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Abstract. This paper proposes monads as a framework for algebraic
language theory. Examples of monads include words and trees, finite
and infinite. Each monad comes with a standard notion of an algebra,
called an Eilenberg-Moore algebra, which generalises algebras studied in
language theory like semigroups or ω-semigroups. On the abstract level
of monads one can prove theorems like the Myhill-Nerode theorem, the
Eilenberg theorem; one can also define profinite objects.

The principle behind algebraic language theory for various kinds of objects, such
as words or trees, is to use a “compositional” function from the objects into a
finite set. To talk about compositionality, one needs objects with some kind
of substitution. It so happens that category theory has an abstract concept of
objects with substitution, namely a monad. The goal of this paper is to propose
monads as a unifying framework for discussing existing algebras and designing
new algebras. To introduce monads and their algebras, we begin with two exam-
ples, which use a monad style to present algebras for finite and infinite words.

Example 1. Consider the following non-standard definition of a semigroup.
Define a +-algebra A to be a set A called its universe, together with a multi-
plication operation mulA : A+ → A, which is the identity on single letters, and
which is associative in the sense that the following diagram commutes.

(A+)+
μA ��

(mulA)+ ��

A+

mulA��
A+

mulA

�� A
,

In the diagram, (mulA)+ is the function that applies mulA to each label of a
word, and μA is the function which flattens a word of words into a word, e.g.

(abc)(aa)(acaa) �→ abcaaacaa.
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Restricting the multiplication operation in a +-algebra to words of length two
(the semigroup binary operation) is easily seen to be a one-to-one correspondence
between +-algebras and semigroups. �

The second example will be running example in the paper.

Running Example 1. Let us define an algebra for infinite words in the spirit of
the previous example. Define A∞ to be the finite and ω-words over A, i.e. A+ ∪
Aω. Define an ∞-algebra A to be a set A, called its universe, together with a
multiplication operation mulA : A∞ → A, which is the identity on single letters,
and which is associative in the sense that the following diagram commutes.

(A∞)∞ μA ��

(mulA)∞
��

A∞

mulA��
A∞

mulA

�� A

In the diagram, (mulA)∞ is the function that applies mulA to the label of every
position in a word from (A∞)∞, and μA is defined in analogy to mulA+ , with
the following proviso: if the argument of μA contains an infinite word on some
position, then all subsequent positions are ignored, e.g.

(abc)(aa)(aω)(abca)(abω) �→ abcaω

An ∞-algebra is essentially the same thing as an ω-semigroup, see [PP04],
with the difference that ω-semigroups have separate sorts for finite and infinite
words. There is also a close connection with Wilke semigroups [Wil91], which
will be described as the running example develops. �

The similarities in the examples suggest that the should be an abstract notion
of algebra, which would cover the examples and possibly other settings, e.g. trees.
A closer look at the examples reveals that concepts of algebraic language the-
ory such as “algebra”, “morphism”, “language”, “recognisable language” can be
defined only in terms of the following four basic concepts (written below in the
notation appropriate to +-algebras):

1. how a set A is transformed into a set A+;
2. how a function f : A → B is lifted to a function f+ : A+ → B+;
3. a flattening operation from (A+)+ → A+;
4. how to represent an element of A as an element of A+.

These four concepts are what constitutes a monad, a fundamental concept in cat-
egory theory and, recently, programming languages like Haskell. However, unlike
for Haskell, in this paper the key role is played by Eilenberg-Moore algebras.

The point of this paper is that, based on a monad one can also define things
like: “syntactic algebra”, “pseudovariety”, “mso logic”, “profinite object”, and
even prove some theorems about them. Furthermore, monads as an abstraction
cover practically every setting where algebraic language theory has been applied
so far, including labelled scattered orderings [BR12], labelled countable total
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orders [CCP11], ranked trees [Ste92], unranked trees [BW08], preclones [ÉW03].
These applications are discussed at length in the full version. The full version
also shows how new algebraic settings can be easily produced using monads, as
illustrated on a monad describing words with a distinguished position, where
standard theorems and definitions come for free by virtue of being a monad. A
related paper is [Ési10], which gives an abstract language theory for Lawvere
theories, and proves that Lawvere theories admit syntactic algebras and a pseu-
dovariety theorem. Lawvere theories can be viewed as the special case of finitary
monads, e.g. finite words are Lawvere theories, but infinite words are not.

This paper shows that several results of formal language theory can be stated
and proved on the abstract level of monads, including: the Myhill-Nerode theo-
rem on syntactic algebras, the Eilenberg pseudovariety theorem, or the Reiter-
man theorem on profinite identities defining pseudovarieties. Another example is
decidability of mso, although here monads only take care of the symbol-pushing
part, leaving out the combinatorial part that is specific to individual monads,
like applying the Ramsey theorem in the case of infinite words. When proving
such generalisations of classical theorems, one is naturally forced to have a closer
look at notions such as “derivative of a language”, or “finite algebra”, which are
used in the assumptions of the theorems.

Much effort is also devoted to profinite constructions. It is shown that every
monad has a corresponding profinite monad, which, like any monad, has its own
notion of recognisability, which does not reduce to recognisability in the original
monad. For example, the monad for finite words has a corresponding monad of
profinite words, and recognisable languages of profinite words turn out to be a
generalisation of languages of infinite words definable in the logic mso+u.

Thanks. I would like to thank Bartek Klin (who told me what a monad is),
Szymon Toruńczyk and Marek Zawadowski for discussions on the subject.

1 Monads and Their Algebras

This paper uses only the most rudimentary notions of category theory: the defi-
nitions of a category (objects and composable morphisms between them), and of
a functor (something that maps objects to objects and morphisms to morphisms
in a way that is consistent with composition). All examples in this paper use the
category of sets, where objects are sets and morphisms are functions; or possibly
the category of sorted sets, where objects are sorted sets for some fixed set of
sort names, and morphisms are sort-preserving functions.

A monad over a category is defined to be a functor T from the category to
itself, and for every object X in the category, two morphisms

ηX : X → TX and μX : TTX → TX,

which are called the unit and multiplication operations. The monad must satisfy
the axioms given in Figure 1.

We already saw two monads in Example 1 and in the running example.
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X
f ��

ηX

��

Y

ηY

��
TX

Tf
�� TY

TTX
TTf ��

μX

��

TTY

μY

��
TX

Tf
�� TY

.

TTTX
μTX ��

TμX

��

TTX

μX

��
TTX

μX

�� TX

TX

idX

���
��

��
��

��
ηX ��

TηX

��

TTX

μX

��
TTX

μX

�� TX

Fig. 1. The axioms of a monad are that these four diagrams commute for every object
X in the category and every morphism f : X → Y . The upper diagrams say that the
unit and multiplication are natural. The lower left diagram says that multiplication is
associative, and the lower right says that the unit is consistent with multiplication.

For this paper, the most important thing about monads is that they have a
natural corresponding algebras. An Eilenberg-Moore algebra for a monad T, or
simply T-algebra, is a pair A consisting of a universe A, which is an object in
the underlining category, together with a multiplication morphism

mulA : TA → A,

such that the mulA ◦ηA is the identity, and which is associative in the sense that
the following diagram commutes.

TTA
μA ��

TmulA ��

TA
mulA��

TA
mulA

�� A

Observe that this associativity is similar to the lower left axiom in Figure 1. In
fact, the lower left axiom in Figure 1 and the upper half of the lower right axiom
say that TX equipped with the operation μX forms a T-algebra, called the free
T-algebra over X.

We use the convention that an algebra is denoted by a boldface letter, while
its universe is written without boldface. A T-morphism between two T-algebras
A and B is a function h between their universes which respects their multipli-
cation operations in the sense that the following diagram commutes.

TA
Th ��

mulA ��

TB
mulB��

A
h

�� B

This completes the definition of monads and their algebras.
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Languages and colorings. To develop the basic definitions of recognisable lan-
guages over a monad, we require the following parameters, which we call the
setting : the underlying category, the monad, a notion of finite alphabet, and a
notion of finite T-algebra. So far, we do not place any restrictions on the notions
of finiteness, e.g. when considering sets with infinitely many sorts, reasonable
settings will often have finite algebras whose universe is not finite in the same
sense as a finite algebra. Actually, for some monads, it is not clear what a finite
algebra should be, e.g. this is the case for infinite trees, and this paper sheds
little new light on the question. Fix a setting, with the monad being called T,
for the following definitions.

A coloring of a T-algebra is defined to be a morphism from its universe
to some object in the underlying category. A coloring is said to be recognised
by a T-morphism if the coloring factors through the morhpism. A coloring is
called T-recognisable if it is recognised by some T-morphism with a finite target,
according to the notion of finite T-algebra given in the setting.

When the underlying category is, possibly sorted, sets we can talk about
languages, as defined below. Consider a finite alphabet, according to the notion
of finite alphabet given in the setting. In all of the examples of this paper, a finite
alphabet will be a possibly sorted set with finitely many elements. In particular, if
there are infinitely many sorts, then a finite alphabet will use only finitely many.
A T-language over a finite alphabet Σ is defined to be any subset L ⊆ TΣ.
Notions of recognisability are inherited from colorings, using the characteristic
function of a language.

The Myhill-Nerode Theorem. We present a monad generalisation of the Myhill-
Nerode theorem. That is, we give a sufficient condition for colorings, and
therefore also languages, to have a syntactic (i.e. minimal) morphism. The gen-
eralisation only works in the setting of sorted sets, and therefore also in the
setting of normal sets. Fix the setting of sorted sets, for some choice of, possibly
infinitely many, sort names.

Define a (possibly sorted) set A to be finitary if for every w ∈ TA, there is
some finite Aw ⊆ A such that w ∈ TAw. A monad is called finitary if every set
is finitary, e.g. this is the case for the monad of finite words.

Theorem 1.1. [Syntactic Morphism Theorem] Consider a monad T in the set-
ting of sorted sets. Let f be a coloring of a T-algebra A, which is recognised
by a T-morphism h into some T-algebra with finitary universe. There exists a
surjective T-morphism into a T-algebra

syntf : A → Af ,

called the syntactic morphism of f , which recognises f and which factors through
every surjective T-morphism recognising f . Furthermore, syntf is unique up to
isomorphisms on Af .

If A itself has finitary universe, then f is recognised by the identity T-
morphism on A. Therefore, if the monad is finitary, then every T-language has
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a syntactic morphism. This covers monads for objects such as finite words, ulti-
mately periodic words, or various kinds of finite trees. In monads describing
truly infinite objects, e.g. the monad for ∞-words used in the running example,
a syntactic morphism might not exist.

Running Example 2. Consider the following ∞-language

L = {an1ban2b · · · : the sequence ni is unbounded, i.e. lim supni = ∞.}

One can show that this language does not have a syntactic morphism, not even if
the target algebra is allowed to have infinite universe. The idea is that for every
n, there is a recognising morphism which identifies all words in {a1, a2, . . . , an},
but there is no morphism which identifies all words in a+. �

The Eilenberg Theorem. Another result which can be stated and proved on the
level of monads is Eilenberg’s pseudovariety theorem. This theorem says that,
in the case of semigroups, language pseudovarieties and algebra pseudovarieties,
which will be defined below, are in bijective correspondence. The theorem implies
that if L is a language pseudovariety, then the membership problem L ∈ L can
be decided only by looking at the syntactic semigroup of L, and one need not
look at the accepting set, nor at the information about which letters are mapped
to which elements of the semigroup.

Surely Eilenberg must have known that the pseudovariety works for mon-
ads in general and not just for monoids and semigroups, since he invented both
the pseudovariety theorem and algebras in abstract monads. However, such a
generalisation is not in his book [Eil74]. The generalisation subsumes pseudova-
riety theorems for: finite words in both monoid and semigroup variants [Eil74],
∞-words [Wil91], scattered linear orderings [BR12], finite trees [Ste92].

Fix a setting where the category is sets with finitely many sorts. Assume that
the notion of finite T-algebra is simply that the universe is finite, and a finite
alphabet is one with finitely many elements. A T-algebra with a finite universe
is finitary, and therefore every T-recognisable language has a syntactic algebra
by the Syntactic Morphism Theorem. Define a derivative1 of a T-recognisable
T-language L ⊆ TΣ to be any other subset of TΣ that is recognised by the
syntactic algebra of L. Define a T-language pseudovariety to be a class of T-
recognisable T-languages which is closed under Boolean combinations, deriva-
tives, and pre-images under T-morphisms. Since complementation is a form of
derivative, Boolean combinations could be replaced by unions in the definition
of a T-language pseudovariety. As usual for pseudovarieties, a T-language is for-
mally treated as its characteristic function, which means that a language comes
with a description of its input alphabet. Define a T-algebra pseudovariety to

1 This notion of derivative is nonstandard. For example, in the case of finite words, the
more accepted notion is that a derivative of L is any language of the form w−1Lv−1.
Because of this nonstandard definition, Theorem 1.2 does not directly generalise the
classical Pseudovariety Theorem by Eilenberg. This is discussed in the full version,
which contains a proper generalisation of the classical Pseudovariety Theorem.
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be a class of finite T-algebras which is closed under finite products, images of
surjective T-morphisms, and subalgebras.

For a class L of recognisable T-languages, define Alg L to be the class of
finite T-algebras that only recognise T-languages from L. For a class A of finite
T-algebras, define LanA to be the T-languages recognised by T-algebras from A.
The Pseudovariety theorem says that these mappings are mutual inverses.

Theorem 1.2. The mappings Lan and Alg are mutual inverses, when restricted
to pseudovarieties.

Running Example 3. Call an ∞-language definite if there is some n ∈ N such
that membership in the language depends only on the first n letters. Examples
of definite languages include: “words that begin with a”, or “words of length at
least two”. Call an ∞-algebra A definite if there is some n ∈ N such that

mulA(x1 · · · xnxn+1) = mulA(x1 · · · xn)

holds for every x1, . . . , xn+1 in the universe of the algebra. It is not difficult
to show that a recognisable ∞-language is definite if and only if its syntactic
algebra is definite, definite ∞-languages form a language pseudovariety, definite
∞-algebras form an algebra pseudovariety, and the two are in correspondence
as in the Pseudovariety Theorem. �

2 Deciding Monadic Second-Order Logic

An important part of language theory is the equivalence of recognisability and
definability in monadic second-order logic mso. Examples where this equivalence
holds include finite words and trees, and more interestingly from a combinatorial
perspective, infinite words and trees. There are common parts in all of the proofs,
and parts that are specific to each domain. We show that the common parts can
be stated and proved on the abstract level of monads.

Representing an algebra. To give an algorithm for mso satisfiability that uses
algebras, one needs a representation of finite algebras so that they can be manip-
ulated by algorithms. We propose such a representation; this is the main part
of this section. Fix a setting for the rest of this section, with the category being
sets, possibly sorted, but with finitely many sorts.

In most interesting cases, the monad T produces infinite sets, even on finite
arguments. Therefore, the finiteness of the universe of a T-algebra A does not,
on its own, imply that the algebra has a finite representation, because one needs
to also represent its multiplication operation, whose type is TA → A. To rep-
resent algebras, we will use an assumption, to made more precise below, which
roughly says that if an algebra has finite universe A, then the the multiplication
is determined by its values on a small finite subset of TA. For instance, in the
monad of finite words from Example 1, one chooses from A+ only the length
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two words, because a +-algebra, i.e. a semigroup, is uniquely determined by its
binary multiplication. We now describe these notions in more detail.

Define a subfunctor of T to be a mapping T0 which takes each set X to a
subset T0X ⊆ TX. A subfunctor on its own is not a monad, however it can be
used to generate a monad as follows. For a set X, define T∗

0X to be the least
set which contains the units of X, and which also contains any multiplication
(flattening) of an element in T0T

∗
0X. It is not difficult to show that T∗

0 is a
submonad of T, i.e. a subfunctor with a monad structure as inherited from T. A
subfunctor T0 is said to span a T-algebra A if for every subset X of the universe,
mulA has the same image over T∗

0X and over TX, i.e.

mulAT∗
0X = mulATX.

A subfunctor is complete if it spans every T-algebra, and finitely complete if it
spans every finite T-algebra; the latter depends on the notion of finite T-algebra.

Consider a subfunctor T0 that is finitely complete for a monad T. For a finite
T-algebra A, define its T0-reduct to be the pair consisting of the universe A of
A, and the restriction of the multiplication operation from A to the subfunctor:

mulA|T0A : T0A → A

It is easy to show, using associativity, that if T0 spans A, then A is uniquely
determined by its T0-reduct. In particular, if T0 is complete, then every operation
T0A → A extends to at most one T-algebra with universe A. Note the “at most
one”, e.g. not every binary operation extends to a semigroup operation, for
this associativity is needed. The same holds for finite completeness and finite
algebras. The point of using T0-reducts is that sometimes T0 can be chosen so
that it preserves finiteness, and therefore finite T-algebras can be represented in
a finite way as functions T0A → A.

Running Example 4. As in [Wil91], one can use the Ramsey theorem to show
that a finite ∞-algebra is uniquely determined by the values of its multiplication
operation on arguments of the form xy and xω. Stated differently,

WX
def= {xy, xω : x, y ∈ X} ⊆ X∞.

is finitely complete subfunctor of the ∞-functor. The submonad W∗ maps an
alphabet X to the finite and ultimately periodic words over X. A W-reduct of a
finite ∞-algebra is essentially the same thing as a Wilke semigroup, modulo the
difference that Wilke semigroups are two-sorted. In [Wil91], Wilke shows axioms
which describe when a W-algebra extends to an ∞-algebra. �

A subfunctor T0 is called effective if it satisfies the following two conditions.

1. If X is a finite set then T0X is finite and can be computed. This means that
a finite T-algebra with universe A be represented as a function T0A → A.

2. For every finite set Σ and every w ∈ T0Σ, one can compute a T-morphism
into a finite T-algebra that recognises {w}, with the T-algebra represented
as in item 1, and the T-morphism represented by its values on units of Σ.

The second condition is maybe less natural, it will be used in deciding mso.
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Running Example 5. We claim that the functor W in the running example
is effective. For the first condition, the set WX is isomorphic to the disjoint
union X2 + X, and can therefore clearly be computed. For the second condi-
tion, one needs to show that for every ultimately periodic ∞-word w, there is
a finite ∞-algebra that recognises the singleton {w}, and its W-reduct can be
computed. The universe of this algebra consists of suffixes of w, finite infixes
modulo repetitions, and an error element. �

Monadic second-order logic. To establish the connection between mso and recog-
nisability on the level of monads, we use a definition of mso which does not talk
about “positions” or “sets of positions” of a structure, but which is defined in
purely language theoretic terms. In the abstract version, predicates, such as the
successor predicate, are modelled by languages. For a set L of T-languages, define
msoT(L) to be the smallest class of T-languages which contains L, is closed under
Booolean operations, images and inverse images of T-morphisms.

Running Example 6. The standard notion of mso for ∞-words, as studied
by Büchi, is equivalent to msoT(L) where L contains only two recognisable ∞-
languages over alphabet {0, 1}, namely the language of words which contain only
zeros, and the language of words where every one is followed only by ones. �

One can show that if L contains only T-recognisable T-languages, then so
does msoT(L). This uses the assumptions on the setting being sorted sets, and
finite algebras being ones with finite universes. A non-example is the category
of nominal sets with orbit-finite sets, where powerset does not preserve orbit-
finiteness, and also mso contains non-recognisable languages, see [Boj13].

A language in msoT(L) can be represented as a tree where leaves are lan-
guages from L, binary nodes are labelled by union or intersection, complemen-
tation is represented by unary nodes, and for every T-morphism h : TΣ → TΓ
there are two kinds of unary nodes, one for image and the other for inverse
image. Therefore, if L is finite (or has some fixed enumeration) then it makes
sense to consider the following decision problem, called msoT(L) satisfiability :
an instance is a tree representing a language from msoT(L), and the question is
whether the corresponding language is nonempty. We provide below a sufficient
criterion for the decidability the problem.
Theorem 2.1. Consider a setting with finitely sorted sets, and let L be all recog-
nisable languages. If there is a subfunctor that is effective and finitely complete,
then msoT(L) satisfiability is decidable.

As mentioned at the beginning of the section, the theorem takes care of
the symbol pushing part in deciding satisfiability of mso, and leaves only the
combinatorial part. The combinatorial part is finding an effective and finitely
complete subfunctor, this is typically done using some kind of Ramsey theorem.

Running Example 7. Applying Theorem 2.1 to the observations made so
far in the running example, we conclude that mso satisfiability over ∞-words is
decidable. The proof obtained this way follows the same lines as Büchi’s original
proof. �
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3 Profinite Monads

Profinite constructions are an important tool in the study of recognisable lan-
guages. Example applications include: lattices of word languages correspond to
implications on profinite words [GGP08], pseudovarieties in universal algebra
correspond to profinite identities [Rei82], recognisable word languages are the
only ones which give a uniformly continuous multiplication in the profinite exten-
sion [GGP10]. In this section we show that these results can be stated and proved
on the abstract level of monads, thus covering cases like profinite trees or profi-
nite ∞-words. Furthermore, we show that profinite objects, e.g. profinite words,
form a monad as well, which has its own notion of recognisable language, a
notion that seems interesting and worthy of further study.

The Stone dual. A short definition of the profinite object uses Stone duality.
Define an ultrafilter in a Boolean algebra to be a subset of its universe which is
closed under ∧, and which contains every element of the Boolean algebra or its
complement, but not both. The set of ultrafilters is called the Stone dual of the
Boolean algebra. The Stone dual also comes with a topological structure, but
since we do not use it here, we do not describe it.

From the monad point of view, we are interested in the special case of the
Boolean algebra of recognisable languages in a T-algebra. Let A be a T-algebra,
not necessarily finite. Define the Stone dual of A, denoted by StoneA, to be the
Stone dual of the Boolean algebra of those subsets of A that are recognised by
T-morphisms from A into finite T-algebras. This definition generalises the well-
known space of profinite words, i.e. if the monad is the monad of finite words.
Note how the definition depends on the notion of finite algebra.

Running Example 8. For an alphabet Σ and w ∈ Σ+, define w# to be the
set of languages L ⊆ Σ∞ which are recognised by some finite ∞-algebra and
which contain wn! for all but finitely many n. This set is clearly closed under
intersection, and a standard pumping argument shows that for every recognisable
language L, it contains L or Σ+−L. Therefore w# is an ultrafilter, i.e. a profinite
∞-word. A common notation in profinite words would be to use ω, but this would
conflict with the infinite power in the context of ∞-words. �

Defining pseudovarieties by identities. Our first result on Stone duals is a monad
generalisation of the Reiterman Theorem [Rei82]. The original Reiterman Theo-
rem, which uses terminology of universal algebra, says that pseudovarieties can
be characterised by profinite identities. In the full version, we present a notion
of profinite identity, and prove the following theorem.

Theorem 3.1. Let L be class of recognisable T-languages. Then L is a pseu-
dovariety if and only if it is defined by a set of profinite identities.

Running Example 9. Recall the pseudovariety of definite ∞-languages. This
pseudovariety is defined by a single profinite identity, namely

xω = x#.
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One proves this the same way as in the classical result on definite languages
of finite words, which are characterised by the identity x#y = x#. The latter
identity is implied by the former, because xωy = xω is true in all ∞-words. �

The full version contains other results on Stone duals, in particular monad
generalisations of results from [GGP08] and [GGP10].

A profinite monad. We now explain how to convert a monad T into another
monad, called T, that describes profinite objects over T. The functor T maps a
set Σ to the Stone dual of the T-algebra TΣ. For a function f : Σ → Γ , the
mapping Tf takes an ultrafilter U ∈ TΣ to the set

V = {L ⊆ TΓ : (Tf)−1(L) ∈ U}

which is easily seen to be an ultrafilter, and therefore an element of TΓ . This
definition is a special case of the functor in the classical theorem on duality of
Boolean algebras and Stone spaces; in particular T is a functor. It remains to
provide the monad structure, namely the multiplication and unit. These will be
given in Theorem 3.2, using the following notion of profinite completion. Define
the profinite completion of a T-morphism h : TΣ → A into a finite T-algebra to
be the mapping

h̄ : TΣ → A

defined as follows: an ultrafilter U is mapped to the unique element a in the
universe of A such that the ultrafilter contains the language h−1(a).

Theorem 3.2. For every set Σ, there are unique operations

η̄Σ : Σ → TΣ μ̄Σ : TTΣ → TΣ

such that for every finite T-algebra A and every T-morphism h : TΣ → A, the
following diagrams commute

Σ
η̄Σ ��

ηΣ

��

TΣ

h̄
��

TΣ
h �� A

TTΣ

Th̄
��

μ̄Σ �� TΣ

h̄

��
TA

mulA �� A

.

Furthermore, equipped with the above operations, T is a monad.

What is the benefit of seeing T as a monad? Since T is itself a monad, it can
have its own notion of finite algebra and recognisable language. We illustrate
how these notions can be interesting, using the special case of profinite words.
Consider the monad Σ �→ Σ+ for finite words. Let us denote by Σ �→ Σ+̄ the
profinite version of this monad. An element of Σ+̄ is a simply profinite word
over the alphabet Σ. One way of creating a finite +̄-algebra is to take a finite
+-algebra, i.e. a finite semigroup, and extend its multiplication operation to
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profinite words using profinite completion. More interesting +̄-algebras are not
obtained this way, here is one example.

Example 2. We say that a profinite word w ∈ {0, 1}+̄ has exactly n ones if,
when seen as an ultrafilter, it contains the recognisable language of words with
at least n ones. If a profinite word has exactly n ones for some n, then we say
that it has a bounded number of ones. For example, 1# does not have a bounded
number of ones. A certain amount of calculations shows that the set of profinite
words in {0, 1}+̄ which have a bounded number of ones is recognised by a +̄-
morphism into a finite +̄-algebra. The finite +̄-algebra has three elements in its
universe, standing for: “only zeros”, “a bounded number of ones”, and “not a
bounded number of ones”.

Let us define mso+inf by applying the abstract notion of mso defined in
Section 2, with the predicates being the following languages of profinite words
over alphabet {0, 1}: “a bounded number of ones”, “only zeros”, “every one is
followed by only zeros”. Under a different terminology, this class of languages
was considered in [Tor12]. Since the operators of mso preserve recognisability, it
follows that mso+inf contains only +̄-recognisable languages. It is not clear if
mso+inf contains all +̄-recognisable languages, but Corollary 2 from [Tor12] and
a new undecidability result from [MB15] imply that mso+inf has undecidable
satisfiability. �
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