
Computing Measure of MSO-Definable Sets of
Infinite Trees
Damian Niwiński #

Institute of Informatics, University of Warsaw, Poland

Paweł Parys1 #

Institute of Informatics, University of Warsaw, Poland

Michał Skrzypczak #

Institute of Informatics, University of Warsaw, Poland

Abstract
This work addresses the problem of computing measures of recognisable sets of infinite trees.
An algorithm is provided to compute the probability measure of a tree language recognisable by
a nondeterministic parity automaton, or equivalently definable in monadic second-order logic. The
measure is the uniform coin-flipping measure. As a tool, we develop a so-called unary µ-calculus,
which is a version of µ-calculus with one implicit variable, and allows to compute fixed-point
expressions in chain-complete orders.
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1 Background

The non-emptiness problem asks if an automaton accepts at least one object. From a logical
perspective, it is an instance of the consistency question: does a given specification have a
model? Sometimes it is also relevant to ask a quantitative version of this question: whether a
non-negligible set of models satisfy the specification. When taken to the realm of probability
theory, this boils down to estimating the probability that a random object is accepted by a
given automaton. In this paper, models under consideration are infinite binary trees labelled
by a finite alphabet. Our main problem of interest is the following:

▶ Problem 1. Given a regular tree language L, compute the probability that a randomly
generated tree belongs to L.

In other words, we ask for the probability measure of L. Here, the tree language L might
be given by a formula of monadic second-order logic, but for complexity reasons it is more
suitable to present it by a tree automaton. By default, the considered measure is the uniform
coin-flipping measure, where each letter is chosen independently at random; but also more
specific measures are of interest. If the computed probability is rational then it can be
represented explicitly, but the measure can be irrational (see e.g. [6]), hence may require
more complex representation. One of the possible choices, exploited in this paper, is a
first-order formula over the field of reals R.

Chen, Dräger, and Kiefer [2] addressed Problem 1 in the case where the tree language
L is recognised by a deterministic top-down automaton and the measure is induced by a
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stochastic branching process, which then makes also a part of the input data. Their algorithm
compares the probability with any given rational number in polynomial space and with 0 or
1 in polynomial time. The limitations of this result come from the deterministic nature of
the considered automata: deterministic top-down tree automata are known to have limited
expressive power within all regular tree languages.

Michalewski and Mio [6] stated Problem 1 explicitly and solved it for languages L given
by so-called game automata and the coin-flipping measure. This class of automata subsumes
deterministic ones and captures some important examples including the game languages
[4], but even here the strength of non-determinism is limited; in particular, the class is not
closed under finite union. The algorithm of Michalewski and Mio [6] reduces the problem to
computing the value of a Markov branching play, and uses Tarski’s decision procedure for the
theory of reals. These authors also discover that the measure of a regular tree language can
be irrational, which stays in contrast with the case of ω-regular languages, that is, regular
languages of infinite words, where the coin-flipping measure is always rational [1].

Another step towards a solution to Problem 1 was made by Przybyłko and Skrzypczak [9],
who proposed an algorithm to compute the coin-flipping measure of tree languages definable
in fragments of first-order logic, and of tree languages recognised by safety automata, that is,
non-deterministic automata with a trivial accepting condition. This result was subsumed by
a work of Niwiński, Przybyłko, and Skrzypczak [7], who solve Problem 1 in the case where
the language L is recognised by a weak alternating automaton or, equivalently, defined by a
formula of weak monadic second-order logic.

An analogue of Problem 1 can be stated for ω-regular languages. As noted by Chen et al.
[2], the problem then reduces to a well-known question in verification solved by Courcoubetis
and Yannakakis [3] already in the 1990s, namely whether a run of a finite-state Markov chain
satisfies an ω-regular property. The algorithm runs in single-exponential time with respect
to the automaton (and linear with respect to the Markov chain). A related question was
also studied by Staiger [10], who gave an algorithm to compute Hausdorff dimension and
Hausdorff measure of a given ω-regular language.

At first sight, one may even wonder if Problem 1 is well-stated, as regular tree languages
need not in general be Borel [8]. However, due to Gogacz, Michalewski, Mio, and Skrzypczak
[5], we know that regular languages of trees are always universally measurable.

2 Our result

In the present paper, we solve Problem 1 in its full generality. The computed probability is
presented by a first-order formula over the field of reals. Combined with the known decision
procedures for the theory of reals, this gives the following:

▶ Theorem 2. There is an algorithm that inputs a nondeterministic parity tree automaton
A and a rational number q, and decides if the coin-flipping measure of the language of trees
recognised by A is equal, smaller, or greater than q.

3 Fixed-point techniques in the paper

It is known that parity automata are equivalent to an appropriate version of µ-calculus on
trees. In this paper we indeed work with expressions of µ-calculus.

The key difficulty is that we work in a space of probability distributions D, which is not
a complete lattice. The fundamental obstacle lies in the following fact: having two random
events A, B we can talk about their union A ∪ B and intersection A ∩ B, but knowing only
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the probabilities P(A),P(B) we cannot say what is the probability of P(A ∪ B) or P(A ∩ B).
In consequence, having a monotone function F and an element x0, we cannot ask for the
least fixed point of F above x0 (such a unique least fixed point need not to exist). But fixed
points can be computed in a restricted case, namely if F (x0) ≥ x0; then the unique least
fixed point above x0 is just the limit of repeatedly applying F to x0. This time there is no
obstacle: having an increasing chain of random events A1 ⊆ A2 ⊆ . . . , the probability of
their union

⋃
i Ai is just the limit of their probabilities.

To be more abstract, we notice that the space D under consideration is a chain-complete
order : every chain has a supremum and an infimum. Then, a large part of developments in
our paper work for an arbitrary chain-complete order.

In this paper
we define a so-called unary µ-calculus, which is a version of µ-calculus with one implicit
variable;
we provide a type system guarantying that an expression of the unary µ-calculus returns
a well-defined result in a chain-complete order;
we show an expression of the unary µ-calculus (and a type derivation for it) describing
acceptance by a parity tree automaton.
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