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Abstract

We provide a construction of the fixed points
of functors which may not be inital algebras or
final coalgebras. For an endofunctor F , this fix-
point construction may be expressed as a pair of
adjoint functors between F -coalgebras and F -
algebras. We prove a version of the limit colimit
coincidence theorem for these generalized fixed
points.

1 Middle Fixed Points

The Knaster-Tarski theorem provides a con-
struction of least and greatest fixed points for
a monotone function f : L → L on a complete
lattice L. Consider the following monotone func-
tion on the lattice ([0, 1],≤) of the interval of real
numbers with the usual ordering.

y = x

f (x)

The function f is overlayed with the function
y = x. The intersection of the two curves in-
dicate fixpoints of f . The least fixpoint of f is
0 and the greatest fixpoint is 1 but there are 3
other fixpoints in-between. These “middle” fix-
points have a similar construction to the least
and greatest ones. Given a “pre-fixed point” i.e.
a point x ∈ [0, 1] such that x ≤ f(x) we may
find the first fixpoint above x as

µ(x) = sup{x, f(x), f2(x), f3(x), . . .}

where the . . . indicate iteration to a sufficiently
large ordinal. Similarly, given a “post-fixed
point” f(y) ≤ y, we may find the closest fix-
point below y

ν(y) = inf{y, f(y), f2(y), f3(y), . . .}

. For a complete lattice L, let Pre(f) be the
suborder of L consisting of only the pre-fixed

points x ≤ f(x). Similarly, let Post(f) be the
suborder of post fixed points f(y) ≤ y. Then
there is a Galois connection

Pre(f) Post(f)

µ

⊥
ν

Being a Galois connection means that

µ(x) ≤ y ⇐⇒ x ≤ ν(y)

In this abstract we will generalized this Galois
connection to fixpoints of functors rather than
monotone functions. When generalizing from
posets to categories we make the replacements
shown in Table 1.

2 The Adjunction

In what follows, ω will be the category finite or-
dinals i.e. your favorite category with a count-
able number of objects and one generating mor-
phism from each object to the next. Pictorally,
ω is the category

• • • • . . .

Theorem 2.1. Suppose C is a category with
colimits of shape ω and limits of shape ωop and
suppose that F : C → C preserves limits and
colimits of these shape. Then there is an ad-
junction

Coalg(F ) Alg(F )

µ

⊥
ν

given by
µ(b : B → FB) =

colim( B F (B) F 2(B) · · ·b Fb F 2(b)
)

ν(a : FA→ A) =

lim( A F (A) F 2(A) · · ·a Fa F 2(a)
)

and defined on morphisms using the universal
property of limits and colimits.
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Poset Category
Monotone Function f Functor F
Pre-fixed point of f F -coalgebra
Post-fixed point of f F -algebra

sup{f(x), f2(x), f3(x), . . .} colim(X → F (X)→ F 2(X)→ F 3(X) . . .)
inf{f(x), f2(x), f3(x), . . .} lim(X ← F (X)← F 2(X)← F 3(X) . . .)

Galois connection Adjunction

Figure 1: Generalization of Posets to Categories

Proof. (Sketch) The adjunction isomorphism

Alg(F )(µ(b), a) ∼= Coalg(F )(b, ν(a))

for algebras a : FA→ A and coalgebras b : B →
FB relies on the fact that both sets are naturally
isomorphic to the set of coalgebra to algebra ho-
momorphisms from b to a. Given a coalgebra to
algebra homomorphism

B F (B)

A F (A)

f

b

F (f)

a

we may iterate it countably many times to get
a diagram

B F (B) F 2(B) F 3(B) · · ·

A F (A) F 2(A) F 3(A) · · ·

b Fb F 2b

a Fa F 3a

f F (f) F 2(f) F 3(f)···

The colimit of the top row is µ(b) and the maps
going down and left form a cocone over the dia-
gram for µ(b). Therefore the universal property
for colimits induces a morphism µ(b) → a and
we state without proof that this is an algebra ho-
momorphism. Similarly, the limit of the bottom
row is the coalgebra ν(a) and the morphisms go-
ing right and down form a cone. The universal
property of limits supplies a morphism b→ ν(a).
We state without proof that this morphism is
a coalgebra homomorphism and that the corre-
spondences described here are natural in both
arguments.

Let 1 be the terminal object of C and let 0 be
the initial object. Then there is a unique algebra
1 : F1 → 1 and ν(1) is the terminal coalgebra.
Similarly, the initial algebra is given by µ(0) for
the unique coalgebra 0 : 0 → F0. The initial
algebra and final coalgebra represent finite and
infinite traces respectively [Rut00]. For a coal-
gebra c : X → FX, the algebra µ(c), may be

interpreted as a semantic object for c which rep-
resents neither finite or infinite traces. When F
is a Set-functor, µ(c) contains elements of both
finite traces and infinite traces. In the colimit
for µ, the constants of F generate a copy of its
inital algebra. For each element x ∈ X, there is
an object of µ(c) representing its orbit. In the
colimit for µ every object is identified with its
successor, so in the algebra µ(c) there is one ele-
ment for each equivalence class generated by the
transitive closure of the sucessor relation. Note
that the infinite trace semantics is given by the
unique map c→ ν(1). Transferring this map ac-
cross the adjunction gives the unique morphism
µ(c) → 1. To us, this suggests that the alge-
bra µ(c) is somehow precompiling the final trace
semantics of c. Before moving on to the next
section we state a corollary.

Corollary 2.1. The initial algebra for F is re-
cursive and the final coalgebra for F is corecur-
sive.

Proof. A recursive algebra is one for which there
is a unique coalgebra to algebra homomorphism
into it for any coalgebra. Similarly, a corecur-
sive coalgebra has a unique coalgebra to alge-
bra morphism coming out of it for any alge-
bra. The proof of the adjunction implies that
Coalg(F )(c, ν(1)) ∼= CoAlgToAlg(c, 1) where the
latter set is the set of coalgebra to algebra ho-
morphisms into the terminal algebra. This set
has a unique element implying that ν(1) is core-
cursive. A similar proof holds for the dual state-
ment.

3 µ and ν Coincide With a
Dagger

When coalgebras for a polynomial functor F :
Set → Set are interpreted as F -shaped au-
tomata, the initial F -algebra serves as finite
trace semantics and the terminal F -coalgebra
gives an infinite trace semantics. When F is no
longer a Set-functor this interpretation breaks
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down. For example if F : Rel → Rel, where Rel
is the category of sets and relations, then the
initial algebra and terminal coalgebra coincide
[SP82]. In [Kar19], it is shown that this holds
more generally in any dagger category. With
this coincidence, the initial algebra/final coalge-
bra gives a finite trace semantics instead of an
infinite trace semantics. To obtain a semantics
for infinite traces, Urabe and Hasuo construct
an object which is weakly terminal among coal-
gebras and define the infinite trace semantics as
the maximal map into this object [HU18]. Note
that the limit colimit coincidence causes no is-
sues when µ(c) is interpreted as a semantic ob-
ject for c. However, A generalized limit colimit
coincidence also holds for the fixed points gen-
erated by µ and ν.

Definition 3.1. A dagger category (C, †) is a
category equipped with a functor † : C → Cop

such that †2 = id.

Theorem 3.1. Suppose that (C, †) is a dagger
category with limits and colimits of countable
chains and F : C → C is a dagger functor pre-
serving such limits and colimits. Then there is
an isomorphism

µ(c)† ∼= ν(c†)

for each coalgebra c. Dually, for each algebra a,
there is an isomorphism ν(a)† ∼= µ(a†).

Proof. For a coalgebra X
c−→ FX we have

ν(c†) ∼= lim(X
c†←− FX

Fc†←−− F 2X ← . . .)

∼= colimCop(X
c†←− FX

Fc†←−− F 2X ← . . .)

∼= colim(X
c−→ FX

Fc−−→ F 2X → . . .)

∼= µ(c)†

The second isomorphism is because limits in C
are colimits in Cop and the third isomorphism
is because † preserves colimits because it is an
equivalence. A similar proof holds for the dual
statement.

4 Conclusion

In this extended abstract, we have argued that
middle fixpoints i.e. fixpoints which are nei-
ther initial or terminal are interesting enough
to merit further study. The adjunction µ ⊢ ν, is
closely related to the concept of coalgebra to al-
gebra homomorphisms. These have been studied
in the case when they are unique through the no-
tions or recursive algebras and corecursive coal-
gebras [CUV09]. However, in [H+15], the author

argued that coalgebra to algebra morphisms also
hold interest when they are not unique. Us-
ing examples in probability, dynamical systems,
and a game theory, the authors showed how
non-unique coalgebra to algebra morphisms of-
ten represent solutions to problems in these dis-
ciplines. A morphism out of µ(c) represents a
coalgebra to algebra homomorphism originating
in c and dually for ν(a). In future work, we
hope to recast the examples given in [H+15] in
terms of our adjunction µ and ν to further ex-
plore properties of these fixpoints as semantics
for coalgebras and algebras.
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