i, and the symbol written on the work tape at time i are compatible with the
transition function δ, and depend only on the state at time i − 1 and on the
symbols that are read at time i − 1.

4. For each i ∈ {1, ..., k}, hi = hi−1 + di, h′
i = h′

i−1 + d′
i, ri = x[hi−1], r′

i =
yi−1[h′

i−1], and yi is obtained from yi−1 by substituting wi for the symbol
yi−1[h′

i−1], and by leaving all other symbols untouched. Intuitively, this means
that the configuration at time i is obtained from the configuration at time
i − 1 by the application of the transition (qi, di, d

′
i, wi).

5. For each i ∈ {0, 1, ..., k}, yi contains at most c occurrences of the special
delimiter symbol #.

We say that the sequence

I ≡ (q1, d1, d′
1, r1, r

′
1, w1)(q2, d2, d′

2, r2, r
′
2, w2)...(qk, dk, d′

k, rk, r′
k, wk)

that induces a configuration sequence S as above is a space-σ instruction sequence
for M on input x. We say that I is accepting if qk ∈ F .

Remark 1. As suggested in [17], the technique provided in the proof of Propo-
sition 3 from [25] can be applied to remove the special delimiter symbol from
the work tape by increasing the Turing machine’s state and space complexities.
However, without a formal proof in the literature of the stated result from [17]
and because it is not required in our work, we decided to refrain from using it.

Theorem 1. Let a nondeterministic m-state 2-tape Turing machine M with
binary tape alphabet (other than at most c occurrences of symbol #) and an
input string x of length n be given. If M uses at most σ symbols on the work
tape, then for every k, we can efficiently compute k DFA’s 〈A1,A2, ...,Ak〉 each
with a binary alphabet and O(m2 · n · σ1+c · 2

σ
k ) states such that M accepts x if

and only if
⋂k

i=1 L(Ai) �= ∅.
Proof. The Turing machine M accepts x if and only if there exists an accepting
space-σ instruction sequence for M on x. We build k DFA’s that read in a binary
string and collectively determine whether the string encodes an accepting space-
σ instruction sequence for M on x.

Consider splitting the work tape of M into k equal sized blocks each con-
sisting of σ

k work tape cells. A block-i space-σ configuration for M on input x
consists of the state, input tape head, work tape head, the contents of the work
tape from position lboundi := (i − 1) · σ

k + 1 to position rboundi := i · σ
k , and

all c positions of the occurrences of special delimiter symbol #. We construct
k DFA’s 〈A1,A2, ...,Ak〉 where each DFA Ai keeps track of the current block-i
space-σ configuration for M on input x. The DFA’s read in space-σ instructions
one at a time and transition accordingly where each instruction is encoded as a
unique bit string of length O(log(m)).

The start state of DFA Ai represents the block-i space-σ configuration
(q0, 1, 1, 0

σ
k ) where q0 is the start state of M . Further, a state representing a
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block-i space-σ configuration (qj , hj , h
′
j , contentsj) is accepting if qj is a final

state of M . Suppose that the DFA Ai is currently at a state representing a block-
i space-σ configuration (qj , hj , h

′
j , contentsj) and reads in a space-σ instruction

(q, d, d′, r, r′, w). The DFA Ai transitions to a state representing a block-i space-σ
configuration (qj+1, hj+1, h

′
j+1, contentsj+1) if:

1. (q, d, d′, w) ∈ δ(qj , r, r
′) and q = qj+1

2. hj+1 = hj + d and h′
j+1 = h′

j + d′

3. 1 ≤ hj , hj+1 ≤ n and 1 ≤ h′
j , h

′
j+1 ≤ σ

4. r = x[hj ]
5. if lboundi ≤ h′

j ≤ rboundi, then r′ = contentsj [h′
j − lboundi + 1] and

w = contentsj+1[h′
j − lboundi + 1]

Collectively the DFA’s determine whether the input string encodes an accept-
ing space-σ instruction sequence for M on x. Therefore, the Turing machine M
accepts x if and only if there exists an accepting space-σ instruction sequence
for M on x if and only if

⋂k
i=1 L(Ai) �= ∅. Further, the DFA’s each have at most

O(m2 · n · σ1+c · 2
σ
k ) states because there are O(m) space-σ instructions and

O(m · n · σ1+c · 2
σ
k ) block-i space-σ configurations. ��

Remark 2. The preceding simulation is sufficient for our purposes. However, we
suggest that it could be refined by having only one DFA keep track of the Turing
machine’s tape heads. When σ = O(log(n)), such a refinement could be used to
obtain a tighter connection between k-DFA-NEI and nondeterministic logspace.

Corollary 1. We obtain the following directly from the preceding theorem:

1. If we can solve k-DFA-NEI in time no(k), then NSPACE[n] ⊆ DTIME[2o(n)].
2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be solved in time

O(nk−ε), then NSPACE[n + o(n)] ⊆ DTIME[2(1−δ)n] for some δ > 0.

3 Non-emptiness of Intersection and Conditional Lower
Bounds

In this section we apply results obtained in Theorem 1 to show that even a
slight improvement in running time of the classic algorithm for non-emptiness of
intersection for finite automata would yield faster than state of the art algorithms
for satisfiability for Boolean formulas and Boolean circuits. Therefore, this result
implies that the impossibility of obtaining better algorithms for non-emptiness
of intersection for k finite automata can be based on assumptions that are safer
than the exponential time hypothesis (ETH). An analogous result is proven with
respect to non-emptiness of intersection for a constant number of finite automata
(say two). We will show that the existence of algorithms that are faster than
time O(n2−ε) for non-emptiness of intersection for 2 DFA’s would contradict
assumptions that are safer than the strong exponential time hypothesis (SETH).
We note that the endeavour of basing lower bounds for algorithms in P on
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assumptions that are safer than ETH or SETH has been pursued before [1]. In
this work, we obtain lower bounds using assumptions like those used in [1], with
the advantage that our reductions are simpler. Therefore, we believe that the
techniques employed here provide a cleaner framework that can potentially be
used to strengthen the analysis of the fine grained complexity of other algorithmic
problems in P.

Finally, by applying Williams’ algorithms versus lower bounds framework,
we are able to show that faster algorithms for non-emptiness of intersection
for finite automata would also imply non-uniform circuit lower bounds that are
much better than those that are currently known.

3.1 Satisfiability for Boolean Formulas

Lemma 1. Satisfiability for n-variable Boolean formulas of size s is solvable by
a nondeterministic 2-tape Turing machine with binary alphabet using at most
n + O(log(s)) bits and a fixed number of delimiter symbol # occurrences on the
work tape.2

Proof. The machine uses n tape cells to guess an assignment x ∈ {0, 1}n to
the input variables. Subsequently, using O(log s) work tape cells, the machine
evaluates the Boolean formula from the input tape on the guessed assignment
from the work tape. This evaluation problem is referred to as the Boolean formula
value problem (BFVP) and has been shown to be solvable in space O(log s)
on formulas of size s in [6,21]. Storing both the assignment and the formula
evaluation on the same work tape, it will be necessary to use a fixed number
of occurrences of the delimiter symbol # as left/right tape markers, a delimiter
between assignment and formula evaluation, and markers for remembering the
position in the formula evaluation and the assignment when the work tape head
moves from formula evaluation to assignment or vice versa. ��

By combining Theorem 1 with Lemma 1, we obtain the following.

Theorem 2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then satisfiability for n-variable Boolean formulas of
size s is solvable in time poly(s) · 2n(1−δ) for some δ > 0.

Proof. Suppose that there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε). Let a n-variable Boolean formula φ of size s be given. By
Theorem 1 and Lemma 1, we can reduce satisfiability for φ to non-emptiness of
intersection for k DFA’s each with poly(s) ·2n

k states. Therefore, by assumption,
we can determine whether φ has a satisfying assignment in time sO(k) · 2

k−ε
k ·n.

It follows that satisfiability for n-variable Boolean formulas of size s is solvable
in time poly(s) · 2n(1−δ) for some δ > 0. ��
2 In addition, both QBF and satisfiability for nondeterministic branching programs

are solvable by nondeterministic 2-tape Turing machines with binary alphabet using
at most n + O(log(s)) bits and a fixed number of delimiter symbol # occurrences.
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It was shown in [30] that if there exists some k ≥ 2 and ε > 0 such that
k-DFA-NEI can be solved in time O(nk−ε), then SETH is false. The following
corollary improves this result by showing a much stronger consequence. The
corollary follows directly from Theorem 2.

Corollary 2. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then satisfiability for n-variable Boolean formulas of
size 2o(n) can be solved in time O(2n(1−δ)) for some δ > 0.

Note that while CNF’s of bounded width and polynomial size are a very weak
computational model, Boolean formulas of sub-exponential size can already sim-
ulate any circuit in the class NC. Therefore, the consequence of Corollary 2
would contradict the NC-SETH hypothesis, a more robust version of SETH
which states that satisfiability for circuits of polynomial size and polylogarith-
mic depth cannot be solved in time O(2n(1−δ)) for any δ > 0 [1]. In the next
subsection we show that the existence of an algorithm running in time no(k) for
k-DFA-NEI would imply faster satisfiability algorithms for even larger classes
of circuits.

3.2 Satisfiability for Boolean Circuits

In the circuit value problem (CV), we are given a n-input fan-in-2 Boolean
circuit C and a string x ∈ {0, 1}n. The goal is to determine whether the circuit
C(x), obtained by initializing the input variables of C according to x, evaluates
to 1. Let the size of C denote the number of gates of C. The next lemma, which
is a classic result in complexity theory [5], states that the circuit value problem
for circuits of depth d and size s can be solved in space O(d) + O(log s) on a
2-tape Turing machine.

Lemma 2 (Borodin [5]). There is a deterministic 2-tape Turing machine M
with binary alphabet, that takes as input a pair 〈C, x〉 where x is a string in
{0, 1}n and C is a n-input fan-in-2 Boolean circuit of depth d and size s, and
determines, using at most O(d)+O(log s) work tape cells, whether C(x) evaluates
to 1.

In the satisfiability problem for Boolean circuits, we are given a n-input fan-
in-2 Boolean circuit C. The goal is to determine whether there exists a string
x ∈ {0, 1}n such that C(x) evaluates to 1. As a consequence of Lemma 2, we
have that satisfiability for Boolean circuits can be decided by a nondeterministic
2-tape Turing machine using at most n + O(d) + O(log s) tape cells.

Lemma 3. There is a nondeterministic 2-tape Turing machine M with binary
alphabet and a fixed number of delimiter symbol # occurrences, that takes as
input a n-input fan-in-2 Boolean circuit C of depth d and size s, and determines,
using at most n + O(d) + O(log s) tape cells, whether C is satisfiable.
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By combining Theorem 1 with Lemma 3, we obtain the following.

Theorem 3. If k-DFA-NEI can be solved in time O(nf(k)), then satisfiability
for n-input fan-in-2 Boolean circuits of depth d and size s can be solved in time
sO(f(k)) · 2

f(k)
k ·(n+O(d)) where k is allowed to depend on n, d, and s.

Proof. Suppose that k-DFA-NEI can be solved in time O(nf(k)). Let a n-
input fan-in-2 Boolean circuit C of depth d and size s be given. By Theorem 1
and Lemma 3, for any k, we can reduce satisfiability for C to non-emptiness
of intersection for k DFA’s each with poly(s) · 2

n+O(d)
k states. Therefore, by

assumption, we can determine whether C has a satisfying assignment in time
sO(f(k)) · 2 f(k)

k ·(n+O(d)). It follows that satisfiability for n-input fan-in-2 Boolean
circuits of depth d and size s is solvable in the desired time. ��

It was shown in [12,30] that if k-DFA-NEI can be solved in time no(k), then
ETH is false. The following corollary improves this result by showing a much
stronger consequence. The corollary follows directly from Theorem 3.

Corollary 3. If k-DFA-NEI can be solved in time no(k), then satisfiability for
fan-in-2 Boolean circuits of depth O(n) and size 2o(n) can be solved in time 2o(n).

Note that the consequence in the preceding corollary is stronger than ETH
because circuits of linear depth and sub-exponential size are a stronger compu-
tational model than formulas in conjunctive normal form.

3.3 Circuit Lower Bounds

Corollaries 2 and 3 lead us to the following questions.

– What are the barriers (beyond ETH) to solving satisfiability for fan-in-2
Boolean circuits of depth O(n) and size 2o(n) more efficiently?

– What are the barriers (beyond SETH) to solving satisfiability for Boolean
formulas of size 2o(n) more efficiently?

– What are the barriers to solving satisfiability only slightly faster for Boolean
formulas of polynomial size?

Below, we investigate the preceding questions and reference recent works
[1,4,31,32] that connect satisfiability problems to non-uniform circuit complexity
lower bounds. From these connections, we observe that faster algorithms for
k-DFA-NEI would imply new non-uniform circuit complexity lower bounds.

Barriers Beyond ETH. The following is a slightly modified restatement of a
technical theorem from [1] (with related results in [4,31,32]) that connects circuit
satisfiability to non-uniform circuit complexity lower bounds for ENP . Recall
that ENP is the class of functions that can be computed by Turing machines
that operate in time 2O(n) with the help of an NP oracle. Note that the strings
that are passed to each call of the oracle may have size up to 2O(n).
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Theorem 4 (Theorem 8 in [1]). Let S(n) be a time constructible and mono-
tone non-decreasing function such that n ≤ S(n) ≤ 2o(n). Let C be a class
of circuits. Suppose there is a SAT algorithm for n-input circuits which are
arbitrary functions of three O(S(n))-size circuits from C, that runs in time
O(2n/(n10 · S(n))). Then ENP does not have S(n)-size circuits from C.

Notice that if we take three circuits of linear depth and sub-exponential size
and combine their outputs using a constant number of additional gates, then
the resulting circuit still has linear depth and sub-exponential size. Therefore, a
satisfiability algorithm running in time 2o(n) for n-input fan-in-2 Boolean circuits
of linear depth and sub-exponential size would imply that there are functions
in ENP that cannot be computed by such circuits. This would be a significant
consequence in complexity theory since to date it is not even known whether
all functions in ENP can be computed by non-uniform circuits of linear size. In
view of our discussion, Theorem 5 directly follows from Theorem 4, but is not
explicitly stated in [1].

Theorem 5. If satisfiability for n-input fan-in-2 Boolean circuits of depth O(n)
and size 2o(n) is solvable in time O(2(1−δ)n) for some δ > 0, then ENP does not
have non-uniform fan-in-2 Boolean circuits of O(n) depth and 2o(n) size.

By combining the preceding theorem with Corollary 3, we obtain the
following.

Corollary 4. If k-DFA-NEI can be solved in time no(k), then ENP does not
have non-uniform fan-in-2 Boolean circuits of O(n) depth and 2o(n) size.

Barriers Beyond SETH. Next, we look at another known result that connects
formula satisfiability to non-uniform formula complexity lower bounds for ENP .
The following theorem is similar to Corollary 1.1 in [1] and directly follows from
Theorem 4.

Theorem 6. If satisfiability for n-variable Boolean formulas of size 2o(n) is solv-
able in time O(2(1−δ)n) for some δ > 0, then ENP does not have non-uniform
Boolean formulas of size 2o(n).

By combining the preceding theorem with Corollary 2, we obtain the
following.

Corollary 5. If there exists k ≥ 2 and ε > 0 such that k-DFA-NEI can be
solved in time O(nk−ε), then ENP does not have non-uniform Boolean formulas
of size 2o(n).

Barriers to Slightly Faster Algorithms. Finally, we investigate the possible
consequences of polylogarithmic improvements to the running time of algorithms
for k-DFA-NEI, and in particular for 2-DFA-NEI. The following is a restatement
of Theorem 7 in [1] (related to Theorem 1.3 in [31]).
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Theorem 7 (Theorem 7 in [1]). Suppose that there is a satisfiability algo-
rithm for bounded fan-in formulas of size nr running in time O(2n/nr), for each
constant r > 0. Then NTIME[2O(n)] is not contained in non-uniform NC1.

By combining the preceding theorem with Theorem 1 and Lemma 1, we
obtain the following.

Corollary 6. If k-DFA-NEI can be solved in time O(nk/(log n)c) for every
c > 0, then NTIME[2O(n)] is not contained in non-uniform NC1.

Proof. Suppose that there exists k ≥ 2 such that k-DFA-NEI can be solved in
time O(nk/(log n)c) for every c > 0. By combining Theorem 1 and Lemma 1, it
follows that for all r > 0, satisfiability for n-variable Boolean formulas of size nr

can be reduced to intersecting k DFA’s with at most poly(n) · 2
n
k states where

k and r are treated as constants. Therefore, satisfiability for n-variable Boolean
formulas of size nr can be solved in time

(poly(n) · 2
n
k )k

logc(poly(n) · 2
n
k )

≤ poly(n) · 2n

(O(log n) + n
k )c

≤ O(
nd · 2n

nc
)

for all c > 0 and some constant d that is independent of c. If we set c = d · r,
then we have that satisfiability for Boolean formulas of size nr can be solved in
time O(2n/nr). It follows that satisfiability for Boolean formulas of size nr can
be solved in time O(2n/nr) for all r > 0. Moreover, by Theorem 7, it follows
that NTIME[2O(n)] does not have non-uniform NC1 circuits. ��

Notice that if we set k = 2 in the preceding corollary, then it follows that
if 2-DFA-NEI can be solved in time O(n2/(log n)c) for every c > 0, then
NTIME[2O(n)] is not contained in non-uniform NC1.

4 Conclusion

We analyzed the fine grained complexity of the non-emptiness of intersection
problem parameterized by the number of input DFA’s (k-DFA-NEI). Despite
the fact that this problem has been studied for at least six decades, the fastest
known algorithm for k-DFA-NEI is still the O(nk) time algorithm obtained by
a direct application of the classic Rabin-Scott product construction.

The lack of progress in the task of developing a faster algorithm for k-DFA-
NEI motivated the search for evidence supporting the possibility that substan-
tially faster algorithms for this problem do not exist. In this work, we have simpli-
fied and strengthened several previous conditional lower bounds for k-DFA-NEI
under a unified perspective. In particular, we have shown that if k-DFA-NEI
can be solved in time no(k) then NSPACE[n] ⊆ DTIME[2o(n)]. Additionally, we
have shown that solving non-emptiness of intersection for two DFA’s in time
O(n2−ε) for some ε > 0 would imply that NSPACE[n+o(n)] ⊆ DTIME[2(1−δ)n]
for some δ > 0. Further, we have unveiled several connections between k-DFA-
NEI and non-uniform circuit complexity theory. In particular, we have shown
that even improving non-emptiness of intersection for two DFA’s by a logc n
factor for every c > 0 would imply non-uniform NC1 circuit lower bounds.
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