
Foundations of Software Technology and Theoretical Computer Science (2011) Submission

Quasi-Weak Cost Automata:
A New Variant of Weakness∗

Denis Kuperberg1, Michael Vanden Boom2

1LIAFA/CNRS/Université Paris 7, Denis Diderot, France

2Department of Computer Science, University of Oxford, England

ABSTRACT.
Cost automata have a finite set of counters which can be manipulated on each transition but do not
affect control flow. Based on the evolution of the counter values, these automata define functions
from a domain like words or trees to N ∪ {∞}, modulo an equivalence relation which ignores exact
values but preserves boundedness properties. These automata have been studied by Colcombet et al.
as part of a “theory of regular cost functions”, an extension of the theory of regular languages which
retains robust equivalences, closure properties, and decidability like the classical theory.
We extend this theory by introducing quasi-weak cost automata. Unlike traditional weak automata
which have a hard-coded bound on the number of alternations between accepting and rejecting
states, quasi-weak automata bound the alternations using the counter values (which can vary across
runs). We show that these automata are strictly more expressive than weak cost automata over
infinite trees. The main result is a Rabin-style characterization theorem: a function is quasi-weak
definable if and only if it is definable using two dual forms of non-deterministic Büchi cost automata.
This yields a new decidability result for cost functions over infinite trees.

1 Introduction

Cost automata are finite-state machines enriched with counters which can be manipulated

on each transition but cannot be used to affect control flow. Based on the evolution of the

counter values, these automata define functions from some domain (like words or trees

over a finite alphabet) to N ∪ {∞}, modulo an equivalence relation ≈ which ignores exact

values but preserves boundedness properties. By only considering the functions up to ≈,

the resulting “theory of regular cost functions” retains many of the equivalences, closure

properties, and decidability results of the theory of regular languages [3]. It extends the

classical theory since we can identify each language with its characteristic function mapping

structures in the language to 0 and everything else to ∞; it is a strict extension since cost

automata can count some behaviour within the input structure.

The development of this theory was motivated by problems which can be reduced to

questions of boundedness. For instance, Hashiguchi [7] and later Kirsten [8] used distance

and nested-distance desert automata (special forms of cost automata) to prove the decidabil-

ity of the “star-height problem”: given a regular language L of finite words and a natural

number n, is there some regular expression (using concatenation, union, and Kleene star) for

L which uses at most n nestings of Kleene-star operations? Colcombet and Löding [4] have

∗The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement 259454.

NOT FOR DISTRIBUTION

2 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

used a similar approach over finite trees. The theory of regular cost functions over finite

words [3] and finite trees [6] can be viewed as a unifying framework for these problems.

It is desirable to extend the theory to infinite trees. For instance, the “parity-index prob-

lem” asks: given a regular language L of infinite trees and i < j, is there a parity automaton

using only priorities {i, i + 1, . . . , j}? This is known to be decidable in some special cases

(e.g. for deterministic languages [11]), but a general decision procedure is not known. How-

ever, Colcombet and Löding [5] have reduced the parity-index problem to another open

problem, namely the decidability of ≈ for regular cost functions over infinite trees.

Weak cost automata (recently studied in [13]) are a natural starting point in this line

of research on regular cost functions over infinite trees. In the classical setting, weak au-

tomata are a restricted form of alternating Büchi automata which have a fixed bound on the

number of alternations between accepting and rejecting states across all runs. They were

introduced in [10] to characterize the languages definable in weak monadic second-order

logic (WMSO), a variant of MSO in which second-order quantifiers are interpreted over

finite sets. Prior to this work, Rabin [12] had given an interesting characterization using

non-deterministic automata, showing that a language is weakly definable if and only if the

language and its complement are non-deterministic Büchi recognizable.

These notions of weakness have received considerable attention because the weakly

definable languages are expressive (e.g. they capture CTL), but still admit efficient model-

checking [9]. Indeed, in order to improve the efficiency in some model-checking scenarios,

Kupferman and Vardi [9] adapted Rabin’s work and provided a quadratic translation be-

tween non-deterministic Büchi automata and the corresponding weak automaton.

In [13], weak cost automata were shown equivalent to “cost WMSO”, in analogy to

the classical theory. However, the question of a Rabin-style characterization based on non-

deterministic automata remained open and prompted this work.

1.1 Contributions

We continue the study of regular cost functions over infinite trees by introducing a variant of

weakness which we call “quasi-weakness”. Unlike traditional weak automata which have

a hard-coded bound on the number of alternations between accepting and rejecting states,

quasi-weak automata bound the alternations using counter values (which can vary across

runs). We show that quasi-weak cost automata are strictly more expressive than weak cost

automata over infinite trees.

Although there is no notion of complement for a function, there are two dual semantics

(B and S) used to define cost functions. We show that quasi-weak B-automata can be sim-

ulated by non-deterministic B-Büchi and S-Büchi automata. Combined with results from

[13], this implies the decidability of f ≈ g when f , g are cost functions defined by quasi-

weak B-automata. Consequently, this work extends the class of cost functions over infinite

trees for which ≈ is known to be decidable. We also provide a non-trivial extension of

Kupferman and Vardi’s construction [9] to translate equivalent non-deterministic B-Büchi

and S-Büchi automata to an equivalent quasi-weak B-automaton (where the equivalence in

each case is up to≈). This provides a Rabin-style characterization of the functions definable

using quasi-weak B-automata and marks an interesting departure from the classical theory.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 3

The construction relies on analyzing a composed run of a B-Büchi automaton and S-

Büchi automaton. To aid in this analysis, we use BS-automata and introduce a correspond-

ing BS-equivalence relation ≅ which can be used to compare cost automata which define

not one but two functions (one based on the B-counters and one on the S-counters). Al-

though the B- and S-counter actions in such a composed run can be independent, we show

that it is possible to effectively construct an equivalent (up to ≅) BS-automaton in which the

actions are more structured (namely, the counters are “hierarchical” so they can be totally

ordered and manipulating a higher counter resets all lower counters). We believe this may

be a useful technique in other situations which require both counter types.

1.2 Organization

We define cost automata on infinite trees in Sect. 2, with semantics based on two-player

infinite games. We also introduce the new quasi-weak automata and compare to more tra-

ditional weak automata. In Sect. 3, we consider automata with both counter types and show

how they can be made hierarchical. Finally, in Sect. 4, we describe the other components of

the main result, a Rabin-style characterization for quasi-weak cost automata. We conclude

with some open questions in Sect. 5.

1.3 Notations

We write N for the set of non-negative integers and N∞ for the set N ∪ {∞}, ordered by

0 < 1 < · · · < ∞. If i ≤ j are integers, [i, j] denotes the set {i, i + 1, . . . , j}. We fix a finite

alphabet A. The set of finite (respectively, infinite) words over A is A∗ (respectively, Aω)

and the empty word is ǫ. For notational simplicity we work only with infinite binary trees.

Let T = {0, 1}∗ be the unlabelled infinite binary tree. A branch in T is a word π ∈ {0, 1}ω.

The set TA of complete A-labelled binary trees is composed of mappings t : T → A.

Non-decreasing functions N → N will be denoted by letters α, β, . . . , and will be ex-

tended to N∞ by α(∞) = ∞. We call these correction functions.

2 Cost Automata

2.1 Cost Functions

Let E be any set, and FE be the set of functions : E → N∞. For f , g ∈ FE and α a correction

function, wewrite f 4α g if f ≤ α ◦ g (or if we are comparing single values n,m ∈ N, n 4α m

if n ≤ α(m)). We write f ≈α g if f 4α g and g 4α f . Finally, f ≈ g (respectively, f 4 g) if

f ≈α g (respectively, f 4α g) for some α. The idea is that the boundedness relation ≈ does not

pay attention to exact values, but does preserve the existence of bounds. Remark that f 64 g

if and only if there exists a set D ⊆ E such that g is bounded on D but f is unbounded on D.

A cost function over E is an equivalence class of FE/≈. In practice, a cost function (de-

noted f , g, . . .) will be represented by one of its elements in FE. In this paper, E will usually

be TA. The functions defined by automata will always be considered as cost functions, i.e.

only considered up to ≈.

4 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

2.2 B- and S-Valuations

Cost automata define functions from TA to N∞. The valuation is based on both the classic

Büchi acceptance condition and a finite set of counters Γ.

A counter γ is initially assigned value 0 and can be incremented i, reset r to 0, checked c,

or left unchanged ε. Given an infinite word uγ over the alphabet {ε, i, r, c}, we define a set

C(uγ) ⊆ N which collects the checked values of γ. In the case of a finite set of counters Γ

and a word u over {ε, i, r, c}Γ, C(u) :=
⋃

γ∈Γ C(prγ(u)) (prγ(u) is the γ-projection of u).

We will separate counters into two types: B-counters, which accept as atomic actions

the set B = {ε, ic, r}, and S-counters, with atomic actions S = {ε, i, r, cr}. Given B-

counters ΓB and u ∈ (BΓB)ω, the B-valuation is valB(u) := supC(u); likewise, given S-

counters ΓS and u ∈ (SΓS)ω, the S-valuation is valS(u) := infC(u). By convention, inf∅ = ∞

and sup∅ = 0. For instance valB((ic)
ω) = ∞, valB((icr)

ω) = 1, valS(i
100

criεicr(r)ω) = 2,

and valS(i
ω) = ∞ because the counter is never checked.

In all cases, if the set of counters Γ is [1, k], an action ν is called hierarchical if there is

some i ∈ [1, k] such the action ν performs ε on all counters j > i, and r on all counters j < i.

It means that performing an increment or a reset on counter i resets all counters j below it.

Cost automata are named B-, S-, or BS-automata depending on the type(s) of counters

used. They are hierarchical (written, e.g. hB-automata) if only hierarchical actions are used.

2.3 B- and S-Automata on Infinite Trees

An alternating B-Büchi automaton A = 〈Q,A, q0, F, ΓB, δ〉 on infinite trees has a finite set of

states Q, alphabet A, initial state q0 ∈ Q, accepting states F, finite set ΓB of B-counters,

and transition function δ : Q × A → B+({0, 1} × BΓB × Q), where B+({0, 1} × BΓB × Q)
is the set of positive boolean combinations, written as a disjunction of conjunctions of ele-

ments (d, ν, q) ∈ {0, 1}×BΓB ×Q. Alternating S-Büchi automata are defined in the same way,

replacing B-counters by S-counters and B with S.

We view running a B-automaton (resp. S-automaton) A on an input tree t as a game

(A, t) between two players : Eve is in charge of the disjunctive choices and tries to minimize

(resp. maximize) counter values while satisfying the Büchi condition, and Adam is in charge

of the conjunctive choices and tries to maximize (resp. minimize) counter values or show

the Büchi condition is not satisfied. Because the transition function is given as a disjunction

of conjunctions, we can consider that at each position, Eve first chooses a disjunct, and then

Adam chooses a single tuple (d, ν, q) in this disjunct.

A play of A on input t is a sequence q0, (d1, ν1, q1), (d2, ν2, q2), . . . compatible with t and

δ, i.e. q0 is initial, and for all i ∈ N, (di+1, νi+1, qi+1) appears in δ(qi, t(d1 . . . di)).

A strategy for Eve (resp. Adam) in the game (A, t) is a function that fixes the next choice

of Eve (resp. Adam), based on the history of the play (resp. the history of the play and Eve’s

choice of disjunct). A strategy is finite-memory if the number of memory states needed for

the player to choose the next move is finite. A strategy is positional if no memory at all is

needed: the player only needs to know the current position. Notice that choosing a strategy

for Eve and a strategy for Adam fixes a play in (A, t). We say a play π is compatible with a

strategy σ for Eve if there is some strategy σ′ for Adam such that σ and σ′ yield the play π.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 5

A play π is accepting if there is q ∈ F appearing infinitely often in π (i.e. π satis-

fies the Büchi acceptance condition). Given a play π from a B-automaton A, the value

of π is val(π) := valB(hB(π)) if π is accepting, and val(π) = ∞ otherwise (where hB
is the projection of π to the B-actions). This yields the maximum checked counter value

if the play is accepting, and ∞ otherwise. We assign a value to a strategy σ for Eve by

val(σ) := sup {val(π) : π is compatible with σ}. The value of A over a tree t is [[A]]B(t) :=
inf {val(σ) : σ is a strategy for Eve in the game (A, t)}.

Likewise, in an S-automaton A′, we define val(π) := valS(hS(π)) if π is accepting, and

0 otherwise (where hS is the projection to the S-actions). Once again, counter actions are

only considered if the play is accepting (this time the minimum checked value is used), and

0 is assigned to rejecting plays. Then val(σ) := inf {val(π) : π is compatible with σ}, and
[[A′]]S(t) := sup {val(σ) : σ is a strategy for Eve in the game (A′, t)}.

We consider [[A]]B and [[A′]]S as cost functions, so we always work modulo the cost

function equivalence ≈. If it is clear what semantic the automaton uses we will omit the

subscript and write just [[A]] or [[A′]]. If f ≈ [[A]] thenwe sayA recognizes the cost function f .

If for all (q, a) ∈ Q× A, δ(q, a) is of the form
∨

i(0, νi, qi) ∧ (1, ν′i , q
′
i) , then we say the

automaton is non-deterministic. We define a run to be the set of possible plays compatible

with some fixed strategy of Eve. Since the only choices of Adam are in the branching, a run

labels the entire binary tree with states, and choosing a branch yields a unique play of the

automaton. A run is accepting if all of its plays are accepting (that is, if it is accepting on all

branches). A value is assigned to a run of a B-automaton (resp. S-automaton) by taking the

supremum (resp. infimum) of the values across all branches.

Finally, a cost automaton A = 〈Q,A, q0, F, Γ, δ〉 is weak if the state-set Q can be parti-

tioned into Q1, . . . ,Qk satisfying:

• for all i and for all q, q′ ∈ Qi, q ∈ F if and only if q′ ∈ F;

• if some (d, ν, q) appears in some δ(p, a) with p ∈ Qi and q ∈ Qj, then j ≤ i.

This means there is a fixed bound k on the number of alternations between accepting and

rejecting states, so any accepting play must stabilize in an accepting partition.

Examples

Let A = {a, b, c} and f be the cost function over A-labelled trees where f (t) = ∞ if there

is a branch with only finitely many b’s, and f (t) = sup {|π|a : π is a branch of t} otherwise,

where |π|a denotes the number of a’s in π.

We define a non-deterministic B-Büchi automaton U and a non-deterministic S-Büchi

automaton U ′, together with a weak automaton B, such that f ≈ [[U]] ≈ [[U ′]] ≈ [[B]].
The principle of U is to simultaneously count a’s and check that infinitely many b’s are

seen by running the following deterministic B-automaton on every branch. We write a : ν

to denote that on input a, the counter action is ν; accepting states are denoted double circles.

a : ic

c : ε
b : ε

b : ε

a : ic

c : ε

6 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

On the other hand, U ′ = 〈{pa, pb, qb,⊤} ,A, {pa, pb} , {qb,⊤} , {γ} , δ〉 tries to find a

branch π with either a lot of a’s (state pa), or only finitely many b’s (state pb), in order to

witness a high value for f (∞ in the second case). For simplicity, we allow here two initial

states, but this does not add expressive power to the model. The state qb is used when Eve

has guessed the position of the last b, and still needs to prove that there are no more b on π,

and ⊤ is used when the remainder of the branch does not matter.

The transition table δ for U ′ follows. When the counter action is missing, it means that

it can be either ε or r, because the counter values no longer matter. Remark that U ′ is in fact

a non-deterministic weak S-automaton.

δ pa pb qb ⊤
a ((0, i, pa) ∧ (1,⊤)) ((0, pb) ∧ (1,⊤)) ((0, qb) ∧ (1,⊤)) (0,⊤) ∧ (1,⊤)

∨((0,⊤)∧ (1, i, pa)) ∨((0,⊤)∧ (1, pb)) ∨((0,⊤)∧ (1, qb))
∨((0, cr,⊤) ∧ (1,⊤)) ∨((0, qb) ∧ (1,⊤))
∨((0,⊤)∧ (1, cr,⊤)) ∨((0,⊤)∧ (1, qb))

b ((0, ε, pa) ∧ (1,⊤)) = δ(pb, a) false (0,⊤) ∧ (1,⊤)
∨((0,⊤)∧ (1, ε, pa))
∨((0, cr,⊤) ∧ (1,⊤))
∨((0,⊤)∧ (1, cr,⊤))

c = δ(pa, b) = δ(pb, a) = δ(qb, a) (0,⊤) ∧ (1,⊤)

Finally, B is designed such that Adam controls all of the choices: Adam selects a single

branch, and runs the following automaton on this branch (he controls the non-determinism):

q2q3 q1

a : ic

b, c : ε

A : ε

a : ic

c : ε

b : ε

a : ic

b, c : ε

If there is a branch π with finitely many b’s, Adam can select π and stabilize in rejecting

state q2 by moving from q1 to q2 after the last b. This witnesses value ∞ for f . Otherwise,

Adam tries to select a branch which maximizes the number of a’s. The state-set can be

partitioned such that Qi = {qi} for i ∈ [1, 3].

2.4 Quasi-Weak B-Automata

We want to define an extension of weak B-automata, which preserves the property that

accepting plays must stabilize in accepting states. The idea of weak automata is to bound

the number of alternations between accepting and rejecting states by a hard bound.

Here we have another available tool to bound the number of such alternations: the

counters. We know that in a B-automaton, an accepting play of finite value n does at most n

increments between resets, but this number is not known a priori by the automaton. Thus, if

we guarantee there is correction function α such that in any play π of value n, α(n) is greater
than the number of alternations between accepting and rejecting states in π, then we know

that any play of finite value must stabilize in accepting states. Otherwise, infinitely many

alternations would give value ∞ to the cost function computed by the automaton.

Thus we define quasi-weak automata in the following way:

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 7

DEFINITION 1. An alternating B-Buchi automaton is quasi-weak if there is a correction func-
tion α such that in any play of A of value n < ∞, the number of alternations between
accepting and rejecting states is smaller than α(n).

In particular, any weak automaton A is quasi-weak since we can take α(n) = k for all

n, where k is the number of partitions of A. We can also give a structural characterization.

PROPOSITION 2. An alternating B-Büchi automaton is quasi-weak if and only if in any

reachable cycle containing both accepting and rejecting states, some counter is incremented
but not reset.

We say a cost function is quasi-weak if it is recognized by some quasi-weak B-automaton.

PROPOSITION 3. There exists a cost function over infinite trees which is recognized by
a non-deterministic quasi-weak B-automaton, but not by any weak B-automaton. Conse-
quently, quasi-weak B-automata are strictly more expressive than weak B-automata.

PROOF. (Sketch) The idea is to build an explicit cost function f , and for each n ∈ N an infi-

nite tree tn which includes labels that dictate which player controls each position in the game

(this is inspired by [1]). These trees are designed such that any alternating B-automaton rec-

ognizing f is forced to do Θ(n) alternations between accepting and rejecting states on tn.

This shows f cannot be computed by a weak B-automaton. On the other hand, we give an

explicit non-deterministic quasi-weak B-automaton for f .

3 BS-Automata

We usually work with cost automata with only one type of counter, B or S. In the next

section, however, we compose runs from B-Büchi and S-Büchi automata and consequently

must work with both counter types simultaneously. We capture this in a non-deterministic

BS-Büchi automaton A = 〈Q,A, q0, FB, FS, ΓB, ΓS,∆〉. Such an automaton defines functions

[[A]]B and [[A]]S as expected (by restricting to one of the counter types).

Let A and A′ be the following non-deterministic BS-automata on infinite words over

A := {a, b, c}, each with one B- and one S-counter. We write a : (d, d′) if on input a, the

output is action d (resp. d′) for the B (resp. S) counter. We omit self-loops c : (ε, ε).

a : (ε, i)

b : (ic, ε)

a : (ε, cr)

a : (ε, r)

b : (ic, r)

a : (ε, i)

b : (ic, r)

a : (ε, cr)

a : (ε, r)

b : (ic, r)

These automata are very similar. For instance, [[A]]B = [[A′]]B = | · |b. The key difference
is A′ is hierarchical, with the B-counter above the S-counter. Formally, the counters ΓB ⊎ ΓS

are globally numbered [1, k] (for k = |ΓB| + |ΓS|) and for any action on BΓB × SΓS there is

some i ∈ [1, k] such that ε is performed on all counters j > i and r on all counters j < i.

Notice that we have [[A]]S ≈ | · |a (if there are a finite number of a’s, then the best run

of A moves to the accepting state when reading the final a; otherwise, for every n, there is

an accepting run of A such that the S-counter has value n). In A′, however, the B-counter

is higher than the S-counter so A′ forces a reset of the S-counter when a b is read in the

8 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

initial state. Since there is no a priori bound on the number of b’s in the input, this means

[[A′]]S 6≈ [[A]]S . However, for any fixed m and any u such that [[A]]B(u) ≤ m, the S-value of

A on u is ≈βm
-equivalent to A′ on u with βm(n) = n(m + 1).

This motivates a new equivalence relation ≅ which we call BS-equivalence. We define

A ≅ A′ to hold if (i) [[A]]B ≈α [[A′]]B and (ii) for any m, there is a correction function βm such

that the S-values of A and A′ are ≈βm
-equivalent when restricted to inputs with B-values

at most α(m). Although it is technical, this definition captures the notion that two BS-Büchi

automata behave in a similar fashion (as in the example above).

It turns out that given any BS-automaton like A, there is an hBS-automaton A′ sat-

isfying A ≅ A′. Moreover, this translation can be done effectively by transducers which

read an infinite word of non-hierarchical counter actions and output hierarchical counter

actions. This is in analogy to the deterministic transducer which can be used to translate a

Muller condition to a parity condition in the classical setting, or the transducer defined in

[6] which translates B-actions to hierarchical B-actions. A similar idea is also used in [2] for

automata with both B- and S-counters but in a setting where only boolean properties about

boundedness and unboundedness are considered (unlike the quantitative setting here).

THEOREM 4. For all sets ΓB, ΓS of counters, there exists effectively a history-deterministic
hBS-automaton H(ΓB, ΓS) on infinite words over B|ΓB| × S|ΓS| with H(ΓB, ΓS) ≅ G(ΓB, ΓS)
where G(ΓB, ΓS) is the BS-automaton which copies the counter actions from the input.

The transducer H(ΓB, ΓS) has the same set of B counters, but extra copies of the S-

counters. The principle of the automaton is to split the input word into sequences of S-

actions from {i, ε}∗ which are between resets of the B-counters. It uses one copy of the

S-counter to count the number of S-increments within each sequence, and another copy to

count the sequences with at least one S-increment. If the S-value is high compared to the

B-value, then the transducer will also have a high S-value, obtained from one of the copies.

These transducers are history-deterministic, a weakening of traditional determinism [3].

The entire history of the input and the current state are required to determine the next transi-

tion (rather than just the current state and input letter). Because the choice of the transition

depends only on the past, for any two input words, the automaton can find good moves

which do not conflict on any common prefix. This means these automata (like deterministic

automata) compose well with alternating automata and games: they can be simulated on

each play in a game while preserving the value up to ≈ or ≅ (see [3] for more information).

This means that we can transform arbitrary BS-automata over words or trees into hier-

archical BS-automata which are easier to work with.

4 Characterization of Quasi-Weak Cost Automata

In this section we prove a Rabin-style characterization for quasi-weak B-automata:

THEOREM 5. A cost function f over infinite trees is recognizable by some quasi-weak B-
automaton B if and only if there is a non-deterministic B-Büchi automaton U and non-
deterministic S-Büchi automaton U ′ such that f ≈ [[U]]B ≈ [[U ′]]S.

The first direction is described in Lemmas 6 and 7 in Section 4.1. The other direction is

described in Sections 4.2–4.4, culminating in Theorem 10.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 9

4.1 Simulation

We start by showing that a quasi-weak B-automaton (in fact, any alternating B-Büchi au-

tomaton) A can be simulated by a non-deterministic B-Büchi version.

LEMMA 6. Given an alternating B-automaton B, a non-deterministic B-Büchi automaton U
can be effectively constructed such that [[B]]B ≈ [[U]]B .

PROOF. (Sketch) Recall that in a B-Büchi game, the value of a strategy is the maximum

over all plays compatible with the strategy. Hence, we first show there is a B-Büchi automa-

ton Dmax recognizing max-play(wτ
σ) = sup{val(π) : π is compatible with σ and stays on τ}

on words wτ
σ. We cannot guarantee that Dmax is deterministic, but it is history-deterministic

(which means it can be simulated over each branch like a deterministic automaton).

On input t, the non-deterministic B-Büchi U guesses annotations yielding some tσ,

checks the annotations describe a valid strategy σ in (B, t), and simulates Dmax on each

branch in tσ (possible since Dmax is history-deterministic). Because non-determinism re-

solves into taking an infimum, U calculates the infimum over the values of all finite-memory

strategies in (B, t). Although finite-memory strategies might not achieve the optimal value,

they do achieve an ≈-equivalent value in B-Büchi games by [13]. Hence, [[B]] ≈ [[U]].
Proving that B can be simulated by a non-deterministic S-Büchi automaton U ′ is more

technical and uses the fact that B is quasi-weak.

LEMMA 7. Given a quasi-weak B-automaton B, a non-deterministic S-Büchi automaton U ′

can be effectively constructed such that [[B]]B ≈ [[U ′]]S.

PROOF. (Sketch) The automaton U ′ can no longer guess a strategy in (B, t), since the value
of (B, t) is the infimum over all strategies and non-determinism in an S-automaton resolves

into taking a supremum. Instead, we consider a dual game (B, t) where the roles of the play-

ers are reversed so Eve tries to maximize the B-value across all strategies. We show there is

a history-deterministic S-Büchi automaton Dmin which computes the minimum value of a

set of plays from such a game. We show these games admit finite-memory strategies. The

S-Büchi automaton U ′ guesses a finite-memory strategy in such a game and then simulates

Dmin on each branch of the tree annotated with this strategy in order to compute its value.

These simulation lemmas and [13, Lemma 1] imply a new decidability result (extending

the class of cost functions over infinite trees for which decidability of ≈ is known).

COROLLARY 8. If f , g are cost functions over infinite trees which are given by quasi-weak
B-automata then it is decidable whether or not f 4 g.

4.2 Construction from Kupferman and Vardi

We now turn to the other direction of Theorem 5. The corresponding classical result states

that given non-deterministic Büchi automata U and U ′ such that L(U) is the complement of

L(U ′), there is a weak automaton A such that L(A) = L(U) [9].
The proofs in [12, 9] begins with an analysis of composed runs of U and U ′. Let m :=

|Q| · |Q′|. A frontier E is a set of nodes of t such that for any branch π of t, E∩π is a singleton.

Kupferman and Vardi [9] define a trap for U and U ′ to be a strictly increasing sequence of

10 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

frontiers E0 = {ǫ} , E1 . . . , Em such that there exists a tree t, a run R of U on t, and a run R′

of U ′ on t satisfying the following properties: for all 0 ≤ i < m and for all branches π in t,

there exists x, x′ ∈ [eπ
i , e

π
i+1) such that R(x) ∈ F and R′(x′) ∈ F′ where eπ

0 < · · · < eπ
m is the

set of nodes from E0, . . . , Em induced by π. The set of positions [eπ
i , e

π
i+1) can be viewed as a

block, and each block in a trap witnesses an accepting state from U and U ′.

This is called a trap because L(U ′) is the complement of L(U), but a trap implies L(U)∩
L(U ′) 6= ∅ (using a pumping argument on blocks). The weak automaton A has Eve (resp.

Adam) select a run of U (resp. U ′). The acceptance condition requires that any time an

accepting state from U ′ is seen, an accepting state from U is eventually seen. Because of the

trap condition, these accepting blocks only need to be counted up to m times (soA is weak).

4.3 Cost Traps

Now let U = 〈QU ,A, qU0 , F
U
B , Γ

U
B ,∆U 〉 (respectively, U ′ = 〈QU ′ ,A, qU

′

0 , FU
′

S , ΓU ′

S ,∆U ′〉) be a

non-deterministic B-Büchi (respectively, S-Büchi) automaton such that [[U]]B ≈ [[U ′]]S. Our

goal is to construct a quasi-weak B-automaton B which is equivalent to U .

We want to extend the classical case to cost functions, so we seek a notion of “cost

trap”, which will imply a contradiction with [[U]]B ≈ [[U ′]]S. More specifically, we want

a notion of blocks and traps which will witness a bounded B-value from U on some set

of trees but an unbounded S-value for U ′ on the same set (showing [[U ′]]S 64 [[U]]B). The

definition of a block when using arbitrary B- and S-counter actions coming from U and

U ′ would be very intricate because it would have to deal with the interaction of the B-

and S-actions. In order to avoid this, we switch to working with a non-deterministic hBS-

Büchi automaton A = 〈QA,A, qA0 , FB, FS, ΓB, ΓS, δA〉 which is BS-equivalent to U × U ′ =
〈QU × QU ′ ,A, (qU0 , q

U ′

0), FUB , F
U ′

S , ΓU
B , Γ

U ′

S ,∆U×U ′〉 but uses hierarchical counters.
A block based on hierarchical BS-actions from A has accepting states from both FB and

FS (corresponding to accepting states for U and U ′), but it also has a reset for B-counter γ if γ

is incremented in that block (in order to ensure pumping does not inflate the B-value). The

number of blocks required is also increased to m := (|QA| + 2)|ΓS|+1 for technical reasons.

A cost trap for A is a frontier Em and for every branch π up to Em a strictly increasing

set of nodes eπ
0 < · · · < eπ

m ∈ Em such that there exists a tree t and a run R of A on t with

valS(R) > |QA| satisfying the following properties: for all 0 ≤ i < m and for all branches π,

[eπ
i , e

π
i+1) is a block; if branches π1 and π2 share some prefix up to position y and x < y is

the first position with eπ1
i = x and eπ2

i 6= x then eπ2
i > y (i.e. pumping blocks from π2 does

not damage blocks from π1).

A pumping argument shows a cost trap implies U and U ′ are not equivalent.

PROPOSITION 9. Let U (respectively, U ′) be non-deterministic B-Büchi (respectively, S-
Büchi). LetA ≅ U ×U ′ be a non-deterministic hBS-automaton. If there exists a cost trap for
A, then [[U ′]] 64 [[U]].

4.4 Construction of Quasi-Weak B-Automaton B

Given U and U ′ with [[U]]B ≈ [[U ′]]S, we can effectively build a quasi-weak B-automaton B
which on an input tree t,

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 11

• simulates in parallel U (driven by Eve) and U ′ (driven by Adam) over t;

• runs the hBS-transducerH(ΓU
B , Γ

U ′

S) over the composed actions from U and U ′;

• analyzes the output of this transducer together with the accepting states of U and U ′,

keeping track of blocks in order to build a cost trap;

• outputs the B-actions of U .

The key difference from the classical case is in the block counting. In [9], the block num-

ber only increases and it suffices to count up to a fixed bound. Since each block contains at

most 2 alternations between accepting and rejecting states, this results in a weak automaton.

Here, we also have to forbid in any block the presence of an increment for some counter

γ without a reset for γ. However, it may be the case that on a branch of a run of U some

counter is incremented but is never reset. So the automaton B may start counting blocks

only to have to restart the counting if an increment is seen which does not have a later reset.

But this means that any decrease in the block number corresponds to an increase in the cost

of the play. Hence, the bound on the number of alternations depends on the value of the

automaton, which is exactly the property of a quasi-weak automaton.

The idea for the proof that [[B]]B ≈ [[U]]B ≈ [[U ′]]S is that if U accepts some t with low

value, then it gives Eve a strategy of the same value in (B, t). On the other hand, assuming

(for the sake of contradiction) that Eve has a low-value strategy in (B, t) but U actually

assigns t a high value results in a cost trap, which is absurd. Hence, we get the main result:

THEOREM 10. If there is a non-deterministic B-Büchi automaton U and a non-deterministic
S-Büchi automaton U ′ such that [[U]]B ≈ [[U ′]]S, then we can effectively construct a quasi-
weak alternating B-automaton B such that [[B]]B ≈ [[U]]B ≈ [[U ′]]S.

We remark that when restricted to languages, this corresponds to the result from [9]

since (i) if there are non-deterministic Büchi automata U and U ′ (without counters) recog-

nizing a language and its complement, respectively, then [[U]]B = [[U ′]]S and (ii) quasi-weak

and weak automata coincide when the automata have no counters.

5 Conclusion

We have introduced quasi-weak cost automata as a variant of weak automata which uses

the counters to bound the number of alternations between accepting and rejecting states.

We have shown quasi-weak cost automata are strictly more expressive than weak cost au-

tomata over infinite trees. Moreover, it is the quasi-weak class of automata, rather than the

more traditional weak cost automata, which admits a Rabin-style characterization with non-

deterministic B-Büchi and S-Büchi automata. The question of a characterization for weak

cost automata over infinite trees remains open (it would likely involve some further restric-

tions on the actions of the counters in the non-deterministic B-Büchi and S-Büchi automata).

Combined with results from [13], our Rabin-style characterization of quasi-weak au-

tomata implies the decidability of f 4 g and f ≈ g when f , g are defined by quasi-weak

B-automata. Consequently, this work extends the class of cost functions over infinite trees

for which ≈ is known to be decidable. In analogy to the reduction in [5], we believe it may

be possible to apply this result in order to obtain a decision procedure which determines

whether or not a given language of infinite trees is recognizable by a weak automaton. De-

12 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

ciding 4 and ≈ for all regular cost functions over infinite trees remains a challenging open

problem which would imply (by [5]) the decidability of the parity-index problem.

Finally, it was known from [13] that weak cost automata and costWMSOare equivalent.

The logic side of quasi-weak cost automata remains to be explored in future work.

Acknowledgments

We are grateful to Thomas Colcombet for having made this joint work possible, and for

many helpful discussions.

References

[1] André Arnold and Damian Niwinski. Continuous separation of game languages. Fun-

dam. Inform., 81(1-3):19–28, 2007.

[2] Mikolaj Bojanczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS, pages

285–296. IEEE Computer Society, 2006.

[3] Thomas Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions.

In ICALP (2), volume 5556 of LNCS, pages 139–150. Springer, 2009.

[4] Thomas Colcombet and Christof Löding. The nesting-depth of disjunctive mu-

calculus. InMichael Kaminski and SimoneMartini, editors,CSL, volume 5213 of LNCS,

pages 416–430. Springer, 2008.

[5] Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy

and distance-parity automata. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg,

Magnús M. Halldórsson, Anna Ingólfsdóttir, and IgorWalukiewicz, editors, ICALP (2),

volume 5126 of LNCS, pages 398–409. Springer, 2008.

[6] Thomas Colcombet and Christof Löding. Regular cost functions over finite trees. In

LICS, pages 70–79. IEEE Computer Society, 2010.

[7] Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance func-

tions. J. Comput. Syst. Sci., 24(2):233–244, 1982.

[8] Daniel Kirsten. Distance desert automata and the star height problem. RAIRO - Theo-

retical Informatics and Applications, 39(3):455–509, 2005.

[9] Orna Kupferman and Moshe Y. Vardi. The weakness of self-complementation. In

Christoph Meinel and Sophie Tison, editors, STACS, volume 1563 of LNCS, pages 455–

466. Springer, 1999.

[10] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata. The weak

monadic theory of the tree, and its complexity. In Laurent Kott, editor, ICALP, volume

226 of LNCS, pages 275–283. Springer, 1986.

[11] Damian Niwinski and Igor Walukiewicz. Deciding nondeterministic hierarchy of de-

terministic tree automata. Electr. Notes Theor. Comput. Sci., 123:195–208, 2005.

[12] Michael O. Rabin. Weakly definable relations and special automata. In Mathematical

Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pages 1–23.

North-Holland, Amsterdam, 1970.

[13] Michael Vanden Boom. Weak cost monadic logic over infinite trees. Accepted toMFCS,
2011. Long version at www.cs.ox.ac.uk/people/michael.vandenboom/.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 13

Appendix

A Quasi-Weak Automata

A.1 Proof of Proposition 2

We want to show a structural characterization for quasi-weak B-automata. We will call

the following property of a B-Büchi automaton the cycle condition : in any reachable cycle

containing both accepting and rejecting states, there is some counter which is incremented

but not reset. LetA = 〈Q,A, q0, F, Γ, δ〉 be a B-Büchi automaton, and let k := |Γ|.

Quasi-weak =⇒ cycle condition

We assume A does not satisfy the cycle condition, i.e. A contains a reachable cycle c in the

transition function, with states from F and its complement, and such that for all γ ∈ Γ, if

there is an ic for γ in c, then there is a reset for γ in c.

Since c is reachable, there exists an input tree t and a play π of A on t which reaches

c within a finite prefix u, and then repeats c forever : π = u(c)ω. The play π is accepting,

but does infinitely many alternations. Moreover, its value is bounded by valB(uc), since c

performs a reset for any increment. We can conclude that A cannot be quasi-weak.

By contraposition, any quasi-weak automaton satisfies the cycle condition.

Cycle condition =⇒ quasi-weak

We assume A satisfies the cycle condition. Let π be an accepting play of A of finite value n.

Let m be the number of alternations between accepting and rejecting states in π. We want

to show that if m is sufficiently high, then val(π) > n, which would be a contradiction.

We will use the Ramsey theorem in order to define a large number R, depending only

of A and n. Let R be the bound given by the Ramsey theorem, ensuring that if a graph G

has size R and has edges coloured with 2k − 1 colours, it contains a one-colour clique of size

n + 2. Notice that R only depends on (k, n). It means that if k is fixed, there is a correction

function αR such that we can take R = αR(n).
Assume m is strictly greater than 2|Q|R. We can find states (qi)1≤i≤m such that π visits

q1 to qm in this order, and moreover all qi with i even are accepting and all qi with i odd are

rejecting. Let u be the finite infix of π, from q1 to qm. For all i, we call xi the position of qi in

u.

Then there exists a set I ⊂ [1,m] and a state q ∈ Q such that |I| ≥ R, and for all i ∈ I,

qi = q. We get that u contains |I| − 1 consecutives cycles from q to q, each one with both

accepting and rejecting states in it. By the cycle condition, each of these cycles (and any

concatenation of several of them) must increment a counter without resetting it.

Consider the complete graph G with set of vertices {xi : i ∈ I}, of size at least R. We

define the set of colours K = {A ⊆ Γ : A 6= ∅}. We colour edges of G in the following way :

for any i < j in I, the colour of the edge between xi and xj is A, where A is the set of counters

that are incremented but not reset in the path from xi to xj in u. The cycle condition ensures

that A 6= ∅.

14 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

By choice of R, and since |K| = 2k − 1, there is a clique C of size n + 2 in G, entirely

coloured by some A ∈ K. Let γ ∈ A. We can write C =
{

xi1 , . . . , xin+2

}

, with i1 < · · · < in+2.

For all j ∈ [1, n+ 1], there is an increment of γ and no reset of γ in u, between xij and xij+1
. It

means that between xi1 and xin+2
, γ is incremented n + 1 times and never reset. This implies

val(π) ≥ n + 1, which is absurd.

Assumingm > 2|Q|R leads to a contradiction, so we get thatm < 2|Q|R for R = αR(n),
with αR a correction function given by the Ramsey theorem, and depending only on k.

We can conclude that any accepting play of A of value n does at most 2|Q|αR(n) alter-
nations between accepting and rejecting states, so A is a quasi-weak automaton.

A.2 Proof of Proposition 3

We give an explicit cost function f that witnesses the proposition, over alphabet A =
{∨,∧} × {e, a, b}. We will call π1 : A → {∨,∧} and π2 : A → {e, a, b} the projections

of A onto its components.

If t is a A-labelled tree, we will say that a subset Ct of pos(t) is a choice tree for t if :

• ǫ ∈ Ct;

• for all x ∈ Ct, if π1(t(x)) = ∨ then Ct contains either the left child or the right child of

x;

• for all x ∈ Ct, if π1(t(x)) = ∧ then Ct contains both children of x;

• for all x ∈ Ct such that π2(t(x)) = a, then all paths of Ct starting in x contain a b-

labelled position.

Moreover, if Ct is a choice tree of t, we define its value val(Ct) as the maximum number

of a’s on some path (according to the labelling t).

We now define the desired cost function f (t) = inf {val(Ct) : Ct is a choice tree of t}. In
particular, if there is no choice tree of t, then f (t) = ∞.

It is easy to show that f is recognized by a non-deterministic quasi-weak B-automaton :

it has two states, and guesses a choice tree while counting the number of a’s. The accepting

state corresponds to the case where any a has been followed by a b, and a new a makes the

automaton go to the rejecting state, until the next b is seen (such a b exists on all paths of

the choice tree). So the number of alternations for choice tree Ct is bounded by 2val(Ct).
Since val(Ct) is the value of the run corresponding to the choice of Ct, this describes a non-

deterministic quasi-weak automaton.

Now assume for the sake of contradiction that f is recognized by a weak B-automaton

A, up to some correction function α. The states of A can be partitioned into Q = Q0 ⊎Q1 ⊎
· · · ⊎Qm, such that any cycle stabilizes in some Qi and there are no transitionsQi → Qj with

i < j. Let N = |Q|.

We inductively build a family of A-labelled trees (tn)n∈N (positions are labelled by

{0, 1}∗):

The tree t0 is entirely labelled by (∧, e). If tn−1 is built, we build tn in the following way:

• tn(0∗) = (∧, e)
• tn(0∗1) = (∨, a)
• tn(0∗11+) = (∨, e)
• tn(0∗1N1+0) = (∧, b)

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 15

• Subtrees rooted in nodes of 0∗1N1+00+ are tn−1

• Other subtrees (to complete the binary tree) are t0
We have f (tn) = n for all n ∈ N. The principle behind the definition of these tn’s is that a

B-automaton computing f must do Θ(n) alternations while processing on input tn. This is

trivial for n = 0.

Fix n ∈ N, and consider a strategy for Eve witnessing value α(n) on tn. Every play

consistent with this strategy must stabilize in an accepting partition. In particular, on the

branch 0ω, the play must stabilize in some Qi at some node 0d. Since the label is ∧, the
subtree rooted in 0d1 needs to be also accepting.

Eve is forced to reach node 0d1N+1 in order to witness an accepting choice tree for tn.

By choice of N, there must be a cycle between 0d and 0d1N+1.

Assume Adam can enforce an increment without reset during this cycle. Then con-

sider the infinite sequence of trees generated by repeating the cycle a finite (but increasing)

number of times. On this sequence, the value of f is unchanged, but Adam has a family

of strategies witnessing unbounded value for A. It is absurd so we can consider that the

stategy of Eve enforces a reset for any increment in the cycle.

Now if this cycle is accepting, repeating it infinitely many times would create a tree

accepted by A with a bounded cost, but with value ∞ for f , since the a at position 0d1 will

never be followed by a b on any path. Since A recognizes f , we get a contradiction, so this

cycle has to be rejecting, say in partition Qj with j < i. Then Eve can read a b by choosing

any node 0d1N1+0, and this eventually goes back to an accepting state on some node of

0d1N1+0+ (otherwise a partial version of tn would not be accepted by A, but would have

value 1 for f). Let Qk be the partition of this accepting state, with k < j < i.

We then need to accept tn−1 from partition Qk, and the same reasoning can be applied

again to show that we must have another two alternations. By induction, we can conclude

that a weak B-automaton computing f needs at least 2n + 1 partitions, for any n ∈ N. This

is absurd since A must have a fixed number of partitions, so f cannot be computed by a

weak B-automaton.

B BS-Equivalence and History-Determinism

As described in Section 3, we utilize non-deterministic automata with one or both counter

types, on infinite words and on infinite trees. We will write C to denote the alphabet of

counter actions BΓB , SΓS or BΓB × SΓS depending on the type(s) of counters.

In addition to the B- and S-semantic introduced earlier, if A is a non-deterministic BS-

automaton, we define the S-semantic relative to the B-value [[A]]BS : N → Aω → N∞, which

seeks to maximize the value over S-accepting runs which also have some bounded B-value:

[[A]]BS (m)(u) := sup {valS(R) : R is an S-accepting run of A on u with valB(R) ≤ m} .

The BS-equivalence can be rewritten in terms of this S-semantic relative to the B-value:

A ≅α A′ if [[A]]B ≈α [[A′]]B, and for all m ∈ N there exists βm such that [[A]]BS (m) 4βm

[[A′]]BS (α(m)) and [[A′]]BS (m) 4βm
[[A]]BS (α(m)), where 4 and ≈ are the usual cost function

comparison and equivalence. We say that A and A′ are BS-equivalent, written A ≅ A′, if

there exists α such that A ≅α A′.

16 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

The idea is that the B-value is preserved between A and A′ as usual, and the S-value

relative to the B-value is also preserved (after adjusting for any differences in the bound on

the B-value).

All of the definitions are the same for non-deterministic BS-automata on infinite trees

(now [[A]]BS is a function from N → TA → N∞).

B.1 History-Determinism

Although cost automata on infinite words cannot always be made deterministic, they can

always be made “history-deterministic”, a weaker notion introduced in [3] which still re-

tains some nice properties (we refer the interested reader to [3, 6]). Unlike deterministic

automata which have a single transition fixed by the current input letter and current state,

history-deterministic automata require the entire history of the input and the current state

(as well as some ‘goal’ value for the automaton) in order to uniquely define a transition.

Let A be a non-deterministic B-automaton or S-automaton with transitions ∆ : Q ×
A → P(C × Q) where P(C × Q) is the set of subsets of (C × Q), a subset being viewed as

a disjunction of elements.

A translation strategy for A is a function δ : A∗ × Q × A → C × Q such that for all

u ∈ A∗ and (q, a) ∈ Q× A, δ(u, q, a) ∈ ∆(q, a).
A run R of A is driven by δ if, after reading u, when the current configuration is (q, a),

the next transition in R is δ(u, q, a).
If A is a B-automaton (resp. S-automaton), then we say that A is history-deterministic if

there is a family of strategies δ = (δn)n∈N∞
such that for all n ∈ N and all u ∈ Aω, if Rn is

the run of A on u driven by δn, then valB(Rn) ≤ n (resp. valS(Rn) > n) and moreover, if Aδ

is the automaton A restricted to the runs Rn, we have Aδ ≈ A.

The reason history-deterministic automata are useful is that they compose well with

alternating automata and games. One can think of A as reading the output (counter ac-

tions, Büchi states, etc.) from a play in the original game, and outputting different actions.

The idea is that if there is a history-deterministic automaton A which computes the valu-

ation used for plays in some game G, then the game A ◦ G which makes explicit the state

of this automaton on all plays still computes the same value (up to ≈). For an arbitrary

non-deterministic automaton this would not necessarily be possible, because the automa-

ton could disagree about moves on input which share some common prefix. BecauseAmay

use a different valuation itself, this allows us to change the valuation used in the game while

preserving the semantic. This is captured by the following lemma which is proven in [13,

Lemma 4 in long version].

LEMMA 11. LetA be a history-deterministic non-deterministic cost automaton (over infinite
words) and let G be a cost game with valuation f . If [[A]] ≈ f , then val(G) ≈ val(A ◦ G).

Recall that the BS-semantic is not symmetric in B and S : it fixes a B-value and looks

at the evolution of S-values among different runs that respect the B-constraint. Therefore,

we define a notion of history-determinism that will be more related to the S-side of the

automaton. Basically, we want to guarantee that (i) all runs of the automaton preserve the

B-value (up to ≈) and (ii) all runs driven by translation strategies (δn) preserve the S-value
(up to ≈).

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 17

Formally, we say that a BS-automatonA is history-deterministic if (i) there is some α such

that for all u ∈ Aω, if R and R′ are runs of A on u, then valB(R) ≈α valB(R
′) and (ii) there is

a family of strategies δ = (δn)n∈N∞
such that for all n ∈ N and all u ∈ Aω, if Rn is the run

ofA on u driven by δn, then valS(Rn) = n or valS(Rn) = ∞ (but Rn may not be S-accepting);

and moreover, if Aδ is the automaton A restricted to the runs Rn, we have [[Aδ]]S ≈ [[A]]S .
Remark that this implies that Aδ

≅ A.

We can take the family δ to be monotonic, i.e. if Rn is accepting, then all Rk for k < n are

also accepting, and moreover, for any word, R0 is accepting.

We get a new version of Lemma 11.

LEMMA 12. LetA be a history-deterministic non-deterministic BS-automaton (over infinite
words) and let G be a BS-game with valuation f . If A ≅ f , then val(G) ≅ val(A ◦ G).

C Simulation Theorem

We aim to prove the simulation result (one direction of Theorem 5). We start by recalling

a classical lemma, and proving a similar result in the cost setting which will be useful in

the simulation proofs. Recall that a regular language L of infinite words is recognizable

by a deterministic Büchi automaton iff L = limU for some regular language U (where

limU = {u : u(0) . . . u(i) ∈ U for infinitely many i ∈ N}). We can generalize part of this

result to the cost setting as follows.

LEMMA 13. Let g be a regular cost function over finite words and let

f (u) = inf {n : ∃ infinitely many prefixes v of u such that g(v) ≤ n} ,

f ′(u) = sup {n : ∃ infinitely many prefixes v of u such that g(v) ≥ n}

be cost functions over infinite words. Then f (respectively, f ′) is recognizable by a history-

deterministic B-Büchi (respectively, S-Büchi) automaton.

PROOF. We can assume that there is a αhd-history-deterministic B-automaton Afin (over

finite words) with a family δ of translation strategies such that for all u we have

f (u) ≈α inf {n : ∃ infinitely many prefixes v of u such that [[Afin]](v) ≤ n}

which is possible by [3, Theorem 1]. We claim that the same automaton viewed as a B-Büchi

automaton and denoted by A is equivalent to f and is αhd-history-deterministic (witnessed

by the same family δ of translation strategies). It suffices to show that [[A]]δ 4 f 4 [[A]].
[[A]]δ 4 f . Assume f is bounded by N on some set U of input words. Let β := α ◦ αhd.

Then for every u ∈ U, there must be some infinite set of indices I such that [[Afin]]
δ is

bounded by β(N) on prefixes u(0) . . . u(i) for all i ∈ I. This means that using the transla-

tion strategy δβ(N) to drive the automaton Afin on u(0) . . . u(i) results in an accepting run

bounded by β(N). Moreover, because δβ(N) deterministically specifies how to construct the

run, the runs driven by δβ(N) on prefixes u(0) . . . u(i) and u(0) . . . u(i′) are identical on any

shared prefix. Thus, this same translation strategy δβ(N) can be used to drive an infinite run

of A on u which witnesses infinitely many accepting states (at each i ∈ I) and has value

bounded by β(N).

18 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

f 4 [[A]]. If [[A]] is bounded by N on some set U, then for any u ∈ U, there is a run

of A on u with value bounded by N and with infinitely many accepting states at positions

indexed by some infinite set I. Thus, for all i ∈ I, there is a run of Afin on u(0) . . . u(i)
which ends in an accepting state and has valued bounded by N. Hence, we have that

inf {n : ∃ infinitely many prefixes v of u such that [[Afin]](v) ≤ n} ≤ N, so f (u) ≤ α(N).

The proof for f ′ is similar. We start with an α′
hd-history-deterministic S-automaton A′

fin

(over finite words) with translation strategies δ′ such that

f ′(u) ≈α′ sup
{

n : ∃ infinitely many prefixes v of u such that [[A′
fin]](v) ≥ n

}

.

We prove that [[A′]] 4 f ′ 4 [[A′]]δ
′
where A′ is A′

fin viewed as an S-Büchi automaton.

f ′ 4 [[A′]]δ
′
. Assume that [[A′]]δ

′
is bounded by N on some U but f ′ is unbounded on it.

Then there is u ∈ U such that f ′(u) > β′(N) where β′ := α′ ◦ α′
hd, but [[A′]]δ

′
(u) ≤ N. But

f ′(u) > β′(N) implies sup
{

n : ∃ infinitely many prefixes v of u such that [[A′
fin]](v) ≥ n

}

>

α′
hd(N), and sup

{

n : ∃ infinitely many prefixes v of u such that [[A′
fin]]

δ′(v) ≥ n
}

> N. This

means that there are infinitely many prefixes of u such that the runs of A′
fin driven by δ′N+1

are accepting with value greater than N. Thus δ′N+1 on uwitnesses an accepting run of value

greater than N, contradicting [[A′]]δ
′
(u) ≤ N.

[[A′]] 4 f ′. Assume f ′ is bounded by N on some set U. Then for any u ∈ U, we

have sup
{

n : ∃ infinitely many prefixes v of u such that [[A′
fin]](v) ≥ n

}

must be bounded

by α′(N). Assume by contradiction that there is some u ∈ U such that [[A′]](u) > α′(N).
Then there is an accepting run of A′ on u with checked values greater than α′(N). If the

accepting states are at positions indexed by some infinite set I, then for all i ∈ I, A′
fin acting

on the prefixes u(0) . . . u(i) accepts with value greater than α′(N). But this contradicts the

fact that sup
{

n : ∃ infinitely many prefixes v of u such that [[A′
fin]](v) ≥ n

}

≤ α′(N).

C.1 Proof of Lemma 6

We aim to simulate an alternating B-Büchi automaton B with a non-deterministic B-Büchi

automaton U .

Given an input tree t and a finite-memory strategy σ for Eve in the B-Büchi game (B, t),
we consider the tree tσ which is annotated with this strategy. In other words, tσ uses the

extended alphabet A′ := A ×P((Q× S)× B × (Q× S)× [0, 1]) whereQ is the set of states

from B, S is the additional memory needed for the strategy, C is the set of actions in a

B-Büchi game, and [0, 1] are the possible directions in a binary tree. Moreover, tσ(x) :=
(t(x), Sσ(x)) where Sσ(x) is

{((q, s), c, (q, s′), k) : (c, (q′, xk)) is possible from (q, x) via σ and s, s′ ∈ S}.

Let τ = k0k1 . . . ∈ [0, 1]ω be a path in t. Given tσ and τ, let wτ
σ := (a0, k0)(a1, k1) . . . such

that aj = tσ(k0k1 . . . kj) ∈ A′, so wτ
σ is the word that describes the plays compatible with σ

which stay on τ.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 19

LEMMA 14. There is a history-deterministic B-Büchi automaton Dmax which recognizes the
function max-play(wτ

σ) = sup{val(π) : π is compatible with σ and stays on τ}.

PROOF. Given w := wτ
σ, max-play can be rewritten as max {valBüchi(w), valcounters(w)}

where valBüchi(w) is ∞ if there is some play π described by w which does not satisfy the

Büchi acceptance condition and 0 otherwise, and valcounters(w) is the maximum counter

value achieved on any play π described by w. It is easy to see that history-deterministic

B-Büchi automata are closed under max. So it suffices to show valBüchi and valcounters are

recognizable by history-deterministic B-Büchi automata.

We first describe informally a deterministic Büchi automaton D recognizing valBüchi
(this automaton is based on a construction from [10]). The idea is that the state ofD includes

a “testing set” E ⊆ Q (representing a subset of possible states the automaton could be in

based on the word w that is being read). We write Ei for the testing set at position i in the

word. The set E0 is the set of rejecting states described in w(0). If Ei = ∅, then Ei+1 is the set

of rejecting states described in w(i+ 1). Otherwise, the testing set Ei+1 is updated to include

all rejecting states qi+1 reachable from rejecting states qi ∈ Ei by the moves described in w(i)
(note that rejecting states reachable from accepting states in w(i) are not added). The Büchi
acceptance condition is used to ensure that the testing set is ∅ infinitely often, i.e. there is

no play described in w which stabilizes in rejecting states.

Next, we show that there is a history-deterministic B-Büchi automaton E recogniz-

ing valcounters. Since valcounters can ignore the Büchi condition, we can actually obtain the

maximum value of counters by looking at larger and larger prefixes of the plays. That is,

valcounters = inf{n : ∃ infinitely many prefixes v of w s.t. valfincounters(v) ≤ n}, where we write

valfincounters(v) for the maximum counter value achieved on the partial (finite) plays described

by v. By Lemma 13, if valfincounters is a regular cost function on finite words, then valcounters is

recognizable by a history-deterministic B-Büchi automaton.

Thus, it remains to show that valfincounters is a regular cost function. Given a partial play π,

there is an S-automaton which recognizes valB(π) (by [6, Lemma 4]). We can then construct

a new S-automatonwhich when reading a prefix of w, non-deterministically selects a partial

play described by it, checks that it is a valid partial play in the game, and then computes its

valB value using the previous automaton. Given some prefix v of w, this automaton recog-

nizes the maximum of valB over the partial plays described in v, which is exactly valfincounters.

Now we construct a non-deterministic B-Büchi automaton U which on input t non-

deterministically selects annotations for t, checks that these annotations correspond to an

actual finite-memory strategy σ in the game (B, t) (and rejects if not), and then simulates

Dmax on each branch of tσ (this is possible since Dmax is history-deterministic by Lemma

14).

Recall that the value of a strategy in a B-Büchi game is the maximum value of the plays.

Thus, running Dmax on each branch of tσ yields a value ≈-equivalent to val(σ).

Moreover, since finite-memory strategies suffice in B-Büchi games by [13, Theorem 4],

the overall value (up to ≈) of (B, t) is the infimum over the values of all finite-memory

strategies for Eve. But non-determinism in the B-Büchi automaton U resolves into taking an

infimum. Thus, U finds the minimum value across all finite-memory strategies in (B, t), so

20 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

[[B]] ≈ [[U]].
Note that we have shown that any alternating B-Büchi automaton can be simulated by

a non-deterministic B-Büchi automaton (since we did not need the quasi-weak condition

anywhere in this section). This is no longer true in the S-case below.

C.2 Proof of Lemma 7

The simulation of quasi-weak B-automata with non-deterministic S-Büchi automata is more

technical because we must first introduce more general objectives/cost games which are

used in the proofs. The overall method, however, is the same as the B-Büchi case: the

non-deterministic automaton will guess a finite-memory strategy in a game related to the

original alternating quasi-weak B-automaton, and then run a history-deterministic cost-

automaton on each branch in order to compute the value of this strategy (this time it is

an S-Büchi automaton which is run on each branch).

Objectives in Cost Games

So far we have only worked with the B-Büchi and S-Büchi valuations, and the games which

use these valuations. These can actually be viewed in the context of cost games with more

general objectives O = 〈C, f , goal〉 where C specifies the counter actions, f : Cω → N∞

is the valuation for those actions, and goal ∈ {min,max} specifies how the player seeks to

optimize f in the game. We describe these ideas formally now.

Formally, a cost game G := 〈V, v0, δ,O〉 consists of a set of positionsV, an initial position

v0 ∈ V, an objective O = 〈C, f , goal〉 for Eve, and a control function δ : V → B+(C × V)
(where B+(C × V) is the set of positive boolean combinations, written as a disjunction of

conjunctions of elements from C ×V).

The objectiveO = 〈C, f , goal〉 describes how to assign values to the objects in the game.

For a play π = (vi, ci+1, vi+1)i∈N, the value is val(π) := f (πC) where πC := c1c2 If goal

is min, then the value of a strategy σ for Eve is val(σ) := sup{val(π) : π ∈ σ} and the value

of the game is val(G) := inf{val(σ) : σ is a strategy for Eve in G}. In other words, Eve seeks

to minimize over all strategies the maximum value of all plays compatible with the strategy.

Dually, if goal is max, then val(σ) := inf{val(π) : π ∈ σ} and val(G) := sup{val(σ) :

σ is a strategy for Eve in G}.
The dual G of a game G is obtained by switching disjunctions and conjunctions in the

control function and using the dual objective (i.e. replacing min with max, and vice versa).

This switches the roles of Adam and Eve. Martin’s theorem implies that a cost game and its

dual have the same value.

PROPOSITION 15. val(G) = val(G).

Note that in this formulation of cost games all of the information required to determine

the value of a play must appear on the transitions. Thus, in a B-Büchi game we view a state

as producing an output of priority 1 if it is rejecting and priority 2 if it is accepting (see [13]

for more information about these “cost-parity” games). Unless indicated otherwise, we set

C := BΓ × [1, 2], the output alphabet from a B-Büchi game with counters Γ.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 21

This means that a B-Büchi game with counters Γ has objective 〈C, cost
Γ,[1,2]
B ,min〉 where

cost
Γ,[1,2]
B assigns value ∞ if the play stabilizes in priority 1 (i.e. it is rejecting according to

the Büchi condition), and otherwise assigns valB(u) (i.e. the maximum checked value of any

counter). The game (A, t) described in Section 2 for A an alternating B-Büchi automaton

and t an input tree can easily be translated into a game of this form.

Recall that we intend on using the non-determinism of the S-automaton to guess a

strategy, and the non-determinism in S-automata resolves into taking a supremum. Thus,

we need to consider a game which has max as the goal. The natural candidate (and the one

used, for instance, in the simulation proof in [6]) is the dual of a B-Büchi game, which we

call a B-Büchi game (with objective 〈C, cost
Γ,[1,2]
B ,max〉). We use, as an intermediate object, a

related game called a B-safety game.

B-Safety Games

Observe that in a quasi-weak B-game, a play is assigned value ∞ if there are infinitely-

many priority 1 (since this means either the play has stabilized in priority 1 and is rejecting,

or it has infinitely-many alternations and consequently the B-value is ∞ by the quasi-weak

hypothesis). As a result, it is helpful to know where these priority 1 transitions occur.

We now consider a variant of a B-Büchi game which we call a B-safety game. A B-

safety game has additional signals $ added in the output. These signals are designed to

provide more information about the structure of the game in terms of the Büchi acceptance

condition, namely where these priority 1 transitions occur. This additional structure (i)

makes it easier to approximate the value of an infinite play based on the values of finite

prefixes of the play (which is needed in order to apply Lemma 13), and (ii) makes it easier

to prove that finite-memory strategies suffice in quasi-weak B-Büchi games.

Formally, a B-safety game has objective 〈C′, safety-cost
Γ,[1,2]

B
,max〉where C′ := C · {ǫ, $}

and safety-cost
Γ,[1,2]

B
(u) is defined as follows. If there are finitely many $ in u, then we set

safety-cost
Γ,[1,2]

B
(u) := 0. Otherwise, u can be split into u0$u1$. . . such that each ui contains

no $. If there is some ui in u such that there is no priority 1 in ui (but there is priority

1 in each ui′ for i
′

< i), then safety-cost
Γ,[1,2]

B
(u) := valB(h[1,2](u0u1 . . . ui)), where h[1,2] re-

moves the priorities, keeping only counter actions. In that case, the value is the normal B-

value on the prefix u0u1 . . . ui. Otherwise, safety-cost
Γ,[1,2]

B
(u) := ∞. We write safety-costΓ

B(u)

for the B-safety valuation on finite words u which assigns value 0 if u does not end in $,

valB(h[1,2](u0u1 . . . ui)) if u = u0$u1$. . . uj where each ui′ for i
′ ≤ j contains no $ and ui

for i ≤ j is the first subword which does not contain priority 1, and value ∞ otherwise.

The idea is that it is more difficult to obtain a high value in a quasi-weak B-safety game

compared to a quasi-weak B-game because of the additional requirements enforced by $

(e.g., a play with infinitely many priority 1 has value ∞ in a quasi-weak B-game, but a play

with infinitely many signals in a B-safety game must not only have infinitely many priority

1 but must also witness priority 1 between each signal in order to be assigned value ∞).

We say a B-safety game G ′ is based on a B-Büchi game G with an acyclic game graph if

the arena and transitions are identical except for the fact that signals $ have been added to

22 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

some edges in the game graph such that either all transitions at some depth have output $,

or none do. For B-safety games based on quasi-weak B-games, there is a nice lemma about

the relationship between a quasi-weak B-game and the B-safety games based on it.

LEMMA 16. For every quasi-weak B-game G with an acyclic game graph, we have val(G) =
sup

{

val(G ′) : G ′ is a B-safety game based on G
}

.

PROOF. Assume a strategy τ for a quasi-weak B-game G = 〈V, v0, δ, 〈C, cost
Γ,[1,2]
B ,max〉〉

with an acyclic game graph witnesses val(G) = val(τ) = n . Let T be the corresponding

strategy tree or run tree (i.e. the tree of all plays compatible with strategy τ).

We define inductively a strictly increasing sequence of depths (di)i∈N where d0 = 0

and di+1 is the least d such that all paths in T either (a) have counters which witness value n

before depth d or (b) have at least one transition labelled with priority 1 between depths di
and d. This is well-defined: assume by contradiction that there is some position s ∈ T from

which there is no bound on the depth at which (a) or (b) are satisfied. Because of the finite

branching inherent in these games, König’s Lemma would imply that there is a path from s

on which neither (a) nor (b) are satisfied, i.e. a path in T through s with only finitely many

priority 1 transitions (and no priority 1 transitions after s) and counter values less than n, so

this path has value less n. But this means val(τ) < n, contradicting our initial assumption.

Next we transform G into a B-safety game Gτ = 〈V, v0, δ
′,O′〉 by updating the out-

put to produce the appropriate signals at depths (di)i∈N and setting the objective to O′ =

〈C · {ǫ, $}, safety-cost
Γ,[1,2]

B
,max〉. Playing according to τ in Gτ (and adding $ at the depths

(di)i∈N) witnesses the fact that sup
{

val(G ′) : G ′ is a B-safety game based on G
}

≥ val(G).

Now assume by contradiction that there is a strategy σ in a B-safety game G ′ based

on G such that val(σ) > val(G). This means that on each play π ∈ σ, either there are

infinitely many priority 1 in π (with at least one such transition between each signal $) or

the counters witness a value exceeding n. In either case, cost
Γ,[1,2]
B (h$(π)) > n where h$

removes the signal output. (Note that this is not necessarily true when G ′ is based on an

arbitrary B-Büchi game, but is true when it is based on a quasi-weak B-game G as assumed

here.) But this means that val(G) > n, contradicting the initial assumption.

Finite Memory Strategies

Next, we show that finite-memory strategies suffice in quasi-weak B-games with acyclic

game graphs: that is, there is some correction function α such that if there is a strategy in

a quasi-weak B-game which can guarantee a value of at least α(n), then there is a finite-

memory strategy which can guarantee a value of n. We actually do this by translating be-

tween different types of games/objectives: quasi-weak B-games, quasi-weak hB-games, and

hB-safety games.

Fix an arbitrary strategy τ that witnesses at least cost (n + 1)k for the quasi-weak hB-

game G = 〈V, v0, δ,O〉 with O = 〈C, cost
[1,k],[1,2]
hB ,max〉 and C the actions in a hierarchical B-

Büchi game. We assume that G has an acyclic game graph and uses k hierarchical counters.

Let T be the corresponding strategy tree (the tree of plays compatible with τ).

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 23

We define inductively a strictly increasing sequence of depths (di)i∈N where d0 = 0

and di+1 is the least d such that all paths in T either (a) have counters which witness value

(n + 1)k before depth d or (b) have at least one transition labelled with priority 1 between

depths di and d. This is well-defined (see the proof of Lemma 16).

Next we transform G into a hB-safety game Gτ = 〈V, v0, δ
′,O′〉. If v is not at a depth

di for any i ∈ N, then δ′(v) := δ(v). Otherwise, for v at depth di for some i ∈ N, we

need to update the output to produce the appropriate signals described above: δ′(v) :=
δ(v)[(c$, v′)/(c, v′)]. In order to assign a value to plays, we set the objective to be O′ =

〈C · {ǫ, $}, safety-cost
[1,k],[1,2]

B
,max〉. Moreover, there is a deterministic hB-automaton D over

the alphabet C′ := C · {ǫ, $}which recognizes safety-cost
[1,k],[1,2]

B
(it uses the state to remember

whether priority 1 has been seen between signals $, and whether the output is still being

analyzed).

This new game must have value at least (n + 1)k (since by adding $ at appropriate

depths, τ can be transformed into a strategy in Gτ which witnesses value at least (n + 1)k).

LEMMA 17. val(Gτ) ≥ (n + 1)k

We now consider the composition D × Gτ , which is a quasi-weak hB-game since D
translates the game Gτ into an hB objective (and neither changes the value of cycles of pri-

ority 1 and 2, nor introduces any additional cycles with both priorities). The additional

structure in this new game can be used to show that positional strategies suffice.

LEMMA 18. If there is a strategy of value at least (n+ 1)k inD×Gτ , then there is a positional
strategy of value at least n in D ×Gτ .

PROOF. Fix a strategy τ′ witnessing at least cost (n + 1)k in G ′ := D × Gτ and let T′ be

the corresponding strategy tree. Let h : S → V be the homomorphism between the set of

positions S in T′ and the set of positions V in G ′.

Using an optimal strategy τ′, Eve’s choice at a particular v ∈ V may depend on the

history of the play leading to v. Thus, there may be s, s′ ∈ h−1(v) such that the moves pos-

sible from s are different than from s′; however, because the game graph is acyclic, s, s′, and

v must be at the same depth. A positional strategy σ′ can be viewed as a mapping from

V to S which for each v selects a single element of h−1(v) for Eve to use (regardless of the

history). Such a positional strategymay not be able to achieve the optimal value, but the dif-

ference between the positional strategy and an arbitrary strategy should be bounded (given

by some correction function α). To build this map σ′, we use the notion of “signatures”.

We define a signature for nodes s ∈ S as follows: let

sig(s) := 〈γmax(s),γ1(s),γ2(s), . . . ,γk(s)〉

where γj(s) is the current value of counter j according to the counter actions described

on the path from the root of T′ to s (up to value (n + 1)k), and γmax(s) is (n + 1)k if the

path to s has already reached at least value (n + 1)k or max{γ1(s), . . . ,γk(s)} otherwise.

Let σ′ : V → S where σ′(v) selects the node s ∈ h−1(v) with the lexicographically-least

signature. We extend sig to nodes v ∈ V be setting sig(v) := sig(σ′(v)).

24 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

It is clear that σ′ is a positional strategy (see the earlier explanation). It remains to show

that minimizing this signature resulted in a positional strategy which can guarantee value

at least n.

Suppose for contradiction that val(σ′) < n, so there is some play π ∈ σ′ with val(π) =
m < n. Then π must not visit priority 1 infinitely often (otherwise the value of the play

would be immediately ∞ by the properties of quasi-weak automata). Thus, there is some

least i such that no transitions of priority 1 occur between di and di+1. Let v be the game

position at depth di+1 in π. For all s ∈ h−1(v), there must be no priority 1 between di and

di+1 (since this is true at v and the state of D is recorded in the game position). Hence, for

all s ∈ h−1(v), γmax(s) = (n + 1)k so sig(v) ≥ 〈(n + 1)k, 0, . . . , 0〉. Likewise, we know that

the signature at the initial game position v′0 is 〈0, 0, . . . , 0〉.

We now show that 〈l + (m + 1)k, . . . , l + (m + 1)k〉 is an upper bound for the signa-

ture possible on a partial play derived from σ′ which starts from a position s satisfying

〈l, 0, . . . , 0〉 < sig(s) ≤ 〈l, . . . , l〉 and has value m. Since we are starting from 〈0, . . . , 0〉 and
m < n, this is enough to yield the desired contradiction.

First, notice that an increment of some counter is necessary (but not sufficient) for a

strict increase in a signature 〈m0,m1,m2, . . . ,mk〉 < 〈(n + 1)k, 0, . . . , 0〉. If counter j is in-

cremented, then the maximum value of the signature at the next position is 〈max{mj +
1,mj+1, . . . ,mk}, 0, . . . ,mj + 1,mj+1, . . . ,mk〉. Likewise, if counter j is reset, then the max

signature is 〈max{mj+1, . . . ,mk}, 0, . . . , 0,mj+1, . . . ,mk〉. In all signatures, we have m0 ≥
max {m1, . . . ,mk}.

If k = 1, then by incrementing the counter m times the signature can increase at most

to 〈l + m, l + m〉. The signature cannot be increased further by using resets since a reset

results in the signature first decreasing to 〈0, 0〉. Thus, the maximum signature is bounded

as desired.

Now let k > 1. By the inductive hypothesis, the signature sig0 = 〈l+ (m+ 1)k−1, . . . , l+
(m+ 1)k−1, 0〉 is the maximum possible using only counters {1, . . . , k− 1} and a partial play

of value m. We can assume that any other increments of counters {1, . . . , k− 1}would result

in some counter exceeding m (otherwise, the signature would not be maximum).

If counter k is reset, then the signature must decrease to 〈0, . . . , 0〉, so that operation

is not useful. If counter j < k is reset, then the signature must first decrease to 〈l + (m +
1)k−1, . . . , 0, l+ (m+ 1)k−1, . . . , l+ (m+ 1)k−1, 0〉. Again, we can assume that touching coun-

ters {j + 1, . . . , k− 1} would result in a value exceeding m, so only counters {1, j} can be

touched, which by the inductive hypothesis can only increase the signature back to sig0.

But 〈l + (m + 1)k−1, 0, . . . , 0, l + (m + 1)k−1〉 < sig0, so σ′ could select a node with such

a signature. An increment of counter k from this position results in signature 〈l + (m +
1)k−1 + 1, 0, . . . , 0, l + (m + 1)k−1 + 1〉 (and resets all lower counters). The strategy σ′ could

now select a lower signature 〈l + (m + 1)k−1, l + (m + 1)k−1, . . . , l + (m + 1)k−1〉. We can

apply the inductive hypothesis again from here, to get a maximum signature of sig1 =
〈l + 2(m + 1)k−1, . . . , l + 2(m + 1)k−1, l + (m + 1)k−1〉. Because the increment of counter k

reset the values, the value of the play according to σ′ is still at most m.

Repeating this process, we get a maximum signature of sigm = 〈l + (m + 1)k, . . . , l +
(m + 1)k〉. Repeating the process again would result in counter k achieving a value greater

than m, so sigm is the upper bound.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 25

Next, we can use the previous lemma to give a value to the original quasi-weak hB-

game G which is based on finite-memory strategies in hB-safety games based on it.

LEMMA 19.

val(G) ≈α sup{val(σ) : σ is finite-memory strategy in hB-safety game G ′ based on G } with
α(n) = (n + 1)k.

PROOF. By Lemma 16, one direction is clear: val(G) is at least the supremum of the val-

ues of the finite-memory strategies in hB-safety games based on it. In order to show that

val(G) 4α sup{val(σ) : σ is a finite-memory strategy in a hB-safety game G ′ based on G}
where α(n) = (n + 1)k, it suffices to show that if G has value (n + 1)k, then there is a

hB-safety game based on it which has a finite-memory strategy of value at least n.

Assume there is a strategy τ witnessing value at least (n + 1)k in G. By Lemma 11 and

Lemma 17, we have val(D × Gτ) = val(Gτ) ≥ (n + 1)k. Since there is a positional strategy

στ in D × Gτ witnessing value at least n by Lemma 18, there is a finite-memory strategy

witnessing value at least n in Gτ (where the memory depends on D).

A similar proof (which also uses the history-deterministic transducers from B- to hB-

games) can be used to show that quasi-weak B-games (and the B-safety games based on

them) admit finite-memory strategies when the underlying game graph is acyclic.

COROLLARY 20. Finite-memory strategies suffice in quasi-weak B-games with acyclic game
graphs (and B-safety games based on them).

Proof of Lemma 7

We use a similar method as in the previous case to construct a non-deterministic S-Büchi

automaton S . This time we start by considering trees annotated by a strategies σ in a hB-

safety game based on quasi-weak hB-game. By fixing a path τ in such a tree, we get a word

wτ
σ as before.

LEMMA 21. There is a history-deterministic hS-Büchi automatonDmin which recognizes the

function min-play(wτ
σ) = inf{safety-cost

Γ,[1,2]

B
(π) : π ∈ σ|τ}.

PROOF. Let w := wτ
σ. Then the function min-play can be rewritten as min-play(w) =

sup{n : ∃ infinitely many prefixes v of w s.t. g′(v) ≥ n} where g′ maps a finite prefix of w

to the minimum safety-cost over the partial plays described in this prefix (in particular,

if I describes an infinite number of positions where $ occurs in w, then min-play(w) =
sup {n : ∀i ∈ I.g′(w(0) . . .w(i)) ≥ n}). By Lemma 13, it suffices to show that g′ is a regu-

lar cost function.

Given a partial play π, it is straightforward to construct a B-automaton C ′ which rec-

ognizes safety-costΓ

B
(π) (just copy the output actions from the input word which describes a

play, and use the state to track whether priority 1 has been visited between signals in order

to determine acceptance). The desired B-automaton recognizing g′ non-deterministically

selects a partial play in a prefix of w, checks that it is a valid partial play in the hB-safety

game, and simulates C ′ on it; this computes the minimum of safety-costΓ

B over the partial

plays described in a prefix of w.

26 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

We can assume that B uses hierarchical counters. The desired automaton U ′ is then

constructed such that on input t it guesses a hB-safety game based on (B, t) (the dual of

the original game), guesses a finite-memory strategy in this game, and then computes the

value of this game by simulating Dmin on each branch. Because Dmin is an S-Büchi automa-

ton, the resulting automaton is a non-deterministic S-Büchi automaton. In an S-automaton,

non-determinism amounts to taking a supremum. Hence, the automaton computes the

supremum over the values of finite-memory strategies in hB-safety games based on (B, t),
which is ≈-equivalent to the value of (B, t) by Lemma 19.

D Transducers for Hierarchical Automata

D.1 B to hB and S to hS

It was already known from [3] that hierarchical counters suffice in cost automata. In [6], the

translation from B to hB is shown explicitly, using ideas from the “latest-appearance record”

construction. A similar result from S to hS was already known by Colcombet and Löding

and we describe the construction here.

Fix some ΓS = [1, k] of counters. Our goal is to build a history-deterministic hS-

automaton A using the same counters ΓS such that [[A]]S ≈ valS and the counter operations

are hierarchical. Hierarchical actions are labeled by counter number; if k = 3, then action i2

stands for (r, i, ε).
The state-set Q includes all tuples (X, 〈γj, . . . ,γk〉) where X ⊆ ΓS, j = |X| + 1, and

〈γj, . . . ,γk〉 is a permutation of ΓS \ X, as well as a sink state ⊥. We write 〈Y,γj, . . . ,γk〉
to denote the permutation which lists the elements of Y in ascending order followed by

γj, . . . ,γk. The initial state is (∅, 〈ΓS〉). The only rejecting state is ⊥.

Now consider a state (X, 〈γj, . . . ,γk〉) and an input letter a ∈ {ε, i, r, cr}ΓS . We describe

the edges in the transition relation ∆. LetY = {γ ∈ X : a(γ) 6= ε}. Let i ∈ [j, k] be the largest
index such that a(γi) 6= ε.

• If such an i does not exist, then (X, 〈γj, . . . , γk〉)
a:ε
−→ (X \ Y, 〈Y, γj, . . . , γk〉).

• If a(γi) = i then (X, 〈γj, . . . , γk〉)
a:ii−−→ (X \ Y, 〈Y, γj, . . . , γk〉).

• If a(γi) = r then (X, 〈γj, . . . , γk〉)
a:ri−−→ (X \ Y, 〈Y, γi, γj, . . . , γi−1, γi+1, . . . , γk〉).

• If a(γi) = cr then (X, 〈γj, . . . , γk〉)
a:ε
−→ ⊥.

• Regardless, (X, 〈γj, . . . , γk〉)
a:cri−−→ ((X ∪ {γi}) \ Y, 〈Y, γj, . . . , γi−1, γi+1, . . . , γk〉).

Let w ∈ {ε, i, r, cr}ΓS . Let u be an output sequence from A on w which yields the

maximum value (i.e. [[A]]S(w) = valS(u)).
We start by showing that [[A]]S(w) ≤ valS(w). Assume that valS(u) = N. Let u′ be

some shortest subsequence in u ending in cri which witnesses a counter value of N for

some counter i. Let w′ be the corresponding subsequence in w.

In order for a letter in w′ to be translated into ii, A must have been in some state

(X, 〈γj, . . . ,γk〉) with i ≥ j before reading a letter a in w′ with a(γi) = i and a(γi′) = ε for

all i′ > i. We know that u′ does not contain any occurrences of ri and only has cri at the last

position (otherwise there would be a shorter subsequence witnessing value N). Likewise, u′

does not contain any occurrences of ii′ ,ri′ , or cri′ for i
′
> i (since this would induce a reset

of counter i, and imply there is a shorter subsequence u′). Hence, all counters γi′ indexed

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 27

by i′ ≥ i in the permutation are stable while A is reading w′. In particular, each of the N

increments ii in u′ correspond to N increments i for a single counter γi in w′.

The fact that u′ ends in cri does not imply that w′ ends in cr for γi. If there is no

such w′ ending in cr for counter γi, then it means that no counters are checked in w so

valS(w) = ∞. Otherwise, at least one such subsequence must end in cr for γi, yielding

value N as described above. Hence [[A]]S(w) ≤ valS(w).

Next, we show that valS(w) ≤ α([[A]]S(w)) for α(n) = k · nk + 1. If valS(w) = ∞, then

there is no cr for any counter in w. But this means the run ofA of value ∞ which never takes

the check-reset transition is accepting, so valS(w) ≤ α([[A]]S(w)) as desired. Now assume

that valS(w) = k · Nk + 1 and suppose for contradiction that valS(u) < N. Consider some

shortest subsequence w′ of w which for some ζ ∈ ΓS ends with cr for ζ and witnesses k · Nk

increments for ζ (so there are no intermediate resets or check-resets for ζ in w′).

Assume A is in state (X, 〈γj, . . . ,γk〉) when starting to read w′, where ζ = γi for some

i ∈ [j, k]. Consider the subsequence w′′ of w′ (and corresponding u′′ of u′) on which ζ

remains at this fixed index i in the permutation. On u′′, there can be no resets ri′ for i
′ ≥ i

or check-resets cri′ for i
′
> i in u′, but there can be increments ii′ . In fact, there can be at

most N − 1 increments ii′ before ii′′ for i
′′

> i′ (otherwise it would contradict valS(u) < N).

Hence, these increments in u′′ correspond to at most (N − 1)k increments of ζ in w′′.

Since there are no intermediate resets or check-resets for ζ on w′, ζ can only be moved

right in the permutation during the run of A on w′. This means the run of A on w′ can

account for k · (N− 1)k increments for ζ, contradicting our initial assumption. In the special

case when ζ ∈ X when A starts to read w′, ζ will be moved to the initial position in the

permutation at the start of the run and then the reasoning proceeds as above (showing that

A onw′ can account for k · (N− 1)k + 1 increments of ζ, again contradicting the assumption).

The history-determinism of this automaton is witnessed by the translation strategies

defined by δn which use the check-reset transition for S-counter i (the only source of non-

determinism) only when counter i would otherwise take a value higher than n.

D.2 hB and hS to hBS

We aim to prove Theorem 4. We assume that each counter type already has hierarchical ac-

tions (based on the transducers described in the previous section), and describe transducers

which can make the combined B- and S-counters hierarchical in a way which preserves ≅.

We write GKS
KB

as shorthand for G(ΓB, ΓS) where |ΓB| = KB and |ΓS| = KS, i.e. G
KS
KB

is the

single-state automaton over C = BKB × SKS which outputs actions in C by just copying the

input. Likewise, we write HKS
KB

for the hBS-automaton which will satisfy HKS
KB

≅ GKS
KB

We start by describing properties and main ideas of the automaton HKS
KB
. It has KB B-

counters and (KB + 1)KS S-counters. The principle of the automaton is to split the input

word into sequences of S-actions from {i, ε}∗ which are between resets of the B-counters. It

uses one copy of the S-counter to count the number of S-increments within each sequence,

and the other copy to count the number of sequences with at least one S-increment (with

respect to each S-counter). If the S-value is big relative to the B-value, then the output ofHKS
KB

will also have a high S-value, obtained from one of these counters. This intuition is already

28 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

used in [2], but only with boolean properties about boundedness and unboundedness; we

extend the notion by paying attention to the values. Moreover, the transducer copies almost

exactly the B-actions: it can only output one additional r between two r’s in the input.

PROPOSITION 22. For all KB,KS ∈ N, the automatonHKS
KB

is history-deterministic.

We can now use this transducer by composing it with any non-hierarchical automaton

in order to transform the output and yield a hierarchical automaton.

We now show how to translate a sequence of BS-actions into an equivalent hBS one,

assuming that the individual B- and S-counter actions are already hierarchical.

BuildingH1
1.

We first build a transducerH1
1 which transforms an infinite sequence of actions in B × S into

a hierarchical one, while guaranteeing a BS-equivalence between the input and the output.

The automaton below is H1
1 with the transitions labelled by letters from B × {i, ε}

(other transitions are described later, in order to lighten the picture). The automaton has

3 hierarchical counters S3, B2, S1 and hierarchical actions are labeled by counter number, for

example action ic2 stands for (r, ic, ε) which does not change S3, increments and checks B2,

and resets S1. We write a for any action of B. For all states s, there is a loop s
(ε,ε):ε1
−→ s.

H1
1 can be considered as an automaton on either finite or infinite words over C, using

the fact that if w ∈ Cω is accepting for both Büchi conditions, then we have [[H1
1]]B(w) =

sup
{

[[H1
1]]B(u) : u prefix of w

}

, and for all m ∈ N, we also have that [[H1
1]]

B
S (m)(w) =

inf
{

[[H1
1]]

B
S (m)(u) : u prefix of w

}

. Therefore correctness of H1
1 over finite words implies

correctness over infinite words.

q0 q1

p q2

(ic, i), (ic, ε) : ic2
(ε, i) : i1

(r, i) : i3
(a, ε) : a2

(a, i), (a, ε) : a2 (ic, i), (ic, ε) : ic2
(ε, i) : i1

(ε, i) : cr1

(ε, i) : cr1
(a, i) : cr3

(r, i), (r, ε) : r2

(ε, i) : ε2
(ic, i) : ic2

(r, i), (r, ε) : i3

(a, i) : cr3

We add the following transitions:

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 29

(1) q0
(a,r):a2
−→ q0,

(2) for x ∈ {1, 2}, qx
(a,r):r3
−→ q0,

(3) p
(a,r),(a,cr):a2

−→ q0.

Remark that the automaton is built in such a way that pmuch be reached when reading

a cr on the input, but in order to reach p, we have to perform a cr on one of the S-counters.

The principle of the automaton is that on a sequence of i and ε on the input S-counter, γ3

counts the number of intervals between two r’s for B which contain at least one i, whereas

γ1 counts the number of i’s during an ε-sequence for B. The bounded number of ic’s will

ensure the semantic is correct.

THEOREM 23. H1
1 is BS-equivalent to G1

1 which just copies the input actions.

PROOF. First, let us show that [[H1
1]]B ≈ [[G1

1]]B. The only transitions of H1
1 which do not

reproduce the action of the B-counter are the ones defined in (2), and the transitions from q1
or q2 to p labelled (a, i) : cr3 (all of these transitions perform a reset on counter B2 instead

of action a).

However, to reach these transitions from q0, onemust have seen a reset of the B-counter

before (transitions from q0 to q1), and moreover we go back to state q0 by taking only one

such transition. We can insert (by replacing a letter) at most one reset between two resets of

the initial sequence, so [[H1
1]]B ≈α [[G1

1]]B, with α(m) = 2m + 1.

We will now show the remaining part of [[H1
1]]BS ≅α [[G1

1]]BS.

Let m ∈ N be fixed, we want to show that there exists βm such that

• [[H1
1]]

B
S (m) 4βm

[[G1
1]]

B
S (α(m)) (1)

• [[G1
1]]

B
S (m) 4βm

[[H1
1]]

B
S (α(m)) (2)

Part (1) is quite straightforward: notice that we do increments on counter S1 or S3 of

H1
1 only when there is an increment for an S-counter in u. Moreover, every cr in u can be

matched to an earlier cr on counter S1 or S3 in H1
1. Therefore, [[H1

1]]
B
S (m) ≤ [[G1

1]]
B
S (m) ≤

[[G1
1]]

B
S (α(m)).

For part (2), we proceed by contradiction, and assume that there is a set U of finite

words on alphabet C such that
{

[[H1
1]]

B
S (α(m))(u) : u ∈ U

}

is bounded by some N ∈ N, but
{

[[G1
1]]

B
S (m)(u) : u ∈ U

}

is unbounded.

Let u ∈ U such that [[G1
1]]

B
S (m)(u) > ((N + 1)m+ 1)N. In particular, [[G1

1]]
B
S (m)(u) is not

0 so it is equal to valS(u), and valB(u) ≤ m.

We write u = (uB, uS), and factorize uS in u1b1u2b2 . . . ukbkuk+1 such that for any j, bj ∈
{r, cr} and uj ∈ {i, ε}∗. We do the corresponding factorization uB = v1a1v2a2 . . . vkakvk+1

by matching the positions of aj and bj.

Let us remark that a run ρ on u can be written ρ1 . . . ρkρ′ such that for all j, ρj is the

subrun of ρ over (vjaj, ujbj). By definition ofH1
1 (namely, the transitions described in (1)-(3)

above), ρj starts and ends in state q0 for all j.

Moreover, let n = [[H1
1]]

B
S (α(m))(u) ≤ N, there is an optimal run ρ of H1

1 on u with

valS(ρ) = n. “Optimal” means here that for all j, valS(ρj) is maximal: there is no run ρ′j over

(vjaj, ujbj) starting in q0 with valS(ρ′j) > valS(ρj). We can take ρ optimal because the subruns

ρj are independent from each other.

30 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

Let J be the set of indices j such that bj = cr. For any j ∈ J, we have valS(ujcr) ≥
valS(u) = [[G1

1]]
B
S (m)(u) > ((N + 1)m + 1)N. Let j ∈ J such that valS(ρj) = n, which exists

because valS(ρ) = n. We have q0
(vj,uj)

−→∗ p
(bj,cr)
−→ q0.

Let vj = w0rw1r . . . rws with wl ∈ {ic, ε}∗ for all l, and let uj = x0d0x1 . . . ds−1xs be the

corresponding factorization of uj, i.e. for all l, |xl | = |wl| and |dl | = 1.

If s = 0, then the transition from q0 to q1 is not taken during ρj. But when the transition

towards p is taken, we perform action cr1. This means the counter S1 must have value n,

after n consecutive readings of (ε, i). Assume that there are at most n consecutive (ε, i) in
(vj, uj). We know that |vj|ic ≤ m so we get |uj|i ≤ (n + 1)m. But valS(ujcr) > ((N +
1)m + 1)(α(m) + 1) > (n + 1)m so it is absurd. It means that there is strictly more than n

consecutive (ε, i) in (vj, uj), which contradicts the optimality of ρ, since we can build a run

ρ′j on (vjaj, ujbj) with valS(ρ′j) > n = valS(ρj).

It remains to treat the case s > 1. As before, wemust have supi(|xi|i) ≤ (n+ 1)m, other-

wise ρ would not be optimal. Consequently, for all i, |xidi|i) ≤ (n+ 1)m+ 1. Notice that the

value of the counter S3 while reading (wi, xi) is equal to the size of Ji = {l ≤ i, |xldl |i > 0}.
Therefore we must have |Js| ≤ n by optimality of ρ, otherwise we could build a run of value

greater than ρj by taking a transition labeled cr3 towards p at the end of (wj, xj).

Finally |uj|i ≤ (|xjdj|i)|Js| ≤ ((n + 1)m + 1)n ≤ ((N + 1)m + 1)N < [[G1
1]]

B
S (m)(u). It

is true for all j, which is in contradiction with the definition of [[G1
1]]

B
S .

We can conclude there is no such set U, so [[G1
1]]

B
S (m) 4βm

[[H1
1]]

B
S (α(m)), for βm(n) =

((n + 1)m + 1)n.

THEOREM 24. H1
1 is history-deterministic.

PROOF. Let us first notice that the only non-determinism inH1
1 occurs while reading i on

the S component (transitions going to p). We define δn to be the strategy taking transitions

going to p if we have reached n on some S-counter and then see another i action (this

condition depends only on the past word u). This already defines a unique run ρu of H1
1 on

every word u such that valS(ρu) ≥ n.

Moreover, if there is a run ρ of H1
1 over u with valS(ρ) ≥ n, then the run driven by

δn exists (and, in fact, is the optimal run), which concludes the proof that H1
1 is history-

deterministic.

Extension ofH1
1 for several hierarchical counters.

Let KB,KS > 0, we define C
KS
KB

⊂ (B)KB × (S)KS to be the set of actions that can be made by

a hierarchical B-automaton together with a hierarchical S-automaton. C
KS
KB

is composed of

letters of the form ((r, . . . , r, a, ε, . . . , ε), (r, . . . , r, b, ε, . . . , ε)) with (a, b) ∈ B × S.

For any KB,KS > 0, we now want to build HKS
KB
, the generalization of H1

1 to alphabet

C
KS
KB
, such that it is BS-equivalent to the automaton GKS

KB
on the same alphabet, with one state,

which just copies the input actions to its counters. As before, we wantHKS
KB

to be hierarchical

and history-deterministic.

We first define by induction the automaton H1
KB

for all KB > 0.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 31

BuildingH1
KB

for all KB > 0.

First notice that H1
1 = 〈C1

1,Q
1,

{

q10
}

, Γ1
B, Γ

1
S,∆

1〉 is already built in a correct way. Now as-

sume H1
KB

= 〈C1
KB
,QKB ,

{

qKB
0

}

, ΓKB
B , ΓKB

S ,∆KB〉 is built and correct, and we want to build

H1
KB+1.

We need C = 〈{ic, ε} × {i, ε} ,QC , {s0} , {γB} , {γS} ,∆C〉, an auxiliary BS-automaton

defined by this diagram:

s0 s1

(ic, i), (ic, ε) : ic2
(ε, i) : i1
(ε, ε) : ε1 (a, i), (a, ε) : a2

(ε, i) : cr1

which has two new hierarchical counters, γB > γS.

We define H1
KB+1 = 〈C1

KB+1,Q
KB+1,

{

qKB+1
0

}

, ΓKB+1
B , ΓKB+1

S ,∆KB+1〉. Let QKB+1 = QKB ×

QC , q
KB+1
0 = (qKB

0 , s0). We take Γ
KB+1
B = Γ

KB
B ∪ {γB} and Γ

KB+1
S = Γ

KB
S ∪ {γS} such that

γ > γB > γS for all γ ∈ Γ
KB
B ∪ Γ

KB
S . The hierarchy of counters is inherited from H1

KB
and C,

and any action on counters ofH1
KB

performs resets on counters of C.

Finally, ∆KB+1 is defined as follows.

(C) for all s
(a,b):σ
−→ s′ in ∆C with a ∈ B and b ∈ S, and all q ∈ QKB , we add transition

(q, s)
(εKB a,b):σ−→ (q, s′) in ∆KB+1.

(Hx) for all q
(a,b):σ
−→ q′ in ∆KB with a ∈ Bx and b ∈ S1, and all s ∈ QC , we add transition

(q, s)
(ar,b):σ
−→ (q′, s0) in ∆KB+1.

(s1) for all q ∈ QKB , and a ∈ BKB+1, we add transition (q, s1)
(a,cr):a
−→ (qKB

0 , s0)

where εKB
a stands for (ε, . . . , ε, a), ar stands for (a,r) with a being an action onKB hierarchical

B-counters, and action σ is performed on the same counter as before, i.e. γB or γS in the case

(C), and one of the counters of Γ
KB
B or Γ

KS
S in case (Hx).

Let us show that H1
KB+1 is BS-equivalent to G1

KB+1.

We first have to show [[H1
KB+1]]B ≈α [[G1

KB+1]]B, we will again use α(m) = 2m + 1. By

induction, we can show that as in the preceding proof, for each counter, at most one r is

added for each r of the input sequence, so [[H1
KB+1]]B ≤ valB which implies the result.

We now need to show that that for all m, there exists βm such that :

• [[H1
KB+1]]

B
S (m) 4βm

[[G1
KB+1]]

B
S (α(m)) (1)

• [[G1
KB+1]]

B
S (m) 4βm

[[H1
KB+1]]

B
S (α(m)) (2)

Part (1) is still straightforward: increments on B counters always corresponds to incre-

ments corresponding counters of the input words, and every input cr leads to an output cr

after less increments.

It remains to show part (2). Let m ∈ N. Let u = (uB, uS) ∈ (BKB+1 × {i, ε})∗(BKB+1 ×
{cr}) such that [[G1

KB+1]]
B
S (m)(u) > N and [[H1

KB+1]]
B
S (α(m))(u) ≤ n. We restrict u to this

language, because as in the preceding case where KB = 1, the automaton is reset to its

initial state when it reads a cr, and the runs over these factors are independent of each

32 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

other. Resetting the S-counter with r corresponds to ignoring u (the automaton can avoid

transitions doing cr on a S-counter during u), and also resets the automaton. The general

case follows directly from this one.

We write uB = u1v1u2 . . . ukvkawhere for all i ≤ k, ui ∈ (BKB × {r})∗ and vi ∈ ({ε}KB ×
{ic, ε})∗, only u1 and vk are allowed to be ε for unicity of this factorisation, and a is just the

last letter of uB. We do the corresponding factorization uS = u′1v
′
1u

′
2 . . . u

′
kv

′
kcr.

Let ρ be a run ofH1
KB+1 on u, We can write ρ = ρ1τ1ρ2 . . . τk−1ρk where ρKB

= ρ1 . . . ρk is

a run ofH1
KB

over u1 . . . uk, and for all i < k, τi is a run of C over vi.

By induction hypothesis, there exists βm
KB

such that |u1 . . . uk|i ≤βm
KB

valS(ρKB
). It is

straightforward to show that for βm
C (n) = (m + 1)n, we have for all i < k, |ui|i ≤βm

C
valS(τi).

(valS meaning here the maximum value reached by a S-counter, not necessarily checked).

We get valS(u) ≤βm
KB+1

valS(ρ), for βm
KB+1 = max(βm

KB
, βm

C), which shows the wanted

result.

By induction, for all KB > 0, we have built H1
KB
, hierarchical and BS-equivalent to

G1
KB
. The history-determinism is straightforward, the strategy for value n being the same as

before, i.e. taking transition performing crwhen we want to increment a S-counter already

at value n.

Remark that by induction, for all KB > 0, the automaton H1
KB

has 2KB+1 states and

2KB + 1 counters.

BuildingHKS
KB

for any KB > 0 and KS > 0.

We fix the values of KB and KS, and describe informally the automaton HKS
KB
.

LetH1
KB

be as previously defined. It has counters SKB+1BKB
SKB

. . . B1S1.

HKS
KB

will have the same B-counters asH1
KB

i.e. (γi)i∈[1,KB], and S-counters (γ
j
i)i∈[1,KB+1],j∈[1,KS].

We define the hierarchical order γ
j
i < γ

j′

i′ by lexicographic order on (i, j), and for all i, j,

γi > γ
j
i . Finally, for all j, γ

j
KB+1 > γi.

Let γi be a B-counter ofHKS
KB
. The principle ofH1

KB
is to count the number of increments

of the S-counter below during ε-sequences of γi, and to perform cr if it becomes too high

(thereby going to a state where a later cr on the input is allowed). The highest S-counter

counts the number of {ic, ε}-sequence of γKB
-actions that start with r and contain i for the

S-counter.

We have duplicated each S-counter γ′
i into KS ones γ

j
i which will play the some role,

but relative to their original counter γj.

The KS S-counters being originally hierarchical, we will satisfy the global hierarchical

condition for HKS
KB
.

For instance here is the automaton C2 which plays the role of C in the case KS = 2.

Automaton C2 is defined over alphabet {ic, ε} × {i1, i2, ε2}, and has 2 S-counters and one

B-counter γ1 < γ2 < γB.

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 33

s0 s1

s2 s3

(ic, b) : ic3
(ε, b) : b

(a, b2) : a3
(ε, b1) : b1

(ε, i2) : cr2

(ε, i1) : cr1 (ε, i1) : cr1

(a, b2) : a3 (a, b2) : a3

(a, b1) : a3 (a, b1) : a3

The automaton is allowed to see a cr for γ1 in s2 and s3, and a cr for γ2 in s1 and s3.

As before we can show that HKS
KB

is correct and history-deterministic.

HKS
KB

has KB B-counters, (KB + 1)KS S-counters.

E Construction of Quasi-Weak B-Automaton B

E.1 Proof of Proposition 9

Let U (respectively, U ′) be non-deterministic B-Büchi (respectively, S-Büchi). Let A =
〈QA,A, q0, FB, FS, ΓB, ΓS, δ〉 be a non-deterministic hBS-automaton such that A ≅ U × U ′.

We assume there is a cost trap for A, and we want to show that [[U ′]] 64 [[U]].
Let m := (|QA|+ 2)|ΓS|+1. Let Em be a frontier,

{

eπ
i : 0 ≤ i ≤ m,π ∈ {0, 1}ω}

be a set of

nodes, t be an input tree, and R be a run of A on t witnessing the cost trap.

By definition of a cost trap, we have that valS(R) > |QA|, and for all branches π, eπ
0 <

· · · < eπ
m ∈ Em are nodes of π such that for all 0 ≤ i < m the portion of R corresponding

to [eπ
i , e

π
i+1) is a block, i.e. contains states from both FB and FS, and for all γ ∈ ΓB, if γ is

incremented in this portion then it is also reset in this portion.

Moreover, if branches π1 and π2 share some prefix up to position y and x < y is the first

position with eπ1
i = x and eπ2

i 6= x then eπ2
i > y (we will call this the nesting condition). In

this case we will say that π1 <nest π2 and y is a nesting node. If π1 and π2 do not disagree on

the ei’s on their common prefix, we will say that π1 ≈nest π2. The idea is that if π1 <nest π2,

then pumping the blocks from π2 will not damage any of the blocks from π1.

The first step will be to build a single tree t′ such that there is some n with [[A]]B(t′) ≤
n < ∞, and also [[A]]BS (n)(t′) > |QA| (we remind that [[A]]BS is a function N → TA → N∞).

Let tEm be the finite tree obtained from t by removing all nodes after the frontier Em.

The tree t′ will be obtained from tEm by an infinite pumping of some blocks on every

branch.

Let A be the set of all branches of tEm . A is a finite set, and is partially ordered by <nest.

We inductively build sets (Aj)j∈N in the following way : for all j, Aj is the set of branches

34 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

of tEm that are maximal for <nest in A \ (
⋃

j′<j Aj′). Let p ∈ N be such that Ap 6= ∅ and

for all j > p, Aj = ∅. Then A1, . . . , Ap form a partition of A, and for all j ∈ [1, p], for all
π1,π2 ∈ Aj, we have π1 ≈nest π2. Notice that for all j ∈ [1, p] and all i ∈ [1,m], the set
{

eπ
i : π ∈ Aj

}

is a partial frontier of tEm (more precisely, it is the intersection of a frontier of

tEm with Aj).

We can now adapt the technique of Rabin in [12], but applying it only on the branches

of A1 (for now). Let N := |QA|. In the following, S-values will be approximated by giving

value N + 1 if the value is larger than N. Unlike [12], when we pump we must be careful

that we do not reduce the S-value below N.

We define sets Hm, . . . ,H0 by induction : we set Hm := QA × [0,N + 1]ΓS , and (q, η) ∈
Hi−1 if (q, η) ∈ Hi and there is a finite tree t f contained in tEm and a partial run R f of A over

t f starting from state q and valuation η for the S-counters, such that

• every branch of R f is a block,

• on every leaf of t f , the state and S-counters values configuration (q′, η′) of A belongs

to Hi.

Notice that some nodes of t f are allowed to have only arity 1 (those will correspond

to nesting nodes of tEm). The idea is that we want to be able to reach a Hi-frontier by block

branches, when starting from a node in Hi−1 (which is also in Hi).

We have H0 ⊆ H1 ⊆ · · · ⊆ Hm, and moreover, the run R on branches A1 witnesses the

fact that for all branch π ∈ A1, for all i ∈ [0,m], the configuration (q, η) of A in the run R at

node eπ
i always belongs to Hi. Moreover, there is a finite tree t0 such thatA has a run over t0

starting in (q0, 0) and ending in a configuration belonging to H0 on every leaf (t0 is a prefix

of tEm , and this run is a prefix of the run R). Remark that the approximation of S-values

up to N is not a problem, since counters can only increment or reset, so coherence is kept

on values less than N on one hand (by remembering exact values), and values more than

N on the other hand. Moreover, no block from R can check a S-value less than N, because

valS(R) > N.

But |Hm| = N(̇N + 2)|ΓS| ≤ m, so there must be i ∈ [0,m − 1] such that Hi = Hi+1. It

means that from any configuration of Hi, we can find a finite tree t f contained in tEm , and a

partial run of A over t f (contained in R), such that any branch of this run is a block, and the

configuration on any leaf is again in Hi. This will allow a pumping, creating an infinite tree

and a run with infinitely many Hi-frontiers. We want the B-value of this run to stay low,

and that is why the definition of blocks include a constraint on B-actions : for all B-counter

γ, if a block increments γ, then it also resets γ. In fact, when appending two blocks, the

worst case that can happen is when the first block starts with a reset and then make some

increments, and the second one make some increments and then resets.

This is why we define nblocks := max {valB(uv) : u, v are blocks in R from Hi to Hi}, to
be the maximal B-value obtained by appending two blocks. Notice than appending more

than two blocks cannot increase this value. We also define npref to be the B-value of the

partial run reaching the first Hi-frontier from the root in the run R. Finally, let n1 := nblocks +
npref.

This allows us to build an infinite (but not complete) tree t1, and a partial run R1 of

A over t1, by using R to reach the Hi-frontier (nodes eπ
i for π ∈ A1), and then repeating

infinitely many finite trees witnessing partial runs from Hi-nodes to Hi-frontiers. Note that

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 35

every infinite play π of R1 is B-accepting with valB(π) ≤ n1, and S-accepting with valS(π) >

N, by the block condition and the fact that no S-value less than N is checked during R.

The tree t1 also contains infinitelymany finite branches, duplicated from A2, . . . , Ap. Let

us call A′
2 the infinite set of finite branches coming from A2. The nesting condition implies

that pumping branches of A1 did not split blocks of the other Ai’s, so we can now define the

sets H0, . . .Hm as before, and pump all the branches of A′
2 simultaneously, building a tree t2

satisfying the same properties as t1, but with more infinite branches.

Iterating p times this process yields a complete binary infinite tree t′ := tp, and some

n := n1 + n2 + · · · + np (only depending on the finite set of blocks from the run R on tEm)

such that there is a run R′ of A on t′ witnessing both [[A]]B(t′) ≤ n, and [[A]]BS (n)(t′) > N

(i.e. the run R′ is B-accepting with B-value less than n, and S-accepting with S-value strictly

above N).

We will now build from t′ an infinite sequence of infinite trees (t′d)d∈N, such that for all

d ∈ N, [[A]]B(t′d) ≤ n, and [[A]]BS (n)(t′d) > N + d.

In order to do that, consider the run R′ on t′, and more specifically the actions on the

S-counters. In order for R′ to have S-value more than N, any action crγ for γ ∈ ΓS must

occur when the value of γ is at least N + 1, so the cr must be immediately preceded by a

sequence of at least N + 1 increments of γ : this sequence may contain ε but cannot contain

any r or cr (again for counter γ).

During such a sequence and by choice of N, there must be a path uγ from some q ∈ QA

to the same state q, starting with one increment and containing no reset (r or cr) of γ.

Recall that we are using hierarchical BS-actions. Let us look at the behaviours of other

counters during such a path uγ.

• If γ′ is a B- or S-counter higher than γ in the hierarchy, touching it resets γ, so γ′ is not

touched at all during uγ : this path contains only action ε for γ′
> γ.

• If γ′ is a B- or S-counter lower than γ, then uγ starts with action r for γ′.

In any case, repeating uγ several times instead of one does not affect the values of other B-

and S-counters,

Moreover, two such paths uγ and vγ′ cannot intersect if γ 6= γ′. If on the contrary

γ = γ′, and the two paths share a prefix, then repeating one can inflate the other, but

never changes the properties we are interested in : it remains a path from some q ∈ QA

to q, starting with an action iγ and without any reset for γ. We will call t′d the infinite tree

obtained from t′ where for all S-counter γ, for all position x where action crγ is done in

R′, the path uγ relative to this position x is repeated d times. The run R′ induces a run R′
d

for each t′d, which is still B-accepting and S-accepting (accepting states still appear infinitely

often), has B-value less than n, but where at least d increments have been added before each

action cr of any counter, so valS(Rd) > N + d.

We are now ready to observe the contradiction. Let α and (βi)i∈N be corrections func-

tions witnessing A ≅ U × U ′. In particular [[A]]B ≈α [[U × U ′]]B = [[U]]B (U ′ does not play

any role in the B-semantic of U × U ′). It implies that for all d ∈ N, [[U]]B(t′d) ≤ α(n).

But we also have [[A]]BS (n) 4βn
[[U × U ′]]BS (α(n)). Let d ∈ N, we have in particular,

N + d ≤ βn([[U × U ′]]BS (α(n))(t′d)).

36 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

But [[U ×U ′]]BS (α(n))(t′d) = sup{valS(R
′′) : R′′ is an accepting run of U ×U ′ on t′d with valB(R

′′) ≤
α(n)}. Since we know that [[U × U ′]]B(t′d) ≤ α(n), there is an S-accepting run R′′ of U × U ′

on t′d witnessing βn([[U × U ′]]BS (t′d) ≥ N + d. This means βn(valS(R
′′)) ≥ N + d. But R′′

induces an S-accepting run RU ′ of U ′ over t′d with βn(valS(RU ′)) ≥ N + d.

We get that for all d ∈ N, βn([[U ′]]S(t
′
d) ≥ N + d, so [[U ′]]S is unbounded over the set

{

t′d : d ∈ N
}

while [[U]]B is bounded over the same set.

This shows that a cost trap implies a contradiction with [[U ′]]S 4 [[U]]B .

E.2 Construction of B

Given both a non-deterministic B-Büchi automaton U = 〈QU ,A, qU0 , F
U
B , ΓU ,∆U 〉 and a non-

deterministic S-Büchi automaton U ′ = 〈QU ′ ,A, qU
′

0 , FU
′

S , ΓU ′ ,∆U ′〉 such that [[U]]B ≈ [[U ′]]S,
we want to build a quasi-weak B-automaton B recognizing the same cost function as U
and U ′.

LetH = 〈QH,C, qH0 , ΓB, ΓS, FB, FS,∆H〉 be the transducerH(ΓU , ΓU ′) from Theorem 4.

We build the desired quasi-weak B-automaton B with the following set of states :

Q := QU × QU ′ ×QH × (([1,m] × {ǫ,⊥,⊤}× {ε, ic, r})[0,|ΓB|] ∪ {q⊤})

with initial state (qU0 , q
U ′

0 , qH0 , {(1, ǫ, ε)}
[0,|ΓH

B |]).
In fact, the only useful states will be those of Quse : an element (q1, q2, q3, (i, j, z)) is in

Quse if for all k, k
′ ∈ [0, |ΓH

B |], k < k′ implies i(k) ≤ i(k′) and j(k) ≤ j(k′), for the order

ǫ < ⊥ < ⊤. Moreover any (q1, q2, q3, q⊤) is in Quse.

Consider B acting on a tree t. The idea is that Eve selects a run of U on t and Adam

selects a run of U ′ on t (technically this is done onemove at a time). The B-actions output are

exactly those from the run of U chosen by Eve. However, at the same time, the transducer

H is simulated by Adam on the composed BS-actions, and this output is analyzed (see

below). Moreover, all branching choices are made by Adam. Thus, each play of B describes

a branch of the binary tree, a run of U and a run of U ′ on this branch, and Adam’s choices

in the simulation ofH on the output from these runs. The reason why Adam is in charge of

the non-deterministic choices of the transducer H is that these choices aim at maximizing

the S-values. Indeed, in H, the output B-value is always equivalent to the input one, in any

run of the automaton. Since maximizing the S-values is the job of Adam (he also controls

the choices of the non-deterministic S-automaton U ′), he is in control of the transducerH.

A subpath π of a play is called a block if the following hold:

• both a state from FUB and a state from FU
′

S occur during π.

• for every counter γ ∈ ΓH
B , if there is an increment for γ in π, there is also a reset for

the same γ in π.

Let K = |ΓH
B |.

We will call a block of level k a block which occurs in an {ε, r}-sequence of counter k + 1

(a block of level K is just a normal block).

Given a state (qU , qU ′ , qH, (i, j, z)) ∈ Q, and k ∈ [0,K], i(k) ∈ [1,m] is the number of

the current block of level k, while component j(k) is ǫ if no FU
′

S state has been seen in this

block, ⊥ if FU
′

S has been seen but no FUB following it, and ⊤ if FUB has been seen following

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 37

FU
′

S . Finally, z(k) = ε if no increment or reset has been seen in the current block, ic if there

was an increment but no reset, and r if there was a reset.

The state (qU , qU ′ , qH, (i, j, z)) is accepting if the last component verifies that for all k,

j(k) 6= ⊥, or if it is q⊤.

A block of level k can be closed when an FU
′

S and then an FUB have been seen (so j(k) =
⊤), and simultaneously, if an ic for counter k has been seen, then an r has also been seen

(i.e. z(k) ∈ {ε, r}).

For all k ∈ [0,K], the automaton starts from i(k) = 1.

Otherwise, we define how B updates i, j, z in a deterministic way depending on the

counter actions and accepting states coming from the choices of Eve and Adam.

Resetting a level k means that for all k′ ≤ k, i(k′) is set to i(k + 1), j(k) to ǫ, and z(k) to

r. We recall that the counter actions comes from the transducerH, and are hierarchical.

(1) If a FU
′

S is seen, all j(k) = ǫ are updated to ⊥.

(2) If a FUB is seen, all j(k) = ⊥ are updated to ⊤.

(3) If an action rk is seen (with ε for k′ > k and r for k′ ≤ k), then the automaton sets z(k)
to r in all k′ ≤ k.

(4) If an action ick is seen (with ε for k′ > k and r for k′ < k), then the automaton resets

level k− 1. Moreover, for all k′ ≥ k such that z(k′) = ε, z(k′) is set to ic.

(5) After updates (1) to (4), if there is a k with j(k) = ⊤ and z(k) ∈ {ε, r}, then i(k) is

incremented, j(k) is set to ǫ and z(k) to ε. Moreover if there is a k′ < k such that i(k′)
is now smaller than i(k), then i(k′) is set to i(k).

(6) If some i(k) is supposed to increase by (5) but is already at m, then the automaton

moves to q⊤, and continues to simulate U and U ′. It can never leave q⊤ so the play is

accepting.

Notice that by update rule (5), if the current block of level k + 1 has number i, the

automaton starts counting blocks of level k at the same number i, since it suffices to witness

m consecutive blocks, regardless of their levels.

It is straightforward to verify that according to these updates, all reachables states are

in Quse.

E.3 Quasi-weakness of B

We now show that B is a quasi-weak automaton.

We consider a path π of a n-run of B. We define a configuration C = (iC, vC, jC, zC) of
the automaton B to be an element of En = ([1,m]× [0, n]×{ǫ,⊥,⊤}×{ε, ic, r})K+1∪{q⊤}.

The new element vC stores the value of counter k in vC(k) for all k ∈ [1,K]. Since level
0 does not correspond to a counter, we fix the value of vC(0) to be always 0. For other

components, the set of values [0, n] is sufficient because π is a path in a n-run, so counter

values never go above n.

We now analyze the evolution of C on the path π, according to the transformations (1)

to (6).

An alternation is a switching between accepting and rejecting states (or vice-versa).

We show that if a subpath of π begins and ends at the same configuration C, then it is

alternation-free. We call such a subpath a cycle.

38 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

We consider a cycle. If no i(k) is modified during the cycle, the other elements can only

increase (for ǫ < ⊥ < ⊤ and ε < ic < r), according to the operations (1) to (6)), so the cycle

contains only one configuration, and hence is alternation-free.

Otherwise let k be maximal such that i(k) changes during the cycle. In order to return

to the same configuration, the cycle must contain a reset for i(k). Notice that (4) is the only

operation that resets some i(k), and it occurs when ick′ is read with k′ > k. We choose a k′

such that ick′ is seen during the cycle. According to operations (1) and (2), j(k′) can only

increase during the cycle, since level k′ is not reset. Since the configuration C is the same in

the beginning and in the end, we get that j(k′) must not change during the whole cycle.

We consider the possible cases for j(k′). If j(k′) is ⊥, then the whole cycle is non-

accepting, so there is no alternation.

We know that v(k′) is incremented at some point by action ick′ , so counter k′ has to be

reset in the cycle in order to match the original value. Thus if the value of j(k′) during the

cycle is ⊤, it means that we will have z(k′) = r and j(k′) = ⊤ at the end of the cycle. Op-

eration (5) implies that i(k′) has to be incremented, which is absurd because k′ > k implies

that i(k′) does not change during the cycle, by choice of k.

The only remaining case is j(k′) = ǫ during the whole cycle. By definition of Quse, for

all k′′ ≤ k′, j(k′′) = ǫ during the whole cycle. Moreover, for k′′ > k′, j(k′′) can only increase

(by choice of k′), so in order to return to the initial configuration, they cannot change at all.

Hence the cycle is alternation-free, since acceptance is determined only by the j components.

Any cycle is alternation-free, so the number of alternations in an n-run is bounded by

the number of elements of En, which is less than ((m+ 1)(n+ 1)9)K+1 + 1. Hence the length

of an alternating chain in an n-run of B is bounded by α(n) = ((m+ 1)(n + 1)9)K+1 + 1. We

remind that K and m are fixed by U and U ′, and do not depend on the input tree.

We can conclude that B is a quasi-weak alternating automaton.

E.4 Correctness of B

Formal proof of [[B]]B 4 [[U]]B

We will in fact show [[B]]B ≤ [[U]]B .
Let t be a tree and M ∈ N such that [[U]]B(t) = M < ∞. We want to show [[B]]B(t) ≤ M.

Let R be a B-accepting run of U on t of value M.

Let σ be the strategy of Eve in the game (B, t) that consists in playing from the run R.

We have valB(σ) = valB(R) = M, since B just copies the B-action of U .

It remains to show that the strategy RB is actually winning. Assume for the sake of

contradiction that there is a play π compatible with σ which stabilizes in non-accepting

states.

By definition of rejecting states, there is a k ∈ [0,m] with j(k) = ⊥ in any state of this

partition. Let k be maximal such that there is j(k) = ⊥ infinitely often in π. We show that

after some point, j(k) stabilizes in⊥. If k is the highest counter, then level k is never reset, so

j(k) stabilizes in ⊥. Otherwise, assume j(k) does not stabilize in ⊥. There must be infinitely

many updates of j(k) from ǫ to ⊥, and infinitely many resets of level k. Let k′ > k. By choice

of k, j(k′) must stabilize in ǫ or ⊤ (otherwise, j(k′) is ⊥ infinitely often, contradicting the

choice of k). If j(k′) stabilizes in ǫ, every update of j(k) from ǫ to ⊥ is simultaneously done

DENIS KUPERBERG AND MICHAEL VANDEN BOOM FSTTCS 2011 39

on j(k′) so this is absurd. If j(k′) stabilizes in⊥, every reset of level k is either also a reset for

level k′ or caused by an action r for counter k′. In both cases it is absurd, since j(k′) = ⊤ and

z(k′) = r causes an increment of i and sets j(k′) back to ǫ (orm is reached and the automaton

moves to q⊤).

This shows that j(k′) stabilizes in ⊥.

This is absurd, because there are infinitely many accepting states FUB of U on π, so

operation (2) in the transition table of B implies that j(k) cannot stabilize in ⊥ on π.

Formal proof of [[U]]B 4 [[B]]B

Remark that since H is history-deterministic, there is a monotonic family of strategies δ =
(δn)n∈N and an α such that Hδ

≅α G, where Hδ is restricted to the use of runs of H driven

by some δn ∈ δ.

Assume for the sake of contradiction that [[U]]B 64 [[B]]B , i.e. there exists a sequence

(tn)n∈N such that {[[B]]B(tn), n ∈ N} is bounded by some M ∈ N, but {[[U]]B(tn), n ∈ N} is

unbounded. Note that since [[U]]B ≈ [[U ′]]S, we have {[[U ′]]S(tn), n ∈ N} also unbounded.

LetA be the non-deterministic automatonH ◦ (U × U ′). That is,

• QA := QU × QU ′ ×QH and qA0 := (qU0 , q
U ′

0 , qH0),
• ΓA

B := ΓH
B and ΓA

S := ΓH
S ,

• FAB := FUB and FAS := FU
′

S ,

• ∆A = ∆H ◦ (∆U × ∆U ′).

Remark that by Theorem 4 and Lemma 12, A ≅ U × U ′.

Let N := βM(|QA|+ 1), with βM coming from the BS-equivalenceHδ
≅α G. We choose

n such that [[U ′]]S(tn) ≥ N. Let R′ be an accepting run of U ′ on t := tn with valS(R
′) > N.

Let σ be an accepting strategy for Eve, witnessing acceptance of B over twith valB(σ) ≤
M. We look in particular at the set P of plays compatible with σ where Adam chooses to play

from the run R′ and uses strategy δ|QA|+1 to drive H. Notice that the only remaining choice

for Adam concerns the branching, so P describes a binary tree of possible plays, which agree

on common prefixes.

We know that in order for valB(σ) ≤ M, Eve must play a run R of U such that valB(R) ≤
M on every branch of P. Let π be a branch of the binary tree described by P.

We first show that the strategy δ|QA|+1 describes an accepting run of H on the word

v = (outB(R,π), outS(R
′,π)) where outB(R,π) (resp. outS(R

′,π)) are the infinite words

describing the actions output by run R (resp. R′) on the branch π. FromHδ
≅α G, we get that

there is a run RH of H on v driven by some δp with valB(RH) ≤ α(M) and βM(valS(RH)) ≥
N = βM(|QA|+ 1). We get that either p = valS(RH) ≥ |QA|+ 1, or valS(RH) = ∞. In both

cases, by monotonicity of δ, the run ofH on v driven by δ|QA|+1 is accepting.

This means that the every play of P represents an accepting run ofH over v and outputs

hierarchical BS-actions with S-value at least N and B-value at most M.

Next we show that B must witness m blocks on every play in P (which will be used to

build a cost trap on R and R′).

Let π be a play in P.

If the automaton B reaches the accepting sink state q⊤ on π, it means that for some level

k, m blocks have been witnessed. We assume by contradiction that it is not the case. Let k be

40 QUASI-WEAK COST AUTOMATA : A NEW VARIANT OF WEAKNESS

minimal such that i(k) does not change infinitely many times in π, so it stabilizes to some

value (for instance it is always the case for i(K), which only increases).

We know that j(k) stabilizes to ǫ or ⊤. But ǫ is impossible, because R′ is accepting, so

any FU
′

S would make j(k) change to ⊥ by operation (1). Hence j(k) stabilizes in ⊤. This

means that there is a finite number of resets for counter k, otherwise i(k) would be in-

cremented by operation (5). Since the play has bounded value, we can conclude that the

number of increments for any counter k′ ≥ k on π is also finite. But i(k − 1) is supposed

to change infinitely many times, and this can only be done by incrementing infinitely many

times higher counters (operation (4)). This is absurd, so π must witness m consecutive

blocks, and stabilize in q⊤.

Nowwe build a cost trap for the automatonA ≅ U ×U ′. Recall that the transition func-

tion of B is defined such that Eve selects a run of U , Adam selects a run of U ′, and Adam con-

trols H which outputs the hierarchical BS-actions corresponding to these composed runs.

Let RA be the run of A on t corresponding to the tree of plays P (ignoring the components

of the state dealing with the blocks). We have valB(RA) ≤ M and valS(RA) > |QA|.
We showed that for any branch π of RA, state q⊤ is reached on π, so m consecutive

blocks are witnessed along this branch.

If π is a branch of RA, for all i ∈ [0,m], we take for eπ
i the last position of π where some

counter i(k) has value i.
By the definition of the transitions of B (operations (1) to (6)), the path [eπ

i , e
π
i+1) is

always a block.

It remains to show the nesting condition of the cost trap definition. Let π1, π2 be two

branches of RA, sharing some prefix up to position y, and let x < y be the first position

where they disagree : eπ1
i = x but eπ2

i > x.

By definition of the eπ
i ’s, we have that x is the last position on π1 where some counter

i(k) has value i. Assume eπ2
i ≤ y, then eπ2

i is on π1, but some counter i(k) has value i, which

is absurd since eπ2
i > x. We can conclude that eπ2

i > y : the nesting condition is satisfied.

We have completed the proof that RA is a cost trap forA. By Proposition 9, this implies

[[U ′]]S 64 [[U]]B , which is a contradiction.

	Introduction
	Cost Automata
	BS-Automata
	Characterization of Quasi-Weak Cost Automata
	Conclusion
	Quasi-Weak Automata
	BS-Equivalence and History-Determinism
	Simulation Theorem
	Transducers for Hierarchical Automata
	Construction of Quasi-Weak B-Automaton B

