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Abstract4

We study the following problem, that we call C-recognizability, where C is a minor-closed class of5

undirected graphs: given a regular language L, is there a deterministic automaton for L whose6

underyling graph is in C ? We call such a language C-recognizable. We aim at characterizing7

C-recognizable languages via the underlying graph structure of their minimal automata. For this, we8

introduce a new minor relation for directed graphs, and show that the class of graphs of minimal9

automata of C-recognizable languages is preserved under taking directed minors. We study the10

particular case where C is the class of planar graphs, and show that open problems from undirected11

graph theory can be reduced to planar recognizability for regular languages.12
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Introduction16

Regular languages form a robust and well-studied class of languages: they are recognized17

by finite deterministic automata (DFA), as well as various formalisms such as Monadic18

Second-Order logic, finite monoids, regular expressions, nondetermistic automata (NFA).19

These robusts features are partly due to a canonical object that can be associated with20

each regular language: its minimal DFA. This object allows to efficiently test properties such21

as inclusion of regular languages, and can also be used as a measure of complexity, via its22

number of states. Almost all natural questions on natural languages can be answered by23

computing minimal DFAs, and check their properties.24

Usually, this minimal DFA is considered “optimal”, in the sense that the number of states25

is the most commonly accepted measure for the complexity of a DFA. However, there can26

be contexts where the crucial parameter is not the number of states, but rather another27

property related to the structure of the automaton, for instance tree-width, size of strongly28

connected components, or topological considerations such as planarity.29

In this paper, we will be interested in the graph-theoretical properties of all DFAs30

recognizing a given language. The question we address is: given a minor-closed class C of31

undirected graphs, and a language L, is there a DFA for L whose underlying graph is in32

C ? For a fixed class C, we call this problem C-recognizability, and we aim at showing its33

decidability. We can also consider that C is part of the input, given by its finite list of34

forbidden minors, in which case we call the problem General Recognizability.35

Contrary to most properties of regular languages, it does not suffice here to compute the36

minimal DFA, and check whether it verifies the wanted property, i.e. whether its underlying37

graph belongs to C. Indeed, it can happen that L is recognized by a DFA whose graph is in38

C, but that it is not the case of the minimal DFA.39

We propose to study this problem by introducing a notion of directed minors, designed40

to reflect graph properties of the set of DFAs recognizing a language, while looking only at41

the minimal DFA for this language.42

Our notion of directed minors is strictly richer than most alternatives from the literature43

(see Related Work section). Moreover, it preserves several good properties of the undirected44

minor relation, and interacts well with the notion of DFA. Therefore we hope it could serve45

as the good notion of directed minor relation in several contexts.46
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23:2 Directed Minors for Minimal Automata

Our approach is inspired by the success of the graph minor theorem [5], giving decidability47

of membership for any class of undirected graphs closed under the minor relation.48

The emblematic example is the class of planar graphs, which is characterized by the two49

forbidden minors K5 and K3,3 [17]. Therefore, we will detail the special case where C is the50

class of planar graphs, called Planar Recognizability, in order to show the kind of behaviour51

that can occur in our framework.52

Planar graphs have attracted considerable attention and continue to do so. Their study53

yielded many deep theorems, among which the Kuratowski and Wagner theorems [15, 17]54

and the four color theorem [1]. Moreover, open problems are still studied by the community,55

and we will be particulary interested in the existence of planar cover and planar emulation,56

linked to Negami’s conjecture [7], and show how it connects to Planar Recognizability.57

Related work58

The famous minor theorem was obtained by Robertson and Seymour in a serie of papers59

culminating with [16].60

A notion of directed minors, called butterfly minors, was used in [9,10], to study directed61

tree-width. In our formalism, butterfly minors corresponds to allowing only the edge in- and62

out-contraction operations. The result from [9] concerning grid minors for planar digraphs63

was extended to all graphs in [12]. The same notion of butterflies minor is used as well to64

study the k-disjoint paths problem in [11].65

TODO: Cite "Directed Graph Minors and Serial-Parallel Width" and what it cites as66

examples of directed minors.67

In [13], a notion of directed minors specifically defined for tournaments is introduced, and68

it is shown that tournaments form a well quasi-order under this notion. Minors are obtained69

by contracting strongly connected components to single vertices.70

A more general notion of minor was considered in [14], using both cycle contraction71

and in- and out-edge contraction. It is used to characterize particular classes of directed72

graphs. The authors aim at a directed graph minor theorem, that would induce decidability73

of membership for every class of directed graph closed under their minor relation.74

Planar automata were investigated in [2], where it is shown that some regular languages75

are not recognized by planar DFA, but all regular languages are recognized by a planar NFA.76

TODO: cite also Inherently Nonplanar Automata Book and Chandra77

In the undirected framework, decidability of related problems called planar cover and78

planar emulation are given by a nonconstructive blackbox application of the Robertson-79

Seymour theorem [6]. Finding explicit algorithms, lists of forbidden minors, as well as80

topological characterizations remains open [7].81

In [3], the more general notion of language genus was introduced. A language has genus82

g if it is recognized by a DFA A whose underlying graph can be embedded in a surface of83

genus g. Languages recognized by a planar DFA corresponds to languages of genus 0. It was84

shown in [3] that the genus classification induces a strict hierarchy among regular languages.85

Contributions86

We start by showing that labels of transitions can be ignored in the simulation relation of87

DFAs, thereby making the problem purely graph-theoretical.88

We introduce a new notion of minor for directed graphs, well-behaved with respect to DFA89

minimization. We allow operations that restrict the power of undirected edge contraction:90
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edge in- and out-contractions and cycle contractions, and an additional operation called91

amalgamation, that allows to merge distant vertices.92

We show that the resulting minor relation is strictly richer than the one from [10, 14],93

and therefore has a better chance of being a well-order.94

We show that for any minor-closed class C of undirected graphs, the class of graphs of95

minimal automata of C-recognizable languages is closed under this directed minor relation.96

We actually show a stronger result: we can consider that C is a class of directed graphs,97

closed only under directed minors in the sense of [14].98

This is stronger than the undirected case, as all operations of directed minors from [14]99

can be seen as minor operations of the underlying undirected graph. Moreover, this allows100

to specify constraints related to the directed graph structure, for instance bounding the size101

of strongly connected components.102

We hope this is a step towards proving the computability of the C-recognizability problem.103

We then study the particular case where C is the class of planar graphs. We show that in104

this case, the answer depends only on the structure of each strongly connected component of105

the minimal automaton. We give examples of minimal forbidden directed minors for Planar106

Recognizability, and show that they all must have size at least 7. This is to be compared107

with forbidden minors for planar graphs, of size 5 and 6.108

We connect the problem of Planar Recognizability to conjectures in the theory of un-109

directed graphs, where finding an algorithm for the existence of a planar emulator, as well110

as characterizing the class of graphs having a planar directed emulator, are famous open111

problems still attracting attention [4].112

This gives an indication that Planar Recognizability, and more generally C-recognizability,113

is likely to be a difficult challenge, as it subsumes long-standing open problems in graph114

theory. Nevertheless, we hope that this new approach using a rich directed minor relation115

will prove to be useful in the study of such problems.116

1 Automata and graphs117

1.1 Definitions: Automata and Graphs118

A deterministic automaton (DFA) A is a tuple (Q, Σ, p0, F, δ), where Q is a finite set of119

states, Σ is a finite alphabet, p0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and120

δ : Q × Σ → Q is the transition function.121

The run of A on a word w = a1 . . . an ∈ Σ∗ is the sequence of states p0, p1, . . . , pn with122

pi = δ(pi−1, ai) for all i ∈ [1, n]. We say that the run is accepting if pn ∈ F .123

The language L(A) of A is the set of words w ∈ Σ∗ such that the run of A on w is124

accepting.125

Let A = (QA, Σ, p0, FA, δA) and B = (QB, Σ, q0, FB, δB) be two DFAs on the same126

alphabet. An automaton morphism from A to B is a map f : QA → QB with the following127

properties:128

(1) f(p0) = q0;129

(2) f−1(FB) = FA;130

(3) For every (p, a) ∈ QA × Σ, we have f(δ(p, a)) = δ(f(p), a).131

We say that B is a quotient of A if there is a surjective automaton morphism A → B. It132

is straightforward to show that in this case, L(A) = L(B).133

▶ Fact 1. For any regular language L, there is a unique DFA AL recognizing L with minimal134

number of states. Moreover, given any DFA A recognizing L, AL is a quotient of A.135

CVIT 2016



23:4 Directed Minors for Minimal Automata

A directed graph (or digraph) G is a pair (V, E) where V is a finite set of vertices and136

E ⊆ V × V is the set of directed edges. We say that G is undirected if E is symmetric.137

If G = (V, E) is a digraph, its undirected support Gu is the undirected graph obtained by138

taking the symmetric closure of E, i.e. forgetting the direction of edges.139

Given a DFA A, we can forget the label of transitions, which states are initial or final, as140

well as multiplicity of edges, and obtain a digraph G(A). More formally, if A = (Q, A, p0, F, δ),141

then G(A) = (V, E) with V = Q and E = {(p, q) | ∃a ∈ A, δ(p, a) = q}. We note Gu(A) the142

undirected support of G(A), forgetting the direction of edges.143

1.2 Directed emulators and C-recognizability144

▶ Definition 1 (Directed emulators, amalgamation). Let G = (V, E) be a digraph. We say that145

a digraph G′ = (V ′, E′) is a directed emulator of G if there is a surjective map π : V ′ → V146

such that for all (x, y) ∈ E and all x′ ∈ π−1(x) , there is y′ ∈ π−1(y) such that (x′, y′) ∈ E′.147

Such a map π will be called a directed emulator map. We say that a digraph H is an148

amalgamation of a digraph G if G is a directed emulator of H.149

Our long-term goal is the decidability of the following problem, called C-recognizability :150

▶ Definition 2 (C-recognizability). Given a class C of undirected graphs and a regular language151

L, is there a DFA A such that L(A) = L and Gu(A) ∈ C.152

We will be interested in several variants of the question: C can be a parameter of the153

problem or part of the input, and can also be a class of directed graphs. We will also restrict154

our attention to particular classes C: minor-closed classes, and as a running example we will155

detail the case where C is the class of planar graphs in Section 4156

We recall the classical notion of graph minor:157

▶ Definition 3 (Graph Minor). Let H, G be undirected graphs, we say that H is a minor of158

G if H can be obtained from G by a sequence of edge-contractions (merging two neighbours),159

edge deletions, vertices deletions.160

The next Lemma connects the notions of automata morphism and amalgamation:161

▶ Lemma 4.162

1. If B is a quotient of A, then G(B) is an amalgamation of G(A).163

2. If G(B) is an amalgamation of G, then there is a DFA A such that G(A) = G and B is164

a quotient of A165

Proof. (1) Let π : A → B be the surjective automaton morphism witnessing that B is a166

quotient of A. We want to show that π is a directed emulator map G(A) → G(B). Let (x, y)167

be an edge in G(B). This means that there is a transition x
a−→ y in B, for some letter168

a ∈ Σ. Let x′ ∈ π−1(x), and y′ = δA(x′, a). By definition of automata morphism, π(y′) = y.169

The existence of the edge (x′, y′) in G(A) shows that π is indeed a directed emulator map170

G(A) → G(B).171

(2) Let G = (V, E) and B = (Q, Σ, p0, FB, δB). Let π be the directed emulator map G →172

G(B). We build A = (V, Σ, q0, FA, δA) based on G in the following way. We take q0 arbitrarily173

in π−1({p0}) (non-empty because π is surjective). We define FA as π−1(FB). Finally, if174

v ∈ V and a ∈ Σ, by the definition of directed emulator map and since (π(v), δB(π(v), a))175

is an edge in G(A), there is v′ ∈ V such that π(v′) = δA(π(v), a) and (v, v′) ∈ E. We set176

δA(v, a) = v′. It is straightforward to verify that π is an automaton morphism A → B. ◀177
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▶ Remark 5. It is not true that G(B) is an amalgamation of G(A) if and only if B is a178

quotient of A. Consider for instance that A and B can be identical up to a permutation of the179

letters, in which case they can recognize different languages, but have the same underlying180

directed graph.181

In the following, we fix a class C of directed graphs. We call CL the class of languages182

recognized by a DFA A with G(A) ∈ C.183

We aim at deciding membership in CL for an input language L by looking solely at the
minimal DFA AL, and more precisely at its graph G(AL). Therefore, we define

Cmin = {H | ∃G ∈ C, H is an amalgamation of G}.

The following Lemma follows directly from Fact 1 together with Lemma 4.184

▶ Lemma 6. Let L be a regular language, we have L ∈ CL if and only if G(AL) ∈ Cmin.185

Proof.

L ∈ CL ⇐⇒ ∃ DFA A such that L(A) = L and G(A) ∈ C
Fact 1⇐⇒ AL is the quotient of a DFA A with G(A) ∈ C
Lem. 4⇐⇒ G(AL) is an amalgamation of a graph in C
⇐⇒ G(AL) ∈ Cmin.186

◀187

Therefore, deciding C-recognizability can be reduced to deciding membership in Cmin.188

When C is defined by a set of directed or undirected forbidden minors, we aim at189

characterizing Cmin via its forbidden minors, with respect to a new notion of directed minors.190

2 Directed minors191

We keep notations C, CL, Cmin from the previous section.192

▶ Definition 7. We say that C is closed under undirected minors if there is a minor-closed193

class Cu of undirected graphs, such that C = {G | Gu ∈ Cu}.194

From now on, we will assume that the class C is closed under undirected minors, and195

investigate the impact of this assumption on Cmin.196

Our goal is to define a directed minor relation, such that Cmin is closed under taking197

directed minors. We start with the following lemma, which is actually true for any class C.198

▶ Lemma 8. The class Cmin is closed under amalgamations.199

Proof. It suffices to show that the composition of two directed emulator maps is a directed200

emulator map. Let π1 : G → K and π2 : K → H be directed emulator maps, on digraphs201

G = (VG, EG), K = (VK , EK) and H = (VH , EH).202

We want to show that π = π2 ◦ π1 is a directed emulator map G → K. First, notice that203

π is surjective, since π1 and π2 are.204

Let (x, y) ∈ EH and x′′ ∈ π−1(x). There is x′ ∈ π−1
2 (x) such that x ∈ π−1

1 (x′). Since205

π2 is a directed emulator map, there is y′ ∈ π−1
2 (y) such that (x′, y′) ∈ EK . Since π1 is a206

directed emulator map, there is y′′ ∈ π−1
2 (y′) such that (x′′, y′′) ∈ EG. We have y′′ ∈ π−1(y),207

so this achieves the proof that π is a directed emulator map.208

◀209

CVIT 2016
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The notions of in-contraction, out-contraction and cycle-contraction are introduced in [14].210

▶ Definition 9 (Edge in-contraction). Let G = (V, E) be a digraph and let e = (u, v) ∈ V .211

The in-contraction along e of G, is the digraph Ge = (V ′, E′) where V ′ = V \ {v} and212

E′ = (E ∪ {(u, x) | (v, x) ∈ E}) \ {(v, x), (x, v) | x ∈ V }213

u v ⇝ u

Figure 1 Edge in-contraction

Notice that this definition forgets edges with target v.214

▶ Definition 10 (Edge out-contraction). Let G = (V, E) be a digraph and let e = (u, v) ∈ V .215

The out-contraction along e of G, is the digraph Ge = (V ′, E′) where V ′ = V \ {u} and216

E′ = (E ∪ {(x, v) | (x, u) ∈ E}) \ {(u, x), (x, u) | x ∈ V }217

u v ⇝ v

Figure 2 Edge out-contraction

Notice that this definition forgets edges outgoing from u.218

▶Definition 11 (Cycle contraction). Let G = (V, E) be a digraph and let C = {v0, v2, . . . , vr−1} ⊆219

V be a directed cycle in G i.e., (vi, vi+1) ∈ E for 0 ≤ i < r − 1 and (vr−1, v0) ∈ E. We note220

EC the edges avoiding vertices from C. The C-contraction G′ = (V ′, E′) of G is defined by221

V ′ = (V − C) ∪ {w} where w is a new vertex, and222

E′ = EC ∪ {(x, w) | (x, vi) ∈ E for some 0 ≤ i ≤ r − 1 and x /∈ C}223

∪ {(w, x) | (vi, x) ∈ E for some 0 ≤ i ≤ r − 1 and x /∈ C}.224
225

v0 v1

v2

⇝ w

Figure 3 Cycle contraction

In the following, we assume that C is closed under undirected minors.226

▶ Theorem 12. The class Cmin is closed under edge out-contractions.227

Proof. Let G = (V, E) ∈ Cmin: there is a directed emulator map π : G1 → G where228

G1 = (V1, E1) ∈ C. Let e = (u, v) ∈ E and Ge = (Ve, Ee) the out-contraction of G along e.229

We recall that Ve = V \{u}. We need to prove that Ge ∈ Cmin . Let S = E1∩(π−1(u)×π−1(v))230

be the subset of all edges in E1 connecting a preimage of u to a preimage of v. Let G′ = (V ′, E′)231

be the result of performing a sequence of out-contractions from G1 with respect to all edges232
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from S, in an arbitrary order. Notice that in this process some edges from S can disappear233

before being treated, by out-contracting other edges from S. However, for each u′ ∈ π−1(u),234

there is v′ ∈ π−1(v) such that an out-contraction along the edge (u′, v′) is performed in235

the process. In this process, all vertices in π−1(u) are removed, while their in-edges are236

redirected to vertices in π−1(v). Since out-contraction is a particular case of the undirected237

minor relation on the underlying undirected graph, and C is closed under undirected minors,238

we have that G′ is in C.239

We claim that G′ is a directed emulator of Ge.240

We build π′ : V ′ → Ve by restricting π to V ′ ⊆ V1. This is well-defined, since there is no241

x′ ∈ V ′ such that π(x′) = u.242

We show that π′ is a directed emulator map G′ → Ge. Let (x, y) ∈ Ee and x′ ∈ π′−1(x).243

• if y ̸= v, then (x, y) ∈ E and there is y′ ∈ π′−1(y) such that (x′, y′) ∈ E′. Notice that if244

x = v, we use the fact that all edges outgoing from v in Ge correspond to edges outgoing245

from v in G, by definition of out-contraction.246

• if y = v then either (x, v) ∈ E (i.e. was among the edges of G before the contractions) and247

we conclude as before, or (x, u) ∈ E. Then there is u′ ∈ π−1(u) such that (x′, u′) ∈ E1.248

Moreover, there is v′ ∈ π−1(v) such that an out-contraction along (u′, v′) happened in249

the building of G′. Therefore, there is an edge (x′, v′) ∈ E′ with π′(v′) = v.250

We have showed that Ge has a directed emulator in C, thereby proving that Ge ∈ Cmin . ◀251

▶ Remark 13. TODO: adapt to in-contractions, only full minors for now The class Cmin is in252

general not closed under in-contraction. We take C to be the class of planar languages for this253

counter-example. Consider the DFA A on the alphabet Σ = Z/7Z defined as follows. The set254

of states is Q = (Z/7Z× {0, 1}) ∪ {p0, ⊤, ⊥}. The initial state is p0 and the unique final state255

is ⊤. The transitions are defined by p0
j−→ (j, 0), (i, 0) j−→ (i + j, 1), (i, 1) j−→ ⊥ if i ≠ j and256

(i, 1) i−→ ⊤ for all i, j ∈ Z/7Z. The language computed by A is L = {a0a1a2 | a2 = a0 + a1257

mod 7} and A is the minimal DFA computing L. Note that Gu(A) is not planar since it258

contains K3,3 as subgraph. However, G(A) has a planar directed emulator obtained by259

unfolding G(A) into a tree (of depth 4). On the other hand, contracting the edges ((i, 0), (i, 1))260

for i = 0, . . . , 6 in G yields a digraph G′ containing the full directed graph on 7 vertices as a261

subgraph. It is shown in the next Section (Lemma 22) that such a G′ is not in Cmin.262

▶ Theorem 14. The class Cmin is closed under cycle contractions.263

Proof. Let G0 = (V0, E0) ∈ Cmin: there is a directed emulator G1 = (V1, E1) of G0264

with G1u ∈ C, witnessed by a directed emulator map π : G1 → G0. Consider a cycle265

C = (v0, . . . , vr−1) in G0. We wish to prove that the digraph G = (V, E) obtained by266

contracting C in G0 lies in Cmin. Let w ∈ V be the new vertex replacing the cycle C. The267

lift C̃ = π−1(C) of the cycle C induces a subgraph (C̃, EC̃) of G1.268

▶ Lemma 15. Each weakly connected component of C̃ is composed of a cycle of length a269

multiple of r, containing antecedents for every node of C, together with a set of finite paths270

leading to this cycle.271

Proof. Let i ∈ {1, . . . , r}, and v′
i ∈ π−1(vi). Since π is a directed emulator map, there is272

an edge v′
i → v′

i+1 with v′
i+1 ∈ π−1(vi+1), where i + 1 is modulo r. We can continue this273

process, until the same vertex of G1 is visited twice. This means we built a lasso of the form274

v′
i → v′

i+1 . . . v′
j → v′

j+1 → · · · → v′
j . The cycle around v′

j can correspond to several times275

the cycle C, if a vertex v′′′
j ∈ π−1(π(vj)) \ {vj} is reached along the way.276

CVIT 2016
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Each starting point in C̃ eventually reaches such a cycle, which achieves the proof of the277

lemma. ◀278

For each such weakly connected component (WCC) P in C̃, we create a vertice wP , that279

will serve as the contraction of W .280

Let N(EṼ ) denote the set of all edges in E1 such that at least one endpoint lies in C̃.281

Let G′ = (V ′, E′) the digraph defined as follows: V ′ = (V1 − C̃) ∪ {wP |P WCC of C̃};282

E′ = E1 − N(EC̃) ∪ {(x′, wP ) | (x′, v′) ∈ E1 for some v′ ∈ P, P WCC of C̃}
∪ {(wP , x′) | (v′, x′) ∈ E1 for some v′ ∈ P, P WCC of C̃}.283

Observe that G′
u is obtained from G1u by a sequence of usual undirected edge contractions284

(merging of adjacent vertices). Since C is preserved under edge contraction (a particular case285

of the minor relation on the underlying undirected graph), G′
u is in C. here out-contraction286

suffices, no full edge contration needed Secondly, we claim that G′ = (V ′, E′) is a directed287

emulator of G. We define π′ : V ′ → V by π′(v′) = π(v′) if v′ ∈ V1 − C̃, and π′(wP ) = w.288

Let (x, y) ∈ E and x′ ∈ π′−1(x).289

• If x, y ̸= w then (x, y) ∈ E0 and there is y′ ∈ π′−1(y) such that (x′, y′) ∈ E′, using the290

fact that π is a directed emulator map.291

• If x ̸= w and y = w, then (x, vj) is a directed edge of C for some 1 ≤ j ≤ r. In particular,292

there is some v′
j ∈ π−1(vj) ⊆ V1 such that (x′, v′

j) ∈ E1. It follows that (x′, w′) ∈ E′.293

• If x = w and y ̸= w, then we must have x′ = wP for some WCC P of C̃. There is an294

edge from some vj ∈ C to y in G0. Let v′
j be a node in P ∩ π−1(vj), which is nonempty295

by Lemma 15. Since π is a directed emulator map, there is an edge v′
j → y′ in G1, with296

π(y′) = y. Finally, we have an edge wP → y′ in G′.297

In conclusion, we have showed that G has a directed emulator in C. This proves that298

G ∈ Cmin. ◀299

▶ Definition 16. Let G, H be two digraphs. We say that H is a directed minor of G if H300

can be obtained from G by a succession of operations from this list: edge deletion, vertex301

deletion, amalgamation, edge out-contraction, cycle contraction.302

Compared to the notion of directed minors from [14], we added amalgamation. The303

example below shows that adding this operation makes our relation strictly richer than the304

one from [14].305

▶ Example 17. Here H is a directed minor of G, but the amalgamation operation is necessary.306

H : G :

307

The results from this section imply the following theorem:308

▶ Theorem 18. The class Cmin is closed under directed minors.309

Proof. It only remains to show that Cmin is closed under edge and vertice deletions, which310

is a direct consequence of the fact that it is the case for C. ◀311
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As a consequence, the class Cmin can be characterized by a (possibly infinite) set of312

forbidden directed minors. If moreover this set can be chosen finite, and since the directed313

minor relation between two given graphs is decidable, the membership in Cmin would be314

decidable. Therefore, a path to proving the decidability of C-recognizability (i.e. membership315

in CL) of regular languages via their minimal automata would be to show that the directed316

minor relation is a well-quasi-order.317

We believe this notion of directed minors can serve as an analog of the graph minor318

relation in the framework of regular languages.319

We can further generalize all the results from this section by taking C to be a class of320

directed graphs closed under directed minors in the sense of [14] i.e. under in-contractions,321

out-contractions and cycle-contractions (and as usual, edge and vertice deletion). Indeed, we322

only used these properties in the above proofs. Notice that if C is additionnaly preserved323

under amalgamation, the C-recognazbility problem becomes easy, as we would have C = Cmin .324

Considering that C is closed under directed minors (and hence is a class of directed325

graphs) is more general, because any minor-closed class C is also closed under directed minors,326

when undirected graphs are viewed as particular cases of directed graphs. This allows us to327

study richer constraints, since C can relate to the digraph structure of the DFA, for instance328

bounding the size of strongly connected components.329

2.1 From minimal C forbidden minors to minimal Cmin forbidden minors330

▶ Theorem 19. Let M be a minimal forbidden minor of C. Let M ′ be an orientation of M331

such that every vertex has in-degree at most 1. Then M ′ is a minimal forbidden minor of332

Cmin.333

Proof. Utilise le lemme que dans M ′ il y a un sommet qui peut atteindre tout le monde.334

On peut reconstruire M dans n’importe quel expansion de M ′.335

Minimalité du fait que tout mineur strict de M ′ est un mineur strict de M , et donc dans336

C. ◀337

2.2 Oriented minor is not a well quasi-order338

We have an infinite sequence (Cp)p prime of graphs that are all independent.339

Cp is the graph with 2p vertices, arranged in a cycle, where orientation of edges alternate,340

and target vertices also form a directed cycle.341

3 Simple graph classes342

Each class correspond to a machine having a special bounded memory structure.343

3.1 DAGs: R-trivial languages344

This class is actually also closed under amalgamations, so C = Cmin. Forbidden minor: C2.345

3.2 Paths346

Memory structure: counter with increment and decrement347

Theorem:348

Forbidden directed minors for C: 3-cycle (C3), transitive graph T3: 1 ≤ 2 ≤ 3, and all349

3-stars: vertex with 3 distincts neighbours.350
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Forbidden directed minors for Cmin: 3-cycle (C3), out-degree 3 (O3), out-degree 2+351

in-degree 1 (IO1,2)352

3.3 Directed Paths353

Memory structure: counter with increment354

Intersection of Paths and R-trivial.355

C = Cmin, and forbidden are C2, and out-degree 2.356

3.4 Pathwidth 1357

Memory structure: counter with increment and decrement, and can be locked358

Forbidden minors for C: C3, T3, and 3-spiders S3,2 of 7 vertices with any orientation:359

central vertex connected to 3 lines of length 2. Might be others because it is false that oriented360

minors come from non-oriented minors in general. Counter-example: K5+1 intermediary361

vertex.362

Forbidden minors for Cmin : C3 and 3-spiders S3,2 with the 3 possibles versions for choice363

of source vertex deciding orientation of edges. Probably more. . .364

3.5 Cycles (and paths)365

Memory structure: counter (modulo k) with increment and decrement366

Conjecture: Forbidden directed minors: O3, IO1,2367

3.6 Trees368

Memory structure: stack (modulo k) with push and pop.369

Conjecture: Forbidden directed minors: C3370

3.7 Pseudo-trees371

Memory structure: stack (modulo k) with push and pop + counter modulo k modifiable372

only when the stack is empty.373

3.8 Vertex set feedback of size at most 1374

Memory structure: stack (modulo k) with push and pop + counter modulo k modifiable375

only when the stack is empty, and k can be changed to {k1, k2, . . . } when the counter is at 0.376

4 The case of planar languages377

We now turn to a particular instance of the C-recognizability, where C is the class of planar378

graphs. Given a regular language L, we want to decide whether there exists a planar DFA379

for L.380

We will call a language planar if it is recognized by a planar DFA, and we will note Pmin381

instead of Cmin, i.e. the class of digraphs having a planar directed emulator.382



D. Kuperberg 23:11

4.1 A family of examples383

We denote by Gk (resp. Gi1,...,ir

k ) the digraph associated to Zk (resp. Zi1,...,ir

k ).384

For each k ≥ 1, we define the regular language on alphabet Z/kZ:

Zk := {a1a2 . . . an |
n∑

i=1
ai ≡ 0 mod k}.

It will be convenient to denote Za1,...,ar

k the regular language obtained from Zk by385

restriction to the subalphabet {a1, . . . , ar} ⊆ Z/kZ.386

▶ Example 20. The minimal DFA for the language Z0,1,2
5 has K5 as underlying undirected387

graph, therefore this automaton is not planar.388

However, Figure 4 shows a planar DFA with six states recognizing the same language.389

0

1

2

11

11

2
4

3
1

0

2

0

0

0

2

2

2

1

0
2

5

0

Figure 4 A planar DFA for Z5

In the previous example, adding just an extra state suffices to produce a planar equivalent390

automaton.391

The following lemma shows that even the language Z6 with 6 letters, whose minimal392

automaton is the complete directed graph on 6 vertices, is still planar. In this case, each393

state needs to be duplicated.394

▶ Lemma 21. Z6 is planar.395

Proof. The result follows from the existence of a planar cover for the complete graph K6396

(see e.g. [8] for a cover with 12 states). We do not give here the definition of planar covers,397

see for instance [7], but in this context it suffices to know that it is a particular case of398

undirected planar emulators. In Section 4.3, we recall the definition of undirected emulators399

and explicit an exact connection between planar emulators and planar regular languages. ◀400

On the other hand, techniques from [2] allow to show that Z1,2,3
7 and Z1,5

8 are not planar.401

Indeed, Euler’s formula for planar graph imply that if the minimal degree to distinct vertices402

is at least 3, or at least 2 in a bipartite graph, then the digraph cannot be in Pmin. TODO:403

Clarify, this should exlcude K4, problem404

Therefore, we have:405

▶ Lemma 22. If a digraph G has G(Z1,2,3
7 ) or G(Z1,5

8 ) as a directed minor, then G /∈ Pmin.406

4.2 A general decomposition result407

▶ Theorem 23. Let L be a regular language. Then L is planar if and only if the strongly408

connected components (SCCs) C1, . . . , Cn of G(AL) are all in Pmin.409
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Proof. If G(AL) are all in Pmin, then it is clear that all its SCC are in Pmin as well, since410

we know from Section 2 that Pmin is closed under taking subgraphs.411

We now assume that each SCC Ci ∈ {C1, . . . , Cn} of G(AL) = (V, E) has a planar412

directed emulator Gi, with directed emulator map πi : Gi → Ci. We show that this is enough413

to build a planar DFA for L.414

Let C1 be the SCC containing the initial state p0 of AL. We can assume without loss of415

generality that G1 is minimal in the topological order of G, meaning it cannot be reached by416

another SCC.417

We define an intermediary graph G by taking the union of the components Gi, and adding418

all edges {(p, q)|(p′, q′) ∈ E(L), p ∈ π−1
i (p′), q ∈ p−1

j (q′) for some i ̸= j}. These new edges419

are called transient edges. It is clear that G is a directed emulator of G(AL), however it is420

not planar in general.421

We will now turn G into a planar directed emulator of G(AL), by making copies of its422

SCC to organize them in a tree structure.423

Let Gi be a SCC of G, and Si be the set of paths reaching Gi from G1. To each path424

s we associate the subpath f(s) = e1 . . . ek of transient edges from s. Notice that for any425

such path s, the length k of f(s) is at most n. Let Ti = f(Si), the set of transient subpaths426

reaching Gi. for each t ∈ Ti, we build a copy Gt of Gi.427

Notice that only one copy of G1, namely Gϵ, is built this way.428

We build the graph G′ by taking the union of all the Gt (for all initial components Gi),429

and by connecting them in the intuitive way: Gt
e−→ Gte.430

It is straightforward to verify that this graph G′ is still a directed emulator of G(AL),431

witnessed by a planar emulator map π, defined by aggregating all the maps πi on every copy432

for all i. Moreover, it is planar, since it consists in planar components arranged in a tree,433

and connected via single transitions.434

It remains to show that we can build a planar DFA A using G′ as underlying structure.435

let q0 ∈ G1 such that π1(q0) = p0, we choose q0 as initial state of A. The accepting set of A436

is π−1(F ).437

Finally, let p
a−→ q be a transition in Amin. If p = q then for all p′ ∈ π−1(p) we add a438

transition p′ a−→ p′ in A. Notice that this does not change the planarity of the graph. If439

p ≠ q, then there is an edge p → q in G(L). This means that for any p′ ∈ π−1(p), there440

is an edge p′ → q′, with π(q′) = q. We can therefore add an edge p′ a−→ q′ in A, without441

modifying the underlying graph G′. This achieves the description of the planar DFA A442

recognizing L. ◀443

Together with Lemma 21, we obtain the following corollary:444

▶ Corollary 24. If all SCCs of AL have size at most 6 then L is planar.445

It is interesting to compare forbidden minors for Pmin to the classical case of planar446

graphs. It is well-known that a graph is planar if and only if it does not have K5 or K3,3447

as a minor. Here however, forbidden directed minors for P0 must be of size at least 7, by448

Lemma 21.449

We show in the next section that this problem generalizes the (famously difficult) problem450

of existence of planar emulators in the undirected case.451

4.3 Link with undirected emulation452

We recall here definitions from undirected graph theory.453
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▶ Definition 25. Let G = (V, E), G′ = (V ′, E′) be undirected graphs. We say G is an454

emulator of G′ if there is a surjective mapping π : V → V ′, such that for each v ∈ V , π455

maps surjectively the neighbours of v to the neighbours of π(v).456

Because the class of undirected graphs having planar emulators is closed under the457

classical minor relation [6], we have the following:458

▶ Theorem 26 ( [6]). It is decidable in O(n3) whether a graph has a planar emulator, where459

n is the number of vertices of G.460

However, no explicit algorithm is known for this problem. Indeed, finding a full set of461

forbidden minors for this class of graphs is an open problem.462

We will call Planar Emulation the above problem in the undirected case, and Planar463

Recognizability the problem of deciding whether a regular language is planar.464

▶ Theorem 27. Planar Emulation polynomially reduces to Planar Recognizability.465

The rest of this section is dedicated to proving Theorem 27.466

We assume the existence of an algorithm deciding Planar Recognizability, and we describe467

an algorithm for Planar Emulation. Remark that it suffices to decide Planar Emulation on468

connected graphs, since the algorithm can be called on each component in the case of general469

disconnected graphs.470

Let G = (V, E) be a connected undirected graph, for which we want to decide Planar471

Emulation. We build an alphabet Σ = {ae | e ∈ E} ∪ {be | e ∈ E} of size 2|E|.472

We turn G into a DFA A by turning each undirected edge e = {x, y} into a pair of473

transitions x
ae−→ y an y

be−→ x. We complete the automaton with a sink ⊥, and for each474

p ∈ V and a ∈ Σ such that a does not label any outgoing edge of p, we add a transition475

p
a−→ ⊥. We choose any p0 ∈ V as initial state, and ⊥ is the only non-accepting state. This476

completes the description of the DFA A.477

▶ Lemma 28. A is the minimal DFA of L(A).478

Proof. For each letter a, there is a unique state p such that the single-letter word a is479

accepted from p. Therefore, no two states accept the same language, and A is minimal. ◀480

▶ Lemma 29. L(A) is planar if and only if G has a planar emulator.481

Proof. Assume L(A) is planar, and let B be a planar DFA accepting L(A). This means482

there is an automaton morphism f : B → A. Let H = Gu(B) = (VH , EH) be the underlying483

graph of B. The function f induces a surjective function fH : VH → V . Let q ∈ VH and484

p = fH(q) ∈ V . Let p′ ∈ V be a neighbour of p, this means there is a transition p
a−→ p′

485

in A for some letter a ∈ Σ. Additionally, let b be a letter accepted from p′. The word ab is486

accepted from p so it must be accepted from q in B. Therefore, there is a transition q
a−→ q′

487

in B such that b is accepted from q′. This means that q′ is a neighbour of q and fH(q′) = q.488

So any neighbour of p is the image of a neighbour of q. Let q′ be a neighbour of q, this means489

either there is a transition q′ a−→ q or a transition q
a−→ q′. In both cases, fH(q) and fH(q′)490

are neighbours in G, so fH maps surjectively neighbours of q in H to neighbours of fH(q) in491

G. This shows that H is a planar emulator of G.492

Conversely, let H = (VH , EH) be a planar emulator of G witnessed by a mapping493

f : VH → V , we want to show that L(A) is planar. We design a DFA B based on H:494

The initial state is a q0 ∈ f−1(p0)495

We add a sink state ⊥q next to each state q of VH .496
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Let q ∈ VH and a ∈ Σ. Let p = f(q). If there is a transition p
a−→ p′ in A with p′ ̸= ⊥,497

then we choose q′ a neighbour of q with f(q′) = p′, and we add a transition q
a−→ q′ in B.498

Otherwise, if p
a−→ ⊥ in A, then we add a transition q

a−→ ⊥q in B.499

All states of VH are accepting, while the ⊥q are rejecting.500

It is straightforward to verify that B is planar and recognizes L(A). ◀501

Lemmas 28 and 29 put together show that deciding Planar Emulation for G amounts to502

deciding whether L(A) is planar.503

This means that finding an algorithm for Planar Recognizability would in particular504

provide an algorithm for Planar Emulation. This would give an algorithm answering open505

problems in graph theory, namely whether particular graphs have planar emulators [7].506

Conclusion507

We introduced a notion of minors for directed graphs, generalizing existing alternatives, in508

particular the ones from [10,14]. We showed that if C is a class closed under directed minors509

in the sense of [14] (which is less restrictive than undirected minors, or our notion), then the510

class of minimal automata having a DFA in C is closed under our notion of directed minors.511

This paves the way to show decidability of C-recognizability, since our notion of directed512

minors could form a well-order even if the one from [14] does not.513

The decidability of General Emulation where forbidden minors for C is part of the input514

poses a more difficult but very interesting challenge. Indeed, coming up with an algorithm515

for General Emulation would mean that we understand a systematic (and computable) link516

between the forbidden minors of C and the ones of Cmin.517
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