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Cyclic proofs are an emerging topic of proof theory that is attracting increasing
interest in the literature. This area originates (in its modern guise) in the con-
text of the modal µ-calculus [NW96, DHL06], serving as an alternative framework
to manipulate least and greatest fixed points, and hence to model inductive and
coinductive reasoning as well as (co)recursion mechanisms.

Cyclic proof theory has been investigated in many settings, such as first-order in-
ductive definitions [BS11, BT19], Kleene algebras [DP17, DP18], automata [KPP19,
DBHS16, Dou17], continuous cut-elimination [FS13, BDS16], linear logic and proof
nets [BDS16, DS19], arithmetic [Sim17, BT17, Das20b], Gödel’s system T [Das20a,
KPP21, Das21], and complexity [CD22a, CD22b].

In this paper we study the computational strength of µLJ and its circular pre-
sentation CµLJ, which are extensions of intuitionistic logic with least and greatest
fixed points introduced by Clairambault in [Cla09, Cla13]. More specifically, we
show that the number-theoretic functions representable in µLJ and CµLJ are ex-
actly those provably total in µPA, a first-order arithmetic with generalised inductive
definitions (see, e.g., [Mos08]). Our fundamental theorem will be established via a
series of inclusions comparing the computational expressivity of µLJ and CµLJ with
various theories of arithmetic:

µPA
(i)

⊆ µHA
(ii)

⊆ µLJ
(iii)

⊆ CµLJ
(iv)

⊆ Π1
2-CA0

(v)

⊆ µPA

We first prove Π0
2-conservativity of µPA over its intuitionistic version, µHA, by stan-

dard double-negation translations (i). Secondly, we show that the provably total
functions of µHA are representable in µLJ using standard realisability techniques
(ii). Thirdly, we show a simulation result relating µLJ and CµLJ (iii). The most
relevant contribution of this paper is the inclusion (iv), where we formalise a totality
argument for circular proofs in Π1

2-CA0, the subsystem of second-order arithmetic
with Π1

2-comprehension and set induction. In particular, the totality argument is
based on hereditary recursive models. We conclude by leveraging on a recent result
by Möllerfeld in [Mö03], who showed that Π1

2-CA0 is arithmetically conservative over
µPA (v).

As a future work, we would like to extend the above methods to other fixed point
logics, such as µLL (i.e., linear logic with least and greatest fixed points) [EJ21,
EJS21] and its multiplicative-additive fragment µMALL [BM07, BDS16]. Also, we
are planning to investigate the computational strength of notable subsystems of µLJ,
such as the those restricting fixed points to parameter-free formulas or to strictly
positive formulas.
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