
Undecidability Results for Probabilistic Automata

Nathana

¨

el Fijalkow,
Alan Turing Institute of Data Science and University of Warwick, UK

The model of probabilistic automata was introduced by Rabin in 1963. Ever since, undecidability results
were obtained for this model, showing that although simple, it is very expressive. This paper provides
streamlined constructions implying the most important negative results, including the celebrated inapprox-
imability result of Condon and Lipton.

1. INTRODUCTION AND DEFINITIONS
By way of introducing the model of probabilistic automata defined by Rabin [Rabin
1963], we highlight its characteristic features. As a starting point, we model processes:

— with finitely many states, each of them representing a configuration of the process,
— evolving at discrete time steps, meaning that one transition is fired at each time unit

leading from a state to another,
— with probabilistic behaviour, i.e. the choice of transition follows a fixed probabilistic

distribution.
We let Q denote the finite set of states. A (probabilistic) distribution over Q is a

function � : Q ! [0, 1] such that
P

q2Q

�(q) = 1. The set of distributions over Q is
denoted D(Q).

Reactive and generative processes. An important distinction to be made for probabilistic
processes is reactive versus generative processes [van Glabbeek et al. 1995], which
arises when the transitions are labelled by symbols from a finite set ⌃. In the reactive
model [Pnueli 1985], the symbols from ⌃ are inputs to which the process reacts; Milner
describes reactive models using the mechanistic metaphor of pushing buttons [Milner
1980]. In the generative model, the symbols from ⌃ are outputs which are observed.

We are in this paper interested in reactive probabilistic automata, sometimes called
Rabin probabilistic automata [Rabin 1963]. In this setting the transition function is
defined by:

� : Q⇥ ⌃ ! D(Q),

which reads: from a state q and an input letter a in ⌃, the probability to reach p is
�(q, a)(p).

For the sake of comparison, we mention generative probabilistic automata, com-
monly called Segala automata [Segala and Lynch 1995] (note that Segala automata
usually combine probabilistic and non-deterministic behaviour). In this setting the
transition function is defined by:

� : Q ! D(Q⇥ ⌃),

which reads: from a state q, the probability to reach p and output the letter a in ⌃ is
�(q)(p, a). Although syntactically close, reactive and generative automata behave in a
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very different way, and the problems studied here for reactive probabilistic automata
do not make much sense for Segala automata.

For the remainder of this paper by probabilistic automata we mean reactive proba-
bilistic automata.

Definitions. A probabilistic automaton is a tuple A = (Q, q

in

,�, F ), where q

in

is the
initial state, � : Q⇥ ⌃ ! D(Q) is the transition function, and F is the set of accepting
states.

Given a word w = a1 · · · an, a run ⇢ over w is a sequence of states q0, q1, . . . , qn. The
probability of such a run is

A(⇢) =
Y

`2{1,...,n}

�(q
`�1, a`)(q`).

We let RunA(p
w�! q) denote the set of runs ⇢ over w starting in p and finishing in q

with A(⇢) > 0. The number A(p
w�! q) is the probability to go from p to q reading w,

defined as the sum of the probabilities of its runs:

A(p
w�! q) =

X

⇢2RunA(p
w�!q)

A(⇢).

A run ⇢ is accepting if it starts in q

in

and finishes in an accepting state, i.e. a state in
F . We let RunA(w) denote the set of accepting runs over w. The probability of w over A
is defined as the sum of the probabilities of its accepting runs:

A(w) =
X

⇢2RunA(w)

A(⇢).

Algorithmic analysis of probabilistic automata. A large part of the literature on probabilis-
tic automata is about constructing algorithms for determining the properties of the
function

A : ⌃⇤ ! [0, 1].

for a probabilistic automaton A given as input. The properties of interest depend on
which of the two main views one adopts on probabilistic automata: either as an au-
tomaton model, or as a subclass of partially observable Markov decision processes
(POMDP).

Probabilistic automata in automata theory. Probabilistic automata are naturally rooted in
automata theory. For instance, weighted automata over the semiring (R,+,⇥) are es-
sentially probabilistic automata. Interestingly, Schützenberger developed the frame-
work of weighted automata in 1961 [Schützenberger 1961], before Rabin introduced
the subcase of probabilistic automata.

With a formal language theory approach, Rabin [Rabin 1963] defines the threshold
language induced by a probabilistic automaton A and a threshold c as:

L

�c(A) = {w 2 ⌃⇤ | A(w) � c} .
The emptiness problem asks, given a probabilistic automaton A and a threshold c,
whether the language L

�c(A) is non-empty, i.e. whether there exists a word w such
that A(w) � c. The dual problem is the universality problem: given a probabilistic
automaton A and a threshold c, is it true that for all words w we have A(w) � c?

Probabilistic automata as partially observable Markov decision processes. Probabilistic au-
tomata form the subclass of blind POMDP where the controller has no observation at
all on the evolution of the system. Indeed in this setting a strategy reduces to a single
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word. This game-theoretic interpretation yields the notion of the value of a probabilis-
tic automaton A:

val(A) = sup
w2⌃⇤

A(w).

The natural questions here are to compute, approximate, or compare the value to a
given threshold.

One undecidability result. Many negative results are known: all the problems mentioned
above are undecidable, as well as many variants. The aim of this paper is to give one
result implying the most important undecidability results, and a simple self-contained
proof for it.

More specifically, the following theorem subsumes the undecidability of the prob-
lems mentioned below: the emptiness problem (1), the universality problem (2), the
isolation problem (3), the Condon-Lipton approximation problem (4), and the value 1
problem (5).

THEOREM 1.1. There exists no algorithm such that: given a probabilistic automa-
ton A,

— if val(A) = 1, then the algorithm outputs “Yes”,
— if val(A)  1

2 , then the algorithm outputs “No”.

The value 1
2 will appear in the constructions, but of course it can easily be replaced

by any other value between 0 and 1. It is important to remark that the algorithm is not
completely specified: if val(A) 2

�
1
2 , 1

�
, then the algorithm can do anything, including

not terminating.
Corollaries. We discuss the most important undecidability results from the literature,
which are all implied by Theorem 1.1 as special cases. The first two questions to be
considered were the emptiness and universality problems described above, which were
shown undecidable by Paz [Paz 1971]:

9w 2 ⌃⇤
, A(w) � c, (1)

8w 2 ⌃⇤
, A(w) � c. (2)

Almost equivalently, one may ask whether val(A) � c or val(A)  c, which are unde-
cidable as well.

One may think that the reason for undecidability is that words may get arbitrarily
close to the threshold c. In this direction, Rabin proved that if the threshold c is iso-
lated, i.e. if there exists " > 0 such that for all words w, we have |A(w) � c| � ", then
L

�c(A) is regular [Rabin 1963]. Determining whether a fixed threshold c is isolated
was proved undecidable by Bertoni [Bertoni et al. 1977]:

9" > 0, 8w 2 ⌃⇤
, |A(w)� c| � ". (3)

The seminal result of Condon and Lipton [Condon and Lipton 1989] pushes this
even further, by showing that one cannot even approximate the value. The statement
is the following: given 0 < ↵ < � < 1, there exists no algorithm such that given a
probabilistic automaton A,

⇢
if val(A) � �, then the algorithm outputs “Yes”,
if val(A)  ↵, then the algorithm outputs “No”.

(4)

The equivalent original formulation was as a promise problem: we assume that the
input satisfies either val(A) � � or val(A)  ↵, and we want to determine which one it
is.
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Gimbert and Oualhadj [Gimbert and Oualhadj 2010] showed that one does not re-
cover decidability by replacing the threshold c by 1, i.e. asking a qualitative question
rather than a quantitative one. More specifically, the value 1 problem is undecidable:
given a probabilistic automaton A, determine whether val(A) = 1, or equivalently:

8" > 0, 9w 2 ⌃⇤
, A(w) � 1� ". (5)

Positive Results
Not all is dark and gloomy for probabilistic automata. Indeed, an undecidability result
is merely an invitation to refine the model and to find decidable subclasses.

Several positive results were obtained for the problems discussed above. For in-
stance, algorithms were constructed for the emptiness problem and value approx-
imation for hierarchical automata [Chadha et al. 2011; 2013; Chadha et al. 2015]
and automata of bounded ambiguity [Fijalkow et al. 2017], or for the value 1 prob-
lem for leaktight automata [Gimbert and Oualhadj 2010; Chatterjee and Tracol
2012; Fijalkow et al. 2012; Fijalkow et al. 2015; Fijalkow 2016; 2017]. A remark-
able example is the equivalence problem, which asks whether two probabilistic au-
tomata define the same function. It was proved to be decidable in polynomial time by
Schützenberger [Schützenberger 1961], and later by Tzeng [Tzeng 1992]. Recently, this
problem has been further analysed, leading to very efficient randomised algorithms
with applications to software verification [Kiefer et al. 2011; 2013].

We study in this paper finite probabilistic automata over finite words. Extensions to
infinite words have been studied by Baier, Bertrand, and Grösser [Baier et al. 2012],
see also [Chadha et al. 2011], and then to infinite trees [Carayol et al. 2014]. Exten-
sions to infinite probabilistic automata have also been considered, for instance push-
down versions [Brázdil et al. 2013; Brázdil et al. 2014] and timed versions [Bertrand
et al. 2014].

2. EXAMPLES AND CONSTRUCTIONS
The binary value automaton
The very first automaton given as an example in the paper by Rabin [Rabin 1963]
introducing probabilistic automata recognises the binary function, i.e. it computes the
value of a rational number given in binary with least significant digit on the left:

binR(a1 · · · an) =
nX

i=1

a

i

2n�i+1
.

We present on the left-hand side of Figure 1 a simpler automaton computing the same
function but reversing the input:

bin(a1 · · · an) =
nX

i=1

a

i

2i
.

The expanding automaton
The automaton presented on the right-hand side of Figure 1 was used in the proof of
the undecidability of the value 1 problem [Gimbert and Oualhadj 2010]. The alphabet
is ⌃ = {check, sim}, the initial state is q0 and the unique accepting state is >. The
choice of names for the two letters will make more sense when using this automaton
in the proof of Theorem 1.1.

In this informal explanation, we are computing the value of A, so we are looking
for words maximising the probability to be accepted by A. After reading one check,
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q0

?

>
0 : 1

2

1 : 1
2

0 : 1
2

1 : 1
2

0 : 1

1 : 1

0 : 1

1 : 1 q0

L

>

R

?
sim : 1

check : 1
2

sim : 1� xcheck : 1

sim : x

sim, check : 1

check : 1
2

sim : x check : 1

sim : 1� x

sim, check : 1

Fig. 1. The probabilistic automaton on the left-hand side computes the function bin. The probabilistic
automaton on the right-hand side has value 1

2 if x  1
2 , and has value 1 if x >

1
2 .

the distribution is uniform over L,R. To reach >, one needs to read a check from the
state L, but on the right-hand side this leads to the non-accepting absorbing state ?.
In order to maximise the probability to reach >, one tries to “tip the scales” to the left,
which can only be achieved by reading sim a certain number of times. If x  1

2 , there
is no hope to achieve this: reading a letter sim gives more chance to stay in R than in
L thus all words are accepted with probability at most 1

2 , and val(A) = 1
2 . However, if

x >

1
2 then we show that A has value 1.

We have:

A(q0
check simn�������! L) =

1

2
· xn and A(q0

check simn�������! R) =
1

2
· (1� x)n.

We fix an integer N and analyse the action of reading (check simn)N : there are N

“rounds”, each of them corresponding to reading check simn from q0. In a round, there
are three outcomes: winning (that is, remaining in L) with probability p

n

= 1
2 · xn,

losing (that is, remaining in R) with probability q

n

= 1
2 · (1 � x)n, or going to the next

round (that is, reaching q0) with probability 1� (p
n

+ q

n

). If a round is won or lost, then
the next check leads to an accepting or rejecting sink; otherwise it goes on to the next
round, for N rounds. Hence:

A((check simn)N ) =
P

N�1
k=1 (1� (p

n

+ q

n

))k�1 · p
n

= p

n

· 1�(1�(pn+qn))
N�1

1�(1�(pn+qn))

= 1
1+ qn

pn

·
�
1� (1� (p

n

+ q

n

))N�1
�

We now set N = 2n and assume x >

1
2 . A simple calculation shows that the sequence

((1 � (p
n

+ q

n

))2
n�1)

n2N converges to 0 as n goes to infinity. Furthermore, 1�x

x

< 1,
so qn

pn
=

�
1�x

x

�
n converges to 0 as n goes to infinity. It follows that the acceptance

probability converges to 1 as n goes to infinity:

lim
n

A((check simn)2
n

) = 1.
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Simple constructions
We conclude this section by discussing three simple constructions for probabilistic au-
tomata.
Complementation. Given a probabilistic automaton A, we can construct a probabilis-
tic automaton computing the function 1 � A. This is achieved by switching accepting
and non-accepting states.
Convex combinations. Given two probabilistic automata A and B, we can construct a
probabilistic automaton computing the function 1

2A+ 1
2B. Indeed, we consider the union

of the two automata, and add a new state which is initial and leads with probability 1
2

to each automata. This construction generalises to arbitrary convex combinations.
Products. Given two probabilistic automata A and B, we can construct a probabilistic
automaton computing the function A · B. To this end we consider the synchronised
product of the two automata, with a pair of states being accepting if both states are
accepting.

3. PROOFS
The proof of Theorem 1.1 is obtained by a reduction from the emptiness problem.
For the sake of completeness, we first briefly recall the proof of undecidability for the
emptiness problem.

Undecidability of the emptiness problem
Gimbert and Oualhadj [Gimbert and Oualhadj 2010] gave a simple exposition of the
undecidability proof of Bertoni [Bertoni 1974] for the emptiness problem. The construc-
tion is based on the automaton computing the function bin given in Section 2.

— First, show that the equality problem is undecidable: given a probabilistic automa-
ton A, does there exist a word w such that A(w) = 1

2? The proof is by reduction
from Post’s Correspondence Problem (PCP), which can be defined as follows: given a
pair of monoid homomorphisms '1,'2 : ⌃⇤ ! {0, 1}⇤, does there exist a non-empty
word w such that '1(w) = '2(w)? Using the automaton above computing bin, comple-
mentation and convex combinations, we construct a probabilistic automaton A such
that A(w) = 1

2bin('1(w)) +
1
2 (1� bin('2(w))). Since the function bin is (essentially1)

injective, A(w) = 1
2 is equivalent to '1(w) = '2(w), proving the correctness of the

reduction.
— Second, show that the emptiness problem is undecidable by reduction to the equality

problem above. Given a probabilistic automaton A, one can construct a probabilistic
automaton A0 such that A0(w) = A(w) · (1 � A(w)). This is achieved by constructing
a complement and a product as described above. Since for x in [0, 1], the following
equivalence holds: x = 1

2 if, and only if, x · (1� x) � 1
4 , the first undecidability result

implies the undecidability of the emptiness problem.
Note that this proves that the emptiness problem is undecidable with non-strict

inequalities: A(w) � 1
4 . (It is easy to replace the constant 1

4 by any constant in (0, 1).)
However, since the equality problem is undecidable, this implies that the emptiness
problem with strict inequalities is also undecidable.

Proof of Theorem 1.1
We now prove Theorem 1.1 by constructing a reduction from the emptiness problem.
The construction is essentially the same as for the undecidability of the value 1 prob-

1One needs to ensure that the last letter is a 1, which is achieved using a small technical twist.
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A

q0

L

F

>

A

R

F

?

⌃, end : 1

check : 1
2

end : 1
check : 1

end : 1

⌃, end, check : 1

check : 1
2

end : 1 check : 1

end : 1

⌃, end, check : 1

Fig. 2. The automaton B constructed in the reduction.

lem by Gimbert and Oualhadj [Gimbert and Oualhadj 2010], the main improvements
are in the correctness proof. Let A be a probabilistic automaton on the alphabet ⌃, we
construct a probabilistic automaton B on the alphabet ⌃ [ {check, end} such that:

if there exists a word w such that A(w) > 1
2 , then val(B) = 1,

otherwise for all words w we have A(w)  1
2 , and then val(B)  1

2 .
The reduction is illustrated in Figure 2. We start from the expanding automaton

described in Section 1, and substitute the transitions for the letter sim by a simulation
of A on a word w. In the expanding automaton, reading sim from L has two outcomes:
staying in L with probability x, and going to q0 with probability 1�x. The probabilistic
automaton B mimics this behaviour: reading w end from L has two outcomes, staying
in L with probability A(w), and going to q0 with probability 1�A(w).

Hence the analysis of the expanding automaton A can be repeated mutatis mutandis
for B. Assume that there exists a word w such that A(w) >

1
2 , then lim

n

B((check ·
(w · end)n)2n) = 1, so val(B) = 1. Conversely, assume that for all words w, we have
A(w)  1

2 , then every finite word is accepted by B with probability at most 1
2 . The

words accepted with non-zero probability are concatenations of words of the form
w = check · w1 · end · w2 · end · · · · wn

· end,
with w

i

2 ⌃⇤. Since A(w
i

)  1
2 for every i, it follows that in B, after reading w, the

probability to be in L is smaller than or equal to the probability to be in R. It follows
that the value of B is at most 1

2 .

We now conclude the proof of Theorem 1.1. Assume towards contradiction that there
exists an algorithm A as stated in Theorem 1.1, we show how to use the reduction
above to construct an algorithm for the emptiness problem. Let A be a probabilistic
automaton given as input, we construct B following the reduction above, and run the
algorithm A on B. By construction, the probabilistic automaton B either has value 1 or
value at most 1

2 , so the algorithm A terminates on input B. Moreover, B has value 1 if,
and only if, A is non-empty, so the answer given by algorithm A solves the emptiness
problem for A, contradicting the undecidability of the emptiness problem.
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