
On Finite Domains in First-Order Linear
Temporal Logic

Julien Brunel David Chemouil Denis Kuperberg

ONERA/DTIM - IRIT

Journés FAC
22/04/2015

Toulouse

Introduction

Alloy Language

I Specification language based on First-Order Logic

I Inspired by UML, user-friendly

I Arbitrary predicates → Expressivity

Alloy Analyzer

I Bounded verification → Decidability

I Use of SAT solvers → Efficiency, quick feedback

Example of (incomplete) Alloy Specification:

pred add [b, b’: Book, n: Name, a: Addr] {
b’.addr = b.addr +n→a

}

fact traces {
all b: Book−last |

let b’ = b.next |
some n: Name, a: Addr |

add [b, b’, n, a] or del [b, b’, n, a]
}

One object book for each time instant. Tedious way of modeling
time and reasoning about it.

Electrum : Alloy + new dedicated time operators like ′ (value at
the next instant) and always:

pred add [n: Name, a: Addr] {
addr’ = addr +n→a

}
fact traces {

always {
some n: Name, a: Addr |
add [n, a] or del [n, a]

}
}

Infinite number of time instants, that can be referred to easily with
a specialized syntax.

Asbtraction: The logic FO-LTL.

LTL: Good properties of expressivity and complexity, widely used in
verification to model infinite time traces.

The logic FO-LTL:

ϕ ::= (x1 = x2) | Pi (x1, . . . , xn) | ¬ϕ | ϕ∨ϕ | ∃x .ϕ | nextϕ | ϕuntilϕ.

We also define eventuallyϕ = trueuntilϕ and
alwaysϕ = ¬eventually(¬ϕ).
We use FO-LTL as underlying logic of the new language Electrum.

I First-Order variables xi : finite domain

I Implicit time: infinite domain N
What is the theoretical cost of adding LTL ?

Complexity

NSAT Problem: Given ϕ and N, is there a model for ϕ of
First-Order domain of size at most N ?
Parameters:

I Logic: FO versus FO-LTL

I Encoding of N: unary versus binary

I Rank of formulas (nested quantifiers): bounded (⊥) versus
unbounded (>).

Theorem

N unary N binary

FO ⊥ NP-complete NEXPTIME-complete
FO > NEXPTIME-complete NEXPTIME-complete
FO-LTL ⊥ PSPACE-complete EXPSPACE-complete
FO-LTL > EXPSPACE-complete EXPSPACE-complete

Complexity

NSAT Problem: Given ϕ and N, is there a model for ϕ of
First-Order domain of size at most N ?
Parameters:

I Logic: FO versus FO-LTL

I Encoding of N: unary versus binary

I Rank of formulas (nested quantifiers): bounded (⊥) versus
unbounded (>).

Theorem

N unary N binary

FO ⊥ NP-complete NEXPTIME-complete
FO > NEXPTIME-complete NEXPTIME-complete
FO-LTL ⊥ PSPACE-complete EXPSPACE-complete
FO-LTL > EXPSPACE-complete EXPSPACE-complete

Finite Model Theory

Finite Model Property: If there is a model there is a finite one.
FO Fragments with FMP;

I [∃∗∀∗, all]= (Ramsey 1930)

I [∃∗∀∃∗, all]= (Ackermann 1928)

I [∃∗, all , all]= (Gurevich 1976)

I [∃∗∀, all , (1)]= (Grädel 1996)

I FO2 (Mortimer 1975) : 2 variables.

Theorem

Adding next, eventually preserves FMP if the fragment imposes no
constraint on the number and arity of predicates/functions.

True for all above fragments except Grädel: only one function of
arity one.

Axioms of infinity

In general, adding LTL allows to write axioms of infinity:

With one existential variable:

always(∃x.P(x) ∧ next(always¬P(x)))).

Without nesting quantifiers in temporal operators:

∀x∃y .P(c) ∧ always(P(x)⇒ next(P(y) ∧ always¬P(x))).

Without always:

∀x∃y .P(c) ∧ ((P(x) ∧ P(y))until(¬P(x) ∧ P(y))).

Conclusion

Theoretical study of FO-LTL versus FO

I Complexity

I Finite model property

On-going work with Univ. of Minho/IRIT
I Implementation of different verification procedures for

Electrum:

• Reduce to LTL satisfiability
• Reduce to Alloy

I Use of efficient solvers

I Comparison with TLA and B

