Linear temporal logic for regular cost functions

Denis Kuperberg

LiaFa/CNRS/Université Paris 7, Denis Diderot, France

Abstract. Regular cost functions have been introduced recently as an
extension to the notion of regular languages with counting capabilities,
which retains strong closure, equivalence, and decidability properties.
The specificity of cost functions is that exact values are not considered,
but only estimated.

In this paper, we define an extension of Linear Temporal Logic (LTL)
over finite words to describe cost functions. We give an explicit transla-
tion from this new logic to automata. We then algebraically characterize
the expressive power of this logic, using a new syntactic congruence for
cost functions introduced in this paper.

1 Introduction

Since the seminal works of Kleene and Rabin and Scott, the theory of regular
languages is one of the cornerstones in computer science. Regular languages
have many good properties, of closure, of equivalent characterizations, and of
decidability, which makes them central in many situations.

Recently, the notion of regular cost function for words has been presented
as a candidate for being a quantitative extension to the notion of regular lan-
guages, while retaining most of the fundamental properties of the original theory
such as the closure properties, the various equivalent characterizations, and the
decidability [Col09]. A cost function is an equivalence class of the functions from
the domain (words in our case) to N U {oco}, modulo an equivalence relation =~
which allows some distortion, but preserves the boundedness property over each
subset of the domain. The model is an extension to the notion of languages in
the following sense: one can identify a language with the function mapping each
word inside the language to 0, and each word outside the language to co. It is
a strict extension since regular cost functions have counting capabilities, e.g.,
counting the number of occurrences of letters, measuring the length of intervals,
etc...

Linear Temporal Logic (LTL), which is a natural way to describe logical
constraints over a linear structure, have also been a fertile subject of study,
particularly in the context of regular languages and automata [VW86]. Moreover
quantitative extensions of LTL have recently been successfully introduced. For
instance the model Prompt-LTL introduced in [KPV09] is interested in bounding
the waiting time of all requests of a formula, and in this sense is quite close to
the aim of cost functions.

In this paper, we extend LTL (over finite words) into a new logic with quan-
titative features (LTLS), in order to describe cost functions over finite words
with logical formulae. We do this by adding a new operator USY : a formula
dU=N1) means that ¢ holds somewhere in the future, and ¢ has to hold until
that point, except at most N times (we allow at most N "mistakes" of the until
formula).

Related works and motivating examples

Regular cost functions are the continuation of a sequence of works that intend
to solve difficult questions in language theory. Among several other decision
problems, the most prominent example is the star-height problem: given a regular
language L and an integer k, decide whether L can be expressed using a regular
expression using at most k-nesting of Kleene stars. The problem was resolved
by Hashigushi [Has88] using a very intricate proof, and later by Kirsten [Kir05]
using an automaton that has counting features.

Finally, also using ideas inspired from [BCO06], the theory of those automata
over words has been unified in [Col09], in which cost functions are introduced,
and suitable models of automata, algebra, and logic for defining them are pre-
sented and shown equivalent. Corresponding decidability results are provided.
The resulting theory is a neat extension of the standard theory of regular lan-
guages to a quantitative setting.

On the logic side, Prompt-LTL, introduced in [KPV09], is an interesting
way to extend LTL in order to look at boundedness issues, and already gave
interesting decidability and complexity results. Prompt-LTL would correspond
in the framework of regular cost functions to a subclass of temporal cost functions
introduced in [CKL10]; in particular it is weaker than LTL= introduced here.

Contributions

It is known from [Col09] that regular cost functions are the ones recognizable
by stabilization semigroups (or in an equivalent way, stabilization monoids),
and from [CKL10] than there is an effective quotient-wise minimal stabilization
semigroup for each regular cost function. This model of semigroups extends the
standard approach for languages.

We introduce a quantitative version of LTL in order to describe cost functions
by means of logical formulas. The idea of this new logic is to bound the num-
ber of "mistakes" of Until operators, by adding a new operator USY. The first
contribution of this paper is to give a direct translation from LTL=-formulas to
B-automata, which is an extension of the classic translation from LTL to Biichi
automaton for languages. This translation preserves exact values (i.e. not only
cost functions equivalence), which could be interesting in terms of future appli-
cations. We then show that regular cost functions described by LTL formulae
are the same as the ones computed by aperiodic stabilization semigroups, and
this characterization is effective. The proof uses a syntactic congruence for cost
functions, introduced in this paper.

This work validates the algebraic approach for studying cost functions, since
the analogy extends to syntactic congruence. It also allows a more user-friendly
way to describe cost functions, since LTL can be more intuitive than automata
or stabilization semigroups to describe a given cost function.

As it was done in [CKL10] for temporal cost functions, the characteriza-
tion result obtained here for LTL=-definable cost functions follows the spirit of
Schiitzenberger’s theorem which links star-free languages with aperiodic monoids
[Sch65].

Organisation of the paper

After some notations, and reminder on cost functions, we introduce in Section 3
LTLS as a quantitative extension of LTL, and give an explicit translation from
LTL=-formulae to B-automata. We then present in Section 4 a syntactic congru-
ence for cost functions, and show that it indeed computes the minimal stabiliza-
tion semigroup of any regular cost function. We finally use this new tool to show
that LTLS has the same expressive power as aperiodic stabilization semigroups.

Notations

We will note N the set of non-negative integers and Ny, the set NU{oo}, ordered
by 0 <1< ---<oo. If Eisaset, BV is the set of infinite sequences of elements
of E (we will not use here the notion of infinite words). Such sequences will
be denoted by bold letters (a, b,...). We will work with a fixed finite alphabet
A. The set of words over A is A* and the empty word will be noted e. The
concatenation of words u and v is uv. The length of w is |u|. The number of
occurrences of letter a in u is |ul,. Functions N — N will be denoted by letters
a, 3, ..., and will be extended to NU {co} by a(o0) = 0.

2 Regular Cost functions

2.1 Cost functions and equivalence

If L C A*, we will note x, the function defined by xr(u) =0 if u € L, oo if
u ¢ L. Let F be the set of functions : A* — N. For f, g € F and « a function
(see Notations), we say that f <, gif f < aog, and f =, g if f <, g and
g <o f- Finally f = g if f =, g for some a. This equivalence relation doesn’t
pay attention to exact values, but preserves the existence of bounds.

A cost function is an equivalence class of F/~. Cost functions are noted
f,9,..., and in practice they will be always be represented by one of their
elements in F.

2.2 B-automata

A B-automaton is a tuple (@, A, In, Fin, I', A) where @ is the set of states, A the
alphabet, In and Fin the sets of initial and final states, I" the set of counters,
and A C Q x A x ({i,r,c}™)!" x Q is the set of transitions.

Counters have integers values starting at 0, and an action o € ({i,r,c}")!’
performs a sequence of atomic actions on each counter, where atomic actions
are either ¢ (increment by 1), r (reset to 0) or ¢ (check the value). In particular
we will note € the action corresponding to the empty word : doing nothing on
every counter. If e is a run, let C(e) be the set of values checked during e on all
counters of I.

A B-automaton A computes a regular cost function [A] via the following
semantic : [A](u) = inf {sup C(e), e run of A over u}.

With the usual conventions that sup® = 0 and inf) = co. There exists also
a dual model of B-automata, namely S-automata, that has the same expressive
power, but we won’t develop this further in this paper. See [Col09] for more
details.

Example 1 Let A = {a,b}. The cost function | - |, is the same as 2| - |, +
5, it is computed by the following one-counter B-automaton on the left-hand
side. The cost function u — min{n € N, a” factor of u} is computed by the
nondeterministic one-counter B-automaton on the right-hand side.

a:ic a,b:e a:ic a,b:e
b:e Q b:r
b:e \(

Moreover, as in the case of languages, cost functions can be recognized by
an algebraic structure that extends the classic notion of semigroups, called sta-
bilization semigroups. A stabilization semigroup S = (S, -, <,#) is a partially
ordered set S together with an internal binary operation - and an internal unary
operation a — a* defined only on idempotent elements (elements a such that
a-a = a). The formalism is quite heavy, see appendix for all details on axioms
of stabilization semigroups and recognition of regular cost functions.

3 Quantitative LTL

We will now use an extension of LTL to describe some regular cost functions.
This has been done successfully with regular languages, so we aim to obtain
the same kind of results. Can we still go efficiently from an LTL-formula to an
automaton?

3.1 Definition

The first thing to do is to extend LTL so that it can decribe cost functions
instead of languages. We must add quantitative features, and this will be done
by a new operator USY. Unlike in most uses of LTL, we work here over finite
words.

Formulas of LTLS (on finite words on an alphabet A) are defined by the
following grammar :

¢o:=aldho|dVe|Xe|gUgl sU=Ng |02

Note the absence of negation in the definition of LTL=. The negations have
been pushed to the leaves.

— a means that the current letter is a, A and V are the classic conjunction and
disjunction;

— X ¢ means that ¢ is true at the next letter;

— ¢U1 means that 1 is true somewhere in the future, and ¢ holds until that
point;

— ¢U=N4y) means that 1) is true somewhere in the future, and ¢ can be false
at most N times before 1. The variable N is unique, and is shared by all
occurrences of USY operator;

— {2 means that we are at the end of the word.

We can define T = (\/,c,a) V2 and L = =T, meaning respectively true
and false, and —a = (\/,_, b) V {2 to signify that the current letter is not a.

We also define connectors "eventually" : Fo = TUg and "globally" : Gy =
pU 2.

3.2 Semantics

We want to associate a cost function [¢] on words to any LTL=-formula ¢.

We will say that u,n = ¢ (u,n is a model of @) if ¢ is true on u with n as
valuation for N, i.e. as number of errors for all the US™’s in the formula ¢. We
finally define

[¢)(w) = inf {n € N/u,n = ¢}

We can remark that if u,n = ¢, then for all k > n,u, k = ¢, since the USYN
operators appear always positively in the formula (that is why we don’t allow
the negation of an LTL=-formula in general). In particular, [¢](u) = 0 means
that Vn € N u,n = ¢, and [¢](u) = co means that Vn € N,u,n [¢ (since
inf) = c0).

Proposition 2

— [a](w) =0 if u € aA*, and co otherwise
— [2](w) =0 if u =€, and co otherwise
= [¢ A] = max([¢], [¢]), and [¢ v ¢] = min([¢], [4])

= [X¢](au) = [¢](u), [X9](e) = o0
- [T]1=0, and [1] =

Example 3 Let ¢ = (ﬁa)USNfL then [¢] = |- |a

We use LTL=-formulae in order to describe cost functions, so we will always
work modulo cost function equivalence =.

Remark 4 If ¢ does not contain any operator USN, ¢ is a classic LTL-formula
computing a language L, and [¢] = xL.

3.3 From LTLS to B-Automata

We will now give a direct translation from LTLS-formula to B-automata, i.e.
given an LTL=-formula ¢ on a finite alphabet A, we want to build a B-automaton
recognizing [¢]. This construction is adapted from the classic translation from
LTL-formula to Biichi automata [DG10].

Let ¢ be an LTL=-formula. We define sub(¢) to be the set of subformulae of
#, and Q = 2°"P(?) to be the set of subsets of sub().

We want to define a B-automaton A, = (Q,A,In, Fin, I, A) such that
[l ~ [4]-

We set the initial states to be In = {{¢}} and the final ones to be Fin =
{0,{2}} We choose as set, of counters I" = {v1,...,7v,} where k is the number
of occurences of the USY operators in ¢, labeled from UlgN to UkSN.

A state is basically the set of constraints we have to verify before the end
of the word, so the only two accepting states are the one with no constraint, or
with only constraint to be at the end of the word.

The following definitions are the same as for the classical case (LTL to Biichi
automata) :

Definition 5 — An atomic formula is either a letter a € A or 2
— A set Z of formulae is consistent if there is at most one atomic formula in
it.
— A reduced formula is either an atomic formula or a Next formula (of the
form X o).
— A set Z is reduced if all its elements are reduced formulae.
— If Z is consistent and reduced, we define next(Z) = {¢/Xp € Z}.

Lemma 6 (Next Step) If Z is consistent and reduced, for all uw € A*,a € A
and n € N,

au,n = /\Z iff u,n = /\next(Z) and Z U {a} consistent

We would like to define A, with Z — next(Z) as transitions.

The problem is that next(Z) is not consistent and reduced in general. If
next(Z) is inconsistent we remove it from the automaton. If it is consistent, we
need to apply some reduction rules to get a reduced set of formulae. This con-
sists in adding e-transitions (but with possible actions on the counter) towards
intermediate sets which are not actual states of the automaton (we will call them
"pseudo-states"), until we reach a reduced set.

Let 1 be maximal (in size) not reduced in Y, we add the following transitions

~ K=o Age: Y S Y\ {¢}U{pr, 0}
Y =S YA\ {9} U{e

o= {3 e o)
Y S5V {0} U {en, X0}
Y =5 Y\ ¢} U {e2}

Y ES Y\ {6} U o, X0}
— I =0U g : { Yy 29 v\ {p} U{Xe} (we count one mistake)

Y =2 Y\ {¢} U{pa}
where action r; (resp. ic;) perform r (resp. ic) on counter v; and & on the
other counters.

If1/1301U<p2:{

The pseudo-states don’t (a priori) belong to @ = 25ub(%) hecause we add formulae
X1 for ¢ € sub(¢), soif Z is a reduced pseudo-state, next(Z) will be in @) again
since we remove the new next operators.

The transitions of automaton A4 will be defined as follows:
A= {Y 2% next(Z) | Y € Q,ZU {a} consistent and reduced, Y =%, Z}

E0 . o .
where Y ——, Z means that there is a sequence of e-transitions from Y to Z
with o as combined action on counters.

Definition 7 If o is a sequence of actions on counters, we will call val(c) the
mazimal value checked on a counter during o with 0 as starting value of the
counters, and val(c) = 0 if there is no check in o. It corresponds to the value of
a run of a B-automaton with o as combined action of the counter.
Lemma 8 Let u = ajy...am be a word on A and Yy “*5"' y; “252 ... 2"y,
an accepting run of Ag.

Then for all 3 € sub(e), for alln € {0,...,m}, for all Y,, 3, Y "%, Z with
Z U{anyt1} consistent and reduced, and Y, 11 = next(Z)

Q/JGY - an+1an+2...am,N':1p

where N =val(c'0pt1...0m)-

Lemma 8 implies the correctness of the automaton Ay :

Let Yy ““5' v; “29% ... 9™ ¥, be a valid run of A, on u of value N = [Ay]g,
applying Lemma 8 with n = 0 and Y = Yy = {¢} gives us u, N = ¢. Hence
[¢] < [Asls.

Conversely, let N = [¢](u), then u, N | ¢ so by definition of Ay, it is
straightforward to verify that there exists an accepting run of 4,4 over u of value
< N (each counter 7; doing at most N mistakes relative to operator UZ-SN).
Hence [Ag] s < [¢].

We finally get [Ags]s = [#], the automaton Ay computes indeed the exact
value of function [¢] (and so we have obviously [As]s ~ [¢])-

4 Algebraic characterization

We remind that as in the case of languages, stabilization semigroups recognize
exactly regular cost functions, and there exists a quotient-wise minimal stabi-
lization semigroup for each regular cost function [CKL10].

In standard theory, it is equivalent for a regular language to be described by
an LTL-formula, or to be recognized by an aperiodic semigroup. Is it still the
case in the framework of regular cost functions? To answer this question we first
need to develop a little further the algebraic theory of regular cost functions.

4.1 Syntactic congruence

In standard theory of languages, we can go from a description of a regular lan-
guage L to a description of its syntactic monoid via the syntactic congruence.
Moreover, when the language is not regular, we get an infinite monoid, so this
equivalence can be used to “test” regularity of a language.

The main idea behind this equivalence is to identify words u and v if they
“behave the same” relatively to the language L, i.e. L cannot separate u from v
in any context : V(x,y),zuy € L < zvy € L.

The aim here is to define an analog to the syntactic congruence, but for
regular cost functions instead of regular languages. Since cost functions look at
quantitative aspects of words, the notions of "element" and "context" have to
contain quantitative information : we want to be able to say things like “words
with a lot of a’s behave the same as words with a few a’s”.

That is why we won’t define our equivalence over words, but over f-expressions,

which are a way to describe words with quantitative information.

4.2 f#-expressions

We first define general f-expressions as in [Has90] and [CKL10] by just adding
an operator £ to words in order to repeat a subexpression “a lot of times”. This
differs from the stabilization monoid definition, in which the f-operator can only
be applied to specific elements (idempotents).

The set Expr of #-expressions on an alphabet A is defined as follows:
e:=ach|ee|é

If we choose a stabilization semigroup S = (S, -, <, f) together with a function
h: A — S, the eval function (from Expr to S) is defined inductively by eval(a) =
h(a),eval(ee’) = eval(e) - eval(e’), and eval(ef) = eval(e)? (eval(e) has to be
idempotent). We say that e is well-formed for S if eval(e) exists. Intuitively,
it means that § was applied to subexpressions that corresponds to idempotent
elements in S.

If f is a regular cost function, e is well-formed for f iff e is well-formed for

the minimal stabilization semigroup of f.

Example 9 Let f be the cost function defined over {a}” by

flam) = {n if n even

oo otherwise

The minimal stabilization semigroup of f is : {a, aa, (aa)t, (aa)ﬂa}, with aa -
a = a and (aa)ta - a = (aa)?. Hence the §-expression aaa(aa)! is well-formed
for f but the f-expression af is not.

The f-expressions that are not well-formed have to be removed from the set
we want to quotient, in order to get only real elements of the syntactic semigroup.

4.3 wf-expressions

We have defined the set of f-expressions that we want to quotient to get the
syntactic equivalence of cost functions. However, we saw that some of these f-
expressions may not be well-typed for the cost function f we want to study,
and therefore does not correspond to an element in the syntactic stabilization
semigroup of f.

Thus we need to be careful about the stabilization operator, and apply it only
to “idempotent f#-expressions”. To reach this goal, we will add an “idempotent
operator” w on f-expressions, which will always associate an idempotent element
(relative to f) to a f-expression, so that we can later apply # and be sure of
creating well-formed expressions for f.

We define the set, Oexpr of wh-expressions on an alphabet A :

E:=acA|EE|E®| E“

The intuition behind operator w is that z“ is the idempotent obtained by
iterating = (which always exists in finite semigroups).

A context C[z] is a wh-expression with possible occurrences of a free variable
x. Let E be a wi-expression, C[E] is the wi-expression obtained by replacing all
occurrences of x by F in C[z], i.e. C[E] = C[z][z < E]. Let Cog be the set of
contexts on wf-expressions.

We will now formally define the semantic of operator w, and use wf-expressions
to get a syntactic equivalence on cost functions, without mistyped f-expressions.

Definition 10 If E € Oexpr and k,n € N, we define E(k,n) to be the word
El|w < k,# < n|, where the exponential is relative to concatenation of words.

Lemma 11 Let f be a regular cost function, there exists K¢ € N such that for
any E € Oexpr, the §-expression Elw «— K] is well-formed for f, and we are
in one of these two cases

1. Vk > K¢, {f(E(k!,n)),n € N} is bounded : we say that E € fB.
2. Vk > Ky, lim, .o f(E(kl,n)) = 00 : we say that E € f>.

Proof. The proof is a little technical, since we have to reuse the definition of
recognization by stabilization semigroup. Ky can simply be taken to be the size
of the minimal stabilization semigroup of f.

Here, fB and f> are the analogs for regular cost functions of “being in L”
and “not being in L” in language theory. But this notion is now asymptotic,
since we look at boundedness properties of quantitative information on words.
Moreover, f> and f? are only defined here for regular cost functions, since K
might not exist if f is not regular.

Definition 12 Let f be a regular cost function, we write E =5 E' if (E €
fB < E' ¢ fB). Finally we define

E =; E' iff VC[z] € Cog, C|E] = C[E]

Remark 13 Ifu,v € A*, and L is a regular language, then u ~p v iff u =, v
(~1, being the syntactic congruence of L). In this sense, = is an extension of
the classic syntactic congruence on languages.

Now that we have properly defined the equivalence = over Oexpr, it remains
to verify that it is indeed a good syntactic congruence, i.e. Oexpr/=; is the
syntactic stabilization semigroup of f.

Indeed if f is a regular cost function, let Sy = Oexpr/=¢. We can provide
Sy with a structure of stabilization semigroup (S¢, -, <,f).

Theorem 14. Sy is the minimal stabilization semigroup recognizing f.

The proof consists basically in a bijection between classes of Oexpr for =¢,
and elements of the minimal stabilization semigroup as defined in appendix A.7
of [CKL10].

4.4 Expressive power of LTLS

If f is a regular cost function, we will call S the syntactic stabilization semigroup
of f.

A finite semigroup S = (S, -) is called aperiodic if Ik € N,Vs € S, sF+! = s*,
The definition is the same if S is a finite stabilization semigroup.

Remark 15 For a regular cost function f, the statements “f is recognized by
an aperiodic stabilization semigroup” and “Sy is aperiodic” are equivalent, since
Sy is a quotient of all stabilization semigroups recognizing f.

Theorem 16. Let f be a cost function described by a LTLS-formula, then f is
reqular and the syntactic stabilization semigroup of f is aperiodic.

The proof of this theorem will be the first framework to use the syntactic con-
gruence on cost functions.

If ¢ is a LTL=-formula, we will say that ¢ verifies property AP if there exists
k € N such that for any wi-expression E, E* =4 E*™!, which is equivalent to
“[#] has an aperiodic syntactic stabilization semigroup”.

With this in mind, we can do an induction on LTL=-formulaes : we first show
that Sy, and all S, for a € A are aperiodic.

We then proceed to the induction on ¢ : assuming that ¢ and v verify
property AP, we show that X1, oV 1), @ A1, U and U <N verify property
AP.

Theorem 17. Let f be a cost function recognized by an aperiodic stabilization
semigroup, then f can be described by an LTLS -formula.

The proof of this theorem is a generalization of the proof of Wilke for aperi-
odic languages in [Wil99]. However difficulties inherent to quantitative notions
appear here.

The main issue comes from the fact that in the classical setting, computing
the value of a word in a monoid returns a single element. This fact is used to
do an induction on the size of the monoid, by considering the set of possible
results as a smaller monoid. The problem is that with cost functions, there is
some additional quantitative information, and we need to associate a sequence
of elements of a stabilization monoid to a single word. Therefore, it requires
some technical work to come back to a smaller stabilization monoid from these
sequences.

Corollary 18 The class of LTLS-definable cost functions is decidable.

Proof. Theorems 16 and 17 imply that it is equivalent for a regular cost function
to be LTL=-definable or to have an aperiodic syntactic stabilization semigroup.
If f is given by an automaton or a stabilization semigroup, we can compute
its syntactic stabilization semigroup S; (see [CKL10]) and decide if f is LTL=-
definable by testing aperiodicity of Sy. This can be done simply by iterating at
most |Sy| times all elements of Sy and see if each element a reaches an element
a® such that a*+1 = a*.

5 Conclusion

We first defined LTLS as a quantitative extension of LTL. We started the study
of LTLS by giving an explicit translation from LTLS-formulae to B-automata,

which preserves exact values (and not only boundedness properties as it is usually
the case in the framework of cost functions). We then showed that the expressive
power of LTLS in terms of cost functions is the same as aperiodic stabilization
semigroups. The proof uses a new syntactic congruence, which has a general
interest in the study of regular cost functions. This result implies the decidability
of the LTL=-definable class of cost functions.

As a further work, we can try to put wf-expressions in a larger framework,
by doing an axiomatization of wf-semigroups. We can also extend this work to
infinite words, and define an analog to Biichi automata for cost functions. To
continue the analogy with classic languages results, we can define a quantita-
tive extension of FO describing the same class as LTLS, and search for analog
definitions of counter-free B-automata and star-free B-regular expressions. The
translation from LTLS-formulae to B-automata can be further studied in terms
of optimality of number of counters of the resulting B-automaton.

Acknowledgments

I am very grateful to my advisor Thomas Colcombet for our helpful discussions,
and for the guidelines he gave me on this work, and to Michael Vanden Boom
for helping me with language and presentation issues.

References

[BC06] Mikolaj Bojaiiczyk and Thomas Colcombet. Bounds in w-regularity. In LICS
06, pages 285—296, August 2006.

[CKL10] Thomas Colcombet, Denis Kuperberg, and Sylvain Lombardy. Regular tem-
poral cost functions. In ICALP (2), pages 563-574, 2010.

[Col09] Thomas Colcombet. The theory of stabilization monoids and regular cost
functions. ICALP, Lecture Notes in Computer Science, 2009.

[DG10] Stéphane Demri and Paul Gastin. Specification and verification using tem-
poral logics. In Modern applications of automata theory, volume 2 of IISc
Research Monographs. World Scientific, 2010. To appear.

[Has88] Kosaburo Hashiguchi. Relative star height, star height and finite automata
with distance functions. In Formal Properties of Finite Automata and Appli-
cations, pages 7488, 1988.

[Has90] Kosaburo Hashiguchi. Improved limitedness theorems on finite automata with
distance functions. Theor. Comput. Sci., 72(1):27-38, 1990.

[Kir05] Daniel Kirsten. Distance desert automata and the star height problem.
RAIRO, 3(39):455-509, 2005.

[KPV09] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to
promptness. Formal Methods in System Design, 34(2):83-103, 2009.

[Sch65] M.-P. Schiitzenberger. On finite monoids having only trivial subgroups. In-
formation and Control 8, pages 190-194, 1965.

[VW86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal
logics of programs. J. Comput. Syst. Sci., 32(2):183-221, 1986.

[Wil99] Thomas Wilke. Classifying discrete temporal properties. In Christoph Meinel
and Sophie Tison, editors, STACS, volume 1563 of Lecture Notes in Computer
Science, pages 32—46. Springer, 1999.

6 Appendix

We will start by reviewing all notions needed to work with stabilization semi-
groups.

6.1 Cost sequences

The aim is to give a semantic to stabilization semigroups. Some mathematical
preliminaries are required.

Let (F, <) be an ordered set, a a function from N to N, and a,b € EV two
infinite sequences. We define the relation <, by a=,b if :

vYn.¥m. a(n) <m — a(n) < b(m) .

A sequence a is said to be a-non-decreasing if a <, a. We define ~,, as <, N =4,
and a=b (resp. a~b) if a <, b (resp. a ~, b) for some a.
Remarks:

— if @ < ¢ then a <, b implies a <,/ b,

if @ is a-non-decreasing, then it is a-equivalent to a non-decreasing sequence,
— a is id-non-decreasing iff it is non-decreasing,

let a,b € EY be two non-decreasing sequences, then a <, b iff aoa < b.

The a-non-decreasing sequences ordered by =<, can be seen as a weakening of
the a = id case. We will identify the elements a € E with the constant sequence
of value a.

The relations <, and ~, are not transitive, but the following property guar-
antees a certain kind of transitivity.

Fact 19 a <, b <X, ¢ implies a =<,00 € and a ~, b ~, ¢ implies a ~qo0q C.

The function « is used as a “precision” parameter for ~ and <. Fact ?? shows
that a transitivity step costs some precision. For any «, the relation <, coincides
over constant sequences with order < (up to identification of constant sequences
with their constant value). Consequently, the infinite sequences in EY ordered
by =, form an extension of (E, <).

In the following, while using relations <, and ~,, we may forget the subscript
« and verify instead that the proof has a bounded number of transitivity steps.

For (E, <) and (F, <) two ordered sets, a function f:E — F" is a-monotone
if

Va,be E. a<b— f(a) =, f(b) .

In particular, if f is a-monotone, for each a € E, we have a < a, so f(a) <, f(a),
hence f(a) is a-non-decreasing. To each a-monotone function f : £ — FN we
associate f : EN — FN defined in the following way:

for all @ € EY and all n € N, fla)(n) = f(a(n))(n) .

Proposition 20 Let f : E — FY be a a-monotone function and a,b € EV,
then: 5 B
a=,b implies f(a) <o f(b) .

In particular, if f +: E — FN and g : F — GV are a-monotone, then §o f

is a-monotone. Moreover, (jo f) =go f

Definition 21 If f and g are functions E — F~, we will say that f ~q g if for
allu € E, f(u) ~q g(u). As usual, f ~ g if there exists o such that f ~, g.

We will also use this notion with the product order : if (F, <) is an ordered
set, the set of words in v € E* is canonically ordered by a; ...a, < by ...by, iff
m =mn and a; < b; for i = 1...n. We identify the elements of (EN)* (words of
sequences) with some elements of (E*)Y (sequences of words of the same length).
Notice that for any sequences a1, ...,a,,b1,...,b, € EN, a;...a, <4 b;...b,
iffa; <, b;fort=1...n.

6.2 Ideals of an ordered set

This notion will be essential to define the cost function recognized by a stabi-
lization semigroup.

Let (E, <) be an ordered set, an ideal is a < —closed subset I C E,i.e.ifa € I
and b < a,thend € I. Let a € E, the ideal generated by ais [,={b€ E : b < a}.
Let a € EN and I be an ideal, we define I[a]=sup{n+1 : a(n) € I}.}

Proposition 22 Let f and g be functions E — SN such that f ~, g and for
any u € E, f(u) and g(u) are non-decreasing. Then for any ideal I of S, the
cost functions u — I[f(u)] and u— I[g(u)] are =, equivalent.

Indeed, let v € E, and n = I[f(u)]. Then g(u)(a(n)) > f(u)(n) ¢ I. I is an
ideal so we get g(u)(a(n)) ¢ I. g(u) is non-decreasing so I[g(u)] < «(n). By
symmetry of f and g we finally get u — I[f(u)] o u — I[g(u)].

Definition 23 Let a,b € E and n € N, we define the sequence a|nb by:

a ifk<n,
b otherwise.

for all k € N, (a|nd)(k) = {

6.3 Compatible functions

We now define the semantic of a stabilization semigroup with the notion of com-
patible function. The idea is to generalize the notion of product, by associating
to each word of ST, no longer an element of S, but a cost sequence in SY. this
will allow us to express stabilization in a quantitative way. Intuitively, when n is
fixed in the cost sequence, we can interpret the semantic as an automaton with

! The 41 makes the calculus smoother in the following.

limited resources. To avoid ambiguities, we will write uv the concatenation of u
and v as words in ST and a - b the product of a and b as elements of S.

(S*, , <) forms a semigroup, partially ordered by the product ordered be-
tween words of same length described above.

Definition 24 LetS = (S, -, <,f) be stabilization semigroup. A function p from S™
to SN is compatible with S if there exists o such that :

Monotonicity. p is a-monotone,

Letter. for alla € S, p(a) ~q a,

Product. for all a,b € S, p(ab) ~, a-b,

Stabilization. for all e € E(S), m € N, p(e™) ~, (ef|me),

Substitution. foralluy,...,u, € ST, n €N, p(uy...uy) ~q p(p(ur)...p(uy))
(we identify sequence of words and word of sequences)

Ezample 1. Let S be the stabilization semigroup with 3 elements L < a < b,
with product defined by : -y = min< (z,y) (b neutral element), and stabilization
by b* =band af = LF = L. Lett u € {L,a,b}", we define p by:

b if uebt
p(u) =4 Llulsa if u € b*(ab*)™
1 otherwise.

Then p is compatible with S.

Remark 25 When ! is the identity function, S becomes a standard ordered
semigroup, and the classical extended product 7 is compatible with S.

Theorem 26 ([Col09]). For any stabilization semigroup S, there exists a func-
tion p compatible with S. Moreover, p is unique up to ~.

This theorem is fundamental, since it associates a unique (up to ~) semantic to
any stabilization semigroup.

Lemma 1. Let p compatible with a semigroup S. There exists v such that for
anyn € N and v € ST, if |u| < n then for all k > v(n), p(u)(k) = m(u)

Proof. We show this result by induction on n. It is true for n = 1 by taking
v(1) = 1. We assume (k) constructed for k& < n, and we want to show the
result for n. Let w € ST of length n, u = va with |v] = n—1 and a € S.
Leta a witness of p compatible with S. The substitution property tells us that
p(u) ~q p(p(v)a). but by induction hypothesis, for all k > v(n—1), p(p(v)a)(k) =
p(p(v)(k)a)(k) = p(w(v)a)(k). Moreover, p(mw(v)a) ~q 7(v) - a = 7(u). Hence
we have for all k& > a(y(a(n — 1))),p(u)(k) = m(u).We get the result with
v(n) = aly(a(n —1))). 0

6.4 Recognized cost functions

We now have all the mathematical tools to define how stabilization semigroups
can recognize cost functions.

Let S = (S,-,<,f) be a stabilization semigroup. Let A : A — S be a mor-
phism, canonically extended to h : AT — ST, and I C S an ideal. Then the
triplet S, h, I recognizes the function f : AT — N defined by f(u) = I[p(h(u))]
where p is compatible with S. A cost function from A™ to N, is recognizable if
it is ~-equivalent to a function recognized by some S, h, I. By Proposition 77,
the recognized cost function does not depend on the choice of p.

Ezample 2. Let A = {a, b}, the cost function | - |, is recognizable. We take the
stabilization semigroup from Example ??, h defined by h(a) = a,h(b) = b,
and I = {L}. We have then |u|, = I[p(h(u))] for all u € AT.

6.5 Proof of Lemma 8

Proof. We do a reverse induction on n. If n = m, Y, is a final state so Y,, = ()
or Y, = {R}.If Y, Z3, Y, then Y =Y, (no outgoing e-transitions defined from
0 or {2}). Then if ¢ € Y, the only possibility is ¢ = 2, but apt1...am = €,
and €,0 = 2, hence the result is true for n = m.

Let n < m, we assume the result is true for n+ 1, and we take same notations

as in the lemma, with ¢y € Y. By definition of A, there exists a transition
y, ‘97, next(Z) = Y41 in A,.

We do an induction on the length k of the path Y’ =7 7.

If k =0, then Y = Z consistent and reduced, so ¢ is either atomic or a Next
formula.

If 4 is atomic, the only way Z U {a,+1} can be consistent is if ¢ = ap41. In
which case an41 ... am, N = ¢ without difficulty.

If v = Xo, ¢ € next(Z) = Y,41, then by induction hypothesis (on n),
Gp+t2 - .- am, N E @ (N does not change because ¢’ is empty). Hence an41an42 - . - am, N &
X which shows the result.

If £ > 0, we assume the result is true for kK — 1, and we show it for k. We have
Eﬁa'i E.O.

Y S5'Y S, Z with oloh = ¢/, and for all ¢/ € Y/, apt1ani2...am, N' =/
with N’ = val(chont1...0m).

We now look at the different possibility for the e-transition Y 21y’ Let us
first notice that either N = N’ or N = N’ 4 1, since o} € {e,ic,r}.

Let up+1 = ang1anta ... am. If ¢ € Y’ then w41, N’ =9, but N > N’ so
Un+1, N’ ': ’l/)

We just need to examine the cases where ¢ ¢ Y :

— Y =01 ANps, 01 =c,and Y =Y \ {¢} U{p1, ¢2},
then up+1, N | ¢1 and wpq1 ... am, N = o, hence u,41, N | 9.

— Otbher classic cases where o] = ¢ are similar and come directly from definition
of LTL operators.

— 19 = iU s, 0f = and Y/ = Y \ {¢} U {1, X0},
then un+1,N): 1 and up41, N |E X9, hence upq1, N =

It = U s, 0f =ic; and Y/ = Y\ {} U {X ¥},
then unH,N E X1
If ; reaches N’ before its first reset in 650,41 ...0m, then N = N’ +1, and
we can conclude u,+1, N = 1.
On the contrary, if N = N’ and there are strictly less than N’ mistakes on ¢
before the next occurence of s, we can allow one more and keep respecting
the constraint on N’, so un41, N = 1.

- Ify = galUjSNgag, of =rjand Y =Y \ {¢} U{p2} then N = N’', and
Unt1, N = X s, hence u,y1, N E 9.

Hence we can conclude that for all k, apq1an42...am, N |E 1, which con-
cludes the proof of the lemma.
O

6.6 Details on wf-expressions
Proof of Lemma 11

Proof. Let f be a regular cost function recognized by Sy, h,I. Let N = [Sy|. It

suffices to take Ky > N to verify that for any E' € Oexpr, the f-expression Elw «

K/!] is well-formed for f. Moreover, if s € Sy, s sk = s%s' for all k > Kjy. Let us

show that > fB = Oexpr. Let E € Oexpr, and k > K. Let e = E[w < k!],

e is well-formed for Sy. For all n € N, let u,, = e(n) = E(k!,n). From [CKL10],

we know that there exists a such that p(h(uy)) ~q eval(e)|n,eval(uy,).
Therefore,

eval(e) € I = Vn,I[p(h(un))] =a n = n, f(uy) >o n=lim f(u,) = 00
and eval(e) ¢ I = Vn,I[p(h(u,))] < a(1) = Vn, f(u,) < a(l) = E € fB. We

get that f* = {E € Oexpr,eval(F) € I} and fB {E € Oexpr,eval(F) ¢ I'}
which shows the result.

Lemma 27 If E =; E’, then for any context C1[z] € Cor, C1[E] = Ci[E'].

Proof. Let E, E’' and Cy[z] defined by the Lemma. Let C[z] be a context. We
define C'[z] = C[Ci[z]]. The definition of the =; relation implies C'[E] =
C’[€']. Hence C[C1le]] =5 C[Ci[E]].

This is true for any context C|z] so C1[E] =5 C1[E']. O

Proposition 28 The relation = does not change if we restrict contexts to hav-
ing only one occurence of x, as it was done for Expr in [CKL10].

Proof. Let E’f be the equivalence relation defined with single-variable contexts.
we just need to show that E =, E' = E =; E’ (the converse is trivial).
Let us assume F E/f E’, and let Clxy,z2] be a context with two occurences of
z, labelled z1 and 5. Then C[E] = Clz1 « E,z9 < E] =5 Clz1 < E,x2 «—
E') =¢ Clz1 « E',z9 «— E'] = C[¢/]. The generalization to an arbitrary number
of occurences of z is obvious, and we get E =5 E'. O

Structure of Oexpr/=; If f is a regular cost function, let S; = Oexpr/=;.
We show that we can provide Sy with a structure of stabilization semigroup
<Sfa 5 <, ﬁ) o

If £ € Oexpr, let E be its equivalence class for the = relationship. We first
naturally define the stabilization semigroup operators : E - B’ = EE’ and if £
idempotent we have E = E“ and (E)* = E«!. < is the minimal partial order
induced by the inequalities s* < s where s is idempotent, and compatible with
the stabilization semigroup structure.

Let us show that these operations are well-defined :

Product If E; =; Ej and E; =; Ej5. By Lemma ?? with context xFy and Ejz,
E\Ey=; B{Ey =; E\E), so BB = E| B,
Stabilization If E =; E', by Lemma ?? with context %%, E“* =; E'“¥ hence EwE = Eret,

Moreover, it is easy to check that all axioms of stabilization semigroups are
verified, for example (s*)* = s* because for any sequence wu,, which is either
bounded or tends towards oo, u,2 has same nature as u,,.

Proof of Theorem 14 Let Iy = {E,E € f°°}, and hy : A* — S’} the length-
preserving morphism defined by hs(a) =@ for all a € A (a letter is a particular
wi-expression).

Proof. Let Spn, h, I be the minimal stabilization semigroup recognizing f, as
defined in appendix A.7 of [CKL10]. Let p be its compatible mapping, and
eval : Oexpr — Sy the corresponding evaluation function. We will show that
E =; E' iff eval(E) = eval(E').

We know by the proof of Lemma 11 that E € f*° < eval(E) € I. We remind
that the definition of S,,;, is based on the fact that if two elements behave the
same relatively to I in any context, they are the same. These facts give us the
following sequence of equivalences :

E =y £ <:>VC[.T] S COE,C[E] =f C[EI]

< VC|z] € Cog, (C[E] € f>* & C[E'] € f>)
< VC[z] € Cog, (eval(C[E]) € I < (eval(C[E']) € I)
< eval(E) = eval(E')

This gives a bijection between S; and Sy, (eval function is surjective on
Sinin, by minimality of Sy,). Moreover, this bijection is an isomorphism, since in
both semigroups, operations are induced by concatenation and § on f-expressions.

h is determined by its image on letters, so we have to define hf(a) = @ to
remain coherent. Finally, we have eval(E) € I < E € f*°, therefore the set Iy
corresponding to I in the bijection is Iy = {E,E € f>}. O

Growing speeds lemma The following lemma will be used for technical pur-
poses in future proofs, but it is an interesting intuitive statement which could
give a better understanding of the behaviour of regular cost functions.

Lemma 29 Let f be a regular cost function, and e € Expr containing N f-
operators t1,...,4n. For all i € {1,...,N}, let o; be a function N — N with
oi(n) — oo. Then f(e[ti — oi(n) for all i]) — o0 < f(e(n)) — oo. In other
words, we can replace some of the n exponents by any function o(n) — oo when
approximating a f-expression by a sequence of words. It does not change the
nature of the sequence relatively to f.

Proof. This result is intuitive : since we always work up to cost equivalence,
growing at different speeds has an effect on correction functions, but not on
qualitative behaviour.

We will use notation i g1(n) s g2(n) means “gi(n) is bounded iff

g2(n) is bounded”, but remark that here all functions will either be bounded or
tend towards co (this notation will be reused in the next section).

For convenience we will note e,, = e[t; < o;(n) for all i{]. We want to show
that f(ey,) Rl f(e(n)). Let Sy be the minimal stabilization semigroup of f,

with compatible function p. We will in fact show that there exists « such that
for all n, p(e,) ~a p(e(n)), which implies the result. We proceed by induction
on N.If N =0, then e, = e(n) so the result is trivial. We assume the result is
true for all & < N (with function a.), and we choose fx to be outermost (not
under another #). We can write e = rs#¥t, with r,s,t € Expr.

Let 3 be a witness of p compatible with S¢, and v such that n ~, on(n).
We have

()7 t)

5(p(r)p((s0)7 ™) pl(tn)
5 Pp(rn)p((50)")p(tn))

a P(p(r(n))p(s(n)")p(t(n)))
~g p((n))-

plen) =

p(r

This give us a function « which completes the induction. O

6.7 Proof of Theorem 16

We remind the theorem we want to prove :
Let f be a cost function described by a LTLS-formula, then f is regular and
the syntactic stabilization semigroup of f is aperiodic.

Proof. We want to show that for all LTL=-formula ¢, Sp¢] is aperiodic.
We proceed by an induction on ¢ and use the characterization of Syg) pro-
vided by Theorem 14.

Ifgp=a,
then Spg) = {a,b} witha-b=a-a=a,and b-a="b-b=0, it is aperiodic
(also trivial if ¢ = —a).

Ifop =9,
then Spgp = {1, a} with 1 neutral element and a - a = q, it is aperiodic.

Ifp=p1Np20r ¢=9p1Veps,
¢ is recognized by the product semigroup of Sy, and Sp,,}, which is aperi-
odic by induction hypothesis.

If ¢ = X9,
we know by induction hypothesis that Sp, is aperiodic, so there exists k € N
such that for any wi-expression E, E* =[] E**1. We want to show that it is
also true for [¢]. Let E be a wf-expression, and e = Elw « max(Kpg!, Kyp!)]
(from Lemma 11).
We want to show that E¥+2 =4 E**1i.e. for any context C[z], [¢](C[e"2](n)) b

[61(Cles 1), o
Let O[] be a context. If C[z] = aC’[x], then [¢](Cle*+2](n)) = [](C'[e*+2?](n)) s
[v](C" [k (n)) = [¢](Cle** 1](n)) (by proposition ?? with context we).
If the beginning of C[z] is a letter a under (at least) a #, we have a con-
text C’[x] such that for any f-expression €', C[e'](n + 1) = aC’[¢’](n). For in-
stance if C[z] = ((ax)*b)? then C'[x] = z(az)?b((ax)*b)¥. Then we can write
[21(Cle"*?)(n+1)) = [¥1(C"[¥*2)(n)) ba_ [W1(C[**!](n)) = [#](Cle*](n+
1))

Finally, if C[z] starts with = (possibly under), we expand z in ez in Clz],
so that it does not start with z anymore. As before we can get C’[z] such that
Cle* 1) (n + 1) = aC’[e¥](n) and C[eF*2](n + 1) = aC'[e*+1](n) for all n, hence

==
<
=
Q
LY
Bl
+
N
&)
—+
—_
I
=
-
=
—
I
LY
Bl
+
—_
=
S

If ¢ = Uy ,

we know by induction hypothesis that Sy,j and Sy, are aperiodic, so there
exists k € N such that for any wi-expression E, E¥ =, E*! and E* =
E*1 Let E be a wi-expression. We will show that ¥+ = EFF2

Let C[z] be a context in Cog, K = max(K[,], K[y]), un = C[EF](K!, n)
and v, = C[E*?](K!,n). We want to show that C[E*"] =4 C[E*"?], Le.
[¢](urn) < [¢](vn). Assume for example that [¢](u,) is bounded by m We

n—oo
have u,,, m = ¢ for all n. We can write u,, = ynz, with z,,m |= ¢ and for any

strict suffix v, of y,, ¥, 2n, m = ¢. Let p, be the starting position of z,, (position
0 being the beginning of the word). We define y¢, to be the suffix of y,, starting
at position i for all i € [0, p — 1]. In this way % = y,.

Let us focus on the position p,, of the beginning on z,. The f-expression e =
C[E*](K!) is finite so we can extract a sequence us(,,) from u, such that the
beginning position ps(,) of zs,) corresponds to the same position p in e. Let

{e;,j € J} be the finite set of f-expression such that eg- contains position p in e.
We choose J = {1,r} with 1 < j < j’ < r implies eg is a subexpression of e;.
For convenience, we label the f-operator of eg- with j. Note that J can be empty,
if p does not occur under a f in e.
—
We denote by f;(d(n)) the number of occurences of e;(d(n)) (coming from
—

the corresponding eg) in ys(ny and we define f;(d(n)) in the same way relatively
to zs5(n). We have for all n € N, §(n) — 1 < (f_J(é(n)) + 3(5(71)) < §(n). The
d(n) — 1 lower bound is due to the fact than p can be in the middle of one

occurence of e;, therefore this occurence does not appear in ys(,) nor in zs(,).
This implies that for each j € J, we are in one of these three cases :

—jedri: }“_J(é(n)) is unbounded and f;(é(n)) is bounded.
—jedy: <f_J(é(n)) is bounded and E)(é(n)) is unbounded.
—JjeJ3: <f_j(é(n)) and E)((S(n)) are both unbounded .

But J is finite, hence we can extract o(n) from §(n) such that for each j € J:

- Ifje ., }”_J(o(n)) — o0 and E}(J(n)) is constant.
—If j e Jy, <f_J(a(n)) is constant and ?((n)) — 0.
~ 16 € Iy, J(o(n)) — o0 and T (o(n) —

Remark that if 7 < j’ and ?; oo # 0, then j ¢ J;. Symmetrically, if j < j' and
¥ 00 #0, then j & Ja.

We can distinguish three cases for the position of p in e = C[E*T!](K!) :

First case : p is before the first occurence of F in e.

We then consider C'[z] € Cog obtained from C[z] by replacing #; by the
constant value of f;(o(n)) for all j € J;. We have [¢/](25(n)) < m for all n, but
by Lemma ??, [[w]](zn) is bounded iff C’ [Ek“] € [¢]®. By induction hypothesis,
C'[EF) € [¢]P < C'[E**2]] € [¢]B. Let 2., be the suffix of C[Ek+2](K!,n)
starting at position p,. By reusing Lemma ‘7", we get that [¢](z ()) < m’ for
some m/.

We still have to show that there exists a constant M such that [¢] (yg(n)zé(n))

IN

M for all n and all i € [1, Po(n)] (the yg(n) are not affected by the change from

EM to EM?). Let us call g}, = [¢](y} (25 (n)) for more lisibility. Let us

o(n) —

assume that no such M exists, then {gg(neN1<i< pa(n)} is unbounded.

n)’
For all n, we define i,, such that g "((")) = max {g (n)? 1<i< pg(n)}. By con-

struction, the sequence ga"(i:)) = [¢](;"((7:)) 2! (n)) is unbounded. We first extract

o'(n) from o(n) such that gg‘f((;)) — 0.

We can now repeat the same process as before to extract a sequence y(n) from
o’(n), such that the starting positions of y:”(:)) for all n correspond to the same

position in e, and such that there exists a context C"'[z] with [¢](y ((7:)) Zy(n)) D9

[e](C"[E*1(K!,v(n))) (by Lemma ?? again). By adding an extra E (from k:—i—l
to k+2) and changing z by 2’ (the y factors are not concerned by occurences of

E), we get g7 v [](C"[E*?)(K1, y(n))). By hypothesis, [l (o) 2om)

bounded by m, and C’”[Ek*l] =y C"[E*?], 50 g ”((”)) is bounded, but we

already know that gi”(%) — o0o0. We have a contradiction, so M must exist.
We finally obtain the existence of M such that for all n and valid i, [¢] (y" (n)Zo(n))

<

M . This together with the previous result on v gives us that [pU](C[E¥T2](K!,n)) <
max(m/, M). We got C[EF*!] € [¢]®? == C[E¥*2] € [¢]®. The other direc-
tion works exactly the same, by removing one F instead of adding one. Hence
we have C[EFH] =, C[E*2].

Second case : p is after the last occurence of F in e.

This time z,, is not affected by changing from E*** to E¥*2 however it affects
some of the y! . Let y/ 2, be the suffixes of v, = C[E¥T2](K,) and p/, the posi-

tion of the beginning of z,, in v,,. As before, we assume that {[[(p]] (yg(n)zg(n)), neNl<i< pg(n)}

is unbounded, and we build a sequence y (W)” with the same start position in e,

such that [¢] (y,:aiy)‘)zv(n)) — 00.

We can again extract context C”[z], but we may need to use again Lemma
??, in order to map the #’s of C”’[z] with the remaining repetitions of idempotent
elements, (which could be any functions g(n) < n). The main idea is to map

positions in v, (,) with positions in u,,) in order to be able to bound the values

lel (v Z(”fl’;)zw(n) with what we know about the behaviour on u.(,), and so get a
contradiction. Three cases are to be distinguished :

— If a factor corresponding to E**2 occurs in the y (”(;), the precedent proof

stays valid, and we can map y (” 'y with some yfy ”(5:)) (jy(n) may be different

from i.(,)) in order to get the contradiction. The mapping just need to take
in account the shift due to the new occurences of E, but the positions in the
words are essentially the sames.

— If the remaining factors contain at most & occurences of F, then the position
can be matched with positions in u, without any changes, and we get the
contradiction.

— If the remaining factors contain k 4+ 1 occurences of F, then we can use the
equivalence E¥t1 = ; E* to match positions in v, with positions in u,
and get the contradiction. This time we map positions in the first E of each
sequence E* with the corresponding position in the second one. Informally,
we “duplicate” the first E of each sequence.

Third case : In all other situations, a combination of the techniques used above
gives us the wanted result. We just need to do with ¢ what we did with ¢ in

the second case : for instance we may use E*T1 =g, EF if 2} () contains k + 1
occurences of E.

As before, the other way is similar, and we finally get E*™! =p,; EF2. In
conclusion, Sy is aperiodic.

If ¢ = @US<N1) We just need to adapt the precedent proof to take in account
some exceptions in the validities of ¢ formulae. Indeed removing an occurence of
E does not change the number of possible mistakes, but adding one can double
it (at worse), since at most two positions in v,, are mapped to the same position
in u,. Hence , under the hypotheses E¥ =, E*™! and EF =) EF!, we get
EFt1 =[eU<Ny] E**2, with a correction function that doubles the one in the
precedent, proof. We can conclude that Sy is also aperiodic in this case.

6.8 Proof of Theorem 17

We remind the theorem we want to prove :
Let f be a cost function recognized by an aperiodic stabilization semigroup,
then f can be described by a LTL=-formula.

Proof. This proof is a generalization of the proof from Wilke for aperiodic lan-
guages in [Wil99].

Let us first notice that “S; is aperiodic” is equivalent to “f is computed by
an aperiodic stabilization monoid”, since aperiodicity is preserved by quotient
and by addition of a neutral element.

We take an alphabet A C M to avoid using a morphism A and simplify the
proof. The LTL=-formulae are about elements of M, and are monotonic in the
sense that [a](bu) = 0 iff b > a, oo otherwise. It is easy to get from this to
the general case by substituting in the formula an element m by Vj,(q)>ma. We
also will be sloppy with the empty word e. It is not more difficult to take it in
account, but the addition of a lot of special cases for ¢ in the proof would make
it harder to understand.

We assume that f on alphabet A C M is computed by M, I with M aperiodic.
Let p be compatible with M.

If m € M, we note f,, the cost function f,,(u) = inf{n/p(u)(n) > m}. It
is sufficient to show that the f,, functions are LTL=-computable, since f ~
minm%] fm

We proceed by induction on both the size of the stabilization monoid and
on the size of the alphabet, the induction parameter being (|M]|, |A|) for order
<lex-

We add in the induction hypothesis that M has a neutral element 1 for
multiplication.

If [M| = 1 then f is the constant function 0 or oo, which is LTL=-computable.

If A = {a}, we can consider that M = {a’/0 <i < p} U {(a?)*} (by aperi-
odicity of M) and (aP)* < a” is the only pair in <. We can show that for all
be M, fy is LTLS-computable :

—Ifi<p, for ™ [[/\OSJ.Q.Xja/\XiQ]],
- fap ~ [[lUSNQ]],
- f(ap)ﬁ ~ [[/\ogj<p X7a]

Let us assume that |M| > 1, |A] > 1, and the theorem is true for all
(IM],1A]) <iex (JM], |A]). We choose a letter b # 1 € A, let B = A\ {b}.

Let Lo = B*, L1 = B*bB*, and Lo = B*b(B*b)TB*. We have A* = LoUL,ULs.

We define restrictions of f,, : fo, f1, f2 on Lo, L1, Lo respectively (giving value
oo outside of the domain). We have f,,, = min(fo, f1, f2). Hence it suffices to show
that the f;’s are LTL=-computable to get that f,, is also LTL=-computable.

fo is computed by M on alphabet B, so by induction hypothesis there is a
formula ¢y on B computing fo. The formula ¢ = @9 A G—b is a formula on A
computing fo.

For all z € M, let ¢, be the LTLS-formula on B computing f, (restricted to
B*), these formulae exist by induction hypothesis, since |B| < |A].

If ¢ is a LTLS-formula on B, we define its “relativisation” ¢’ on A which has
the effect of ¢ on the part before b in a word. We define ¢’ by induction in the
following way :

a =aANXFb

04 —b

(enyY) =@ N

(Xg) =X A-b
(pU) = (¢ A=D)UY'
(@USNY) = (o' A=b)USNy/

With this definition, [¢'](uibuz) = [¢](u1) for any u; € B* and ug € A*.
We define the following formula on A:

p1 =\ (GAFObAXp,))A(bU(DbAXG-D))

xby=m

The second part controls that the word is in L;. We show [p1] =~ f1.
Let u € Ly, we can write u = uibus with uy, us € B*.
By definition of ¢,
(1) mine-o ([100 1)
= mingpy—rm max([e.](u1), [oy](u2))
= ity max((1), £, (02)):
We have for any z € M and v € B*, p(v) = L[| ()2 where L is an extra
smallest element (by definition of f,).
But for any z,y such that zby = m
p(u) ~ p(p(u1)bp(uz))
= (L g)@ - 0+ L, (ua)¥)
= Llmax(£, (un), £, (uz) M
It implies that for some 8 (not depending on u), Va,y such that xby = m,
fn(10) <5 max((fuun), £y (u2)):
In particular, fi(u) = fm(u) <g mingpyer max(fz(u1), fy(u2)) = [p1](w)
We can conclude f1 < [e1].

Conversely, let us assume that fi(u) < n, it means that p(u)(n) > m. but

p(u) ~a plur) -b- pluz), 0 plur)(a(n)) - b- plu)((n)) = m.
Let x = p(u1)(a(n)) and y = p(uz)(a(n)), we have fz(1) < a(n) and
fy(uz) < a(n), s0 max(fo(u), fy(us)) < a(n). We get [p2](u) < a(n), and in

conclusion [e1] = f1. This concludes the proof of [p1] =~ f1.

Last but not least, we have to show that fo is LTL=-computable. For that we
will finally use the induction hypothesis on the size of the monoid (until now we
only have decreased the size of the alphabet and kept the monoid unchanged).

We define the stabilization monoid M’ = (MbNbM, o,f, <’} in the following
way : xb o by = xby, and for b idempotent (zb)! = (2*)#b where 2% = z/Ml
is idempotent, since M is aperiodic. M’ is a stabilization monoid, let p’ be
compatible with M’. We can first notice that this definition implies (xb)* = z*b,
so M’ is also aperiodic. Moreover, if 1 € M/, let n = [M|, 1 = zb = (zb)* =
okbF = 2R+ = (2b)*b = 1b = b, but b # 1 so 1 ¢ M’, b is the neutral element
for o in M, and |M’| < |M|, which allows us to use induction hypothesis on M’
with alphabet M’.

Let A = b(B*b)*, then Ly = B*AB*.

Let d € M, we first want to show that f; over language A is LTLS-computable.

Let 7 A — (MN)*
butd ... ukb — (bp(u1)b) ... (bp(uk)b)

By induction hypothesis, for any 2 € M, there exists a LTL=-formula ¢, on
alphabet M’ and a correction function « such that for any v € M'*,

[¢2](v) ma inf {n/p'(v)(n) = x}.

Definition 30 Let S be a stabilization monoid. Let f be a cost function S* —
N> and Sj be the set of a-increasing sequences of elements of S (for some «).
we define f : ST — N, by f(u) =inf {n/f(u,) < n}.

Remark that this notation is coherent with the ~operator previously defined for
functions £ — FN~ in the sense that if f is recognized by S, h, I with compatible
function p, then f ~ w — I[p(h(u))].

Lemma 31 We claim that there exists o and ¢g a LTLS-formula on alphabet
A such that for all u € A and v € B*:

[6al(uv) ~a [Ya)(o () ~a falu)

With this result we can build a formula 2 computing fs :

pr=(\ (@ AF(bAXP) AF(bAX(GbAG,))) AL,

zdy=m

where ¢, = F(b A X Fb) controls that the word is in L.
By construction, lemmas and induction hypothesis, there exists a such that
for all v1,v2 € B* and u € A,
[p2](v1uv2) o mingay—m max([¢}](viuve), [a] (uv2), [¢y](v2))
Ro MiNggy=rm max(fz(v1), fa(w), fy(v2)).

The proof that minggy=m max(fz(v1), fa(w), fy(v2)) & fm(viuvs) is similar
to the proof of [¢1] ~ f1.
All this together gives us [¢2] ~ f2, which concludes the proof. O

Proof of Lemma 77

Proof. First let us show that [¢4](o(u)) =4 fa(u) for some « and all u € A. Let
u = buibus . .. ukb with u; € B*. For each ¢ € [1,k] and ¢t € N, p(u;)(t) = a;¢ €
M. For all t € N, let vy = (baib) ... (bakb), v is a word on M’ of length k,
and o(u) = (v¢)ten. Finally, let w, = bay tbazy ... bag b of length 2k + 1 on M.
We have :

[val(o(u))) = inf {t/[vpa] (vi) <t}

~ inf {t/inf {n/p'(v¢)(n) > d} <t}

We can verify that p'(v:) ~ p(w:) for any t : we check that p’ verifies
the same axioms on words (baib) ... (barb) than p does for bajbas...arb. The
only interesting case is the stabilization rule : let bab be an idempotent of M’,
p'((bab)P) ~ (bab)®|,(bab) ~ (ba)“*b|,(bab). But if p = [M|p’ +p” with p” < |M]|,
p((ba)Pb) ~ p((ba)™M¥') - (ba)?"b

~ p(((ba)*)"") - (ba)""b
~ (ba)(ba)?” Bl (ba)* (ba)?" b
~2) (ba)“#b|,(bab).

We get the equivalence (1) by aperiodicity of M ((ba)* is now a letter and
no longer a word of length |M|), and (2) by the fact that bab is idempotent in
M’ so (ba)®(ba)? b = bab, and (ba)”(ba)?” = (ba)* by aperiodicity of M (and
also p ~y (1M|+1) p')-

We can then apply the unicity theorem from [Col09] : p is unique up to ~,
hence we have p/(v) ~ p(w;) for any t.

Moreover, let w = (w¢):en, we show that

inf {n’/p(w)(n') > d} ~ inf {t/inf {n/p(w;)(n) > d} <t} : (EQ).

Let N’ = inf {n'/p(w)(n’) > d} , p(wn:)(N') > d and N’ < N’
so N’ > inf {t/inf {n/p(w;)(n) > d} < t}.

Conversely, let T = inf {t/inf {n/p(w:)(n) > d} <t} and N the correspond-
ing value of inf {n/p(w¢)(n) > d}, we have N < T and p(w;) is a-increasing, so
p(wr)(T) Za plwr)(N) > d, . T >, inf {n’ /5(w) () > d}.

Hence we have the equivalence (EQ).

__ Finally,

[val(o(w))) ~ inf {t/inf{n/p(w:)(n) = d} <t}
~ inf {n/p(w)(n) > d} by (EQ)
= inf {n/p(bp(u1)bp(uz) . . . p(ur)b)(n) = d}
~ inf {n/p(buibus . .. ugb)(n) > d} Substitution axiom

which concludes the proof of M](a(u))) ~ fa(u).

It remains to show that there exists a formula ¢4 and a « such that for all
u,v € AXB", [¢a] (uv) ~a [¢a](o(u)).

If ¢ is a LTLS-formula on M/, we define ¥* on alphabet A by induction on
P

X =((bAXFb) A (X))

(1 Ap)* =X AYY

(Y1 Vb)* =oF voX

(Xy)* = —bU (b AY¥)

(iUg)* = (b = ¢I)UbA YY)

(D USN)* = (b = 9I)VU=N (b A YY),

Where ¢/, is defined as before for any ¢, on alphabet B.

Let us show by induction on ¢ that that [¥*](uv) ~ [¥](c(u)) for u =
buibus ... upb € A and v € B* :

- Ifxz e M,
[2*](uv) = [@,] (urbus .. Ukbv) [p2](u1), and
[l (o(w)) = inf {n/[2)(p(ur) () < n} ~ inf {n/(p(u1) () = &} = [al (ua).
— /A case :
[(W1 A 2) X (uv) = max([[wl*]]wv [[%*]](uv))
Nmax([[1](o [[7,/}2

[[7/}1/\7/)]] ())
— V case :

[V) *¥ () = min(ef T(w), [(w0))
~m1n([[w1]](() [¥2] (0 (w)))
[[1/11 V o] (o (u))
— X case:

[(X¢)*](uv) = [$*](buszb. .. uxbv)
[[w]]((bugb. .. uxb))
R~ [[X’L/J]]((bupbugb . .. uxb))
— U case : N N
[(1 Upo) > (uv) = ming <;j <k (max([13) (buzb . .. ukbv), maxi<i<; [Y1 [(busb . . . ukbv)))
~ mi/nl_g/jgk(max([[wg]](o(bujb . ukb)), maxi<i<; [Y1](o(busb. .. ugb))))
~ [1Ux2] (o(u))
— The USY case is the same than above, allowing at most N mistakes for 1);.
We now just have to take ¢4 = 1/); to complete the proof of Lemma ?7.

O

6.9 Case of unregular cost functions

The syntactic congruence still can defined on unregular language, and the num-
ber of equivalence classes becomes infinite, whereas we need cost functions to be
regular a priori to define their syntactic congruence.

Here, if f is not regular, =; may not be properly defined, since we use the
existence of a minimal stabilization semigroup of f to give a semantic to the

operator w. But we can go back to #-expressions and define ~; on Expr for
all f in the following way : e ~y ¢’ if for any C[z] context on f-expressions,
{f(C|e])(n),n € N} is bounded iff {f(C[e'])(n),n € N} is bounded.

In this way if f is regular, then for all e, e’ € Expr, e ~f € iff e[«— wi] =5
€'[f — wf]. In particular Expr/~ is bigger than Oexpr/=; when f is regular :
there might be equivalence classes corresponding to f-expressions that are not
well-formed for f.

However, if f is not regular, Expr/~ is not infinite in general (this differs
from the results in language theory).

Example 32 Let f(u) = mineerxpr {|e],In € N,u=e(n)}, there is only one
equivalence class for ~¢ (f(Clel(n)) is always bounded by |Cle]|) so Expr/~
has only one element, and therefore cannot contain a stabilization semigroup
computing f. This gives us a proof that f is not reqular.

