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Intuitionistic temporal logic Temporal logics such as Linear-time Temporal Logic (LTL)
and Computation Tree Logic (CTL) are well studied logics in computer science. Advances
in the proof theory of these logics have shown that ill-founded and cyclic proof calculi are
particularly suitable for capturing the behaviour of their fixed point operators in a syntactic
way (see e.g. [5, 3, 4, 1]). So far, the study of ill-founded proof systems for temporal logics
has remained within the classical realm and their applicability to intuitionistic temporal logics
largely unexplored. In this talk we present work towards filling this gap in the form of a sound
and complete ill-founded sequent calculus for a fragment of intuitionistic LTL.

The known techniques for constructing ill-founded and cyclic systems for classical fixed
point logics do not generalise to the intuitionistic case in a straightforward way, as the se-
mantics of the intuitionistic logics is more involved. A standard way to present the semantics
of intuitionistic logic is in terms of Kripke models (W, <, V'), where < is a partial order on the
set of worlds W and V' a valuation that is monotone in <. A key property of this semantics
is the monotonicity lemma: for all s, € W,

if s <t and s k& ¢, then t = ¢.

The semantics of intuitionistic modal/temporal logics can be given in terms of intuitionistic
Kripke models (W, <, V) equipped with an additional, modal accessibility relation R on W.
In order to satisfy the monotonicity lemma, which is generally taken as a minimal constraint
on any intuitionistic version of a modal logic,! the relations R and < need to satisfy some
confluence property.

The intuitionistic temporal logic ITLF was introduced by Boudou, Diéquez and Fernandez-
Duque [2] and given a complete Hilbert-style axiomatisation. Formulas of ITLg are given by
the following grammar:

¢pu=Llplonglovelod—o|Xo|Fo

'See [9] for a discussion on what qualifies as ‘the’ intuitionistic version of a modal logic.




where p ranges over a set of propositional constants. Formulas X¢ and F¢ represent ‘next ¢’
and ‘eventually ¢’, respectively. The formulas of ITLg are evaluated on dynamic models: an
intuitionistic Kripke model (W, <, V') equipped with a function f : W — W that maps each
state to its temporal successor and that satisfies forward confluence:

if s <t, then f(s) < f(¢).

An ill-founded system for ITL We present a cut-free, ill-founded sequent calculus ITLrF'es’c
that is sound and complete for the intuitionistic linear temporal logic ITLg. To ensure com-
pleteness, the sequent calculus incorporates a simple form of nesting that enables formulas to
be interpreted at different temporal positions. A nested formula, denoted by ¢", is a tuple
(¢,n) with ¢ a formula and n < w, whose interpretation is given by Z(¢") = Z(X"¢), i.e., ¢
preceded by m-many Xs. The interpretation of a sequent I' = A, where I' and A are finite
sets of nested formulas, is then

I(T = A)= N\ Z(a) = \ Z(B).
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The sequent calculus ITLE*® contains the standard axioms and rules for multisuccedent in-
tuitionistic propositional logic (see e.g. [7]), with the restriction that the right implication
rule (-=R) may only be applied to formulas of nesting level 0; this restriction is necessary as
unrestricted use of the —R-rule enables one to prove (X¢ — X)) - X(¢ — 1), which is only
valid on dynamic models that satisfy backward confluence.? In addition, ITLE®" contains the
following modal rules:
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Here we define T'"! = {¢"™ : ¢" € I'}. Note that the rules for F capture the equivalence
Fo = ¢ v XF¢ of this fixed point operator, and that the S-rule (‘shift’) captures modal neces-
sitation.

A proof of ¢" in ITLES is a labelled tree that is built according to the inference rules
such that the root is labelled by = ¢", every leaf is labelled by an axiom and every infinite
branch contains a formula trace that passes through the FL-rule infinitely often. The latter
requirement captures that the interpretation of F is a least fixed point, thereby ensuring
soundness.

Theorem. A nested ITLg formula ¢" is provable in ITLE if and only if X"¢ is valid.

2A dynamic model (W, <, V, f) satisfies backward confluence if whenever ¢ > f(s), there exists a u > s with

f(u)=t.



The proof of soundness proceeds with a standard argument on signatures, functions that
map occurrences of eventually operators in formulas to natural numbers. A similar technique
is used in [1]. The challenging part is the completeness proof, of which we give a sketch below.

Completeness We employ a game-theoretic argument similar to that of Niwinski and
Walukiewicz [8]. Given a sequent o we construct a two-player game, played by Prover (Prov)
and Refuter (Ref), such that a winning strategy for Prov corresponds to the existence of a
proof of o and a winning strategy for Ref to the existence of a countermodel for o. Martin’s
determinacy theorem [6] then implies that every valid formula must be provable.

The game is played on a proof search tree, which represents a search through possible
derivations of o in ITLE*". In the proof search tree, the two non-invertible rules »R and S are
replaced by the following C-rule, which represents the choices Prov can make when applying
a non-invertible rule:

2T ed =) T ed=y? o ST ) =y T=A
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The C-rule will only be applied to a sequent that is saturated, meaning that all invertible rules
have been applied to a sufficient degree.

In the proof search tree, invertible rules represent choices for Ref. A winning strategy
for Ref, also referred to as a refutation, is then a subtree of the proof search tree in which
all branching is due to the C-rule. From such a refutation, we construct a countermodel for
o by treating the rightmost premise of C as temporal successor and all other premises as
intuitionistic successors. The fact that the C-rule may only be applied to saturated sequents
ensures that the intuitionistic order may be extended as to satisfy forward confluence without
breaking monotonicity of the valuation. The nesting is crucial here, as it ensures that saturated
sequents already contain the relevant information about future time steps.

(€)

Outlook As we are aware, the present work constitutes the first completeness proof for
an intuitionistic fixed point logic via proof search. We expect that our approach can be
extended to ITLg interpreted on dynamic models that satisfy backward confluence, and to
the intuitionistic fragment of LTL containing the next and until operator. Further, although
the ill-founded system ITLE®" is analytic, in the sense that premises only contain formulas in
the Fischer-Ladner closure of the conclusion, the nesting levels in a proof can be arbitrarily
large. With the aim of obtaining a cyclic system, we are investigating whether a bound can
be imposed on the nesting level.
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