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My First Research Experience 
Jan Kalicki

Born: January 28, 1922, Warsaw, Poland
Died: November 25, 1953, Berkeley, California
MA: 1945, Underground University of Warsaw
Ph.D.: 1948, University of London
1951, Visiting Assistant Professor of Mathematics
1953, Assistant Professor of Philosophy, UC Berkeley
     

Definition. An equational theory is equationally complete if, 
and only if, it is non-trivial, but the addition of
 any non-provable equation renders it trivial.

    
Jan Kalicki and Dana Scott. “Equational completeness of abstract 
algebras.” Indagationes Mathematicae, vol. 17 (1955), pp. 650-659.       

This joint work was done in 1952.
    

Jan Kalicki. “The number of equationally complete classes of equations.” 
Indagationes Mathematicae, vol. 17 (1955), pp. 660-662. 
   

Dana Scott. “Equationally complete extensions of finite algebras.” Indagationes Mathematicae, vol. 18 (1956), 
pp. 35-38
    

Alfred Tarski. “Equationally complete rings and relation algebras.” Indagationes Mathematicae, vol. 18 (1956), 
pp. 39-46.

✲  ✲  ✲  ✲  ✲
    

Jan Zygmunt. "The logical investigations of Jan Kalicki." History and Philosophy of Logic, vol. 2 (1981), pp. 41-53.

Jan Zygmunt. "Alfred Tarski: Auxiliary Notes on His Legacy." In: Ángel Garrido and Urszula Wybraniec-Skardowska, eds. 
The Lvov-Warsaw School. Past and Present.  Springer International Publishing:, 2018, pp. 425-455. 



Knaster-Tarski Fixed Point Theorem 

Alfred (Teitelbaum) Tarski        Bronisław Knaster
Born: January 14, 1901, Warsaw Born:  22 May 1893, Warsaw
Died: October 26, 1983, Berkeley, California Died: 3 November 1980, Wrocław
Ph.D.: 1924, University of Warsaw Ph.D.: 1923,  University of Warsaw

     

 B. Knaster. "Uή theoreme sur les fonctions d'ensembles." Ann. Soc. Polon. Math., vol. 6 (1928),  
 pp. 133-134.          Their joint work was done in 1927. 
     
 A. Tarski. “A lattice-theoretical fixpoint theorem and its applications.” Pacific J. Math., vol. 5  
 (1955), pp. 285 - 309. Most of the results contained in this paper were obtained in 1939. 

 Anne C. Davis. “A characterization of complete lattices.” Pacific J. Math., vol. 5 (1955),  
 pp. 311-319.          This result was found in 1950. 

https://en.wikipedia.org/wiki/Berkeley,_California
https://en.wikipedia.org/wiki/Wroc%C5%82aw
https://en.wikipedia.org/wiki/University_of_Warsaw




Tarski's Generalized Lattice-Theoretric  
Fixed-Point Theorem 

Theorem. In a complete lattice the common fixed points of a 
commutative family of monotone functions form a complete lattice. 

    
B. Banaschewski and G.C.L. Brümmer. “Thoughts on the Cantor-Bernstein Theorem.” 
Quaestiones Mathematicae, vol. 9 (1986), pp. 1-27. 

Outline.   The usual proofs of the well-known set-theoretical theorem "Given one-one maps       
f : A ➔ B and g : B ➔ A, there exists a one-one onto map h : A ➔ B" actually produce a  map      
h : A ➔ B contained in the relation f U g- 1 .  
     

Considering Tarski's Fixed-point Theorem as the implicit basic ingredient of such proofs, the 
authors examine several classical proofs starting with Dedekind (1887), and illuminate their 
common feature by means of the categorical notion of a natural fixed point. The authors 
consider a categorical form of the theorem in a variety of contexts, obtaining some examples of 
categories where the  Cantor-Bernstein Theorem holds and others where it fails.  
     

Among other results it is proved for a topos E, that the Cantor-Bernstein Theorem holds if E is 
Boolean, and conversely if E has a natural number object; moreover, The Axiom of Choice in E 
implies a dual version of Cantor-Bernstein Theorem, and conversely if E has splitting supports 
and a natural number object. 



The Easy Fixed-Point Theorem 

Exercise:  What are the open subsets of P(ℕ) in this topology?


Note: The continuous functions F: P(ℕ) ⟶  P(ℕ) for this topology 
are those where, for all X ∈ P(ℕ) and all finite E ∈ P(ℕ), we have: 

E ⊆ F(X) iff there  is a finite D ⊆ X with E ⊆ F(D).
Such continuous functions are of course monotone for set inclusion. 

Exercise:  The least fixed point of a continuous F: P(ℕ) ⟶  P(ℕ) is 
                                                    ∞ 

Y(F )= ⋃ F n(∅).
    n = 0  

The powerset of the integers, P(ℕ)  = { X | X ⊆ ℕ }, is not only a 
complete lattice, but  it is also a T0-topological space  

with the sets of the form { X ⊆ ℕ | E ⊆ X } as a neighborhood base, 
where E is taken as a finite set.



Enumeration Operators 

Note:  X* consists of all the sequence numbers representing  
all the finite subsets of the set X.


Definition. An enumeration operator  F:P(ℕ) ⟶  P(ℕ)
is a mapping determined by a given subset F ⊆ ℕ by the formula: 

F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }.
The operator is computable iff this set is recursively enumerable. 

Note:  The enumeration operators on P(ℕ)are exactly  
the continuous functions.

 Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability,   
 McGraw-Hill, 1967, xix + 482 pp. 

˙ Definitions. (1) Pairing: (n,m) = 2n(2m+1)-1.     
(2)  Sequence numbers:〈〉= 0 and 

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk)+1. 

(3) Sets: E(0) = ∅ and  E((n,m)+1)= E(n)∪{ m }. 

(4) Kleene star: X* = { n | E(n) ⊆ X }, for sets X ⊆ ℕ.



A λ-Calculus Model 

• Application is a continuous function of two variables. 

• If F(X) is continuous, then λX.F(X) is the largest set  F 

where for all sets T,  we have F(T)= F(T), but note that 
generally we only have F ⊆ λX.F(X). 

• If the function  F(X,Y) is continuous, then the abstraction term 

λX.F(X,Y) is continuous in the other variable. 

• The computable enumeration operators are closed under 

application and abstraction. 

   

Application:  F(X) = { m | ∃n ∈ X*.(n,m) ∈ F } 

Abstraction: λX.[..X..] = { (n,m) | m  ∈ [.. E(n)..] },

            where X ↦ [..X..] is  continuous.



Church's λ-Calculus











Note: The third axiom can be dropped in favor of a theory employing 
properties of a partial ordering, as shown by our model. 

Note: Church defined numerals in the pure λ-calculus, and Kleene 
originally developed partial recursive functions on this basis. 

Definition. The λ-calculus — as a formal equational theory — 
has rules for the explicit definition of functions  

via these well known equational axioms:

α-conversion
 λX.[...X...] = λY.[...Y...]
β-conversion

(λX.[...X...])(T) = [...T...]

η-conversion
   λX.F(X) = F



How to do Recursion in our Model? 

     

Dana Scott. “Data types as lattices.” SIAM Journal on Computing, vol. 5 (1976), pp. 522-587.  

      

      The Basic Theorems. 

   •  All pure λ-terms define computable operators in the model. 

   •  If Φ(X) is continuous and if we let ∇ = λX.Φ(X(X)), then the  
     set  P = ∇(∇) is in fact the least fixed point of Φ.

 •  So, the least fixed-point operator is Y = λF.(λX.F(X(X))(λX.F(X(X)))).

   • The least fixed point of a computable operator is computable.

  The Recursion Theorem.   These computable operators: 
Succ(X)={n+1|n ∈ X },  

Pred(X)={n|n+1 ∈ X }, and  
Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

 together with λ-calculus, suffice for defining all RE sets.



The Category of Closure Operators 
Definition.  A set C = λX.C(X) represents a closure operator iff  

for all X ⊆ ℕ we have X ⊆ C(X) = C(C(X)).

Note. The set of fixed points of a closure operator form a 
lattice and uniquely determine the operator. They give examples 
(up to isomorphism) of all countably based algebraic lattices.

      

       

 Theorem. We have function spaces and thus 
 a category for closure operators via these definitions:

F: C ￫ D  iff  F = D ○ F ○ C
and

( C ￫ D) = λF. D ○ F ○ C, where F ○ G = λX. F(G(X)).  



Products of Closures 

Exercise: Show that I = (I × I).  Are there other such closures? 

Note. We may now regard P(ℕ) = P(ℕ)  ×  P(ℕ), and for A ⊆ P(ℕ) we write

X	A		Y iff Pair(X)(Y) ∈ A.

Note. Every closure operator C determines an equivalence relation over P(ℕ): 

X	[C]		Y iff  C(X) = C(Y) 

Definition. Pairing functions for sets in P(ℕ)  
can be defined by these enumeration operators: 

    

Pair(X)(Y)={2n|n ∈ X } ∪ {2m+1|m ∈ Y }
    

Fst(Z)={n|2n ∈ Z }  and  Snd(Z)={m|2m+1 ∈ Z }.

    Theorem. In the category of closure operators, products of closures can be  
defined as: ( C × D ) = λZ.Pair(C(Fst(Z)))(D(Snd(Z))).    

Theorem. The closure operators as a cartesian closed category is 
equivalent to the category of countably based algebraic lattices.



A Universal Closure Operator 

Hint. The set { X⊆ℕ | F(X)⊆X } is closed under arbitrary intersections, 
and we want C(X) to be defined as the least Y in that set with X⊆Y.   
Thus we can make the theorem into an operator by the definition: 

Clos = λF.λX.Y(λY.(X ∪ F(Y))).  

             

 Theorem. Every enumeration operator F generates a closure 

operator C with range { X⊆ℕ | F(X)⊆X }, 
where we can define 

 C(X) = Y(λY.(X ∪ F(Y))).  

Theorem. Clos(Clos) = Clos.



Using Fixed Points of Closures 

      


Conclusion: The range of D can be made into  
a new model of all the three λ-calculus axioms  

along with a surjective pairing. 

Definition. In the category of closure operators, define: 
D = Y(λD.Clos(D ￫ I)).

      

Theorem. Because D = D ￫ I and I = I × I, we have 
D ≅ D × D  and  D ≅ D ￫ D, 

where we invoke the idea of isomorphism  
in the cartesian closed category of closure operators.



Are There More General Types? 
Definition. The types over P(ℕ) are the (partial) equivalence relations (PERs):

A ⊆ P(ℕ) and where, for all X,Y,Z ∈ P(ℕ), we have 
X	A	Y implies Y	A	X, and

X	A	Y and Y	A	Z imply X	A	Z.

Additionally we often write X:A for X	A	X.
And let T be the class of all such types, which forms a complete lattice.

Definition. The exponentiation of types A,B ⊆ P(ℕ) is defined by:

F(A  ￫ B)G iff ∀X,Y. X A	Y implies F(X)	B	G(Y). 

  Note. F:A  ￫ B implies ∀X. X:A implies F(X):B.

Note. There is much more opportunity now for forming fixed points!

Note. More information on PERs and categorical fixed points can be found in: 

W.P. Stekelenburg. "A note on ‘‘Extensional PERs’’." Journal of Pure and Applied Algebra,  

vol. 215 (2011), pp. 253–256. 



The Category of Types 

Theorem. The types give us a cartesian closed category 
extending the category of closure operations. 

Note: This theorem is originally due to: 

 P. Alexandroff. “Zur Theorie der topologischen Raume.” C.R. (Doklady) Acad. Sci. URSS,  
 vol. 11 (1936), pp, 55-58. 

Definition. The product of types A,B ⊆ P(ℕ) is defined as:
X(A  × B)Y iff Fst(X)A	Fst(Y) and  Snd(X)	B	Snd(Y). 

Note. X:(A  × B) iff Fst(X):A and Snd(X):B	.

Theorem. Every countably based T0-space is  
homeomorphic to a subspace of P(ℕ).

Note:  Every X ⊆ P(ℕ) can be considered as a topological subspace of the the  
powerset. The type corresponding to X is the equivalence relation: 

X[X ]Y iff X = Y ∈ X.



Polymorphic Types 
Note: As the class T of all types is a complete lattice, because it is closed 

under arbitrary intersections, this allows for many typings:

λX.λY.Pair(X)(Y): ∩(A ￫(B￫(A × B)))

       A , B	

Note:  Since a monotone Φ : T￫T has a least fixed point, we can define:  

 Scott	= ∩(A ￫((Scott ￫ A)￫A)),
                           A	

giving types to these numerals. 

  Martın Abadi, Luca Cardelli, & Gordon Plotkin. "Types for the Scott numerals." Unpublished note (1993).	

Definition. The Scott numerals (1963) in λ-calculus are: 

0 = λX.λF.X , 1 = λX.λF.F(0), 2 = λX.λF.F(1), etc., and 

succ = λY.λX.λF.F(Y), and 
pred = λY.Y(0)(λX.X).



Some Conclusions 

• Enumeration operators on P(ℕ) model λ-calculus and have a simple topology. 


• Hence, the category of types (PERs) over P(ℕ) inherits much topology.


• λ-calculus over P(ℕ) together with the arithmetic combinators

provides a basic notion of computability.


• Hence, the category of types over P(ℕ) inherits aspects of computability.

• Polymorphism for types (PERs) then gives an abstract foundation


for defining inductive and co-inductive data structures.

• Also Propositions-as-types can enforce using constructive logic.


• This modeling can in this way function as a laboratory for

exploring many ideas in a very concrete fashion.


Note. The basis for this modeling uses standard impredicative classical logic.

A new constructive, predicative approach is fully presented in:


  Tom de Jong.  Domain Theory in Constructive and Predicative Univalent Foundations.

	 Ph.D.Thesis, University of Birmingham, 2022, 189 pp.




BUT WAIT ... THERE'S MORE ...

    

• Jonathan Sterling found that browsing the works of Marcelo Fiore and his collaborators, especially Gordon 
Plotkin, from the late 1990s made him realize how rudimentary his knowledge of later domain theory was.    He 
especially recommends Fiore's thesis:  

   


Marcelo P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cambridge University Press, 1996, 
254 pp.  

• The papers by Birkedal and collaborators on guarded domain theory are the touchstone for a lot of very 
interesting generalizations of metric approaches to domain theory:

    

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. "The category-theoretic solution of recursive 
metric-space equations." Theoretical Computer Science, vol. 411 (2010), pp. 4102-4122. 

  

Kristian Støvring, Jan Schwinghammer, Rasmus Ejlers Møgelberg, and Lars Birkedal. "First steps in 
synthetic guarded domain theory: step-indexing in the topos of trees." Logical Methods in Computer Science, 
vol. 8 (2012), pp. 1–45.


• And a recent extension of the guarded domain theory program in his paper with Palombi generalizes many of 
earlier results to relative topos theory (e.g. the theory of bounded geometric morphisms):

  

Daniele Palombi and Jonathan Sterling. "Classifying topoi in synthetic guarded domain theory: The Universal 
Property of Multi-clock Guarded Recursion.” In: Proceedings of MFPS 2022, Electronic Notes in Theoretical 
Informatics And Computer Science, vol. 1 (2023), pp. 12-1 – 12-14.


• For other references, see Sterling’s bibliography of guarded domain theory at: 


	 https://www.jonmsterling.com/gdt-bibliography.html 




