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We examine some of the proof theory of arithmetic using three proof systems.
1. A linearized version of arithmetic, named ¯̄µMALL, is the multiplicative-additive fragment of lin-

ear logic plus logical connectives to treat first-order term structures: equality, inequality, first-order
quantifier, and the least and greatest fixed point operators. This proof system was studied in [1, 2]
(where it was named µMALL=) and it is known to satisfy cut-elimination and is, therefore, con-
sistent. It also has a focused proof systems that is known to be complete [1].

2. The proof system ¯̄µLKp is an extension of ¯̄µMALL in which contraction and weakening are
permitted. This proof system is a polarized version of classical logic with fixed points. We have
shown that ¯̄µLKp is consistent by embedding it into second-order linear logic [6].

3. ¯̄µLKp+ is a further extension in which the cut rule is permitted. We also show that ¯̄µLKp+ contains
Peano arithmetic and that in a couple of different situations, ¯̄µLKp is conservative over ¯̄µMALL.
Whether or not ¯̄µLKp+ and ¯̄µLKp prove the same theorems is currently open.

Finally, we show that if we can prove (in ¯̄µLKp+) that a given relation encodes a function, then a
simple proof-search-based algorithm using unification and non-deterministic search, can compute that
function. Since we are interested in using ¯̄µMALL, ¯̄µLKp, and ¯̄µLKp+ to study arithmetic, we use
first-order structures to encode natural numbers and fixed points to encode (partially recursive) relations
among numbers. This focus is in contrast to uses of the propositional subset of ¯̄µMALL as a typing
systems (see, for example, [5]). We use invariants to reason about fixed points instead of employing
other methods, such as infinitary proof systems (e.g., [3]) and cyclic proof systems (e.g., [4, 8]).

This abstract is based on a paper presented at Linearity & TLLA 2022 [7].
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