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Abstract8

We study the positive logic FO+ on finite words, and its fragments, pursuing and refining the work9

initiated in [12]. First, we transpose notorious logic equivalences into positive first-order logic: FO+
10

is equivalent to LTL+, and its two-variable fragment FO2+ with (resp. without) successor available11

is equivalent to UTL+ with (resp. without) the “next” operator X available. This shows that despite12

previous negative results, the class of FO+-definable languages exhibits some form of robustness.13

We then exhibit an example of an FO-definable monotone language on one predicate, that is not14

FO+-definable, refining the example from [12] with 3 predicates. Moreover, we show that such a15

counter-example cannot be FO2-definable. Finally, we provide a new example distinguishing the16

positive and monotone versions of FO2 without quantifier alternation. This does not rely on a17

variant of the previously known counter-example, and witnesses a new phenomenon.18
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1 Introduction24

In various contexts, monotonicity properties play a pivotal role. For instance the field25

of monotone complexity investigates negation-free formalisms, and turned out to be an26

important tool for complexity in general [7]. From a logical point of view, a sentence is called27

monotone (with respect to a predicate P ) if increasing the set of values where P is true in28

a structure cannot make the evaluation of the formula switch from true to false. This is29

crucial e.g. when defining logics with fixed points, where the fixed points binders µX can30

only be applied to formulas that are monotone in X. Logics with fixed points are used31

in various contexts, e.g. to characterise the class PTime on ordered structures [9, 21], as32

extensions of linear logic such as µMALL [2], or in the µ-calculus formalism used in automata33

theory and model-checking [3]. Because of the monotonicity constraint, it is necessary to34

recognise monotone formulas, and understand whether a syntactic restriction to positive (i.e.35

negation-free) formulas is semantically complete. Logics on words have also been generalised36

to inherently negation-free frameworks, such as in the framework of cost functions [4].37

This motivates the study of whether the semantic monotone constraint can be captured38

by a syntactic one, namely the removing of negations, yielding the class of positive formulas.39

For instance, the formula ∃x, a(x) states that an element labelled a is present in the structure.40

It is both monotone and positive. However, its negation ∀x,¬a(x) is neither positive nor41

monotone, since it states the absence of a, and increasing the domain where predicate a is42

true in a given structure could make the formula become false.43
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23:2 Positive and monotone fragments of FO and LTL

Lyndon’s preservation theorem [14] states that on arbitrary structures, every monotone44

formula of First-Order Logic (FO) is equivalent to a positive one (FO+ syntactic fragment).45

The case of finite structures was open for two decades until Ajtai and Gurevich [1] showed46

that Lyndon’s theorem does not hold in the finite, later refined by Stolboushkin [19] with47

a simpler proof. Recently, this preservation property of FO was more specifically shown48

to fail already on finite graphs and on finite words by Kuperberg [12], implying the failure49

on finite structures with a more elementary proof than [1, 19]. However, the relationship50

between monotone and positive formulas is still far from being understood. On finite words51

in particular, the positive fragment FO+ was shown [12] to have undecidable membership52

(with input an FO formula, or a regular language), which could be interpreted as a sign that53

this class is not well-behaved. This line of research can be placed in the larger framework of54

the study of preservation theorems in first-order logic, and their behaviour in the case of55

finite models, see [18] for a survey on preservation theorems.56

In this work we will concentrate on finite words, and investigate this “semantic versus57

syntactic” relationship for fragments of FO and Linear Temporal Logic (LTL). We will in58

particular lift the classical equivalence between FO and LTL [10] to their positive fragments,59

showing that some of the robustness aspects of FO are preserved in the positive fragment,60

despite the negative results from [12]. This equivalence between FO and LTL is particularly61

useful when considering implementations and real-world applications, as LTL satisfiability62

is PSpace-complete while FO satisfiability is non-elementary. It is natural to consider63

contexts where specifications in LTL can talk about e.g. the activation of a sensor, but not64

its non-activation, which would correspond to a positive fragment of LTL. We could also65

want to syntactically force such an event to be “good” in the sense that if a specification is66

satisfied when a signal is off at some time, it should still be satisfied when the signal is on67

instead. It is therefore natural to ask whether a syntactic constraint on the positivity of LTL68

formulas could capture the semantic monotonicity, in the full setting or in some fragments69

corresponding to particular kinds of specifications.70

We will also pay a close look at the two-variable fragment FO2 of FO and its LTL71

counterpart. It was shown in [12] that there exists a monotone FO-definable language72

that is not definable in positive FO. We give stronger variants of this counter-example73

language, and show that such a counter-example cannot be defined in FO2[<]. This is74

obtained via a stronger result characterising FO2-monotone in terms of positive fragments75

of bounded quantifier alternation. We also give precise complexity results for deciding76

whether a regular language is monotone, refining results from [12]. Finally, we provide a77

counterexample showing that the positive and alternation-free fragment of FO2 does not78

capture all alternation-free monotone languages from FO2.79

The goal of this work is to understand at what point the phenomenon discovered in80

[12] comes into play: what are the necessary ingredients for such a counter-example (FO-81

monotone but not FO positive) to exist? And on the contrary, which fragments of FO are82

better behaved, and can capture the monotonicity property with a semantic constraint, and83

allow for a decidable membership problem in the positive fragment?84

Outline and Contributions85

We begin by introducing two logical formalisms in Section 2: First-Order Logic (2.1) and86

Temporal Logic (2.2).87

Then, we lift some classical logical equivalences to positive logic in Section 3. First we88

show that FO+, FO3+ and LTL+ are equivalent in Theorem 20. We prove that the fragment89

FO2+ with (resp. without) successor predicate is equivalent to UTL+ with (resp. without)90



S. Iosti, D. Kuperberg and Q. Moreau 23:3

X and Y operators available in Theorem 26 (resp. Corollary 28).91

In Section 4, we give a characterisation of monotonicity using monoids (Theorem 29)92

and we deduce from this an algorithm which decides the monotonicity of a regular language93

given by a monoid (Section 4.2), completing the automata-based algorithms given in [12].94

This leads us to the Proposition 31 which states that deciding the monotonicity of a regular95

language is in LogSpace when the input is a monoid while it is NL-complete when the input96

is a DFA. This completes the previous result from [12] showing PSpace-completeness for97

NFA input.98

Finally, we study the relationship between semantic and syntactic positivity in Section 5.99

We give some refinements of the counter-example from [12] (a regular and monotone language100

FO-definable but not definable in FO+). Indeed, we show that the counter-example can be101

adapted to FO2 with the binary predicate "between" in Proposition 33, and we show that we102

need only one predicate to find a counter-example in FO in Proposition 34.103

We also consider a characterisation of FO2[<] from Thérien and Wilke [20] stating that104

FO2[<] is equivalent to Σ2 ∩Π2 where Σ2 and Π2 are fragments of FO with bounded quantifier105

alternation. We show that FO2-monotone is characterised by Σ+
2 ∩ Π+

2 .106

We then show that no counter-example for FO can be found in FO2 (without successor107

available) in Corollary 36, and leave open the problem of expressive equivalence between FO2+
108

and FO2-monotone, as well as decidability of membership in FO2+ for regular languages (see109

Conjecture 37).110

To conclude, we provide in Section 5.3 a negative answer to this problem in the context of111

the alternation-free fragment of FO2, providing an example of a monotone language definable112

in FO2 without quantifier alternation, but not definable in the positive fragment of FO2
113

without alternation. This exhibits a new discrepancy between a positive fragment and its114

monotone counterpart, not relying on previous constructions.115

Due to space constraints, some proofs are omitted or only sketched, and can be found in116

the Appendix.117

2 FO and LTL118

We work with a set of atomic unary predicates Σ = {a1, a2, ...a|Σ|}, and consider the set119

of words on alphabet A = P(Σ). To describe a language on this alphabet, we use logical120

formulas. Here we present the different logics and how they can be used to define languages.121

2.1 First-order logics122

Let us consider a set of binary predicates, =, ̸=, ≤, <, succ and nsucc, which will be used to123

compare positions in words. We define the subsets of predicates B0 := {≤, <, succ,nsucc},124

B< := {≤, <} and Bsucc := {=, ̸=, succ,nsucc}, and a generic binary predicate is denoted125

b. As we are going to see, equality can be expressed with other binary predicates in B0126

and B< when we have at least two variables. This is why we do not need to impose that =127

belongs to B0 or B<. The same thing stands for ̸=. Generally, we will always assume that128

predicates = and ̸= are expressible.129

Let us start by defining first-order logic FO:130

▶ Definition 1. Let B be a set of binary predicates. The grammar of FO[B] is as follows:

φ,ψ ::= ⊥ | ⊤ | b(x, y) | a(x) | φ ∧ ψ | φ ∨ ψ | ∃x, φ | ∀x, φ | ¬φ

where b belongs to B.131
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23:4 Positive and monotone fragments of FO and LTL

Closed FO formulas (those with no free variable) can be used to define languages.132

Generally speaking, a pair consisting of a word u and a function ν from the free (non-133

quantified) variables of a formula φ to the positions of u satisfies φ if u satisfies the closed134

formula obtained from φ by replacing each free variable with its image by ν.135

▶ Definition 2. Let φ, a formula with n free variables, x1, ..., xn, and u a word. Let ν be a136

function of {x1, ..., xn} in [[0, |u| − 1]]. We say that (u, ν) satisfies φ, and we define u, ν |= φ137

by induction on φ as follows:138

u, ν |= ⊤ and we never have u, ν |= ⊥,139

u, ν |= x < y if ν(x) < ν(y),140

u, ν |= x ≤ y if ν(x) ≤ ν(y),141

u, ν |= succ(x, y) if ν(y) = ν(x) + 1,142

u, ν |= nsucc(x, y) if ν(y) ̸= ν(x) + 1,143

u, ν |= a(x) if a ∈ u[ν(x)] (note that we only ask inclusion here),144

u, ν |= φ ∧ ψ if u, ν |= φ and u, ν |= ψ,145

u, ν |= φ ∨ ψ if u, ν |= φ or u, ν |= ψ,146

u, ν |= ∃x, φ(x, x1, ..., xn) if there is i of u such that we have u, ν ∪ [x 7→ i] |= φ,147

u, ν |= ∀x, φ(x, x1, ..., xn) if for any index i of u, u, ν ∪ [x 7→ i] |= φ,148

u, ν |= ¬φ if we do not have u, ν |= φ.149

For a closed formula, we simply note u |= φ.150

Here is an example:151

▶ Example 3. The formula φ = ∃x, ∀y, (x = y∨ ¬a(y)) describes the set of non-empty words152

that admit at most one a. For example, {a}{a, b} does not satisfy φ because two of its letters153

contain an a, but {a, b, c}{b}∅ does satisfy φ.154

▶ Remark 4. The predicates succ and nsucc can be expressed in FO+[B<] with three variables.155

If there are no restriction on variables, in particular if we can use three variables, all binary156

predicates in B0 can be expressed from those in B<. Thus, we will consider the whole set157

of binary predicates available when the number of variables is not constrained, and we will158

note FO for FO[B0] or FO[B<], which are equivalent, and similarly for FO+.159

Let us now turn our attention to FO+, the set of first-order formulas without negation.160

We recall definitions from [12].161

▶ Definition 5. The grammar of FO+ is that of FO without the last constructor, ¬.162

Let us also define monotonicity properties, starting with an order on words.163

▶ Definition 6. A word u is lesser than a word v if u and v are of the same length, and for164

any index i (common to u and v), the i-th letter of u is included in the i-th letter of v. When165

a word u is lesser than a word v, we note u ≤A∗ v.166

▶ Definition 7. Let L be a language. We say that L is monotone when for any word u, v167

such that u is lesser than v and u ∈ L, we have v ∈ L.168

▶ Definition 8. If L is a language, we define its monotone closure L↑ := {v ∈ A∗ | ∃u ∈169

L, u ≤A∗ v}. This is the smallest monotone language containing L.170

▶ Proposition 9 ([12]). FO+ formulas are monotone in unary predicates, i.e. if a model171

(u, ν) satisfies a formula φ of FO+, and u ≤A∗ v, then (v, ν) satisfies φ.172
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We will also be interested in other logical formalisms, obtained either by restricting FO,173

or several variants of temporal logics.174

First of all, let us review classical results obtained when considering restrictions on175

the number of variables. While an FO formula on words is always logically equivalent to176

a three-variable formula [10], two-variable formulas describe a class of languages strictly177

included in that described by first-order logic. In addition, the logic FO is equivalent to178

Linear Temporal Logic (see below).179

Please note: these equivalences are only true in the framework of word models. In other180

circumstances, for example when formulas describe graphs, there are formulas with more181

than three variables that do not admit equivalents with three variables or fewer.182

▶ Definition 10. The set FO3 is the subset of FO formulas using only three different variables,183

which can be reused. We also define FO3+ for formulas with three variable and without184

negation. Similarly, we define FO2 and FO2+ with two variables.185

▶ Example 11. The formula ∃y, succ(x, y)∧(∃x, (y ≤ x)∧b(x)∧(∀z, (x ≤ z)∨(z < y)∨a(z)))186

(a formula with one free variable x that indicates that the letter labeled by x will be followed187

by a factor of the form aaaaa...aaab) is an FO3 formula, and even an FO3+ formula: there188

is no negation, and it uses only three variables, x, y and z, with a reuse of x. On the other189

hand, it does not belong to FO2.190

2.2 Temporal logics191

Some logics involve an implicit temporal dimension, where positions are identified with time192

instants. For example, Linear Temporal Logic (LTL) uses operators describing the future,193

i.e. the indices after the current position in a word. This type of logic can sometimes be194

more intuitive to manipulate, and present better complexity properties, as explained in the195

introduction. As mentioned above, FO2 is not equivalent to FO. On the other hand, it is196

equivalent to UTL, a restriction of LTL to its unary temporal operators.197

To begin with, let us introduce LTL, which is equivalent to FO.198

▶ Definition 12. The grammar of LTL is as follows:199

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | φUψ | φRψ | ¬φ.

Removing the last constructor gives the grammar of LTL+.200

This logic does not use variables. To check that a word satisfies an LTL formula, we201

evaluate the formula at the initial instant, that is to say, the word’s first position. The X202

constructor then describes constraints about the next instant, i.e. the following position in203

the word. So the word a.u, where a is a letter, satisfies Xφ if and only if the suffix u satisfies204

φ. The construction φUψ (φ Until ψ) indicates that the formula ψ must be verified at a205

given point in time and that φ must be verified until then. We define φRψ (φ Releases ψ)206

as being equal to ¬(¬φU¬ψ). This is similar to ψU(φ ∧ ψ), but allowing for the option of φ207

never being satisfied and ψ being true until the end. The formal definition of the semantics208

of LTL will be given in a more general setting with additional operators in Definition 16.209

▶ Remark 13. Let us call φXUψ the formula X(φUψ), for any pair (φ,ψ) of LTL formulas.210

The advantage of XU is that X and U can be redefined from XU. The notation U for XU is211

regularly found in the literature.212

LTL is included in Temporal Logic, TL. While the former speaks of the future, i.e. of213

the following indices in the word, thanks to X, U and R, the latter also speaks of the past.214
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23:6 Positive and monotone fragments of FO and LTL

Indeed, we introduce Y, S (Yesterday, Since) and Q the respective past analogues of X, U215

and R.216

▶ Definition 14. The grammar of TL is as follows:217

φ,ψ ::= LTL | Yφ | φSψ | φQψ.

Similarly, the grammar of TL+ is that of LTL+ extended with Y, S and Q.218

▶ Remark 15. As for XU, we will write φYSψ for Y(φSψ), and similarly for XR and YQ.219

We also note Pφ, Fφ, Hφ and Gφ for ⊤YSφ, ⊤XUφ, ⊥YQφ and ⊥XRφ respectively. The220

formulas Fφ and Gφ mean respectively that the formula φ will be satisfied at least once in221

the future (F as Future), and that φ will always be satisfied in the future (G as Global).222

Similarly, the operators P (as Past) and H are the respective past analogues of F and G.223

When evaluating an LTL or TL formula on a word u = u0 . . . um, we start by default224

on the first position u0. However, we need to define more generally the evaluation of a TL225

formula on a word from any given position:226

▶ Definition 16. Let φ be a TL formula, u = u0...um−1 a word, and i ∈ [[0,m − 1]]. We227

define u, i |= φ by induction on φ:228

u, i |= ⊤ and we never have u |= ⊥,229

u, i |= a if a ∈ ui,230

u, i |= φ ∧ ψ if u, i |= φ and u, i |= ψ,231

u, i |= φ ∨ ψ if u, i |= φ or u, i |= ψ,232

u, i |= Xφ if u, i+ 1 |= φ,233

u, i |= φUψ if there is j ∈ [[i,m− 1]] such that u, j |= ψ and for all k ∈ [[i, j− 1]], u, k |= φ,234

u, i |= ψRφ if u, i |= ¬(¬ψU¬φ),235

u, i |= ¬φ if we do not have u, i |= φ,236

u, i |= Yφ if u, i− 1 |= φ,237

u, i |= φSψ if there is j ∈ [[0, i]] such that u, j |= ψ and for all k ∈ [[j + 1, i]], u, k |= φ.238

u, i |= ψQφ if u, i |= ¬(¬ψS¬φ).239

We will write u |= φ as a shorthand for u, 0 |= φ240

Finally, let us introduce UTL and UTL+, the Unary Temporal Logic and its positive241

version. The UTL logic does not use the U or R operator, but only X, F and G to talk about242

the future. Similarly, we cannot use S or Q to talk about the past.243

▶ Definition 17. The grammar of UTL is as follows:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | Yφ | Pφ | Fφ | Hφ | Gφ | ¬φ.

We define UTL[P,F,H,G] from this grammar by deleting the constructors X and Y.244

The grammar of UTL+ is obtained by deleting the last constructor, and similarly, we245

define UTL+[P,F,H,G] by deleting the negation in UTL[P,F,H,G].246

▶ Remark 18. In the above definition, H and G can be redefined with P and F thanks to247

negation, but are necessary in the case of UTL+.248

When two formulas φ and ψ are logically equivalent, i.e. admit exactly the same models,249

we denote it by φ ≡ ψ. Note that a closed FO formula can be equivalent to an LTL formula,250

since their models are simply words. Similarly, we can have φ ≡ ψ when φ is an FO formula251

with one free variable (having models of the form (u, i)) and ψ is a LTL or TL formula, this252

time not using the default first position for TL semantics. We will use both these ways of253

stating equivalence in the following.254
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3 Logical equivalences255

We want to lift to positive fragments some classical theorems of equivalence between logics,256

such as these classical results:257

▶ Theorem 19 ([10, 5]).258

FO and LTL define the same class of languages.259

FO2 and UTL define the same class of languages.260

3.1 Equivalences to FO+
261

We aim at proving the following theorem, lifting classical results from FO to FO+:262

▶ Theorem 20. The logics FO+, LTL+ and FO3+ describe the same languages.263

▶ Lemma 21. The set of languages described by LTL+ is included in the set of languages264

recognised by FO3+.265

The proof is direct, see Appendix A.1 for details. From LTL+ to FO+, we can interpret266

in FO+ all constructors of LTL+.267

Let us introduce definitions that will be used in the proof of the next lemma.268

▶ Definition 22. Let qr(φ) be the quantification rank of a formula φ of FO+ defined269

inductively by:270

if φ contains no quantifier then qr(φ) = 0,271

if φ is of the form ∃x, ψ or ∀x, ψ then qr(φ) = qr(ψ) + 1,272

if φ is of the form ψ ∨ χ or ψ ∧ χ then qr(φ) = max(qr(ψ), qr(χ)).273

▶ Definition 23. A separated formula is a positive Boolean combination of purely past274

formulas (not using future operators X,U,R), purely present formulas (not using any temporal275

operators) and purely future formulas (not using past operators Y,S,Q).276

We will adapt previous work to show the following auxiliary result:277

▶ Lemma 24. Let φ be a TL+ formula with possible nesting of past and future operators.278

There is a separated formula of TL+ that is equivalent to φ.279

Now we are ready to show the main result of this section:280

▶ Lemma 25. The set of languages described by FO+ is included in the set of languages281

recognised by LTL+.282

Proof. We follow [13, Prop. 1, Appendix B.3], which shows a translation from FO to TL by283

induction on the quantification rank. We have adapted this to suit our needs.284

Let φ(x) be an FO+ formula with a single free variable. Let us show by induction on285

qr(φ) that φ is equivalent to a formula of TL+. Notice that we want to show this regardless286

of the set of unary predicates used, so we might use the induction hypothesis on formulas287

with an enriched signature, containing additional unary predicates.288

Initialisation:289

If qr(φ) is zero, then φ(x) translates directly into the TL+ formula. Indeed, disjunctions290

and conjunctions translate immediately into TL+. Furthermore, unary predicates of the form291

a(x) translate into a and binary predicates trivialize into ⊤ and ⊥ (e.g. x < x translates into292

⊥ and x = x into ⊤). For example, (x ≤ x ∧ a(x)) ∨ (b(x) ∧ c(x)) ∨ x < x translates into293

(⊤ ∧ a) ∨ (b ∧ c) ∨ ⊥.294

CVIT 2016



23:8 Positive and monotone fragments of FO and LTL

Heredity:295

Suppose that any FO+ single free variable formula of quantification rank strictly less296

than qr(φ) translates into a TL+ formula, and qr(φ) is strictly positive.297

If φ is a disjunction or conjunction, we need to transform its various clauses. So, without298

loss of generality, let us assume that φ(x) is of the form ∃y, ψ(x, y) or ∀y, ψ(x, y).299

Let us denote a1, . . . , an where n is a natural number, the letters (which are considered300

as unary predicates) in ψ(x, y) applied to the free variable x, i.e. ignoring those under the301

scope of a quantification reusing the variable name x.302

For any subset S of [[1, n]], we note ψS(x, y) the formula ψ(x, y) in which each occurrence303

of ai(x) is replaced by ⊤ if i belongs to S and by ⊥ otherwise, for any integer i of [[1, n]].304

We then have the logical equivalence:

ψ(x, y) ≡
∨

S⊆[[1,n]]

(∧
i∈S

ai(x) ∧
∧
i/∈S

¬ai(x) ∧ ψS(x, y)
)
.

We are going to show that the negations in the above formula are optional. Let us note:

ψ+(x, y) ≡
∨

S⊆[[1,n]]

(∧
i∈S

ai(x) ∧ ψS(x, y)
)
.

Let us then show the equivalence of the formulas ψ(x, y) and ψ+(x, y) using the mono-305

tonicity of ψ as an FO+ formula. First, it is clear that any model satisfying ψ(x, y) satisfies306

ψ+(x, y).307

Conversely, suppose ψ+(x, y) is satisfied. We then have a subset S of [[1, n]] such that308

(∧i∈Sai(x)) ∧ ψS(x, y) is satisfied. In particular, according to the values taken by the309

unary predicates in x, there exists a subset S′ of [[1, n]] containing S such that (∧i∈S′ai(x)) ∧310

(∧i/∈S′¬ai(x))∧ψS(x, y) is satisfied. Now, ψ is monotone in the different predicates a1, . . . , an.311

So (∧i∈S′ai(x)) ∧ (∧i/∈S′¬ai(x)) ∧ ψS′(x, y) is also satisfied, and ψ(x, y) is therefore satisfied.312

The rest of the proof is similar to the proof from [13]: the quantifiers on y commute
with the disjunction on S and the conjunction on i of the formula ψ+. We can therefore
fix a subset S of [[1, n]] and simply consider ∃y, ψS(x, y) or ∀y, ψS(x, y). We then replace
ψS(x, y) with a formula that depends only on y by replacing each binary predicate of the
form b(x, z) with a unary predicate Pb(z). For example, we can replace x < z, z < x or
x = z by a unary predicate P>(z), P<(z) or P=(z). We then obtain a formula ψ′S(y) on an
enriched signature with these new unary predicates P>, P< or P=. We can apply to ψ′S(y)
the induction hypothesis, since there is only one free variable. This yields a formula χ from
TL+, equivalent to ψ′S(y). Notice that words on which χ is evaluated also have to specify
the values of the unary predicates P>, P< or P=. If Σ is the original set of unary predicates,
let Σ′ = Σ ∪ {P>,P<,P=}. For any u ∈ P(Σ)∗, and valuation ν giving the value of the free
variable x in u, there is a unique fν(u) ∈ P(Σ′)∗ such that u is the projection of fν(u) on Σ,
and the values of the new predicates in fν(u) reflect their intended semantic with respect to
x, e.g. P=(z) is true if and only if x = z. We then have for all such u, ν:

u, ν |= ∃y, ψS(x, y) ⇐⇒ fν(u), ν(x) |= Pχ ∨ χ ∨ Fχ,
and

u, ν |= ∀y, ψS(x, y) ⇐⇒ fν(u), ν(x) |= Hχ ∧ χ ∧ Gχ.

Let χ′ be the formula obtained: either Pχ ∨ χ ∨ Fχ or Hχ ∧ χ ∧ Gχ. This formula χ′
313

involves unary predicates of the form Pb. We then use Lemma 24 to transform χ′ into a314

positive Boolean combination of purely past, present and future positive formulas, where315
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predicates Pb trivialize into ⊤ or ⊥, on words of the form fν(u). For example, P< trivializes316

into ⊤ in purely past formulas, into ⊥ in purely present or future formulas.317

This completes the induction. From a formula in FO+, we can construct an equivalent318

formula in TL+. Ultimately, we can return to a future formula. We want to evaluate in319

x = 0, so the purely past formulas, isolated by the separation lemma (Lemma 24), trivialize320

into ⊥ or ⊤.321

Now, to translate a closed formula φ from FO+ to LTL+, we can add a free variable by322

setting φ′(x) = φ ∧ (x = 0). Then, by the above, φ′ translates into a formula χ from LTL+,323

logically equivalent to φ.324

◀325

Putting together Lemma 21 and Lemma 25 achieves the proof of Theorem 20.326

3.2 Equivalences in fragments of FO+
327

▶ Theorem 26. The languages described by FO2+[B0] formulas with one free variable are328

exactly those described by UTL+ formulas.329

Proof. First, let us show the UTL+ to FO2+ direction. In the proof of Lemma 21, as is330

classical, three variables are introduced only when translating U. By the same reasoning331

as for X, it is clear that translating Y introduces two variables. It remains to complete the332

induction of Lemma 21 with the cases of P, F, H and G, but again we can restrict ourselves333

to future operators by symmetry:334

[Fφ](x) = ∃y, x < y ∧ [φ](y) ;335

[Gφ](x) = ∀y, y ≤ x ∨ [φ](y).336

For the converse direction from FO2+ to UTL+, we draw inspiration from [5, Theorem337

1]. This proof is similar to that of [13] used previously in the proof of Lemma 25: we338

perform a disjunction on the different valuations of unary predicates in one free variable to339

build a formula with one free variable. However, the proof of Lemma 25 cannot be adapted340

as is, since it uses the separation theorem which does not preserve the membership of a341

formula to UTL, see [6, Lem 9.2.2]. However, the article [5] uses negations, and we must342

therefore construct our own induction case for the universal quantifier that is treated in [5]343

via negations.344

The beginning of the proof is identical to that of Lemma 25, starting with a formula345

∃y, ψ(x, y) or ∀y, ψ(x, y). Using the same notations, we can reduce to the case of a formula346

∃y, ψS(x, y) or ∀y, ψS(x, y) with no unary predicate applied to x in ψS(x, y), since all those347

predicates have been replaced with ⊤ or ⊥ according to S. Contrarily to the previous proof,348

we cannot directly replace binary predicates with unary predicates, because this relied on349

the separation theorem.350

Let us consider, as in [5], the position formulas, y < x ∧ nsucc(y, x), succ(y, x), y = x,351

succ(x, y) and x < y ∧ nsucc(x, y), whose set is denoted T.352

We then have the logical equivalence:

ψS(x, y) ≡
∨

τ∈T
τ(x, y) ∧ ψS

τ (y) ≡
∧

τ∈T
τ(x, y) =⇒ ψS

τ (y)

where ψS
τ (y) is obtained from the formula ψS(x, y) assuming the relative positions of x353

and y are described by τ . The above equivalence holds because T forms a partition of the354

possibilities for the relative positions of x and y: exactly one of the five formulas τ(x, y)355
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from T must hold. Since x and y are the only two variables, any binary predicate involving356

x is a binary predicate involving x and y (or else it involves only x and is trivial). Binary357

predicates are therefore trivialized according to the position described by τ .358

▶ Example 27. For ψS(x, y) = nsucc(x, y) ∧ a(y) ∧ (∀x, x ≤ y ∨ b(y)) and for the position359

formula τ = y < x ∧ nsucc(y, x), we have ψS
τ (y) = ⊤ ∧ a(y) ∧ (∀x, x ≤ y ∨ b(y)). We do not360

replace the bound variable x. We have obtained a formula with one free variable, so we can361

indeed use the induction hypothesis.362

If we started with the existential form ∃y, ψS(x, y), we will use the disjunctive form363

ψS(x, y) ≡
∨

τ∈T τ(x, y) ∧ ψS
τ (x, y). This allows us to have the quantifier commute with the364

disjunction, and obtain
∨

τ∈T ∃y, τ(x, y) ∧ ψS
τ (x, y). Similarly, if starting with the universal365

form ∀y, ψS(x, y), we will use the conjunctive form ψS(x, y) ≡
∧

τ∈T τ(x, y) =⇒ ψS
τ (x, y).366

We then need to translate ∃y, τ(x, y) ∧ ψS
τ (y) and ∀y, τ(x, y) =⇒ ψS

τ (y), which we note
respectively [τ ]∃ and [τ ]∀, in UTL+, for any position formula τ . We assume ψS

τ fixed in this
context so it is omitted from this notation. However, it is important to note that [τ ]∃ and
[τ ]∀ will still depend on ψS

τ . In each case, we note χ for the UTL+ formula obtained by
induction from ψS

τ (y):

[y < x ∧ nsucc(y, x)]∃ ≡ YPχ

[y < x ∧ nsucc(y, x)]∀ ≡ YHχ

[succ(y, x)]∃ ≡ [succ(y, x)]∀ ≡ Yχ

[y = x]∃ ≡ [y = x]∀ ≡ χ

[succ(x, y)]∃ ≡ [succ(x, y)]∀ ≡ Xχ

[x < y ∧ nsucc(x, y)]∃ ≡ XFχ

[x < y ∧ nsucc(x, y)]∀ ≡ XGχ.

This achieves the proof of Theorem 26. ◀367

▶ Corollary 28. The logic FO2+[B<] is equivalent to UTL+[P,F,H,G].368

Proof. For the right-to-left direction, it suffices to notice that the predicates used to translate369

the constructors of UTL+[P,F,H,G] in the previous proof belong to B<.370

For the left-to-right direction, simply replace the set T in Theorem 26 proof by T′ =371

{y < x, y = x, x < y}. Once again, we obtain an exhaustive system of mutually exclusive372

position formulas that allow us to trivialize binary predicates. The proof of Theorem 26 can373

thus be lifted immediately to this case. ◀374

We showed that several classical logical equivalence results can be transposed to their375

positive variants.376

4 Characterisation of monotonicity377

So far, we have focused on languages described by positive formulas, from which monotonicity378

follows. Here, we focus on the monotonicity property and propose a characterisation. We379

then derive a monoid-based algorithm that decides, given a regular language L, whether it is380

monotone, refining results from [12] focusing on automata-based algorithms.381
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4.1 Characterisation by monoids382

We assume the reader familiar with monoids (see Appendix B.1 for detailed definitions).383

We will note (M, ·) a monoid and ML the syntactic monoid of a regular language L and384

≤L the syntactic order.385

▶ Theorem 29. Let L ⊆ A∗ be a regular language, and ≤L be its syntactic order. The
language L is monotone if and only if we have:

∀(s, s′) ∈ A2, s ⊆ s′ =⇒ h(s) ≤L h(s′)

where h : A∗ → ML denotes the syntactic morphism onto the syntactic monoid.386

Proof. For the left-to-right direction let L be a monotone language and s ⊆ s′. Let m387

and n be two elements of ML such that mh(s)n ∈ h(L). Since h : A∗ → ML is surjective,388

let u ∈ h−1(m) and v ∈ h−1(n). Then usv ∈ L since h recognises L. So us′v ∈ L by389

monotonicity of L. Thus mh(s′)n ∈ h(L). We can conlude that h(s) ≤L h(s′).390

For the converse direction, suppose that ≤L verifies the condition of Theorem 29. We391

can remark that ≤L is compatible with the product of the monoid. Let u ∈ L and v be two392

words such that u ≤A∗ v. Then h(u) ≤L h(v). By definition of the syntactic order, and since393

h(u) is in the accepting set of the monoid, we must have h(v) accepted as well, hence v ∈ L.394

Thus L is monotone.395

◀396

4.2 An algorithm to decide monotonicity397

We immediately deduce from Theorem 29 an algorithm for deciding the monotonicity of398

a regular language L from its syntactic monoid. Indeed, it is sufficient to check for any399

pair of letters (s, s′) such that s is included in s′ whether m · h(s) · n ∈ h(L) implies400

m · h(s′) · n ∈ h(L) for any pair (m,n) of elements of the syntactic monoid, where h denotes401

the syntactic morphism onto the syntactic monoid.402

This algorithm works for any monoid that recognises L through a surjective h : A∗ → M ,403

not just its syntactic monoid. Indeed, for any monoid, we start by restricting it to h(A∗) to404

guarantee that h is surjective. Then, checking the above implication is equivalent to checking405

whether s ≤L s′ for all letters s and s′ such that s is included in s′.406

This is summarised in the following proposition:407

▶ Proposition 30. There is an algorithm which takes as input a monoid (M, ·) recognising a408

regular language L through a morphism h and decides whether L is monotone in O(|A|2|M|2).409

It was shown in [12, Thm 2.5] that deciding monotonicity is PSpace-complete if the410

language is given by an NFA, and in P if it is given by a DFA.411

Recall that in general, the syntactic monoid of a language L may be exponentially larger412

than the minimal DFA of L.413

We give a more precise result for DFA, and give also a refined complexity result for414

monoid input.415

▶ Proposition 31. Deciding whether a regular language is monotone is in LogSpace when416

the input is a monoid while it is NL − complete when it is given by a DFA.417
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5 Semantic and syntactic monotonicity418

The paper [12, Definition 4.2] exhibits a monotone language definable in FO but not in FO+.419

The question then arises as to how simple such a counter-example can be. For instance,420

can it be taken in specific fragments of FO, such as FO2? This section presents a few421

lemmas that might shed some light on the subject, followed by some conjectures, and a422

new counterexample to the equivalence between syntactic and semantic monotonicity in the423

alternation-free fragment of FO2.424

5.1 Refinement of the counter-example in the general case425

In [12, Sec. 4], the counter-example language that is monotone and FO-definable but not
FO+-definable uses three predicates a, b and c and is as follows:

K = ((abc)∗)↑ ∪A∗⊤A∗

where ↑ is the monotone closure from Definition 8, and ⊤ = {a, b, c} is the letter of A426

containing all three predicates. Any word containing ⊤ is therefore in K, which intuitively427

corresponds to ignoring any phenomenon involving this letter, while ensuring monotonicity.428

It uses the following words to find a strategy for Duplicator in EF+
k :

u0 = (abc)n and u1 =
((

a

b

)(
b

c

)(
c

a

))n(
a

b

)(
b

c

)
where n is greater than 2k, and

(
s
t

)
is just a compact notation for the letter {s, t} for any429

predicates s and t.430

This in turns allows to show the failure on Lyndon’s preservation theorem on finite431

structures [12, Sec. 5]. Our goal in this section is to refine this counter-example to more432

constrained settings. We hope that by trying to explore the limits of this behaviour, we433

achieve a better understanding of the discrepancy between monotone and positive.434

In Section 5.1.1, we give a smaller fragment of FO where the counter-example can still435

be encoded. In Section 5.1.2, we show that the counter-example can still be expressed with436

a single unary predicate. This means that it could occur for instance in LTL+ where the437

specification only talks about one sensor being activated or not.438

5.1.1 Using the between predicate439

Here we investigate the robustness of the counter-example by restricting the fragment of440

FO+ in which it can be expressed.441

First, let us define the “between” binary predicate introduced in [11].442

▶ Definition 32. [11] For any unary predicate a (not only predicates from Σ but also Boolean443

combination of them), a also designates a binary predicate, called between predicate, such444

that for any word u and any valuation ν, (u, ν) |= a(x, y) if and only if there exists an index445

i between ν(x) and ν(y) excluded such that (u, [z 7→ i]) |= a(z).446

We denote be the set of between predicates and be+ the set of positive between predicates,447

i.e. positive boolean combination of predicates of the form a↑(x, y) with a ∈ Σ.448

It is shown in [11] that FO2[B0 ∪ be] is strictly less expressive than FO.449

▶ Proposition 33. There exists a monotone language definable in FO2[B0 ∪ be] which is not450

definable in FO2+[B0 ∪ be+].451
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Proof. We will use the following language:

K ′ := K ∪A∗

((
a

b

)2
∪
(
b

c

)2
∪
(
c

a

)2
∪
(
a

b

)(
c

a

)
∪
(
b

c

)(
a

b

)
∪
(
c

a

)(
b

c

))
A∗.

Indeed, in [12, Sec. 4], it is explained that to recognise K in FO, we need to look for some452

“anchor positions”. Such positions resolve the possible ambiguity introduced by double letters453

of the form
(

a
b

)
, that could play two different roles for witnessing membership in ((abc)∗)↑.454

Indeed, if
(

a
b

)
appears in a word, we cannot tell whether it stands for an a or a b. In contrast,455

anchor letters have only one possible interpretation. They may be singletons ({a}, {b}, {c})456

or consecutive double letters such as
(

a
b

)(
c
a

)
which can only be interpreted one way, here as457

bc. For our language K ′, we accept any word containing an anchor of the second kind. This458

means that in remaining words we will only be interested in singleton anchors. Thus, we459

need two variables only to locate consecutive anchors and between predicates to check if460

the letters between the anchors are double letters. See Appendix C.1 for a more detailed461

description of a formula.462

In order to show that K ′ is not definable in FO2+[B0 ∪ be+], it suffices to remark that463

the argument showing that K is not definable in FO+ suffices, because the words u0 and u1464

used in the EF+-game are still separated by K ′. This shows that K ′ is not even definable in465

FO+ so a fortiori it cannot be definable in FO2+[B0 ∪ be+].466

◀467

5.1.2 Only one unary predicate468

Now, let us show another refinement. We can lift K to a counter-example where the set of469

predicates Σ is reduced to a singleton.470

▶ Proposition 34. As soon as there is at least one unary predicate, there exists a monotone471

language definable in FO but not in FO+.472

Proof (Sketch). Suppose Σ reduced to a singleton. Then, A is reduced to two letters which
we note 0 and 1 with 1 greater than 0. We will again rely on the proof from [12, Sec. 4].
We will encode each predicate from {a, b, c} and a new letter # (the separator) into A∗ as
follows: 

[a] = 100
[b] = 010
[c] = 001
[#] = 100001

We will encode the language K as follows:

[K] = (([a][#][b][#][c][#])∗)↑ ∪A∗1(A4\04)1A∗ ∪A∗15A∗.

It remains to verify that K is monotone and FO-definable, and that it is not FO+-definable.473

The choice of encoding guarantees that this is indeed the case and that we can rely on474

properties of the original language K, without any ambiguities introduced by the encoding.475

See Appendix C.2 for details. ◀476

5.2 Stability through monotone closure477

It has been shown by Thérien and Wilke [20] that FO2[B<]-definable languages are exactly478

those that are both Σ2-definable and Π2-definable where Σ2 is the set of FO-formulas of479
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the form ∃x1, ...., xn∀y1, ..., ymφ(x1, ..., xn, y1, ...ym) where φ does not have any quantifier480

and Π2-formulas are negations of Σ2-formulas. Hence, Σ2 ∪ Π2 is the set of FO-formulas in481

prenex normal form with at most one quantifier alternation. Moreover, Pin and Weil [17]482

showed that Σ2 describes the unions of languages of the form A∗
0.s0.A

∗
1.s1.....st.A

∗
t+1, where483

t is a natural integer, si are letters from A and Ai are subalphabets of A.484

In the following, we will use B< as default set of binary predicates for FO2.485

Even though we do not know yet whether FO2+ captures the set of monotone FO2-486

definable languages, we can state the following theorem:487

▶ Theorem 35. The set Σ+
2 ∩Π+

2 of languages definable by both positive Σ2-formulas (written488

Σ+
2 ) and positive Π2-formulas (written Π+

2 ) is equal to the set of monotone FO2-definable489

languages.490

Proof (Sketch). We start by showing that Σ+
2 captures the set of monotone Σ2-definable491

languages. This can be done thanks to a syntactic characterisation of Σ2-definable languages492

given by Pin and Weil [17]: a language is Σ2-definable if and only if it is a union of493

languages of the form A∗
0.s0.A

∗
1.s1.....st.A

∗
t+1. Next, we introduce a dual closure operator494

L⋏ = ((Lc)↓)c that allows a finer manipulation of monotone languages. This allows us to495

lift the previous result to Π2 languages. Taken together, these results show that the set of496

languages definable by both positive Σ2-formulas and positive Π2-formulas is exactly the set497

of monotone FO2-definable languages. See Appendix D for details. ◀498

This last result shows how close to capturing monotone FO2-definable languages FO2+
499

is. However, it does not seem easy to lift the equivalence Σ2 ∩ Π2 = FO2 to their positive500

fragments as we did for the other classical equivalences in Section 3. Indeed, the proof from501

[20] relies itself on the proof of [17] which is mostly semantic while we are dealing with502

syntactic equivalences.503

Since languages in Σ+
2 ∩ Π+

2 are in particular in FO+, Theorem 35 implies that a counter-504

example separating FO-monotone from FO+ cannot be in FO2[B<] as stated in the following505

corollary:506

▶ Corollary 36. Any monotone language described by an FO2[B<] formula is also described507

by an FO+ formula.508

If the monotone closure L↑ of a language L described by a formula of FO2[B<] is in509

FO+, nothing says on the other hand that L↑ is described by a formula of FO2[B<], or510

even of FO2[B0] as the counterexample L = a∗bc∗ba∗ shows. The monotone closure L↑
511

cannot be defined by an FO2[B0] formula. This can be checked using for instance Charles512

Paperman’s software Semigroup Online [16]. Notice that the software uses the following513

standard denominations: DA corresponds to FO2[B<], and LDA to FO2[B0].514

We give the following conjecture, where FO2 can stand either for FO2[B<] or for FO2[B0]515

▶ Conjecture 37.516

A monotone language is definable in FO2 if and only if it is definable in FO2+.517

It is decidable whether a given regular language is definable in FO2+
518

Since we can decide whether a language is definable in FO2 and whether it is monotone,519

the first item implies the second one.520
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5.3 The alternation-free fragment of FO2+
521

We consider in this section the alternation-free fragment of FO2, and its FO2+ counterpart,522

as a first step towards understanding the full logic FO2+ (recall that we are using B< as the523

default set of binary predicates here). The alternation hierarchy of FO2 has been studied524

extensively in recent years (for example in [22]), and might be an angle through which525

tackling Conjecture 37. The first level of this hierarchy (the alternation-free fragment) enjoys526

several characterisations. In particular, it corresponds to the variety of languages recognised527

by J-trivial monoids, which entails in particular the decidability of membership for this528

fragment. We exhibit a counter-example to an analog of Conjecture 37 for this fragment,529

namely a language that is monotone and definable in FO2 without alternation, but not530

definable in FO2+ without alternation. This constitutes a new counter-example separating531

monotonicity from positivity, and the first one that is not relying on the language K from532

[12] but exploits instead a different phenomenon.533

We will work over the set of unary predicates Σ = {1}, and A = P(Σ) = {∅, {1}}. To534

simplify notations, we will think of A as the set of letters {0, 1} — 0 representing the empty535

set and 1 the singleton {1}. The language L is defined as the monotone closure of 1+01+,536

that is L = 1+01+ + 1+11+. The language L is monotone by definition. It is definable in537

FO2 without alternation: FO2 allows to describe the property of having a given subword538

appearing, or not appearing, in a word, and it is straightforward to give a description of L in539

terms of this kind of property. See Appendix E.1.540

We now show that this language is indeed a counterexample to Conjecture 37 for the541

logic FO2 without alternation:542

▶ Proposition 38. The language L is not definable in FO2+ without alternation.543

Proof (Sketch). We make use of the Ehrenfeucht-Fraïssé game for FO2+ without alternation544

(see Appendix E). Fix a natural number n, and consider the words u = 12n01 ∈ L and545

v = 12n0 /∈ L. We show that Duplicator wins EF2+
n,alt−free(u, v), which entails that there is546

no FO2+ formula without alternation that can define L. The idea is that Spoiler has to play547

in u because v is a subword of u (so Duplicator can copy the moves of Spoiler); but when548

Spoiler plays in u, Duplicator can try to mimic Spoiler’s moves in the block 12n, and Spoiler549

can only win by showing that the two words have different sizes, which cannot be done in550

less that n+ 1 turns. The details of the proof can be found in Appendix E.2. ◀551

Note that this counterexample contradicts the first item of an analog of Conjecture 37552

for the alternation-free fragment of FO2, but whether the alternation-free fragment of FO2+
553

has decidable membership remains open.554

Conclusion555

We have investigated how the tension between semantic and syntactic positivity behaves556

in FO-definable languages. We paid a close look to how this plays out in relation to557

monoids, complexity of procedures, LTL, and fragments of FO. We show that despite earlier558

negative results from [12] such as indecidabiilty of membership in FO+, this logic retains559

some robustness, as equivalence with LTL+ can be obtained, even at the level of specific560

fragments FO2+[B<] and FO2+[B0]. We show that the counter-example language K from561

[12] can be lifted to show that some positive fragments of FO differ from their monotone562

counterpart, while for some other fragment, namely alternation-free FO2, we provide a new563

counter-example relying on a different mechanism. We leave the question open for the FO2
564

fragment, that we consider to be an interesting challenge.565
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A Positive Linear Temporal Logic629

A.1 Proof of Lemma 21630

Proof. Let us show the lemma by induction on the LTL+ formula. We inductively construct631

for any formula φ of LTL+, a formula φ⋆(x) of FO3+ with one free variable that describes632

the same language. This just amounts to remove the negation case in the classical proof, no633

additional difficulty here.634

⊥⋆ = ⊥,635

⊤⋆ = ⊤,636

a⋆ = a(x),637

(φ ∧ ψ)⋆(x) = φ⋆(x) ∧ ψ⋆(x),638

(φ ∨ ψ)⋆(x) = φ⋆(x) ∨ ψ⋆(x),639

(Xφ)⋆(x) = ∃y, succ(x, y) ∧ φ⋆(y),640

(φUψ)⋆(x) = ∃y, x ≤ y ∧ ψ⋆(y) ∧ ∀z, (z < x ∨ y ≤ z ∨ φ⋆(z)),641

(ψRφ)⋆(x) = (φU(ψ ∧ φ))⋆(x) ∨ (∀y, y < x ∨ φ⋆(y)).642

The translation of a formula φ of LTL+ into a closed formula of FO3+ is therefore643

∃x, x = 0 ∧ φ⋆(x), where x = 0 is short for ∀y, y ≥ x.644

This construction makes it possible to reuse the variables introduced. This is why we can645

translate the formulas of LTL+ into FO3+. ◀646

A.2 Proof of Lemma 24647

Proof (Sketch). This follows by simply combining observations from previous proofs of648

variants of the separation theorem. Our starting point is the proof given by Kuperberg649

and Vanden Boom in [13, Lemma 5, Appendix B.2], which proves the equivalence between650

generalisations of the logics FO and LTL, to the so-called cost FO and cost LTL. When651

specialised to FO and LTL, this corresponds to the case where negations appear only at the652

leaves of formulas. This brings us closer to our goal.653

Let us emphasize that [13] proves a generalised version of the separation theorem from654

[8]. In [8], it is proven that any formula of TL is equivalent to a separated formula, while a655

particular attention to positivity is additionally given in [13]. Indeed, [13] also shows that656

such a Boolean combination can be constructed while preserving the formula’s positivity.657

One can also check [15] to verify that positivity of a formula is kept when separating the658

formula. Thus, a formula in TL+ can be written as a positive Boolean combination of purely659

past, present and future formulas themselves in TL+. ◀660
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B Monoids661

B.1 Algebraic definitions662

▶ Definition 39. A monoid is a pair (M, ·) where · is an associative internal composition
law on the non-empty set M, which has a neutral element noted 1M (or simply 1 when there
is no ambiguity), i.e. which verifies:

∀m ∈ M, 1 ·m = m · 1 = m.

We allow ourselves the abuse of language which consists in speaking of the monoid M663

instead of the monoid (M, ·).664

▶ Definition 40. Let (M, ·) and (M′, ◦) be two monoids. An application h defined from M
into M′ is a morphism of monoids if:

∀(m1,m2) ∈ M2, h(m1 ·m2) = h(m1) ◦ h(m2)

and
h(1M) = 1M′ .

▶ Definition 41. Let (M, ·) be a monoid, and ≤ an order on M. We say that ≤ is compatible665

with · if:666

∀(m,m′, n, n′) ∈ M4,m ≤ n ∧m′ ≤ n′ =⇒ m ·m′ ≤ n · n′.

▶ Definition 42. Let L be a language and (M, ·) a finite monoid. We say that M recognises667

L if there exists a monoid morphism h from (A∗, .) into (M, ·) such that L = h−1(h(L)).668

▶ Definition 43. Let L be a regular language, and u, v ∈ A∗ be any two words. We define
the equivalence relation of indistinguishability denoted ∼L on A∗. We write u ∼L v if:

∀(x, y) ∈ A∗ ×A∗, xuy ∈ L ⇐⇒ xvy ∈ L.

Similarly, we write u ≤L v if:

∀(x, y) ∈ A∗ ×A∗, xuy ∈ L =⇒ xvy ∈ L.

The ≤L preorder is called the L syntactic preorder.669

▶ Definition 44. Let L be a regular language. We define the syntactic monoid of L as670

ML = L/ ∼L.671

▶ Remark 45. This is effectively a monoid, since ∼L is compatible with left and right672

concatenation. Moreover, the syntactic monoid recognises L through syntactic morphism.673

Moreover, we can see that the order ≤L naturally extends to an order compatible with the674

product on the syntactic monoid. We will use the same notation to designate both the675

pre-order ≤L and the order induced by ≤L on ML, which we will call syntactic order.676

B.2 Proof of Proposition 31677

Proof. First, in the algorithm from Proposition 30, at any given time, we only need to code678

two letters from A = P(Σ) and two elements from the monoid M. So we can code s and s′
679

with |Σ| bits and increment them through the loop in order to go through the whole alphabet.680
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For example, if Σ = {a, b, c} then a is coded by 001, {a, b} by 010 and so on. In the same681

way, we only need 2⌈log2(M)⌉ bits to code (m,n). Using lookup tables for applying the682

function h, the product ·, and testing membership in h(L), all operations can be done in683

LogSpace. Thus, the algorithm from Proposition 30 is in LogSpace.684

To decide whether a DFA B describes a monotone language, we can compute the NFA B↑
685

by adding to each transition (q0, a, q1) of B any transition (q0, b, q1) with b greater than a.686

Thus, B↑ describes the monotone closure of the language recognised by B. Then, B recognises687

a monotone language if and only if there is no path from an initial to a final state in the688

product automaton B × B↑, where B is the complement of B, obtained by simply switching689

accepting and non-accepting states. As NFA emptiness is in NL, DFA monotonicity is in NL690

as well.691

Now, let us suppose we have an algorithm which takes a DFA as input and returns692

whether it recognises a monotone language. Notice that the DFA emptiness problem is still693

NL − complete when restricted to automata not accepting the empty word ε. We will use this694

variant to perform a reduction to DFA monotonicity. Suppose we are given a DFA B on an695

alphabet A which does not accept ε. We build an automaton B′ on A ∪ {⊤} by adding the696

letter ⊤ to A in B, but without any ⊤-labelled transition. Now, let us equip A ∪ {⊤} with697

an order ≤ such that a ≤ ⊤ for any letter a of A. Then the new automaton B′ recognises a698

monotone language if and only if B recognises the empty language. Indeed, suppose we have699

a word u of length n accepted by B. Then, B′ would accept u but not ⊤n which is bigger700

than u. Reciprocally, if B recognises the empty language then so does B′ and the empty701

language is a monotone language. Notice that we omitted here the constraint of using a702

powerset alphabet in order to give a shorter description of the proof, but it is straightforward703

to additionally enforce the restriction of powerset alphabet. Thus, the monotonicity problem704

is NL − complete when the input is a DFA.705

◀706

C Refinements of the counter-example language K707

C.1 An FO2[B0 ∪ be]-formula for the counter-example708

Let us give a formula for the counter-example from Proposition 33.709

Let us notice that the successor predicate is definable in FO2[B< ∪ be], so results from710

[11] about the fragment FO2[<, be] apply to FO2[B0 ∪ be] as well.711

So it is easy to describe A∗(⊤ ∪
(

a
b

)2 ∪
(

b
c

)2 ∪
(

c
a

)2 ∪
(

a
b

)(
c
a

)
∪
(

b
c

)(
a
b

)
∪
(

c
a

)(
b
c

)
)A∗ and to712

state that factors of length 3 are in (abc)↑ ∪ (bca)↑ ∪ (cab)↑.713

If d ∈ Σ, let us note {d} the predicate stating that d is the only true atomice predicate,714

i.e. {d}(x) := d(x) ∧
∧

e∈Σ\{d} ¬e(x).715

Now, for any atomic predicates s and t (i.e. s, t ∈ {a, b, c}), let us pose:716

φs,t = ∀x, ∀y,

(
s(x) ∧ t(y) ∧ x < y ∧ ¬

∨
d∈Σ

{d}(x, y)
)

=⇒ ψs,t(x, y)

where ψs,t(x, y) is a formula stating that the two anchors are compatible, i.e. either they717

both use the “upper component” of all the double letters between them, or they both use the718

“bottom component”. Recall that ¬
∨

d∈Σ{d}(x, y) means that there is no singleton letter719

between x and y.720

CVIT 2016



23:20 Positive and monotone fragments of FO and LTL

For example, ψa,b(x, y) is the disjunction of the following formulas:

(
b
c

)
(x+ 1) ∧

(
a
b

)
(y − 1)(

a
b

)
(x+ 1) ∧

(
c
a

)
(y − 1)

x+ 1 = y

Indeed, the first case correspond to using the upper component of
(

b
c

)
and

(
a
b

)
: anchor a721

in position x is followed by the upper b in position x+ 1, which should be consistent with722

the upper a in position y − 1 followed by anchor b in position y, the factor from x + 1 to723

y − 1 being of the form (
(

b
c

)(
c
a

)(
a
b

)
)+. Similarly, the second case corresponds to the bottom724

component. The last case corresponds to anchors directly following each other, without an725

intermediary factor of double letters. This case appears only for (s, t) ∈ {(a, b), (b, c), (c, a)}726

Now using the conjunction of all formulas φs,t where s and t are atomic predicates a, b, c,727

we build a formula for the language of Proposition 33.728

C.2 Proof of Proposition 34729

Suppose Σ reduced to a singleton. Then, A is reduced to two letters which we note 0 and 1
with 1 greater than 0. We will again rely on the proof from [12, Sec. 4]. We will encode each
predicate from {a, b, c} and a new letter # (the separator) into A∗ as follows:

[a] = 100
[b] = 010
[c] = 001
[#] = 100001

Thus, the letter
(

a
b

)
will be encoded by [ab] = 110, etc. We will encode the language K

as follows:
[K] = (([a][#][b][#][c][#])∗)↑ ∪A∗1(A4\04)1A∗ ∪A∗15A∗.

First, let us verify that [K] is monotone. Indeed, [K] is defined as the union of K1 =730

(([a][#][b][#][c][#])∗)↑ and K2 = A∗1(A4\04)1A∗ ∪A∗15A∗. It is clear that K1 is monotone731

since it is defined as a monotone closure, and K2 is monotone as well, since it is defined by732

local monotone patterns. Since monotone languages are closed under union, [K] is monotone.733

The role of adding K2 here is to ensure that words breaking the encoding pattern because of734

monotonicity constraints are all accepted, and can therefore be ignored.735

We now show that [K] is FO-definable. Let us show how the separator [#] is used. Let736

w be a word over A∗. If w contains a factor of the form 1u1 where u is a word of 4 letters737

containing the letter 1, then w immediately belongs to [K]. This is easy to check with an738

FO-formula so we can suppose that w does not contain such a factor. Similarly, we can739

suppose that 15 (corresponding to ⊤ in the original K) is not a factor of w. Then, it is easy740

to locate a separator since 100001 will always be a separator factor. Therefore, we can locate741

factors coding letters in w. Then we can do the same thing as [12] to find an FO-formula: we742

have to fix some anchors (factors coding letters whose roles are not ambiguous as explained743

in the proof of Proposition 33) and check whether they are compatible. For example, suppose744

w contains a factor of the form [a][#]([ab][#][bc][#][ca][#])n[bc]. Then [a] is an anchor. The745

last factor [ca][#][bc] is also an anchor since it can only be interpreted as ([a][#][b])↑ as a746

witness of membership in [K]. Since there are no anchors in between [a] and [bc] we just747

have to verify their compatibility. Here it is the case: in between the anchors, each [ab] can748
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be interpreted as [b]↑, [bc] as [c]↑ and [ca] as [a]↑. If we were to replace the first [a] with [c],749

this [c] would still be an anchor but would not be compatible with the next anchor [bc]. This750

achieves the informal description of an FO-formula for [K], adapted from the one from [12]751

to accomodate the encoding.752

Furthermore, it is not FO+-definable, for the same reason as for K. Indeed, let k ∈ N
be an arbitrary number of rounds for an EF+-game, as described in [12, Sec. 3.3]. We can
choose n > 2k such that Duplicator has a winning strategy for u0 and u1 defined as follows:

[u0] = ([a][#][b][#][c][#])n and [u1] = ([ab][#][bc][#][ca][#])n[ab][#]

where [ab] = 110, [bc] = 011 and [ca] = 101.753

We can adapt the strategy for u0 and u1 (from [12, Lemma 4.4]) to [u0] and [u1]. For754

example, if Spoiler plays the i-th letter of a factor [bc], then it is similar to playing the letter755 (
b
c

)
in u1. Thus, if Duplicator answers by playing the j-th b or c in u0, then he should answer756

by playing the i-th letter of the j-th [b] or [c] respectively, for any natural integers i and j.757

In the same way, if Spoiler plays in a separator character, then Duplicator should answer by758

playing the same letter of the corresponding separator character in the other word according759

to the strategy.760

D Stability through monotone closure: Proof of Theorem 35761

In order to prove Theorem 35, we shall introduce a useful definition:762

▶ Definition 46. For any language L, we write L⋏ = ((Lc)↓)c for the dual closure of L,763

where Lc stands for the complement of L and L↓ := {u ∈ A∗ | ∃v ∈ L, u ≤A∗ v} is the764

downwards monotone closure of L.765

▶ Remark 47. L⋏ is the greatest monotone language included in L for any language L.766

Indeed, for u ∈ A∗, we have u ∈ L⋏ if and only if u /∈ (Lc)↓ if and only if u↑ ⊆ L. In767

particular, a monotone language is both equal to its monotone closure and its dual monotone768

closure.769

Now, let us show the following lemma:770

▶ Lemma 48. The set Σ+
2 captures the set of monotone Σ2-definable languages.771

Proof. First, any formula from Σ+
2 is in particular a formula from Σ2, and also a formula772

from FO+, so the language it describes is monotone and Σ2-definable.773

Next, it is enough to show that the monotone closure of a Σ2-definable language is774

Σ+
2 -definable.775

So let us consider a Σ2-definable language L. Since a disjunction of Σ+
2 formulas is equival-776

ent to a Σ+
2 formula, we can suppose thanks to [17] that L is of the form A∗

0.s0.A
∗
1.s1 . . . st.A

∗
t+1777

as explained above.778

Therefore, L↑ is described by the following Σ+
2 -formula:

∃x0, ..., xt, x0 < ... < xt ∧
t∧

i=0
si(xi) ∧ ∀y,

t+1∧
i=0

((y ≤ xi−1) ∨ (xi ≤ y) ∨Ai(y))

where B(x) for a subalphabet B means
∨

b∈B b(x), and y ≤ x−1 is ⊤.779

◀780

This immediately gives the following lemma which uses the same proof:781
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▶ Lemma 49. The set Σ−
2 (Σ2-formulas with negations on all predicates) captures the set of782

downwards-closed Σ2-definable languages.783

We can now deduce the following lemma:784

▶ Lemma 50. The set Π+
2 captures the set of monotone Π2-definable languages.785

Proof. Then again, we only need to show the difficult direction.786

Let L be a Π2-definable language. It is enough to show that L⋏ is Π+
2 -definable according787

to Remark 47.788

By definition of Π2, the complement Lc of L is Σ2-definable. Hence, (Lc)↓ is definable by789

a Σ−
2 -formula φ given by Lemma 49. Therefore, ¬φ is a formula from Π+

2 describing L⋏. ◀790

Finally, we can prove Theorem 35:791

Proof. Thanks to [20], it is straightforward that any language from Σ+
2 ∩ Π+

2 is monotone792

and FO2-definable.793

Let L be a monotone FO2-definable language.794

In particular, L belongs to Σ2 and is monotone. Thus, by Lemma 48, L belongs to Σ+
2 .795

Similarly, L belongs to Π+
2 by Lemma 50. ◀796

E Games797

Erhenfeucht-Fraïssé games and their variants are traditionally used to prove negative ex-798

pressivity results of FO fragments. We provide here a variant that characterises the fragment799

FO2+ without quantifier alternations, which is used in the proof of proposition 38.800

▶ Definition 51. Let u and v be two words over an ordered alphabet A, and k ∈ N. We801

denote by EF 2+
k,alt−free(u, v) the following game (the Erhenfeucht-Fraïssé game for FO2+

802

without alternations with k turns over u and v), between two players Spoiler and Duplicator.803

Both players have two token (t1S, t2S and t1D, t2D), initially not in play, that they will place804

on positions in the words u and v. Before the first turn, Spoiler chooses u or v, and will805

place his tokens only in that word; Duplicator will play only in the other word.806

A turn consists in Spoiler placing or moving one of his tokens trS in his chosen word, and807

Duplicator answering by placing trD in the other word, respecting the following rule: if trS is808

on position irS and trD on position irD, and i1S < i2S, then i1D < i2D; and similarly if i1S > i2S or809

i1S = i2S. Note that this rule says nothing for the first turn, where no token is placed yet.810

After each turn, Duplicator loses the game if either:811

she could not place her token without breaking the rule;812

or the letters a1
u, a2

u, a1
v and a2

v in u and v pointed by the tokens (if they are placed) do813

not satisfy ar
u ≤ ar

v.814

If Duplicator did not lose after a turn, and it was not the k-th turn, then a new turn begins.815

If Duplicator did not lose after turn k, then Duplicator wins the game. In the particular case816

k = 0, Duplicator wins automatically.817

The fundamental property of this game, allowing to prove expressibility results about818

FO2+ without alternation, is the following:819

▶ Theorem 52. Spoiler has a winning strategy for EF 2+
k,alt−free(u, v) if and only there is a820

closed formula φ in FO2+ without alternation, with quantifier depth at most k, such that821

u |= φ, but v ̸|= φ.822
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Proof. We adapt the standard proofs for Ehrenfeucht-Fraïssé games to our setting, in the823

context of positive logic (see [12, Theorem 5.7]). We start as usual by generalising the824

statement to formulas with free variables.825

A configuration for a word u of length n is a partial map c : {x, y} → [[1, n]] (representing826

the positions of the tokens t1 and t2 on u when defined, or the fact that the token is not yet827

placed when undefined). We show that Spoiler has a winning strategy for EF 2+
k,alt−free(u, v)828

where some tokens are possibly initially placed on the words (respecting the fact that Spoiler829

and Duplicator must play in different words exclusively; in particular, Spoiler cannot choose830

his word if at least one token is already placed, and if k = 0, Duplicator wins if and only831

if the tokens are placed so as to respect the constraints of the game) if and only if there832

is a formula φ (non-necessarily closed) in FO2+ without alternation, with quantifier depth833

at most k, such that u, c |= φ, but v, c′ ̸|= φ, where c and c′ are the configurations on u834

and v associated with the current placement of the tokens; moreover, if Spoiler has one or835

both tokens in u in the initial configuration, then φ does not contain the quantifier ∀; and836

if Spoiler has one or both tokens in v in the initial configuration, φ does not contain the837

quantifier ∃. This statement clearly implies the theorem.838

We prove the statement by induction on k.839

Case k = 0: Assume first that Spoiler wins the game. Since there is no turn to be taken,840

and Duplicator wins automatically if no token is placed, at least one token must be placed.841

Since Spoiler wins, this means that the positions of the tokens do not respect one of the842

constraints. For example, if t1S points to a position i1u in u, and t1D points to i1v in v, with843

the associated letters au and av such that au ≰ av, then the formula au(x) is satisfied by u844

but not by v. If the order of the tokens is not respected, we use a formula of the form x < y.845

All cases are similar to these.846

Now, assume that there is a formula φ without quantifiers satisfied by (u, c) but not by847

(v, c′). Rewriting φ in disjunctive form
∨
φi, there is i such that u satisfies φ but v does not.848

Since φi is a conjunction of atomic formulas (since there are no quantifiers), there is some849

atomic formula ψ satisfied by u, but not by v. The formula ψ cannot be ⊤ or ⊥, so it has to850

be of the form a(x), x < y or x ≤ y. In all cases, the formula ψ witnesses a failure of the851

tokens to respect the constraints of the game, so Spoiler wins immediately.852

Case k > 0: First, assume that there is a formula φ with quantifier depth k, no quantifier853

alternation, satisfied by (u, c) but not (v, c′), and respecting the constraints on quantifiers854

appearing in it. Then as in the base case writing φ is disjunctive form, we obtain a formula855

ψ which is either atomic or starts with a quantifier, and that is satisfied by u but not by856

v. If ψ is atomic, as in the base case Spoiler wins immediately. Otherwise, ψ starts with a857

quantifier. We distinguish the cases where tokens are already placed, or not.858

If there is no token already placed in the configuration, then assume that ψ is ∃x, θ (the859

other cases with variable y or quantifier ∀ are similar, just changing the token and the word in860

which Spoiler plays). Then Spoiler places token t1S in u on a position such that θ is satisfied by861

(u, c) where c is the new configuration in u. Since v does not satisfy ψ, Duplicator will place862

t1D in some position such that (v, c′) is not satisfied by θ where c′ is the new configuration863

on v. The quantifier depth of θ is at most k − 1, and θ cannot contain the quantifier ∀ since864

φ was alternation-free. By induction, Spoiler wins the game EF 2+
k−1,alt−free(u, v) starting865

with these configurations, so also EF 2+
k,alt−free(u, v) in the initial configuration.866

If there is a token already placed for Spoiler in u (again, the other case is similar, replacing867

∃ by ∀), then ψ has to start with a ∃, and we can apply the same strategy as previously868

since Spoiler keeps playing in the same word and we cannot encounter the quantifier ∀ since869

φ does not contain it.870
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This concludes the proof of the first direction.871

Conversely, assume that Spoiler wins the game EF 2+
k,alt−free(u, v) starting with configura-872

tions c and c′ on u and v. Assume that Spoiler plays his first winning move — say by placing873

t1S — in u (either because the initial configurations force him to, or because he chooses to in874

his first move) — as usual, the other case is treated similarly by exchanging ∃ and ∀ — and875

denote by d, d′ the new configurations after Duplicator answered this first move.876

Spoiler must win the game EF 2+
k−1,alt−free(u, v) on these new configurations, so by877

induction there is some formula ψd′ of quantifier depth at most k − 1 containing no ∀878

quantifier that is satisfied by (u, d) and not by (v, d′) (note that this formula depends on879

d′, i.e. on Duplicator’s move). Consequently, the formula
∧

d′ ψd′ is satisfied by (u, d),880

but by none of the (v, d′) where d′ spans all possible configurations after Duplicator’s first881

move. And finally, the formula φ = ∃x,
∧

d′ ψd′ is satisfied by (u, c), as is witnessed by the882

position played in Spoiler’s first move, but is not satisfied by (v, c′), as is witnessed by all of883

Duplicator’s possible answers.884

This formula φ has quantifier depth at most k, and contains no quantifier ∀, so is indeed885

the formula we where looking for.886

This concludes the proof. ◀887

Note that this game and the associated theorem could be adapted to talk about sublogics888

of FO obtained by restricting the number of available variables (the corresponding game is889

the same, but using a different amount of tokens for each player); and by restricting the890

number of alternations to some number m (the corresponding game being the same, but891

allowing Spoiler to change the word in which he plays at most m times).892

Finally, this theorem has the following immediate consequence, which allows to prove893

inexpressibility results in FO2+ without alternations:894

▶ Corollary 53. A language L over an ordered alphabet A is definable in FO2+ without895

alternations if and only if there is some k such that for all words u ∈ L and v /∈ L, Spoiler896

wins EF 2+
k,alt−free(u, v).897

Proof. If L is definable, consider a formula φ defining it, and k its quantifier depth. Then898

by theorem 52, Spoiler wins EF 2+
k,alt−free(u, v).899

Conversely, recall first that there is finitely many inequivalent formulas in FO2+ without900

alternation of depth at most k (this is a consequence of the similar fact for FO2, and the901

fact that all formulas in FO2+ are equivalent to a formula of FO2 with the same depth).902

If Spoiler wins EF 2+
k,alt−free(u, v) for all u ∈ L and v /∈ L, then for all such (u, v) there is a903

formula φu,v without alternation and of quantifier depth at most k satisfied by u and not by v.904

These formulas are finitely many (up to equivalence), and the infinite formula
∨

u∈L

∧
v /∈L φu,v,905

which defines L, is in fact equivalent to a finite positive boolean combination of finitely many906

formulas φu,v. Hence, L is defined by this formula, which is without alternation and of depth907

at most k, as needed. ◀908

E.1 An alternation-free formula for the counterexample of Section 5.3909

The language 1+11+ can be defined by the formula stating that all letters are 1, and there910

are at least three letters:911

φ111 = (∀x, 1(x)) ∧ (∃x,∃y, (y > x) ∧ ∃x, (x > y))

and the language 1+01+ is defined by the conjunction of the formulas:912
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ψ0 = ∀x(1(x) ∨ ∀y, (y = x ∨ 1(y)))

stating that there is at most one 0, and:913

ψ101 = ∃x(¬1(x) ∧ ∃y, (y < x ∧ 1(y)) ∧ ∃y(y > x ∧ 1(y)))

stating that 101 appears as a subword (note that the only instance of a negation is in914

this last formula).915

The language L is the union of these two languages, so in definable in FO2 without916

alternation.917

E.2 Proof of Proposition 38918

We will make use of the Ehrenfeucht-Fraïssé game for FO2+ without alternation (see Appendix919

E for details on this game). Fix a natural number n, and consider the words u = 12n01 ∈ L920

and v = 12n0 /∈ L. We will show that Duplicator wins EF2+
n,alt−free(u, v), which will entail921

that there is no FO2+ formula without alternation that can define L.922

First, assume that Spoiler plays in v. Then Duplicator can copy in u all positions played923

by Spoiler in v; the letters played by Spoiler and Duplicator are the same, so Duplicator924

wins the game (with any number of turns).925

Now assume that Spoiler plays in u.If Spoiler plays a token in one of the first n positions,926

say at position i ∈ [[0, n− 1]], then Duplicator copies the same position in v, except if this927

position is already taken by the other token and Spoiler did not play both tokens at the same928

place, in which case Duplicator plays i or i− 2 depending on which of these two positions929

respects the order of the tokens in u. If Spoiler plays a token in the last n+ 2 positions, say930

at position i ∈ [[n, 2n+ 1]], then Duplicator answers by playing i− 1 except if the position931

is already taken by the other token, in which case Duplicator applies the same strategy as932

before. Recall that it is allowed for Duplicator to answer a position labelled 1 in v to a move933

of Spoiler labelled 0 in u, as only an inequality between labels has to hold.934

We see that one of the optimal plays for Spoiler against this strategy is to play position935

n as his first move, to which Duplicator answers with n− 1, then "pushing" the tokens of936

Duplicator by playing successively n − 1 with his other token (forcing Duplicator to play937

n − 2), and so on, until Spoiler can play the first position 0, to which Duplicator cannot938

answer. This takes n+ 1 moves, so this is not enough for Spoiler to win in the n-round game.939

Another choice is to start by playing position n− 1 in u, that Duplicator replicates in v, and940

then increasing positions one by one until Duplicator is forced to answer 1 with 0 at position941

2n. This takes n+ 2 moves, so Duplicator still wins the n-round game. Any deviation of942

Spoiler from these strategies will be useless, as Duplicator can end up in the same position943

as in these plays, but after Spoiler has consumed more rounds. This shows that Duplicator944

wins the n-round game with this strategy, and concludes the proof.945
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