On Finite Domains in First-Order Linear Temporal Logic

Julien Brunel David Chemouil Denis Kuperberg

ONERA/DTIM - IRIT

04/07/2015 LCC, Kyoto

Introduction

Alloy Language

- Specification language based on First-Order Logic
- ► Inspired by UML, user-friendly
- ▶ Arbitrary predicates → Expressivity

Alloy Analyzer

- ▶ Bounded verification → Decidability
- ▶ Use of SAT solvers → Efficiency, quick feedback
- ▶ 2015: unveiled a security breach in Android permission system

```
Example of Alloy Specification:
open util/ordering [Book] as BookOrder
sig Addr {}
sig Name {}
sig Book {
    names: set Name,
     addr: names→some Addr}
pred add [b1, b2: Book, n: Name, a: Addr] {
    b2.addr = b1.addr + n \rightarrow a
pred del [b1, b2: Book, n: Name, a: Addr] {
     b2.addr = b1.addr - n \rightarrow a
fact traces {
   all b: Book—BookOrder/last
      let bnext = b.BookOrder/next |
         some n: Name, a: Addr
            add [b, bnext, n, a] or del [b, bnext, n, a]}
```

One object book for each time instant. Tedious way of modeling time and reasoning about it.

Alloy Analyzer

Model finder

```
//Show a model where some name has two different addresses run {some b: Book, n: Name, disj a1, a2: Addr | a1 in n.(b.addr) and a2 in n.(b.addr)}
```

Property checker

```
assert delUndoesAdd {
   all b1, b2, b3: Book, n: Name, a: Addr |
      no n.(b1.addr) and add [b1, b2, n, a] and del [b2, b3, n, a]
      implies b1.addr = b3.addr
}
check delUndoesAdd
```

```
Electrum : Alloy + new dedicated time operators like ' (value at
the next instant) and always:
sig Addr {}
sig Name {
  var addr : set Addr
pred add [n: Name, a: Addr] {
    addr' = addr + n \rightarrow a
pred del [n: Name, a: Addr] {
addr' = addr - n \rightarrow a
fact traces {
    always {
           some n: Name, a: Addr | add [n, a] or del [n, a]}
Infinite number of time instants, that can be referred to easily with
a specialized syntax.
```

FO-LTL

Asbtraction: The logic FO-LTL.

LTL: Good properties of expressivity and complexity, widely used in verification to model infinite time traces.

The logic FO-LTL:

$$\varphi ::= (x_1 = x_2) \mid P_i(x_1, \ldots, x_n) \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi \mid \text{next} \varphi \mid \varphi \text{until} \varphi.$$

We also define eventually $\varphi = true$ until φ and always $\varphi = \neg eventually (\neg \varphi)$.

We use FO-LTL as underlying logic of the new language Electrum.

- First-Order variables x_i: finite domain
- ▶ Implicit time: infinite domain N

What is the theoretical cost of adding LTL?

Complexity

BSAT Problem: Given φ and N, is there a model for φ of First-Order domain of size at most N? Parameters:

- ► Logic: FO versus FO-LTL
- ► Encoding of *N*: unary versus binary
- ▶ Rank of formulas (nested quantifiers): bounded (\bot) versus unbounded (\top).

Complexity

BSAT Problem: Given φ and N, is there a model for φ of First-Order domain of size at most N?

Parameters:

- ► Logic: FO versus FO-LTL
- ► Encoding of *N*: unary versus binary
- ▶ Rank of formulas (nested quantifiers): bounded (\bot) versus unbounded (\top).

Theorem

	N unary	N binary
FO ⊥	NP-complete	NEXPTIME-complete
FO ⊤	NEXPTIME-complete	NEXPTIME-complete
FO-LTL ot	PSPACE-complete	EXPSPACE-complete
FO-LTL $ op$	EXPSPACE-complete	EXPSPACE-complete

Ideas of the proofs

Membership:

- Guess a structure and verify it,
- ▶ Re-encode the formula for bounded rank,
- Use PSPACE LTL Satisfiability.

Hardness

- Reduce from Turing machines or SAT for NP-hardness,
- Encode states and alphabet in the signature,
- Structure encodes space/time for FO and space for FO-LTL,
- ightharpoonup a(x,t) for "cell x at time t is labeled a",
- Use binary encoding for x and t for unbounded unary,
- formula in the wanted fragment encode run of the machine.

Finite Model Theory

Finite Model Property: If there is a model there is a finite one. FO Fragments with FMP;

- ightharpoonup [$\exists^* \forall^*, all$]= (Ramsey 1930)
- ▶ $[\exists^* \forall \exists^*, all]_=$ (Ackermann 1928)
- $ightharpoonup [\exists^*, all, all] = (Gurevich 1976)$
- ▶ $[\exists^* \forall, all, (1)] = (Grädel 1996)$
- ► FO₂ (Mortimer 1975) : 2 variables.

Theorem

Adding next, eventually preserves FMP if the fragment imposes no constraint on the number and arity of predicates/functions.

True for all above fragments except Grädel: only one function of arity one.

Axioms of infinity

In general, adding LTL allows to write axioms of infinity:

With one existential variable:

$$\mathrm{always}(\exists x. P(x) \land \mathrm{next}(\mathrm{always} \neg P(x)))).$$

Without nesting quantifiers in temporal operators:

$$\forall x \exists y. P(c) \land \text{always}(P(x) \Rightarrow \text{next}(P(y) \land \text{always} \neg P(x))).$$

Without always:

$$\forall x \exists y. P(c) \land ((P(x) \land P(y)) \text{until}(\neg P(x) \land P(y))).$$

Conclusion

Theoretical study of FO-LTL versus FO

- Complexity
- Finite model property

On-going work with Univ. of Minho/IRIT

- Implementation of different verification procedures for Electrum:
 - Reduce to LTL satisfiability
 - Reduce to Alloy
- Use of efficient solvers
- ► Comparison with TLA and B