
Coinductive algorithms for Büchi automata?

Denis Kuperberg1, Laureline Pinault1, and Damien Pous1

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France

Abstract. We propose a new algorithm for checking language equiva-
lence of non-deterministic Büchi automata. We start from a construction
proposed by Calbrix, Nivat and Podelski, which makes it possible to reduce
the problem to that of checking equivalence of automata on finite words.
Although this construction generates large and highly non-deterministic
automata, we show how to exploit their specific structure and apply
state-of-the art techniques based on coinduction to reduce the state-space
that has to be explored. Doing so, we obtain algorithms which do not
require full determinisation or complementation.

Keywords: Büchi automata · Language equivalence · Coinduction.

1 Introduction

Büchi automata are machines which make it possible to recognise sets of infinite
words. They form a natural counterpart to finite automata, which operate on
finite words. They play a crucial role in logic for their links with monadic second
order logic (MSO) [5], and in program verification. For instance, they are widely
used in model-checking tools, in order to check whether a given program satisfies
a linear temporal logic formula (LTL) [31,13].

A key algorithmic property of Büchi automata is that checking whether two
automata recognise the same language is decidable, and in fact PSpace-complete,
like in the finite case with non-deterministic finite automata. This is how one
obtains model-checking algorithms. Several algorithms have been proposed in
the literature [5,14,1,18] and implemented in various tools [15,30,24].

Two families of algorithms were discovered for non-deterministic automata
on finite words, which drastically improved over the pre-existing ones in practice:
antichain-based algorithms [32,3,10] and algorithms based on bisimulations up
to congruence [4]. In both cases, those algorithms explore the starting automata
by resolving non-determinism on the fly through the powerset construction, and
they exploit subsumption techniques to avoid the need to explore all reachable
states (which can be exponentially many). The algorithms based on bisimulations
up to congruence improve over those based on antichains by using simultaneously

? This work has been funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157),
and was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated
by the French National Research Agency (ANR).

2 D. Kuperberg, L. Pinault, D. Pous.

the antichain techniques and an older technique for deterministic automata,
due to Hopcroft and Karp [17]. Note that both families of algorithms require
exponential space (and time) in worst-case complexity, for a problem which is
only PSpace. In practice however, they perform better than existing PSpace
algorithms, because the latter require exponential time even for best cases.

The antichain-based algorithms could be adapted to Büchi automata by
exploiting constructions to compute the complement of a Büchi automaton, either
Ramsey-based [11,12] or rank-based [9,10]. Unfortunately, those complementation
operations do not make it possible to adapt the algorithms based on bisimulations
up to congruence: those require a proper powerset construction for determinisation,
which is not available for Büchi automata. Here we propose to circumvent this
difficulty using a construction by Calbrix, Nivat, and Podelski [6], which makes
it possible to reduce the problem of checking Büchi automata equivalence to that
of checking equivalence of automata on finite words.

The first observation, which is used implicitly in the so-called Ramsey-based
algorithms from the literature [11,12,1], is that it suffices to consider ultimately
periodic words: if the languages of two Büchi automata differ, then they must
differ on an ultimately periodic word. The second observation is that the set
of ultimately periodic words accepted by a Büchi automaton can be faithfully
represented as a rational language of finite words, for which Calbrix et al. give an
explicit non-deterministic finite automaton. This automaton contains two layers:
one for the prefixes of the ultimately periodic words, and one for their periods.
We show that algorithms like HKC [4] can readily be used to reason about the
prefix layer, without systematically determinising it. The period layer requires
more work in order to avoid paying a doubly exponential price. We show how to
analyse it to compute discriminating sets that summarise the periodic behaviour
of the automaton, and suffice to check language equivalence.

We first recall the algorithms from [4] for checking equivalence of automata on
finite words (Sect. 2). Then we revisit the construction of Calbrix et al., making
their use of the Büchi transition monoid [25] explicit (Sect. 3). We define the new
algorithm HKCω in Sect. 4. We conclude with directions for future work in Sect. 5.

Notation. We denote sets by capital letters X,Y, S, T . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X×Y is their Cartesian product, X]Y
is the disjoint union, XY is the set of functions f : Y → X. The collection of
subsets of S is denoted by P(S). The collection of relations on S is denoted by
Rel(S) = P(S2). Given a relation R ∈ Rel(X), we write x R y for 〈x, y〉 ∈ R. We
fix an arbitrary alphabet A ranged over using lowercase letters a, b. We write A∗

for the set of all finite words over A; ε the empty word; w1w2 the concatenation
of words w1, w2 ∈ A∗; and |w| for the length of a word w and wi for its ith letter
(when i < |w|). We write A+ for the set of non-empty words and Aω for the set
of infinite words over A. We use 2 for the set {0, 1} (Booleans).

A semilattice is a tuple 〈O,+, 0〉 where O is a set of elements, +: O2 → O is
an associative, commutative and idempotent binary operation, and 0 ∈ O is a
neutral element for +. For instance, 〈2,max, 0〉 is a semilattice. More generally
〈P(X),∪, ∅〉 is a semi-lattice for every set X.

Coinductive algorithms for Büchi automata 3

2 Coinductive algorithms for finite automata

We will need to work with Moore machines, which generalise finite automata by
allowing output values in an arbitrary set rather than Booleans. We keep the
standard automata terminology for the sake of readability.

A deterministic finite automaton (DFA) over the alphabet A and with outputs
in O is a triple 〈S, o, t〉, where S is a finite set of states, o : S → O is the output
function, and t : A × S → S is the transition function which returns, for each
letter a ∈ A and for each state x, the next state ta(x). Note that we do not specify
an initial state in the definition of DFA: rather than comparing two DFAs, we
shall compare two states in a single DFA (obtained as disjoint union if necessary).

Every DFA A = 〈S, o, t〉 induces a function [·]A : S → OA
∗
, mapping each

state to a weighted language with weights in O. This function is defined by
[x]A(ε) = o(x) for the empty word, and [x]A(aw) = [ta(x)]A(w) otherwise. We
shall omit the subscript A when it is clear from the context. For a state x of a
DFA, [x] is called the language accepted by x. The languages accepted by some
state in a DFA with Boolean outputs are the rational languages.

2.1 Deterministic automata: Hopcroft and Karp’s algorithm

We fix a DFA 〈S, o, t〉. Coinductive algorithms for checking language equivalence
proceed by trying to find a bisimulation relating the given starting states.

Definition 1 (Bisimulation). Let g : Rel(S) → Rel(S) be the function on
relations defined as

g(R) = {〈x, y〉 | o(x) = o(y) and ∀a ∈ A, ta(x) R ta(y)}

A bisimulation is a relation R such that R ⊆ g(R).

The above function g being monotone, it admits the union of all bisimulations as
a greatest fixpoint, by Knaster-Tarski’s theorem [19,29]. This greatest-fixpoint is
actually language equivalence:

Theorem 1. For all x, y ∈ S, [x] = [y] iff there is a bisimulation R with x R y.

This theorem yields two families of algorithms: on the one hand, backward
algorithms like partition-refinement [16] make it possible to compute the largest
bisimulation, and thus to minimise DFA; on the other hand, forward algorithms
make it possible to compute the smallest bisimulation containing a given pair
of states (if any), and thus to check language equivalence locally, between two
states [17]. The latter problem is the one we are interested in in this paper.
(Unlike with languages of finite words, there is no canonical notion of minimal
automaton for Büchi automata.) For deterministic automata on finite words this
problem is slightly easier complexity-wise: when the starting automaton has size
n, minimisation can be solved in time o(nln(n)) while language equivalence of
two given states can be tested in almost linear time [28].

4 D. Kuperberg, L. Pinault, D. Pous.

input :A DFA A = 〈S, o, t〉 and two states x, y ∈ S
output : true if [x]A = [y]A; false otherwise

1 R := ∅; todo := {〈x, y〉};
2 while todo 6= ∅ do

// invariant: 〈x, y〉 ∈ R ⊆ g(f(R ∪ todo))
3 extract 〈x′, y′〉 from todo;
4 if o(x′) 6= o(y′) then return false;
5 if 〈x′, y′〉 ∈ f(R ∪ todo) then skip;
6 forall a ∈ A do
7 insert 〈ta(x′), ta(y′)〉 in todo;
8 insert 〈x′, y′〉 in R;

9 return true; // because: 〈x, y〉 ∈ R ⊆ g(f(R))

Fig. 1. Coinductive algorithm for language equivalence in a DFA; the function
f on line 5 ranges over the identity for the naive algorithm (Naive(A, x, y)) or e
for Hopcroft & Karp’s algorithm (HK(A, x, y)).

A preliminary algorithm for checking language equivalence of two states
x, y ∈ S is obtained as follows: try to complete the relation {〈x, y〉} into a
bisimulation, by adding the successors along all letters and checking that o agrees
on all inserted pairs. This algorithm is described in Fig. 1; it is quadratic in
worst case since a pair of states is added to the relation R at each iteration. The
standard and almost linear algorithm by Hopcroft and Karp [17,28], can be seen
as an improvement of this naive algorithm where one searches for bisimulations
up to equivalence rather than plain bisimulations:

Definition 2. Let e : Rel(S)→ Rel(S) be the function mapping a relation R to
the least equivalence relation containing R. A bisimulation up to equivalence is a
relation R such that R ⊆ g(e(R)).

This coarser notion makes it possible to take advantage of the fact that language
equivalence is indeed an equivalence relation, so that one can skip pairs of states
whose equivalence follows by transitivity from the previously visited pairs. The
soundness of this technique is established by the following Proposition:

Proposition 1 ([4, Thm. 1]). If R is a bisimulation up to equivalence, then
e(R) is a bisimulation.

Complexity-wise, when looking for bisimulations up to equivalence in a DFA
with n states, at most n pairs can be inserted in R in the algorithm in Fig. 1:
at the beginning, e(R) corresponds to a discrete partition with n equivalence
classes; at each iteration, two classes of e(R) are merged.

Note that Hopcroft and Karp’s algorithm proceeds forward and computes the
smallest bisimulation up to equivalence containing the starting pair of states, if
any. As mentioned above, this contrasts with partition-refinement algorithms [16],
which proceed backward: they start with a coarse partition (accepting v.s. non-
accepting states), which they refine by reading transitions backward.

Coinductive algorithms for Büchi automata 5

2.2 Non-deterministic automata: HKC

A non-deterministic finite automaton (NFA) over the alphabet A and with
outputs in O is a triple 〈S, o, t〉, where S is a finite set of states, o : S → O is the
output function, and t : A× S → P(S) is the transition function which returns,
for each letter a ∈ A and for each state x, a set ta(x) of potential successors. Like
for DFA, we do not specify a set of initial states in the definition of NFA.

We fix an NFA 〈S, o, t〉 in this section and we assume that the set O of outputs
is a semilattice. Under this assumption, an NFA A = 〈S, o, t〉 can be transformed
into a DFA A# = 〈P(S), o#, t#〉 using the well-known powerset construction:

o#(X) =
∑
x∈X

o(x) t#a (X) =
⋃
x∈X

ta(x)

This construction makes it possible to extend the function [·] into a function from
sets of states of a given NFA to weighted languages. It also gives immediately
algorithms to decide language equivalence in NFA: just use algorithms for DFA on
the resulting automaton. Note that when doing so, it is not always necessary to
compute the determinised automaton beforehand. For instance, with coinductive
algorithms like in Fig. 1, the determinised automaton can be explored on the
fly. This is useful since this DFA can have exponentially many states, even when
restricting to reachable subsets.

The key idea behind the HKC algorithm [4] is that one can actually do better
than Hopcroft and Karp’s algorithm by exploiting the semilattice structure of
the state-space of NFA determinised through the powerset construction. This is
done using bisimulations up to congruence.

Definition 3. Let c : Rel(P(S))→ Rel(P(S)) be the function mapping a relation
R to the least equivalence relation H containing R and such that X H Y and
X ′ H Y ′ entail (X ∪X ′) H (Y ∪ Y ′) for all X,X ′, Y, Y ′ ∈ P(S). A bisimulation
up to congruence is a relation R such that R ⊆ g(c(R)).

The function g here is defined as in Sect. 2.1, but with respect to the determinized
DFA with state space P(S), so its type is Rel(P(S))→ Rel(P(S)).

Proposition 2 ([4, Thm. 2]). If R is a bisimulation up to congruence, then
c(R) is a bisimulation.

Checking whether a pair of sets belongs to the congruence closure of a finite
relation can be done algorithmically (see [4, Sect.3.4]). The algorithm HKC [4] is
obtained by running the algorithm from Fig. 1 on A#, replacing the function f on
l.5 with the congruence closure function c. We provide a variant of this algorithm
in Fig. 2, where we prepare the ground for the algorithms we will propose for
Büchi automata. There, we only explore the transitions of the determinised
automaton, leaving aside the verification that the output function agrees on all
pairs. This corresponds to using a function g′ instead of g, defined as

g′(R) =
{
〈x, y〉 | ∀a ∈ A, t#a (x) R t#a (y)

}

6 D. Kuperberg, L. Pinault, D. Pous.

input :A NFA A = 〈S, o, t〉 and two sets of states X,Y ⊆ S
output : a relation R such that [X] = [Y] iff ∀〈X ′, Y ′〉 ∈ R, o#(X ′) = o#(Y ′)

1 R := ∅; todo := {〈X,Y 〉};
2 while todo 6= ∅ do

// invariant: 〈X,Y 〉 ∈ R ⊆ g′(c(R ∪ todo))
3 extract 〈X ′, Y ′〉 from todo;
4 if 〈X ′, Y ′〉 ∈ c(R ∪ todo) then skip;
5 forall a ∈ A do

6 insert 〈t#a (X ′), t#a (Y ′)〉 in todo;
7 insert 〈X ′, Y ′〉 in R;

8 return R;

Fig. 2. HKC’(A, X, Y): computing a pre-bisimulation up to congruence in a NFA.

Indeed, while this verification step is usually done on the fly in order to fail faster
when a counter-example is found (as in Fig. 1, line 4), it will be useful later to
perform this step separately.

As mentioned in the Introduction, the advantage of HKC over HK is that in
practice it often makes it possible to skip reachable subsets from the determinised
automaton, even when the algorithm answers positively, thus achieving substantial
gains in terms of performance: there are families of examples where it answers
positively in polynomial time even though the underlying minimal DFA has
exponential size. Actually it can also improve exponentially over the more recent
antichain-based algorithms [4, Sect. 4]. These latter gains can be explained by
the fact that we focus on language equivalence rather than language inclusion:
while the two problems are interreducible (e.g., [X] ⊆ [Y] iff [X ∪ Y] = [Y]),
working with equivalence relations makes it possible to strengthen the coinductive
argument used implicitly by both algorithms.

3 From Büchi automata to finite words automata

Let 3 be the set {0, 1, ?}. A (non-deterministic) Büchi automaton (NBW) over

the alphabet A is a tuple 〈S, T 〉 where S is a finite set of states, and T : A→ 3S
2

is the transition function. Like for DFA and NFA, we do not include a set of initial
states in the definition. We work with Büchi automata with Büchi transitions
rather than Büchi states, hence the type of T (the two models are equivalent and

the one we chose is slightly more succinct). We write Ta for T (a), x
a−→ x′ when

Ta(x, x′) 6= 0, and x
a

=⇒ x′ when Ta(x, x′) = ?; the latter denote Büchi transitions,
that should be fired infinitely often in order to accept an infinite word.

Given a NBW A = 〈S, T 〉 and w ∈ Aω an infinite word, we say that a sequence
of states χ ∈ Sω accepts w if the sequence (Twi(χi, χi+1))i∈N contains infinitely
many ? and no 0. The ω-language [X]A of a set of states X ⊆ S is the set of
infinite words accepted by a sequence χ such that χ0 ∈ X. The ω-languages
accepted by some set of states in a NBW are the rational ω-languages [5].

Coinductive algorithms for Büchi automata 7

Given a finite word u ∈ A∗ and a finite non-empty word v ∈ A+, write uvω

for the infinite word w ∈ Aω defined by wi = ui if i < |u| and wi = v(i−|u|)mod|v|
otherwise. Ultimately periodic words are (infinite) words of the form uvω for some
u, v ∈ A∗ ×A+. Given an ω-language L ⊆ Aω, we set

UP (L) = {uvω | uvω ∈ L} L$ = {u$v | uvω ∈ L}

UP (L) is a ω-language over A while L$ is a language of finite words over the
alphabet A$ = A] {$}. The first key observation is that the ultimately periodic
words of a rational ω-language fully characterise it:

Proposition 3 ([6, Fact 1]). For all rational ω-languages L,L′, we have that
UP (L) = UP (L′) entails L = L′.

Proof. Consequence of the closure of rational ω-languages under Boolean opera-
tions [5], and the fact that every non-empty rational ω-language contains at least
one ultimately periodic word. ut

As a consequence, to compare the ω-languages of two sets of states in a NBW,
it suffices to compare the ω-languages of ultimately periodic words they accept.
Calbrix et al. show that these ω-languages can be faithfully represented as rational
languages (of finite words):

Proposition 4 ([6, Prop. 4]). If L ⊆ Aω is ω-regular, then L$ is regular.

To prove it, Calbrix et al. construct a NFA for L$ from a NBW A for L, with
two layers. The first layer recognises the prefixes (the u in uvω). This is a copy
of the NBW for L (without accepting states, and where the Büchi status of the
transitions is ignored). This layer guesses non-deterministically when to read the
$ symbol and then jumps into the second layer, whose role is to recognise the
period (the v in uvω). We depart from [6] here, by using notions from [25] which
make the presentation easier and eventually make it possible to propose our
algorithm. We use the (Büchi) transition monoid of the NBW A = 〈S, T 〉 [25] to
define the second layer.

Consider the set 3 as an idempotent semiring, using the following operations:

+ 0 1 ?
0 0 1 ?
1 1 1 ?
? ? ? ?

· 0 1 ?
0 0 0 0
1 0 1 ?
? 0 ? ?

Write M = 3S
2

for the set of square matrices over 3 indexed by S; it forms
a Kleene algebra [7,20] and in particular a semiring. Let I denote the identity
matrix of M . The transition function of A has type A →M ; we extend it to
finite words by setting Tε = I and Tu1...un = Tu1 · · · · ·Tun . We have that Tu(x, x′)
is ? if there is a path along u from x to x′ visiting an accepting transition, 0 if
there is no path from x to x′ along u, and 1 otherwise. We extend the notations
x

u−→ x′ and x
u
=⇒ x′ to words accordingly.

8 D. Kuperberg, L. Pinault, D. Pous.

A periodic word vω is accepted from a state x in A if and only if there is a
lasso for v starting from x: a state y and two natural numbers n,m such that

x
vn−→ y

vm
=⇒ y. This information can be computed from the matrix Tv: given a

matrix M , compute1 its Kleene star M∗ and set

ω(M) = {x ∈ S | ∃y ∈ S, M∗(x, y) 6= 0 ∧M∗(y, y) = ?} . (†)

At this point, one can notice that with the previously defined operations, matrices
and subsets form the Wilke algebra associated to the NBW as in [25].

Lemma 1. For all words v, vω is accepted from a state x iff x ∈ ω(Tv).

We can now formally define the desired NFA: set A$ = 〈S$, o$, T $〉, where
S$ = S] S×M is the disjoint union of S and |S| copies of M , and{
T $
a (x) = {x′ | Ta(x, x′) 6= 0}
T $
a (〈x,M〉) = {〈x,M · Ta〉}

{
T $
$ (x) = {〈x, I〉}
T $
$ (〈x,M〉) = ∅

{
o$(x) = 0

o$(〈x,M〉) = x ∈ ω(M)

The set M can be replaced here by its accessible part M ′ = {Tu | u ∈ A∗}.
The main difference with the construction from [6] is that we use deterministic
automata in the second layer, which enable a streamlined presentation in terms
of matrices—which are not mentioned explicitly in [6]. The construction of A$

preserves the semantics of all sets of states, up to L 7→ L$:

Theorem 2. For all sets X of states from A, we have [X]A$ = ([X]A)$.

Example 1. To illustrate this construction, consider the NBW depicted on the left
in Fig. 3. The state 0 accepts the words with a finite but non-zero number of b’s;
the state 1 only accepts the word aω. Accordingly, we have [0]$A = (a+ b)∗ba∗$a+

and [1]$A = a∗$a+. These are indeed the languages respectively recognised by the
states 0 and 1 from the NFA A$ on the right.

We only depicted the relevant part of the second layer: the only reachable
matrices are those of the form Tu for some word u. There are only three of them
in this example since Ta · Tb = Tb · Ta = Tb · Tb = Tb and Ta · Ta = Ta. We might
want to prune A$ so that all states may reach an accepting state, but we want in
the sequel to exploit the structure shared by the copies of the transition monoid:
they only differ by the accepting status of their states, by definition.

Note that since the second layer ofA$ is already deterministic, one can determinise
A$ into a DFA with at most 2n + 2n3n

2

states, where n is the number of states
of A. This is slightly better than the 2n + 22n

2+n bound obtained in [6].

We summarise the operations defined so far on languages and automata in
Fig. 4; we define the operations in the right-most column in the following section.

1 To compute M∗, one can use the fact that M∗ = (I + M)n with n = |S|, and use
iterated squaring.

Coinductive algorithms for Büchi automata 9

0 1

a, b

b

a

Ta =

(
1 0
0 ?

)
Tb =

(
1 ?
0 0

)
T ∗a = Ta T ∗b = Tb

ω(Ta) = {1} ω(Tb) = ∅

0 1

a, b

b

a

0, I

0, Ta 0, Tb

a b

b

a a, b

1, I

1, Ta 1, Tb

a b

b

a a, b

$ $

Fig. 3. A NBW A (left) and the reachable part of its associated NFA A$ (right).

ω-regular

L : Aω → 2
L1 = L2

ultimately periodic

L : Aω → 2
UP (L1) = UP (L2)

rational

L$: (A$)∗ → 2

L$
1 = L$

2

A+-weigthed

L£ : A∗ → P(A+)

L£
1 = L£

2

NBW
A

[X]A = [Y]A

NFA

A$

[X]A$ = [Y]A$

weighted NFA

A£

[X]A£ = [Y]A£

Ramsey/ranked based HKC HKCω

⇔ ⇔ ⇔

⇔ ⇔

Fig. 4. Summary of the operations and algorithms on languages and automata.

4 HKC for Büchi automata

By Prop. 3 and Thm. 2, given two sets of states X,Y of a NBW A, we have
[X]A = [Y]A iff [X]A$ = [Y]A$. One can thus use any algorithm for language
equivalence on NFA to solve language equivalence on NBW. Given the structure
(and size) of A$, this would however be inefficient: each time the letter $ is read,
the algorithm would explore one of the automata for the second layer, without
ever realising that the transition structure of those automata is always the same,
only the accepting status of their states differ. We show in this section that we
can do better, by using a weighted automata.

Given a an ω-language L, the language L$ can be seen as a weighted language
L£ : A∗ → P(A+) with weights in the semilattice 〈P(A+),∪, ∅〉:

L£ : u 7→
{
v ∈ A+ | uvω ∈ L

}
Given a NBW A = 〈S, T 〉, one can immediately construct a NFA A£ =
〈S£, T£, o£〉 such that for every set of states X, [X]£A = [X]A£ . This is just the
first layer from the previous construction: set S£ = S and

T£
a (x) = {x′ | Ta(x, x′) 6= 0} o£(x) =

{
v ∈ A+ | vω ∈ [x]A

}

10 D. Kuperberg, L. Pinault, D. Pous.

input :A NBW A = 〈S, T 〉
output :The set of discriminating sets D = {ω(Tv) | v ∈ A∗}

1 D := ∅; M := ∅; todo := {I};
2 while todo 6= ∅ do
3 extract M from todo;
4 if M ∈M then skip;
5 forall a ∈ A do
6 insert M · Ta in todo;
7 insert M in M; insert ω(M) in D;

8 return D;

Fig. 5. Discr(A): exploring the Büchi transition monoid of a NBW A to compute
discriminating sets.

Let A£# be the powerset automaton of A£. To use algorithms such as HKC
on A£, it suffices to be able to compare the outputs of any two states of A£#, i.e.,
compare the languages o£#(X) and o£#(Y) for any two sets X,Y ⊆ S. Since
those languages are rational (using the second layer of the previous construction),
it might be tempting to use algorithms such as HK or HKC to perform this task.
We proceed differently in order to exploit the shared structure of those languages.

Lemma 2. For all states x ∈ S and sets X ⊆ S, we have

o£(x) =
{
v ∈ A+ | x ∈ ω(Tv)

}
o£#(X) =

{
v ∈ A+ | X ∩ ω(Tv) 6= ∅

}
Proof. Immediate consequence of Lem. 1 and the definitions of o£ and o£#. Note
that allowing empty v would not change the statement since ω(Tε) = ω(I) = ∅.

Proposition 5. For all sets X,Y ⊆ S,

o£#(X) = o£#(Y) iff for all v ∈ A+, X ∩ ω(Tv) = ∅ ⇔ Y ∩ ω(Tv) = ∅.

This result shows that an explicit computation of o£# is not necessary, as the
knowledge of {ω(Tv), v ∈ A+} is enough to assess whether X and Y have same
output. Let D = {ω(Tv) | v ∈ A+}. We call the sets in D discriminating sets.
Again, allowing empty v here would make no difference: the discrimating set ∅ is
useless to distinguish two sets X,Y ⊆ S. As subsets of S, there are at most 2|S|

discriminating sets. Those can be enumerated since the Tv range over finitely
many matrices (at most 3|S|

2

). This is what is done in the algorithm from Fig. 5.
We finally obtain the algorithm in Fig. 6 for language equivalence in a NBW:

we compute the discriminating sets (D) and a relation (R) which is almost a
bisimulation up to congruence: the outputs of its pairs must be checked against
the discriminating sets, which we achieve with a simple loop (lines 2-4).

Example 2. We execute HKCω on the NBW on the left below, starting with states
{0} and {1}. The transition monoid has 13 elements, which we list in App. A.

Coinductive algorithms for Büchi automata 11

input :A NBW A = 〈S, T 〉 and two sets X,Y ⊆ S
output : true if [X]A = [Y]A; false otherwise

1 R := HKC′(A£, X, Y) || D := Discr(A);
2 forall 〈X ′, Y ′〉 ∈ R, D ∈ D do
3 if X ′ ∩D = ∅ 6⇔ Y ′ ∩D = ∅ then return false;
4 return true;

Fig. 6. HKCω(A, X, Y): checking language equivalence in a NBW using bisimula-
tions up to congruence.

They give rise to three discriminating sets: ∅, {0, 1}, and {0, 1, 2}, which arise
for instance from the three matrices on the right, using formula (†) on page 8:

0 1

2

b

a

b

a

b ab

b

Tb =

1 0 1
1 0 0
1 0 1

 Ta =

0 ? 0
0 ? 1
0 0 0

 Tba =

0 ? 0
0 ? 0
0 ? 0


HKC’ returns the relation R = {〈{0} , {1}〉, 〈{1} , {1, 2}〉}, which contains only two
pairs. The pairs 〈{0, 2} , {0}〉, 〈{1, 2} , {1, 2}〉, and 〈{0} , {0, 2}〉, which are reach-
able from 〈{0} , {1}〉 by reading the words b, aa, and ab, are skipped thanks to the
up to congruence technique. For instance to obtain the pair 〈{0, 2} , {0}〉, starting
from 〈{0} , {1}〉 and 〈{1} , {1, 2}〉 we can obtain 〈{0} , {1, 2}〉 by transitivity, from
which we deduce 〈{0, 2} , {1, 2}〉 by union with 〈{2} , {2}〉. By transitivity and
symmetry we can finally obtain 〈{0, 2} , {0}〉.

The two pairs of R cannot be told apart using the three discriminating sets
and HKCω returns true. States 0 and 1 are indeed equivalent: they accept the
words with infinitely many a’s. If instead we start HKCω from sets {0} and {2}, it
returns false: the discriminating set {0, 1} distinguishes {0} and {2}. Indeed, the
state 2 recognises the words starting with b and with infinitely many a’s.

Note that HKCω can be instrumented to return a counterexample in case of
failure: it suffices to record the finite word u that lead to each pair in R as well
the finite word v that lead to each discriminating set in D: if the check on line 3
fails, the corresponding word uvω is a counter-example to language equivalence.

Also note that HKCω is intrinsically parallel: the computations of D and R
can be done in parallel, and the checks in lines 2-4 can be performed using a
producer-consumer pattern where they are triggered whenever new values are
inserted in D or R. Alternatively, those checks can be delegated to a SAT solver.
Indeed, given a discriminating set D, define the following formula with 2|D|
variables {xd | d ∈ D} ∪ {yd | d ∈ D}:

ϕD =
∨
d∈D

xd ⇔
∨
d∈D

yd

For all sets X,Y ⊆ S, we have X ∩ D = ∅ ⇔ Y ∩ D = ∅ iff ϕD evaluates
to true under the assignment xd 7→ d ∈ X and yd 7→ d ∈ Y . Given the set of

12 D. Kuperberg, L. Pinault, D. Pous.

discriminating sets D, it thus suffices to build the formula ϕD =
∧
D∈D ϕD with

2|S| variables, and to evaluate it on all pairs from the relation R returned by
HKC’. The main advantage of proceeding this way is that the SAT solver might
be able to represent ϕD in a compact and efficient way. If we moreover use an
incremental SAT solver, this formula can be built incrementally, thus avoiding
the need to store explicitly the set D.

One can also use a (incremental) SAT solver in a symmetrical way: Given a pair
of sets 〈X,Y 〉 ∈ S2, define the following formula with |S| variables {xs | s ∈ S}:

ψ〈X,Y 〉 =
∨
s∈X

xs ⇔
∨
s∈Y

xs

For all sets D, we have X∩D = ∅ ⇔ Y ∩D = ∅ iff ψ〈X,Y 〉 evaluates to true under
the assignment xs 7→ s ∈ D. Like previously, one can thus construct incrementally
the formula ψR =

∧
p∈R ψp before evaluating it on all discriminating sets.

5 Conclusion and future work

We presented an algorithm for checking language equivalence of non-deterministic
Büchi automata. This algorithm exploits advanced coinductive techniques to
analyse the finite prefixes of the considered languages, through bisimulations
up to congruence, as in the algorithm HKC for NFA. The periodic part of the
considered languages is also analysed coinductively, in order to compute the
discriminating sets. Those sets make it possible to classify the periodic words
accepted by the various states of the starting automaton, thus providing all the
necessary information together with the analysis of the finite prefixes.

A prototype implementation is available; it makes it possible to test several
combinations of up-to techniques [22].

Our algorithm stems from the construction of Calbrix et al. [6], which we
revisited using notions from [25] in Sect. 3. HKCω is rather close to Ramsey-
based algorithms [11,1] (as opposed to rank-based ones [23,8,9,10]). In particular,
our matrices are often called super-graphs in Ramsey-based algorithms. A key
difference is that we focus on language equivalence, thus enabling stronger
coinductive proof principles.

The next step is to design up-to techniques in order to reduce the exploration
of the periodic layer, to compute the discriminating sets more efficiently. We
provide two such techniques in the extended version of this abstract [21], namely
coinduction up to unions and coinduction up to equivalence. Using the two
techniques at the same time is likely to be possible, i.e., using coinduction up to
congruence; this however requires further investigations, especially in order to
find reasonably efficient ways to perform the corresponding tests.

Along the same vein, we also want to investigate how to exploit techniques
using simulation relations, which were successfully used in [10,1,2,24] and which
tend to nicely fit in the coinductive framework we propose here [4, Sect. 5].

Acknowledgements. We would like to thank Dmitriy Traytel for pointing us to
the work of Calbrix et al. [6].

Coinductive algorithms for Büchi automata 13

References

1. P. A. Abdulla, Y. Chen, L. Clemente, L. Hoĺık, C. Hong, R. Mayr, and T. Vojnar.
Simulation subsumption in ramsey-based Büchi automata universality and inclusion
testing. In Proc. CAV, volume 6174 of Lecture Notes in Computer Science, pages
132–147. Springer, 2010.

2. P. A. Abdulla, Y. Chen, L. Clemente, L. Hoĺık, C. Hong, R. Mayr, and T. Vojnar.
Advanced ramsey-based Büchi automata inclusion testing. In Proc. CONCUR,
volume 6901 of Lecture Notes in Computer Science, pages 187–202. Springer, 2011.

3. P. A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vojnar. When simulation
meets antichains. In Proc. TACAS, volume 6015 of Lecture Notes in Computer
Science, pages 158–174. Springer, 2010.

4. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to
congruence. In Proc. POPL, pages 457–468. ACM, 2013.

5. J. R. Büchi. On a decision method in restricted second order arithmetic. In
S. Mac Lane and D. Siefkes, editors, The Collected Works of J. Richard Büchi,
pages 425–435. Springer New York, New York, NY, 1990.

6. H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of rational
w -languages. In Proc. MFPS, volume 802 of Lecture Notes in Computer Science,
pages 554–566. Springer, 1993.

7. J. H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.
8. L. Doyen and J. Raskin. Improved algorithms for the automata-based approach

to model-checking. In Proc. TACAS, volume 4424 of Lecture Notes in Computer
Science, pages 451–465. Springer, 2007.

9. L. Doyen and J. Raskin. Antichains for the automata-based approach to model-
checking. Logical Methods in Computer Science, 5(1), 2009.

10. L. Doyen and J.-F. Raskin. Antichain Algorithms for Finite Automata. In Proc.
TACAS, volume 6015 of Lecture Notes in Computer Science. Springer, 2010.

11. S. Fogarty and M. Y. Vardi. Büchi complementation and size-change termination.
In Proc. TACAS, volume 5505 of Lecture Notes in Computer Science, pages 16–30.
Springer, 2009.

12. S. Fogarty and M. Y. Vardi. Efficient Büchi universality checking. In Proc. TACAS,
volume 6015 of Lecture Notes in Computer Science, pages 205–220. Springer, 2010.

13. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc. CAV,
pages 53–65. Springer, 2001.

14. S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
nondeterministic Büchi automata. In Proc. Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, pages 96–110. Springer,
2003.

15. G. J. Holzmann. The model checker spin. IEEE Transactions on software engi-
neering, 23(5):279–295, 1997.

16. J. E. Hopcroft. An n log n algorithm for minimizing in a finite automaton. In Proc.
International Symposium of Theory of Machines and Computations, pages 189–196.
Academic Press, NY, USA, 1971.

17. J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite
automata. Technical Report 114, Cornell Univ., December 1971.

18. M. Hutagalung, M. Lange, and E. Lozes. Revealing vs. concealing: More simulation
games for Büchi inclusion. In Proc. LATA, pages 347–358. Springer, 2013.

19. B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société
Polonaise de Mathématiques, 6:133–134, 1928.

http://dx.doi.org/10.1007/978-3-642-14295-6_14
http://dx.doi.org/10.1007/978-3-642-14295-6_14
http://dx.doi.org/10.1007/978-3-642-23217-6_13
http://dx.doi.org/10.1007/978-3-642-12002-2_14
http://dx.doi.org/10.1007/978-3-642-12002-2_14
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1007/3-540-58027-1_27
http://dx.doi.org/10.1007/3-540-58027-1_27
http://dx.doi.org/10.1007/978-3-540-71209-1_34
http://dx.doi.org/10.1007/978-3-540-71209-1_34
http://dx.doi.org/10.2168/LMCS-5(1:5)2009
http://dx.doi.org/10.2168/LMCS-5(1:5)2009
http://dx.doi.org/10.1007/978-3-642-12002-2_2
http://dx.doi.org/10.1007/978-3-642-00768-2_2
http://dx.doi.org/10.1007/978-3-642-12002-2_17
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114

14 D. Kuperberg, L. Pinault, D. Pous.

20. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

21. D. Kuperberg, L. Pinault, and D. Pous. Extended version of this abstract, 2018.
22. D. Kuperberg, L. Pinault, and D. Pous. Web appendix for this paper, 2019.
23. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.

ACM Trans. Comput. Log., 2(3):408–429, 2001.
24. R. Mayr and L. Clemente. Advanced automata minimization. In Proc. POPL,

2013, pages 63–74. ACM, 2013.
25. D. Perrin and J.-É. Pin. Semigroups and automata on infinite words. NATO ASI

Series C Mathematical and Physical Sciences-Advanced Study Institute, 466:49–72,
1995.

26. S. Safra. On the complexity of omega-automata. In Proc. FoCS, pages 319–327.
IEEE, 1988.

27. S. Schewe. Beyond hyper-minimisation—minimising dbas and dpas is np-complete.
In Proc. FSTTCS, pages 400–411, 2010.

28. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

29. A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific
Journal of Mathematics, 5(2):285–309, June 1955.

30. M.-H. Tsai, Y.-K. Tsay, and Y.-S. Hwang. Goal for games, omega-automata,
and logics. In N. Sharygina and H. Veith, editors, CAV, pages 883–889, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

31. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics
for concurrency, pages 238–266. Springer, 1996.

32. M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In Proc. CAV, volume 4144
of Lecture Notes in Computer Science, pages 17–30. Springer, 2006.

http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1006/inco.1994.1037
https://hal.archives-ouvertes.fr/hal-01928701/
http://perso.ens-lyon.fr/damien.pous/covece/hkcw
http://dx.doi.org/10.1145/377978.377993
http://dx.doi.org/10.1145/2429069.2429079
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/11817963_5

Coinductive algorithms for Büchi automata 15

A Further details for Example 2

The transition monoid of the NBW in example 2 is given below, together with
the discriminating sets associated to its elements:

u Tu T ∗u ω(Tu)

ε

1 0 0
0 1 0
0 0 1

 1 0 0
0 1 0
0 0 1

 ∅

a

0 ? 0
0 ? 1
0 0 0

 1 ? ?
0 ? ?
0 0 1

 {0, 1}

b

1 0 1
1 0 0
1 0 1

 1 0 1
1 1 1
1 0 1

 ∅

aa

0 ? ?
0 ? ?
0 0 0

 1 ? ?
0 ? ?
0 0 1

 {0, 1}

ab

? 0 0
? 0 1
0 0 0

 ? 0 0
? 1 1
0 0 1

 {0, 1}

ba

0 ? 0
0 ? 0
0 ? 0

 1 ? 0
0 ? 0
0 ? 1

 {0, 1, 2}
bb

1 0 1
1 0 1
1 0 1

 1 0 1
1 1 1
1 0 1

 ∅

aab

? 0 ?
? 0 ?
0 0 0

 ? 0 ?
? 1 ?
0 0 1

 {0, 1}

aba

0 ? 0
0 ? 0
0 0 0

 1 ? 0
0 ? 0
0 0 1

 {0, 1}

baa

0 ? ?
0 ? ?
0 ? ?

 1 ? ?
0 ? ?
0 ? ?

 {0, 1, 2}
bab

? 0 0
? 0 0
? 0 0

 ? 0 0
? 1 0
? 0 1

 {0, 1, 2}
abab

? 0 0
? 0 0
0 0 0

 ? 0 0
? 1 0
0 0 1

 {0, 1}

baab

? 0 ?
? 0 ?
? 0 ?

 ? 0 ?
? 1 ?
? 0 ?

 {0, 1, 2}

Equations
Taaa = Taa
Tabb = Taab
Tbba = Tba
Tbbb = Tbb
Taaba = Taba
Taabb = Taab
Tabaa = Taa
Tbaaa = Tbaa
Tbaba = Tba
Tbabb = Tbaab

