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eAbstra
t. Regular 
ost fun
tions have been introdu
ed re
ently as anextension to the notion of regular languages with 
ounting 
apabilities,whi
h retains strong 
losure, equivalen
e, and de
idability properties.The spe
i�
ity of 
ost fun
tions is that exa
t values are not 
onsidered,but only estimated.In this paper, we de�ne an extension of Linear Temporal Logi
 (LTL)over �nite words to des
ribe 
ost fun
tions. We give an expli
it transla-tion from this new logi
 to automata. We then algebrai
ally 
hara
terizethe expressive power of this logi
, using a new synta
ti
 
ongruen
e for
ost fun
tions introdu
ed in this paper.1 Introdu
tionSin
e the seminal works of Kleene and Rabin and S
ott, the theory of regularlanguages is one of the 
ornerstones in 
omputer s
ien
e. Regular languageshave many good properties, of 
losure, of equivalent 
hara
terizations, and ofde
idability, whi
h makes them 
entral in many situations.Re
ently, the notion of regular 
ost fun
tion for words has been presentedas a 
andidate for being a quantitative extension to the notion of regular lan-guages, while retaining most of the fundamental properties of the original theorysu
h as the 
losure properties, the various equivalent 
hara
terizations, and thede
idability [Col09℄. A 
ost fun
tion is an equivalen
e 
lass of the fun
tions fromthe domain (words in our 
ase) to N ∪ {∞}, modulo an equivalen
e relation ≈whi
h allows some distortion, but preserves the boundedness property over ea
hsubset of the domain. The model is an extension to the notion of languages inthe following sense: one 
an identify a language with the fun
tion mapping ea
hword inside the language to 0, and ea
h word outside the language to ∞. It isa stri
t extension sin
e regular 
ost fun
tions have 
ounting 
apabilities, e.g.,
ounting the number of o

urren
es of letters, measuring the length of intervals,et
...Linear Temporal Logi
 (LTL), whi
h is a natural way to des
ribe logi
al
onstraints over a linear stru
ture, have also been a fertile subje
t of study,parti
ularly in the 
ontext of regular languages and automata [VW86℄. Moreoverquantitative extensions of LTL have re
ently been su

essfully introdu
ed. Forinstan
e the model Prompt-LTL introdu
ed in [KPV09℄ is interested in boundingthe waiting time of all requests of a formula, and in this sense is quite 
lose tothe aim of 
ost fun
tions.



In this paper, we extend LTL (over �nite words) into a new logi
 with quan-titative features (LTL≤), in order to des
ribe 
ost fun
tions over �nite wordswith logi
al formulae. We do this by adding a new operator U≤N : a formula
φU≤Nψ means that ψ holds somewhere in the future, and φ has to hold untilthat point, ex
ept at most N times (we allow at most N "mistakes" of the untilformula).Related works and motivating examplesRegular 
ost fun
tions are the 
ontinuation of a sequen
e of works that intendto solve di�
ult questions in language theory. Among several other de
isionproblems, the most prominent example is the star-height problem: given a regularlanguage L and an integer k, de
ide whether L 
an be expressed using a regularexpression using at most k-nesting of Kleene stars. The problem was resolvedby Hashigushi [Has88℄ using a very intri
ate proof, and later by Kirsten [Kir05℄using an automaton that has 
ounting features.Finally, also using ideas inspired from [BC06℄, the theory of those automataover words has been uni�ed in [Col09℄, in whi
h 
ost fun
tions are introdu
ed,and suitable models of automata, algebra, and logi
 for de�ning them are pre-sented and shown equivalent. Corresponding de
idability results are provided.The resulting theory is a neat extension of the standard theory of regular lan-guages to a quantitative setting.On the logi
 side, Prompt-LTL, introdu
ed in [KPV09℄, is an interestingway to extend LTL in order to look at boundedness issues, and already gaveinteresting de
idability and 
omplexity results. Prompt-LTL would 
orrespondin the framework of regular 
ost fun
tions to a sub
lass of temporal 
ost fun
tionsintrodu
ed in [CKL10℄; in parti
ular it is weaker than LTL≤ introdu
ed here.ContributionsIt is known from [Col09℄ that regular 
ost fun
tions are the ones re
ognizableby stabilization semigroups (or in an equivalent way, stabilization monoids),and from [CKL10℄ than there is an e�e
tive quotient-wise minimal stabilizationsemigroup for ea
h regular 
ost fun
tion. This model of semigroups extends thestandard approa
h for languages.We introdu
e a quantitative version of LTL in order to des
ribe 
ost fun
tionsby means of logi
al formulas. The idea of this new logi
 is to bound the num-ber of "mistakes" of Until operators, by adding a new operator U≤N . The �rst
ontribution of this paper is to give a dire
t translation from LTL≤-formulas to
B-automata, whi
h is an extension of the 
lassi
 translation from LTL to Bü
hiautomaton for languages. This translation preserves exa
t values (i.e. not only
ost fun
tions equivalen
e), whi
h 
ould be interesting in terms of future appli-
ations. We then show that regular 
ost fun
tions des
ribed by LTL formulaeare the same as the ones 
omputed by aperiodi
 stabilization semigroups, andthis 
hara
terization is e�e
tive. The proof uses a synta
ti
 
ongruen
e for 
ostfun
tions, introdu
ed in this paper.



This work validates the algebrai
 approa
h for studying 
ost fun
tions, sin
ethe analogy extends to synta
ti
 
ongruen
e. It also allows a more user-friendlyway to des
ribe 
ost fun
tions, sin
e LTL 
an be more intuitive than automataor stabilization semigroups to des
ribe a given 
ost fun
tion.As it was done in [CKL10℄ for temporal 
ost fun
tions, the 
hara
teriza-tion result obtained here for LTL≤-de�nable 
ost fun
tions follows the spirit ofS
hützenberger's theorem whi
h links star-free languages with aperiodi
 monoids[S
h65℄.Organisation of the paperAfter some notations, and reminder on 
ost fun
tions, we introdu
e in Se
tion 3LTL≤ as a quantitative extension of LTL, and give an expli
it translation fromLTL≤-formulae to B-automata. We then present in Se
tion 4 a synta
ti
 
ongru-en
e for 
ost fun
tions, and show that it indeed 
omputes the minimal stabiliza-tion semigroup of any regular 
ost fun
tion. We �nally use this new tool to showthat LTL≤ has the same expressive power as aperiodi
 stabilization semigroups.NotationsWe will note N the set of non-negative integers and N∞ the set N∪{∞}, orderedby 0 < 1 < · · · <∞. If E is a set, EN is the set of in�nite sequen
es of elementsof E (we will not use here the notion of in�nite words). Su
h sequen
es willbe denoted by bold letters (a, b,...). We will work with a �xed �nite alphabet
A. The set of words over A is A∗ and the empty word will be noted ǫ. The
on
atenation of words u and v is uv. The length of u is |u|. The number ofo

urren
es of letter a in u is |u|a. Fun
tions N → N will be denoted by letters
α, β, . . . , and will be extended to N ∪ {∞} by α(∞) =∞.2 Regular Cost fun
tions2.1 Cost fun
tions and equivalen
eIf L ⊆ A∗, we will note χL the fun
tion de�ned by χL(u) = 0 if u ∈ L, ∞ if
u /∈ L. Let F be the set of fun
tions : A∗ → N∞. For f, g ∈ F and α a fun
tion(see Notations), we say that f ≤α g if f ≤ α ◦ g, and f ≈α g if f ≤α g and
g ≤α f . Finally f ≈ g if f ≈α g for some α. This equivalen
e relation doesn'tpay attention to exa
t values, but preserves the existen
e of bounds.A 
ost fun
tion is an equivalen
e 
lass of F/≈. Cost fun
tions are noted
f, g, . . . , and in pra
ti
e they will be always be represented by one of theirelements in F .



2.2 B-automataA B-automaton is a tuple 〈Q,A, In,Fin, Γ,∆〉 where Q is the set of states, A thealphabet, In and Fin the sets of initial and �nal states, Γ the set of 
ounters,and ∆ ⊆ Q× A× ({i, r, c}∗)Γ ×Q is the set of transitions.Counters have integers values starting at 0, and an a
tion σ ∈ ({i, r, c}∗)Γperforms a sequen
e of atomi
 a
tions on ea
h 
ounter, where atomi
 a
tionsare either i (in
rement by 1), r (reset to 0) or c (
he
k the value). In parti
ularwe will note ε the a
tion 
orresponding to the empty word : doing nothing onevery 
ounter. If e is a run, let C(e) be the set of values 
he
ked during e on all
ounters of Γ .A B-automaton A 
omputes a regular 
ost fun
tion [[A]] via the followingsemanti
 : [[A]](u) = inf {supC(e), e run of A over u}.With the usual 
onventions that sup ∅ = 0 and inf ∅ = ∞. There exists alsoa dual model of B-automata, namely S-automata, that has the same expressivepower, but we won't develop this further in this paper. See [Col09℄ for moredetails.Example 1 Let A = {a, b}. The 
ost fun
tion | · |a is the same as 2| · |a +
5, it is 
omputed by the following one-
ounter B-automaton on the left-handside. The 
ost fun
tion u 7→ min {n ∈ N, an fa
tor of u} is 
omputed by thenondeterministi
 one-
ounter B-automaton on the right-hand side.
a : ic

b : ε

a, b : ε a : ic a, b : ε

b : ε b : rMoreover, as in the 
ase of languages, 
ost fun
tions 
an be re
ognized byan algebrai
 stru
ture that extends the 
lassi
 notion of semigroups, 
alled sta-bilization semigroups. A stabilization semigroup S = 〈S, ·,≤, ♯〉 is a partiallyordered set S together with an internal binary operation · and an internal unaryoperation a 7→ a♯ de�ned only on idempotent elements (elements a su
h that
a · a = a). The formalism is quite heavy, see appendix for all details on axiomsof stabilization semigroups and re
ognition of regular 
ost fun
tions.3 Quantitative LTLWe will now use an extension of LTL to des
ribe some regular 
ost fun
tions.This has been done su

essfully with regular languages, so we aim to obtainthe same kind of results. Can we still go e�
iently from an LTL-formula to anautomaton?



3.1 De�nitionThe �rst thing to do is to extend LTL so that it 
an de
ribe 
ost fun
tionsinstead of languages. We must add quantitative features, and this will be doneby a new operator U≤N . Unlike in most uses of LTL, we work here over �nitewords.Formulas of LTL≤ (on �nite words on an alphabet A) are de�ned by thefollowing grammar :
φ := a | φ ∧ φ | φ ∨ φ | Xφ | φUφ| φU≤Nφ | ΩNote the absen
e of negation in the de�nition of LTL≤. The negations havebeen pushed to the leaves.� a means that the 
urrent letter is a, ∧ and ∨ are the 
lassi
 
onjun
tion anddisjun
tion;� Xφ means that φ is true at the next letter;� φUψ means that ψ is true somewhere in the future, and φ holds until thatpoint;� φU≤Nψ means that ψ is true somewhere in the future, and φ 
an be falseat most N times before ψ. The variable N is unique, and is shared by allo

urren
es of U≤N operator;� Ω means that we are at the end of the word.We 
an de�ne ⊤ = (

∨
a∈A

a) ∨ Ω and ⊥ = ¬⊤, meaning respe
tively trueand false, and ¬a = (
∨
b6=a b) ∨Ω to signify that the 
urrent letter is not a.We also de�ne 
onne
tors "eventually" : Fϕ = ⊤Uϕ and "globally" : Gϕ =

ϕUΩ.3.2 Semanti
sWe want to asso
iate a 
ost fun
tion [[φ]] on words to any LTL≤-formula φ.We will say that u, n |= φ (u, n is a model of φ) if φ is true on u with n asvaluation for N , i.e. as number of errors for all the U≤N 's in the formula φ. We�nally de�ne
[[φ]](u) = inf {n ∈ N/u, n |= φ}We 
an remark that if u, n |= φ, then for all k ≥ n, u, k |= φ, sin
e the U≤Noperators appear always positively in the formula (that is why we don't allowthe negation of an LTL≤-formula in general). In parti
ular, [[φ]](u) = 0 meansthat ∀n ∈ N, u, n |= φ, and [[φ]](u) = ∞ means that ∀n ∈ N, u, n 6|= φ (sin
e

inf ∅ =∞).Proposition 2� [[a]](u) = 0 if u ∈ aA∗, and ∞ otherwise� [[Ω]](u) = 0 if u = ε, and ∞ otherwise� [[φ ∧ ψ]] = max([[φ]], [[ψ]]), and [[φ ∨ ψ]] = min([[φ]], [[ψ]])



� [[Xφ]](au) = [[φ]](u), [[Xφ]](ε) =∞� [[⊤]] = 0, and [[⊥]] =∞Example 3 Let φ = (¬a)U≤NΩ, then [[φ]] = | · |aWe use LTL≤-formulae in order to des
ribe 
ost fun
tions, so we will alwayswork modulo 
ost fun
tion equivalen
e ≈.Remark 4 If φ does not 
ontain any operator U≤N , φ is a 
lassi
 LTL-formula
omputing a language L, and [[φ]] = χL.3.3 From LTL≤ to B-AutomataWe will now give a dire
t translation from LTL≤-formula to B-automata, i.e.given an LTL≤-formula φ on a �nite alphabet A, we want to build a B-automatonre
ognizing [[φ]]. This 
onstru
tion is adapted from the 
lassi
 translation fromLTL-formula to Bü
hi automata [DG10℄.Let φ be an LTL≤-formula. We de�ne sub(φ) to be the set of subformulae of
φ, and Q = 2sub(φ) to be the set of subsets of sub(φ).We want to de�ne a B-automaton Aφ = 〈Q,A, In,Fin , Γ,∆〉 su
h that
[[A]]B ≈ [[φ]].We set the initial states to be In = {{φ}} and the �nal ones to be Fin =
{∅, {Ω}} We 
hoose as set of 
ounters Γ = {γ1, . . . , γk} where k is the numberof o

uren
es of the U≤N operators in φ, labeled from U≤N

1 to U≤N
k .A state is basi
ally the set of 
onstraints we have to verify before the endof the word, so the only two a

epting states are the one with no 
onstraint, orwith only 
onstraint to be at the end of the word.The following de�nitions are the same as for the 
lassi
al 
ase (LTL to Bü
hiautomata) :De�nition 5 � An atomi
 formula is either a letter a ∈ A or Ω� A set Z of formulae is 
onsistent if there is at most one atomi
 formula init.� A redu
ed formula is either an atomi
 formula or a Next formula (of theform Xϕ).� A set Z is redu
ed if all its elements are redu
ed formulae.� If Z is 
onsistent and redu
ed, we de�ne next(Z) = {ϕ/Xϕ ∈ Z}.Lemma 6 (Next Step) If Z is 
onsistent and redu
ed, for all u ∈ A∗, a ∈ Aand n ∈ N,

au, n |=
∧
Z i� u, n |=

∧
next(Z) and Z ∪ {a} 
onsistent



We would like to de�ne Aφ with Z −→ next(Z) as transitions.The problem is that next(Z) is not 
onsistent and redu
ed in general. If
next(Z) is in
onsistent we remove it from the automaton. If it is 
onsistent, weneed to apply some redu
tion rules to get a redu
ed set of formulae. This 
on-sists in adding ε-transitions (but with possible a
tions on the 
ounter) towardsintermediate sets whi
h are not a
tual states of the automaton (we will 
all them"pseudo-states"), until we rea
h a redu
ed set.Let ψ be maximal (in size) not redu
ed in Y , we add the following transitions� If ψ = ϕ1 ∧ ϕ2 : Y ε:ε

−→ Y \ {ψ} ∪ {ϕ1, ϕ2}� If ψ = ϕ1 ∨ ϕ2 : {
Y

ε:ε
−→ Y \ {ψ} ∪ {ϕ1}

Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ2}� If ψ = ϕ1Uϕ2 : {

Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ1, Xψ}

Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ2}� If ψ = ϕ1U

≤N
j ϕ2 : 




Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ1, Xψ}

Y
ε:icj
−→ Y \ {ψ} ∪ {Xψ} (we 
ount one mistake)

Y
ε:rj
−→ Y \ {ψ} ∪ {ϕ2}where a
tion rj (resp. icj) perform r (resp. ic) on 
ounter γj and ε on theother 
ounters.The pseudo-states don't (a priori) belong toQ = 2sub(φ) be
ause we add formulae

Xψ for ψ ∈ sub(φ), so if Z is a redu
ed pseudo-state, next(Z) will be in Q againsin
e we remove the new next operators.The transitions of automaton Aφ will be de�ned as follows:
∆ =

{
Y

a:σ
−→ next(Z) | Y ∈ Q,Z ∪ {a} 
onsistent and redu
ed, Y ε:σ

−→∗ Z
}where Y ε:σ

−→∗ Z means that there is a sequen
e of ε-transitions from Y to Zwith σ as 
ombined a
tion on 
ounters.De�nition 7 If σ is a sequen
e of a
tions on 
ounters, we will 
all val(σ) themaximal value 
he
ked on a 
ounter during σ with 0 as starting value of the
ounters, and val(σ) = 0 if there is no 
he
k in σ. It 
orresponds to the value ofa run of a B-automaton with σ as 
ombined a
tion of the 
ounter.Lemma 8 Let u = a1 . . . am be a word on A and Y0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Yman a

epting run of Aφ.Then for all ψ ∈ sub(φ), for all n ∈ {0, . . . ,m}, for all Yn ε:σ

→∗ Y
ε:σ′

→ ∗ Z with
Z ∪ {an+1} 
onsistent and redu
ed, and Yn+1 = next(Z)

ψ ∈ Y =⇒ an+1an+2 . . . am, N |= ψwhere N = val(σ′σn+1 . . . σm).



Lemma 8 implies the 
orre
tness of the automaton Aφ :Let Y0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Ym be a valid run of Aφ on u of value N = [[Aφ]]B ,applying Lemma 8 with n = 0 and Y = Y0 = {φ} gives us u,N |= φ. Hen
e

[[φ]] ≤ [[Aφ]]B .Conversely, let N = [[φ]](u), then u,N |= φ so by de�nition of Aφ, it isstraightforward to verify that there exists an a

epting run of Aφ over u of value
≤ N (ea
h 
ounter γi doing at most N mistakes relative to operator U≤N

i ).Hen
e [[Aφ]]B ≤ [[φ]].We �nally get [[Aφ]]B = [[φ]], the automaton Aφ 
omputes indeed the exa
tvalue of fun
tion [[φ]] (and so we have obviously [[Aφ]]B ≈ [[φ]]).4 Algebrai
 
hara
terizationWe remind that as in the 
ase of languages, stabilization semigroups re
ognizeexa
tly regular 
ost fun
tions, and there exists a quotient-wise minimal stabi-lization semigroup for ea
h regular 
ost fun
tion [CKL10℄.In standard theory, it is equivalent for a regular language to be des
ribed byan LTL-formula, or to be re
ognized by an aperiodi
 semigroup. Is it still the
ase in the framework of regular 
ost fun
tions? To answer this question we �rstneed to develop a little further the algebrai
 theory of regular 
ost fun
tions.4.1 Synta
ti
 
ongruen
eIn standard theory of languages, we 
an go from a des
ription of a regular lan-guage L to a des
ription of its synta
ti
 monoid via the synta
ti
 
ongruen
e.Moreover, when the language is not regular, we get an in�nite monoid, so thisequivalen
e 
an be used to �test� regularity of a language.The main idea behind this equivalen
e is to identify words u and v if they�behave the same� relatively to the language L, i.e. L 
annot separate u from vin any 
ontext : ∀(x, y), xuy ∈ L⇔ xvy ∈ L.The aim here is to de�ne an analog to the synta
ti
 
ongruen
e, but forregular 
ost fun
tions instead of regular languages. Sin
e 
ost fun
tions look atquantitative aspe
ts of words, the notions of "element" and "
ontext" have to
ontain quantitative information : we want to be able to say things like �wordswith a lot of a's behave the same as words with a few a's�.That is why we won't de�ne our equivalen
e over words, but over ♯-expressions,whi
h are a way to des
ribe words with quantitative information.4.2 ♯-expressionsWe �rst de�ne general ♯-expressions as in [Has90℄ and [CKL10℄ by just addingan operator ♯ to words in order to repeat a subexpression �a lot of times�. Thisdi�ers from the stabilization monoid de�nition, in whi
h the ♯-operator 
an onlybe applied to spe
i�
 elements (idempotents).



The set Expr of ♯-expressions on an alphabet A is de�ned as follows:
e := a ∈ A | ee | e♯If we 
hoose a stabilization semigroup S = 〈S, ·,≤, ♯〉 together with a fun
tion

h : A→ S, the eval fun
tion (from Expr to S) is de�ned indu
tively by eval(a) =
h(a), eval(ee′) = eval(e) · eval(e′), and eval(e♯) = eval(e)♯ (eval(e) has to beidempotent). We say that e is well-formed for S if eval(e) exists. Intuitively,it means that ♯ was applied to subexpressions that 
orresponds to idempotentelements in S.If f is a regular 
ost fun
tion, e is well-formed for f i� e is well-formed forthe minimal stabilization semigroup of f .Example 9 Let f be the 
ost fun
tion de�ned over {a}∗ by

f(an) =

{
n if n even
∞ otherwiseThe minimal stabilization semigroup of f is : {

a, aa, (aa)♯, (aa)♯a
}, with aa ·

a = a and (aa)♯a · a = (aa)♯. Hen
e the ♯-expression aaa(aa)♯ is well-formedfor f but the ♯-expression a♯ is not.The ♯-expressions that are not well-formed have to be removed from the setwe want to quotient, in order to get only real elements of the synta
ti
 semigroup.4.3 ω♯-expressionsWe have de�ned the set of ♯-expressions that we want to quotient to get thesynta
ti
 equivalen
e of 
ost fun
tions. However, we saw that some of these ♯-expressions may not be well-typed for the 
ost fun
tion f we want to study,and therefore does not 
orrespond to an element in the synta
ti
 stabilizationsemigroup of f .Thus we need to be 
areful about the stabilization operator, and apply it onlyto �idempotent ♯-expressions�. To rea
h this goal, we will add an �idempotentoperator� ω on ♯-expressions, whi
h will always asso
iate an idempotent element(relative to f) to a ♯-expression, so that we 
an later apply ♯ and be sure of
reating well-formed expressions for f .We de�ne the set Oexpr of ω♯-expressions on an alphabet A :
E := a ∈ A | EE | Eω | Eω♯The intuition behind operator ω is that xω is the idempotent obtained byiterating x (whi
h always exists in �nite semigroups).A 
ontext C[x] is a ω♯-expression with possible o

urren
es of a free variable

x. Let E be a ω♯-expression, C[E] is the ω♯-expression obtained by repla
ing allo

urren
es of x by E in C[x], i.e. C[E] = C[x][x ← E]. Let COE be the set of
ontexts on ω♯-expressions.We will now formally de�ne the semanti
 of operator ω, and use ω♯-expressionsto get a synta
ti
 equivalen
e on 
ost fun
tions, without mistyped ♯-expressions.



De�nition 10 If E ∈ Oexpr and k, n ∈ N, we de�ne E(k, n) to be the word
E[ω ← k, ♯← n], where the exponential is relative to 
on
atenation of words.Lemma 11 Let f be a regular 
ost fun
tion, there exists Kf ∈ N su
h that forany E ∈ Oexpr, the ♯-expression E[ω ← Kf !] is well-formed for f , and we arein one of these two 
ases1. ∀k ≥ Kf , {f(E(k!, n)), n ∈ N} is bounded : we say that E ∈ fB.2. ∀k ≥ Kf , limn→∞ f(E(k!, n)) =∞ : we say that E ∈ f∞.Proof. The proof is a little te
hni
al, sin
e we have to reuse the de�nition ofre
ognization by stabilization semigroup. Kf 
an simply be taken to be the sizeof the minimal stabilization semigroup of f .Here, fB and f∞ are the analogs for regular 
ost fun
tions of �being in L�and �not being in L� in language theory. But this notion is now asymptoti
,sin
e we look at boundedness properties of quantitative information on words.Moreover, f∞ and fB are only de�ned here for regular 
ost fun
tions, sin
e Kfmight not exist if f is not regular.De�nition 12 Let f be a regular 
ost fun
tion, we write E ⇋f E′ if (E ∈
fB ⇔ E′ ∈ fB). Finally we de�ne

E ≡f E
′ i� ∀C[x] ∈ COE, C[E] ⇋f C[E′]Remark 13 If u, v ∈ A∗, and L is a regular language, then u ∼L v i� u ≡χL

v( ∼L being the synta
ti
 
ongruen
e of L). In this sense, ≡ is an extension ofthe 
lassi
 synta
ti
 
ongruen
e on languages.Now that we have properly de�ned the equivalen
e ≡f over Oexpr, it remainsto verify that it is indeed a good synta
ti
 
ongruen
e, i.e. Oexpr/≡f is thesynta
ti
 stabilization semigroup of f .Indeed if f is a regular 
ost fun
tion, let Sf = Oexpr/≡f . We 
an provide
Sf with a stru
ture of stabilization semigroup 〈Sf , ·,≤, ♯〉.Theorem 14. Sf is the minimal stabilization semigroup re
ognizing f .The proof 
onsists basi
ally in a bije
tion between 
lasses of Oexpr for ≡f ,and elements of the minimal stabilization semigroup as de�ned in appendix A.7of [CKL10℄.4.4 Expressive power of LTL≤If f is a regular 
ost fun
tion, we will 
all Sf the synta
ti
 stabilization semigroupof f .A �nite semigroup S = 〈S, ·〉 is 
alled aperiodi
 if ∃k ∈ N, ∀s ∈ S, sk+1 = sk.The de�nition is the same if S is a �nite stabilization semigroup.



Remark 15 For a regular 
ost fun
tion f , the statements �f is re
ognized byan aperiodi
 stabilization semigroup� and �Sf is aperiodi
� are equivalent, sin
e
Sf is a quotient of all stabilization semigroups re
ognizing f .Theorem 16. Let f be a 
ost fun
tion des
ribed by a LTL≤-formula, then f isregular and the synta
ti
 stabilization semigroup of f is aperiodi
.The proof of this theorem will be the �rst framework to use the synta
ti
 
on-gruen
e on 
ost fun
tions.If φ is a LTL≤-formula, we will say that φ veri�es property AP if there exists
k ∈ N su
h that for any ω♯-expression E, Ek ≡[[φ]] E

k+1, whi
h is equivalent to� [[φ]] has an aperiodi
 synta
ti
 stabilization semigroup�.With this in mind, we 
an do an indu
tion on LTL≤-formulaes : we �rst showthat SΩ and all Sa for a ∈ A are aperiodi
.We then pro
eed to the indu
tion on φ : assuming that ϕ and ψ verifyproperty AP , we show that Xψ, ϕ∨ψ, ϕ∧ψ, ϕUψ and ϕU≤Nψ verify property
AP .Theorem 17. Let f be a 
ost fun
tion re
ognized by an aperiodi
 stabilizationsemigroup, then f 
an be des
ribed by an LTL≤-formula.The proof of this theorem is a generalization of the proof of Wilke for aperi-odi
 languages in [Wil99℄. However di�
ulties inherent to quantitative notionsappear here.The main issue 
omes from the fa
t that in the 
lassi
al setting, 
omputingthe value of a word in a monoid returns a single element. This fa
t is used todo an indu
tion on the size of the monoid, by 
onsidering the set of possibleresults as a smaller monoid. The problem is that with 
ost fun
tions, there issome additional quantitative information, and we need to asso
iate a sequen
eof elements of a stabilization monoid to a single word. Therefore, it requiressome te
hni
al work to 
ome ba
k to a smaller stabilization monoid from thesesequen
es.Corollary 18 The 
lass of LTL≤-de�nable 
ost fun
tions is de
idable.Proof. Theorems 16 and 17 imply that it is equivalent for a regular 
ost fun
tionto be LTL≤-de�nable or to have an aperiodi
 synta
ti
 stabilization semigroup.If f is given by an automaton or a stabilization semigroup, we 
an 
omputeits synta
ti
 stabilization semigroup Sf (see [CKL10℄) and de
ide if f is LTL≤-de�nable by testing aperiodi
ity of Sf . This 
an be done simply by iterating atmost |Sf | times all elements of Sf and see if ea
h element a rea
hes an element
ak su
h that ak+1 = ak.5 Con
lusionWe �rst de�ned LTL≤ as a quantitative extension of LTL. We started the studyof LTL≤ by giving an expli
it translation from LTL≤-formulae to B-automata,



whi
h preserves exa
t values (and not only boundedness properties as it is usuallythe 
ase in the framework of 
ost fun
tions). We then showed that the expressivepower of LTL≤ in terms of 
ost fun
tions is the same as aperiodi
 stabilizationsemigroups. The proof uses a new synta
ti
 
ongruen
e, whi
h has a generalinterest in the study of regular 
ost fun
tions. This result implies the de
idabilityof the LTL≤-de�nable 
lass of 
ost fun
tions.As a further work, we 
an try to put ω♯-expressions in a larger framework,by doing an axiomatization of ω♯-semigroups. We 
an also extend this work toin�nite words, and de�ne an analog to Bü
hi automata for 
ost fun
tions. To
ontinue the analogy with 
lassi
 languages results, we 
an de�ne a quantita-tive extension of FO des
ribing the same 
lass as LTL≤, and sear
h for analogde�nitions of 
ounter-free B-automata and star-free B-regular expressions. Thetranslation from LTL≤-formulae to B-automata 
an be further studied in termsof optimality of number of 
ounters of the resulting B-automaton.A
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6 AppendixWe will start by reviewing all notions needed to work with stabilization semi-groups.6.1 Cost sequen
esThe aim is to give a semanti
 to stabilization semigroups. Some mathemati
alpreliminaries are required.Let (E,≤) be an ordered set, α a fun
tion from N to N, and a, b ∈ EN twoin�nite sequen
es. We de�ne the relation �α by a�αb if :
∀n.∀m. α(n) ≤ m→ a(n) ≤ b(m) .A sequen
e a is said to be α-non-de
reasing if a �α a. We de�ne∼α as�α ∩ �α,and a�b (resp. a∼b) if a �α b (resp. a ∼α b) for some α.Remarks:� if α ≤ α′ then a �α b implies a �α′ b,� if a is α-non-de
reasing, then it is α-equivalent to a non-de
reasing sequen
e,� a is id -non-de
reasing i� it is non-de
reasing,� let a, b ∈ EN be two non-de
reasing sequen
es, then a �α b i� a ◦ α ≤ b.The α-non-de
reasing sequen
es ordered by �α 
an be seen as a weakening ofthe α = id 
ase. We will identify the elements a ∈ E with the 
onstant sequen
eof value a.The relations �α and ∼α are not transitive, but the following property guar-antees a 
ertain kind of transitivity.Fa
t 19 a �α b �α c implies a �α◦α c and a ∼α b ∼α c implies a ∼α◦α c.The fun
tion α is used as a �pre
ision� parameter for ∼ and �. Fa
t ?? showsthat a transitivity step 
osts some pre
ision. For any α, the relation �α 
oin
idesover 
onstant sequen
es with order ≤ (up to identi�
ation of 
onstant sequen
eswith their 
onstant value). Consequently, the in�nite sequen
es in EN orderedby �α form an extension of (E,≤).In the following, while using relations�α and∼α, we may forget the subs
ript

α and verify instead that the proof has a bounded number of transitivity steps.For (E,≤) and (F,≤) two ordered sets, a fun
tion f:E → FN is α-monotoneif
∀a, b ∈ E. a ≤ b→ f(a) �α f(b) .In parti
ular, if f is α-monotone, for ea
h a ∈ E, we have a ≤ a, so f(a) �α f(a),hen
e f(a) is α-non-de
reasing. To ea
h α-monotone fun
tion f : E → FN weasso
iate f̃ : EN → FN de�ned in the following way:for all a ∈ EN and all n ∈ N, f̃(a)(n) = f(a(n))(n) .



Proposition 20 Let f : E → FN be a α-monotone fun
tion and a, b ∈ EN,then:
a �α b implies f̃(a) �α f̃(b) .In parti
ular, if f : E → FN and g : F → GN are α-monotone, then g̃ ◦ fis α-monotone. Moreover, (̃g̃ ◦ f) = g̃ ◦ f̃ .De�nition 21 If f and g are fun
tions E → FN, we will say that f ∼α g if forall u ∈ E, f(u) ∼α g(u). As usual, f ∼ g if there exists α su
h that f ∼α g.We will also use this notion with the produ
t order : if (E,≤) is an orderedset, the set of words in u ∈ E∗ is 
anoni
ally ordered by a1 . . . an ≤ b1 . . . bm i�

m = n and ai ≤ bi for i = 1 . . . n. We identify the elements of (EN)∗ (words ofsequen
es) with some elements of (E∗)N (sequen
es of words of the same length).Noti
e that for any sequen
es a1, . . . ,an, b1, . . . , bn ∈ EN, a1 . . .an �α b1 . . .bni� ai �α bi for i = 1 . . . n.6.2 Ideals of an ordered setThis notion will be essential to de�ne the 
ost fun
tion re
ognized by a stabi-lization semigroup.Let (E,≤) be an ordered set, an ideal is a≤ −closed subset I ⊆ E, i.e. if a ∈ Iand b ≤ a, then b ∈ I. Let a ∈ E, the ideal generated by a is Ia= {b ∈ E : b ≤ a}.Let a ∈ EN and I be an ideal, we de�ne I[a]= sup{n+ 1 : a(n) ∈ I}.1Proposition 22 Let f and g be fun
tions E → SN su
h that f ∼α g and forany u ∈ E, f(u) and g(u) are non-de
reasing. Then for any ideal I of S, the
ost fun
tions u 7→ I[f(u)] and u 7→ I[g(u)] are ≈α equivalent.Indeed, let u ∈ E, and n = I[f(u)]. Then g(u)(α(n)) ≥ f(u)(n) /∈ I. I is anideal so we get g(u)(α(n)) /∈ I. g(u) is non-de
reasing so I[g(u)] ≤ α(n). Bysymmetry of f and g we �nally get u 7→ I[f(u)] ≈α u 7→ I[g(u)].De�nition 23 Let a, b ∈ E and n ∈ N, we de�ne the sequen
e a|nb by:for all k ∈ N, (a|nb)(k) =

{
a if k < n,
b otherwise.6.3 Compatible fun
tionsWe now de�ne the semanti
 of a stabilization semigroup with the notion of 
om-patible fun
tion. The idea is to generalize the notion of produ
t, by asso
iatingto ea
h word of S+, no longer an element of S, but a 
ost sequen
e in SN. thiswill allow us to express stabilization in a quantitative way. Intuitively, when n is�xed in the 
ost sequen
e, we 
an interpret the semanti
 as an automaton with1 The +1 makes the 
al
ulus smoother in the following.



limited resour
es. To avoid ambiguities, we will write uv the 
on
atenation of uand v as words in S+ and a · b the produ
t of a and b as elements of S.
〈S+, ,≤〉 forms a semigroup, partially ordered by the produ
t ordered be-tween words of same length des
ribed above.De�nition 24 Let S = 〈S, ·,≤, ♯〉 be stabilization semigroup. A fun
tion ρ from S+to SN is 
ompatible with S if there exists α su
h that :Monotoni
ity. ρ is α-monotone,Letter. for all a ∈ S, ρ(a) ∼α a,Produ
t. for all a, b ∈ S, ρ(ab) ∼α a · b,Stabilization. for all e ∈ E(S), m ∈ N, ρ(em) ∼α (e♯|me),Substitution. for all u1, . . . , un ∈ S+, n ∈ N, ρ(u1 . . . un) ∼α ρ̃(ρ(u1) . . . ρ(un))(we identify sequen
e of words and word of sequen
es)Example 1. Let S be the stabilization semigroup with 3 elements ⊥ ≤ a ≤ b,with produ
t de�ned by : x·y = min≤(x, y) (b neutral element), and stabilizationby b♯ = b and a♯ = ⊥♯ = ⊥. Lett u ∈ {⊥, a, b}+, we de�ne ρ by:

ρ(u) =





b if u ∈ b+
⊥||u|aa if u ∈ b∗(ab∗)+
⊥ otherwise.Then ρ is 
ompatible with S.Remark 25 When ♯ is the identity fun
tion, S be
omes a standard orderedsemigroup, and the 
lassi
al extended produ
t π is 
ompatible with S.Theorem 26 ([Col09℄). For any stabilization semigroup S, there exists a fun
-tion ρ 
ompatible with S. Moreover, ρ is unique up to ∼.This theorem is fundamental, sin
e it asso
iates a unique (up to ∼) semanti
 toany stabilization semigroup.Lemma 1. Let ρ 
ompatible with a semigroup S. There exists γ su
h that forany n ∈ N and u ∈ S+, if |u| ≤ n then for all k ≥ γ(n), ρ(u)(k) = π(u)Proof. We show this result by indu
tion on n. It is true for n = 1 by taking

γ(1) = 1. We assume γ(k) 
onstru
ted for k < n, and we want to show theresult for n. Let u ∈ S+ of length n, u = va with |v| = n − 1 and a ∈ S.Letα a witness of ρ 
ompatible with S. The substitution property tells us that
ρ(u) ∼α ρ̃(ρ(v)a). but by indu
tion hypothesis, for all k ≥ γ(n−1), ρ̃(ρ(v)a)(k) =
ρ(ρ(v)(k)a)(k) = ρ(π(v)a)(k). Moreover, ρ(π(v)a) ∼α π(v) · a = π(u). Hen
ewe have for all k ≥ α(γ(α(n − 1))), ρ(u)(k) = π(u).We get the result with
γ(n) = α(γ(α(n− 1))). �



6.4 Re
ognized 
ost fun
tionsWe now have all the mathemati
al tools to de�ne how stabilization semigroups
an re
ognize 
ost fun
tions.Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. Let h : A → S be a mor-phism, 
anoni
ally extended to h : A+ → S+, and I ⊆ S an ideal. Then thetriplet S, h, I re
ognizes the fun
tion f : A+ → N∞ de�ned by f(u) = I[ρ(h(u))]where ρ is 
ompatible with S. A 
ost fun
tion from A+ to N∞ is re
ognizable ifit is ≈-equivalent to a fun
tion re
ognized by some S, h, I. By Proposition ??,the re
ognized 
ost fun
tion does not depend on the 
hoi
e of ρ.Example 2. Let A = {a, b}, the 
ost fun
tion | · |a is re
ognizable. We take thestabilization semigroup from Example ??, h de�ned by h(a) = a, h(b) = b,and I = {⊥}. We have then |u|a = I[ρ(h(u))] for all u ∈ A+.6.5 Proof of Lemma 8Proof. We do a reverse indu
tion on n. If n = m, Yn is a �nal state so Yn = ∅or Yn = {Ω}. If Yn ε:σ
→∗ Y , then Y = Yn (no outgoing ε-transitions de�ned from

∅ or {Ω}). Then if ψ ∈ Y , the only possibility is ψ = Ω, but an+1 . . . am = ε,and ε, 0 |= Ω, hen
e the result is true for n = m.Let n < m, we assume the result is true for n+1, and we take same notationsas in the lemma, with ψ ∈ Y . By de�nition of ∆, there exists a transition
Yn

an+1:σσ
′

−→ ∗ next(Z) = Yn+1 in Aφ.We do an indu
tion on the length k of the path Y ε:σ′

→ ∗ Z.If k = 0, then Y = Z 
onsistent and redu
ed, so ψ is either atomi
 or a Nextformula.If ψ is atomi
, the only way Z ∪ {an+1} 
an be 
onsistent is if ψ = an+1. Inwhi
h 
ase an+1 . . . am, N |= ψ without di�
ulty.If ψ = Xϕ, ϕ ∈ next(Z) = Yn+1, then by indu
tion hypothesis (on n),
an+2 . . . am, N |= ϕ (N does not 
hange be
ause σ′ is empty). Hen
e an+1an+2 . . . am, N |=
Xϕ whi
h shows the result.If k > 0, we assume the result is true for k−1, and we show it for k. We have
Y

ε:σ′
1→ Y ′ ε:σ

′
2→ ∗ Z with σ′

1σ
′
2 = σ′, and for all ψ′ ∈ Y ′, an+1an+2 . . . am, N

′ |= ψ′with N ′ = val(σ′
2σn+1 . . . σm).We now look at the di�erent possibility for the ε-transition Y ε:σ′

1→ Y ′. Let us�rst noti
e that either N = N ′ or N = N ′ + 1, sin
e σ′
1 ∈ {ε, ic, r}.Let un+1 = an+1an+2 . . . am. If ψ ∈ Y ′, then un+1, N

′ |= ψ, but N ≥ N ′ so
un+1, N

′ |= ψ.We just need to examine the 
ases where ψ /∈ Y ′ :� If ψ = ϕ1 ∧ ϕ2, σ′
1 = ε, and Y ′ = Y \ {ψ} ∪ {ϕ1, ϕ2},then un+1, N |= ϕ1 and un+1 . . . am, N |= ϕ2, hen
e un+1, N |= ψ.� Other 
lassi
 
ases where σ′

1 = ε are similar and 
ome dire
tly from de�nitionof LTL operators.



� If ψ = ϕ1U
≤N
j ϕ2, σ′

1 = ε and Y ′ = Y \ {ψ} ∪ {ϕ1, Xψ},then un+1, N |= ϕ1 and un+1, N |= Xψ, hen
e un+1, N |= ψ� If ψ = ϕ1U
≤N
j ϕ2, σ′

1 = icj and Y ′ = Y \ {ψ} ∪ {Xψ},then un+1, N
′ |= Xψ.If γj rea
hes N ′ before its �rst reset in σ′

2σn+1 . . . σm, then N = N ′ +1, andwe 
an 
on
lude un+1, N |= ψ.On the 
ontrary, if N = N ′ and there are stri
tly less than N ′ mistakes on ϕ1before the next o

uren
e of ϕ2, we 
an allow one more and keep respe
tingthe 
onstraint on N ′, so un+1, N |= ψ.� If ψ = ϕ1U
≤N
j ϕ2, σ′

1 = rj and Y ′ = Y \ {ψ} ∪ {ϕ2} then N = N ′, and
un+1, N

′ |= Xϕ2, hen
e un+1, N |= ψ.Hen
e we 
an 
on
lude that for all k, an+1an+2 . . . am, N |= ψ, whi
h 
on-
ludes the proof of the lemma.
�6.6 Details on ω♯-expressionsProof of Lemma 11Proof. Let f be a regular 
ost fun
tion re
ognized by Sf , h, I. Let N = |Sf |. Itsu�
es to takeKf ≥ N to verify that for anyE ∈ Oexpr, the ♯-expressionE[ω ←

Kf !] is well-formed for f . Moreover, if s ∈ Sf , sk! = sKf ! for all k ≥ Kf . Let usshow that f∞ ⊎ fB = Oexpr. Let E ∈ Oexpr, and k ≥ Kf . Let e = E[ω ← k!],
e is well-formed for Sf . For all n ∈ N, let un = e(n) = E(k!, n). From [CKL10℄,we know that there exists α su
h that ρ(h(un)) ∼α eval(e)|neval(un).Therefore,

eval(e) ∈ I ⇒ ∀n, I[ρ(h(un))] ≥α n⇒ ∀n, f(un) ≥α n⇒ lim f(un) =∞and eval(e) /∈ I ⇒ ∀n, I[ρ(h(un))] ≤ α(1) ⇒ ∀n, f(un) ≤ α(1) ⇒ E ∈ fB. Weget that f∞ = {E ∈ Oexpr, eval(E) ∈ I} and fB = {E ∈ Oexpr, eval(E) /∈ I}whi
h shows the result.Lemma 27 If E ≡f E′, then for any 
ontext C1[x] ∈ COE, C1[E] ≡f C1[E
′].Proof. Let E,E′ and C1[x] de�ned by the Lemma. Let C[x] be a 
ontext. Wede�ne C′[x] = C[C1[x]]. The de�nition of the ≡f relation implies C′[E] ⇋f

C′[e′]. Hen
e C[C1[e]] ⇋f C[C1[E
′]].This is true for any 
ontext C[x] so C1[E] ≡f C1[E

′]. �Proposition 28 The relation ≡f does not 
hange if we restri
t 
ontexts to hav-ing only one o

uren
e of x, as it was done for Expr in [CKL10℄.Proof. Let ≡′
f be the equivalen
e relation de�ned with single-variable 
ontexts.we just need to show that E ≡′

f E′ =⇒ E ≡f E′ (the 
onverse is trivial).Let us assume E ≡′
f E

′, and let C[x1, x2] be a 
ontext with two o

uren
es of
x, labelled x1 and x2. Then C[E] = C[x1 ← E, x2 ← E] ⇋f C[x1 ← E, x2 ←
E′] ⇋f C[x1 ← E′, x2 ← E′] = C[e′]. The generalization to an arbitrary numberof o

uren
es of x is obvious, and we get E ≡f E′. �



Stru
ture of Oexpr/≡f If f is a regular 
ost fun
tion, let Sf = Oexpr/≡f .We show that we 
an provide Sf with a stru
ture of stabilization semigroup
〈Sf , ·,≤, ♯〉.If E ∈ Oexpr, let E be its equivalen
e 
lass for the ≡f relationship. We �rstnaturally de�ne the stabilization semigroup operators : E · E′ = EE′ and if Eidempotent we have E = Eω and (E)♯ = Eω♯. ≤ is the minimal partial orderindu
ed by the inequalities s♯ ≤ s where s is idempotent, and 
ompatible withthe stabilization semigroup stru
ture.Let us show that these operations are well-de�ned :Produ
t If E1 ≡f E′

1 and E2 ≡f E′
2. By Lemma ?? with 
ontext xE2 and E′

1x,
E1E2 ≡f E′

1E2 ≡f E′
1E

′
2, so E1E2 = E′

1E
′
2.Stabilization If E ≡f E′, by Lemma ?? with 
ontext xω♯, Eω♯ ≡f E′ω♯, hen
e Eω♯ = E′ω♯.Moreover, it is easy to 
he
k that all axioms of stabilization semigroups areveri�ed, for example (s♯)♯ = s♯ be
ause for any sequen
e un whi
h is eitherbounded or tends towards ∞, un2 has same nature as un.Proof of Theorem 14 Let If =

{
E,E ∈ f∞

}, and hf : A∗ → S∗
f the length-preserving morphism de�ned by hf (a) = a for all a ∈ A (a letter is a parti
ular

ω♯-expression).Proof. Let Smin, h, I be the minimal stabilization semigroup re
ognizing f , asde�ned in appendix A.7 of [CKL10℄. Let ρ be its 
ompatible mapping, and
eval : Oexpr → Smin the 
orresponding evaluation fun
tion. We will show that
E ≡f E′ i� eval(E) = eval(E′).We know by the proof of Lemma 11 that E ∈ f∞ ⇔ eval(E) ∈ I. We remindthat the de�nition of Smin is based on the fa
t that if two elements behave thesame relatively to I in any 
ontext, they are the same. These fa
ts give us thefollowing sequen
e of equivalen
es :

E ≡f E′ ⇔ ∀C[x] ∈ COE, C[E] ⇋f C[E′]
⇔ ∀C[x] ∈ COE, (C[E] ∈ f∞ ⇔ C[E′] ∈ f∞)
⇔ ∀C[x] ∈ COE, (eval(C[E]) ∈ I ⇔ (eval(C[E′]) ∈ I)
⇔ eval(E) = eval(E′)This gives a bije
tion between Sf and Smin (eval fun
tion is surje
tive on

Smin, by minimality of Smin). Moreover, this bije
tion is an isomorphism, sin
e inboth semigroups, operations are indu
ed by 
on
atenation and ♯ on ♯-expressions.
h is determined by its image on letters, so we have to de�ne hf (a) = a toremain 
oherent. Finally, we have eval(E) ∈ I ⇔ E ∈ f∞, therefore the set If
orresponding to I in the bije
tion is If =

{
E,E ∈ f∞

}. �Growing speeds lemma The following lemma will be used for te
hni
al pur-poses in future proofs, but it is an interesting intuitive statement whi
h 
ouldgive a better understanding of the behaviour of regular 
ost fun
tions.



Lemma 29 Let f be a regular 
ost fun
tion, and e ∈ Expr 
ontaining N ♯-operators ♯1, . . . , ♯N . For all i ∈ {1, . . . , N}, let σi be a fun
tion N → N with
σi(n) → ∞. Then f(e[♯i ← σi(n) for all i]) → ∞ ⇔ f(e(n)) → ∞. In otherwords, we 
an repla
e some of the n exponents by any fun
tion σ(n)→∞ whenapproximating a ♯-expression by a sequen
e of words. It does not 
hange thenature of the sequen
e relatively to f .Proof. This result is intuitive : sin
e we always work up to 
ost equivalen
e,growing at di�erent speeds has an e�e
t on 
orre
tion fun
tions, but not onqualitative behaviour.We will use notation ⊲⊳

n→∞
: g1(n) ⊲⊳

n→∞
g2(n) means �g1(n) is bounded i�

g2(n) is bounded�, but remark that here all fun
tions will either be bounded ortend towards ∞ (this notation will be reused in the next se
tion).For 
onvenien
e we will note en = e[♯i ← σi(n) for all i]. We want to showthat f(en) ⊲⊳
n→∞

f(e(n)). Let Sf be the minimal stabilization semigroup of f ,with 
ompatible fun
tion ρ. We will in fa
t show that there exists α su
h thatfor all n, ρ(en) ∼α ρ(e(n)), whi
h implies the result. We pro
eed by indu
tionon N . If N = 0, then en = e(n) so the result is trivial. We assume the result istrue for all k < N (with fun
tion α<), and we 
hoose ♯N to be outermost (notunder another ♯). We 
an write e = rs♯N t, with r, s, t ∈ Expr.Let β be a witness of ρ 
ompatible with Sf , and γ su
h that n ∼γ σN (n).We have
ρ(en) = ρ(rn(sn)σN (n)tn)

∼β ρ̃(ρ(rn)ρ((sn)σN (n))ρ(tn))

∼γ ρ̃(ρ(rn)ρ((sn)n)ρ(tn))

∼α<
ρ̃(ρ(r(n))ρ(s(n)n)ρ(t(n)))

∼β ρ(e(n)).This give us a fun
tion α whi
h 
ompletes the indu
tion. �6.7 Proof of Theorem 16We remind the theorem we want to prove :Let f be a 
ost fun
tion des
ribed by a LTL≤-formula, then f is regular andthe synta
ti
 stabilization semigroup of f is aperiodi
.Proof. We want to show that for all LTL≤-formula φ, S[[φ]] is aperiodi
.We pro
eed by an indu
tion on φ and use the 
hara
terization of S[[φ]] pro-vided by Theorem 14.If φ = a ,then S[[φ]] = {a, b} with a · b = a · a = a, and b · a = b · b = b, it is aperiodi
(also trivial if φ = ¬a).



If φ = Ω ,then S[[φ]] = {1, a} with 1 neutral element and a · a = a, it is aperiodi
.If φ = ϕ1 ∧ ϕ2 or φ = ϕ1 ∨ ϕ2 ,
φ is re
ognized by the produ
t semigroup of S[[ϕ1]] and S[[ϕ2]], whi
h is aperi-odi
 by indu
tion hypothesis.If φ = Xψ ,we know by indu
tion hypothesis that S[[ψ]] is aperiodi
, so there exists k ∈ Nsu
h that for any ω♯-expression E, Ek ≡[[ψ]] E

k+1. We want to show that it isalso true for [[φ]]. Let E be a ω♯-expression, and e = E[ω ← max(K[[φ]]!,K[[ψ]]!)](from Lemma 11).We want to show thatEk+2 ≡[[φ]] E
k+1 i.e. for any 
ontext C[x], [[φ]](C[ek+2 ](n)) ⊲⊳

n→∞

[[φ]](C[ek+1](n)).Let C[x] be a 
ontext. If C[x] = aC′[x], then [[φ]](C[ek+2](n)) = [[ψ]](C′[ek+2](n)) ⊲⊳
n→∞

[[ψ]](C′[ek+1](n)) = [[φ]](C[ek+1](n)) (by proposition ?? with 
ontext xe).If the beginning of C[x] is a letter a under (at least) a ♯, we have a 
on-text C′[x] su
h that for any ♯-expression e′, C[e′](n + 1) = aC′[e′](n). For in-stan
e if C[x] = ((ax)♯b)♯ then C′[x] = x(ax)♯b((ax)♯b)♯. Then we 
an write
[[φ]](C[ek+2](n+1)) = [[ψ]](C′[ek+2](n)) ⊲⊳

n→∞
[[ψ]](C′[ek+1](n)) = [[φ]](C[ek+1](n+

1)).Finally, if C[x] starts with x (possibly under ♯), we expand x in ex in C[x],so that it does not start with x anymore. As before we 
an get C′[x] su
h that
C[ek+1](n+ 1) = aC′[ek](n) and C[ek+2](n+ 1) = aC′[ek+1](n) for all n, hen
e

[[φ]](C[ek+2](n+ 1)) = [[φ]](aC′[ek+1](n))
= [[ψ]](C′[ek+1](n))
⊲⊳

n→∞
[[ψ]](C′[ek](n))

= [[φ]](aC′[ek](n))
= [[φ]](C[ek+1 ](n+ 1))If φ = ϕUψ ,we know by indu
tion hypothesis that S[[ϕ]] and S[[ψ]] are aperiodi
, so thereexists k ∈ N su
h that for any ω♯-expression E, Ek ≡[[ϕ]] E

k+1 and Ek ≡[[ψ]]

Ek+1. Let E be a ω♯-expression. We will show that Ek+1 ≡[[φ]] E
k+2Let C[x] be a 
ontext in COE, K = max(K[[ϕ]],K[[ψ]]), un = C[Ek+1](K!, n)and vn = C[Ek+2](K!, n). We want to show that C[Ek+1] ⇋[[φ]] C[Ek+2], i.e.

[[φ]](un) ⊲⊳
n→∞

[[φ]](vn). Assume for example that [[φ]](un) is bounded by m Wehave un,m |= φ for all n. We 
an write un = ynzn with zn,m |= ψ and for anystri
t su�x yin of yn, yinzn,m |= ϕ. Let pn be the starting position of zn (position
0 being the beginning of the word). We de�ne yin to be the su�x of yn startingat position i for all i ∈ [[0, p− 1]]. In this way y0

n = yn.



Let us fo
us on the position pn of the beginning on zn. The ♯-expression e =
C[Ek+1](K!) is �nite so we 
an extra
t a sequen
e uδ(n) from un su
h that thebeginning position pδ(n) of zδ(n) 
orresponds to the same position p in e. Let
{ej, j ∈ J} be the �nite set of ♯-expression su
h that e♯j 
ontains position p in e.We 
hoose J = {1, r} with 1 ≤ j < j′ ≤ r implies e♯j is a subexpression of ej′ .For 
onvenien
e, we label the ♯-operator of e♯j with j. Note that J 
an be empty,if p does not o

ur under a ♯ in e.We denote by ←−fj (δ(n)) the number of o

uren
es of ej(δ(n)) (
oming fromthe 
orresponding e♯j) in yδ(n) and we de�ne −→fj (δ(n)) in the same way relativelyto zδ(n). We have for all n ∈ N, δ(n) − 1 ≤

←−
fj (δ(n)) +

−→
fj (δ(n)) ≤ δ(n). The

δ(n) − 1 lower bound is due to the fa
t than p 
an be in the middle of oneo

uren
e of ej , therefore this o

uren
e does not appear in yδ(n) nor in zδ(n).This implies that for ea
h j ∈ J , we are in one of these three 
ases :� j ∈ J1 : ←−fj (δ(n)) is unbounded and −→fj (δ(n)) is bounded.� j ∈ J2 : ←−fj (δ(n)) is bounded and −→fj (δ(n)) is unbounded.� j ∈ J3 : ←−fj (δ(n)) and −→fj (δ(n)) are both unbounded .But J is �nite, hen
e we 
an extra
t σ(n) from δ(n) su
h that for ea
h j ∈ J :� If j ∈ J1, ←−fj (σ(n))→∞ and −→fj (σ(n)) is 
onstant.� If j ∈ J2, ←−fj (σ(n)) is 
onstant and −→fj (σ(n))→∞.� If j ∈ J3, ←−fj (σ(n))→∞ and −→fj (σ(n))→∞.Remark that if j < j′ and −→fj ◦ σ 6= 0, then j /∈ J1. Symmetri
ally, if j < j′ and
←−
fj ◦ σ 6= 0, then j /∈ J2.We 
an distinguish three 
ases for the position of p in e = C[Ek+1](K!) :First 
ase : p is before the �rst o

uren
e of E in e.We then 
onsider C′[x] ∈ COE obtained from C[x] by repla
ing ♯j by the
onstant value of −→fj (σ(n)) for all j ∈ J1. We have [[ψ]](zσ(n)) ≤ m for all n, butby Lemma ??, [[ψ]](zn) is bounded i� C′[Ek+1] ∈ [[ψ]]B . By indu
tion hypothesis,
C′[Ek+1] ∈ [[ψ]]B ⇔ C′[Ek+2]] ∈ [[ψ]]B. Let z′n be the su�x of C[Ek+2](K!, n)starting at position pn. By reusing Lemma ??, we get that [[ψ]](z′σ(n)) ≤ m′ forsome m′.We still have to show that there exists a 
onstantM su
h that [[ϕ]](yiσ(n)z

′
σ(n)) ≤

M for all n and all i ∈ [[1, pσ(n)]] (the yiσ(n) are not a�e
ted by the 
hange from
Ek+1 to Ek+2). Let us 
all giσ(n) = [[ϕ]](yiσ(n)z

′
σ(n)) for more lisibility. Let usassume that no su
hM exists, then {

giσ(n), n ∈ N, 1 ≤ i ≤ pσ(n)

} is unbounded.For all n, we de�ne in su
h that giσ(n)

σ(n) = max
{
giσ(n), 1 ≤ i ≤ pσ(n)

}. By 
on-stru
tion, the sequen
e giσ(n)

σ(n) = [[ϕ]](y
iσ(n)

σ(n) z
′
σ(n)) is unbounded. We �rst extra
t

σ′(n) from σ(n) su
h that giσ′(n)

σ′(n) →∞.



We 
an now repeat the same pro
ess as before to extra
t a sequen
e γ(n) from
σ′(n), su
h that the starting positions of yiγ(n)

γ(n) for all n 
orrespond to the sameposition in e, and su
h that there exists a 
ontext C′′[x] with [[ϕ]](y
iγ(n)

γ(n) zγ(n)) ⊲⊳
n→∞

[[ϕ]](C′′[Ek+1](K!, γ(n))) (by Lemma ?? again). By adding an extraE (from k+1to k+ 2) and 
hanging z by z′ (the y fa
tors are not 
on
erned by o

uren
es of
E), we get giγ(n)

γ(n) ⊲⊳
n→∞

[[ϕ]](C′′[Ek+2](K!, γ(n))). By hypothesis, [[ϕ]](y
iγ(n)

γ(n) zγ(n))bounded by m, and C′′[Ek+1] ⇋[[ϕ]] C
′′[Ek+2], so g

iγ(n)

γ(n) is bounded, but wealready know that giγ(n)

γ(n) →∞. We have a 
ontradi
tion, so M must exist.We �nally obtain the existen
e ofM su
h that for all n and valid i, [[ϕ]](yiσ(n)z
′
σ(n)) ≤

M . This together with the previous result on ψ gives us that [[ϕUψ]](C[Ek+2](K!, n)) ≤
max(m′,M). We got C[Ek+1] ∈ [[φ]]B =⇒ C[Ek+2] ∈ [[φ]]B . The other dire
-tion works exa
tly the same, by removing one E instead of adding one. Hen
ewe have C[Ek+1] ⇋[[φ]] C[Ek+2].Se
ond 
ase : p is after the last o

uren
e of E in e.This time zn is not a�e
ted by 
hanging from Ek+1 to Ek+2, however it a�e
tssome of the yin. Let y′inzn be the su�xes of vn = C[Ek+2](K!, n), and p′n the posi-tion of the beginning of zn in vn. As before, we assume that {

[[ϕ]](y′iσ(n)zσ(n)), n ∈ N1 ≤ i ≤ pσ(n)

}is unbounded, and we build a sequen
e y′iγ(n)

γ(n) with the same start position in e,su
h that [[ϕ]](y
′iγ(n)

γ(n) zγ(n))→∞.We 
an again extra
t 
ontext C′′[x], but we may need to use again Lemma??, in order to map the ♯'s of C′′[x] with the remaining repetitions of idempotentelements, (whi
h 
ould be any fun
tions g(n) < n). The main idea is to mappositions in vγ(n) with positions in uγ(n) in order to be able to bound the values
[[ϕ]](y

′iγ(n)

γ(n) zγ(n)) with what we know about the behaviour on uγ(n), and so get a
ontradi
tion. Three 
ases are to be distinguished :� If a fa
tor 
orresponding to Ek+2 o

urs in the y′iγ(n)

γ(n) , the pre
edent proofstays valid, and we 
an map y′iγ(n)

γ(n) with some yjγ(n)

γ(n) (jγ(n) may be di�erentfrom iγ(n)) in order to get the 
ontradi
tion. The mapping just need to takein a

ount the shift due to the new o

uren
es of E, but the positions in thewords are essentially the sames.� If the remaining fa
tors 
ontain at most k o

uren
es of E, then the position
an be mat
hed with positions in un without any 
hanges, and we get the
ontradi
tion.� If the remaining fa
tors 
ontain k + 1 o

uren
es of E, then we 
an use theequivalen
e Ek+1 ≡[[ϕ]] E
k to mat
h positions in vn with positions in unand get the 
ontradi
tion. This time we map positions in the �rst E of ea
hsequen
e Ek with the 
orresponding position in the se
ond one. Informally,we �dupli
ate� the �rst E of ea
h sequen
e.Third 
ase : In all other situations, a 
ombination of the te
hniques used abovegives us the wanted result. We just need to do with ψ what we did with ϕ in



the se
ond 
ase : for instan
e we may use Ek+1 ≡[[ψ]] E
k if z′σ(n) 
ontains k + 1o

uren
es of E.As before, the other way is similar, and we �nally get Ek+1 ≡[[φ]] E

k+2. In
on
lusion, S[[φ]] is aperiodi
.If φ = ϕU≤Nψ We just need to adapt the pre
edent proof to take in a

ountsome ex
eptions in the validities of ϕ formulae. Indeed removing an o

uren
e of
E does not 
hange the number of possible mistakes, but adding one 
an doubleit (at worse), sin
e at most two positions in vn are mapped to the same positionin un. Hen
e , under the hypotheses Ek ≡[[ψ]] E

k+1 and Ek ≡[[ϕ]] E
k+1, we get

Ek+1 ≡[[ϕU≤Nψ]] E
k+2, with a 
orre
tion fun
tion that doubles the one in thepre
edent proof. We 
an 
on
lude that S[[φ]] is also aperiodi
 in this 
ase.6.8 Proof of Theorem 17We remind the theorem we want to prove :Let f be a 
ost fun
tion re
ognized by an aperiodi
 stabilization semigroup,then f 
an be des
ribed by a LTL≤-formula.Proof. This proof is a generalization of the proof from Wilke for aperiodi
 lan-guages in [Wil99℄.Let us �rst noti
e that �Sf is aperiodi
� is equivalent to �f is 
omputed byan aperiodi
 stabilization monoid�, sin
e aperiodi
ity is preserved by quotientand by addition of a neutral element.We take an alphabet A ⊆M to avoid using a morphism h and simplify theproof. The LTL≤-formulae are about elements of M, and are monotoni
 in thesense that [[a]](bu) = 0 i� b ≥ a, ∞ otherwise. It is easy to get from this tothe general 
ase by substituting in the formula an element m by ∨h(a)≥ma. Wealso will be sloppy with the empty word ε. It is not more di�
ult to take it ina

ount, but the addition of a lot of spe
ial 
ases for ε in the proof would makeit harder to understand.We assume that f on alphabet A ⊆M is 
omputed byM, I withM aperiodi
.Let ρ be 
ompatible with M.If m ∈ M, we note fm the 
ost fun
tion fm(u) = inf {n/ρ(u)(n) ≥ m}. Itis su�
ient to show that the fm fun
tions are LTL≤-
omputable, sin
e f ≈

minm/∈I fm.We pro
eed by indu
tion on both the size of the stabilization monoid andon the size of the alphabet, the indu
tion parameter being (|M|, |A|) for order
<lex.We add in the indu
tion hypothesis that M has a neutral element 1 formultipli
ation.If |M| = 1 then f is the 
onstant fun
tion 0 or∞, whi
h is LTL≤-
omputable.If A = {a}, we 
an 
onsider that M =

{
ai/0 ≤ i ≤ p

}
∪

{
(ap)♯

} (by aperi-odi
ity of M) and (ap)♯ ≤ ap is the only pair in ≤. We 
an show that for all
b ∈M, fb is LTL≤-
omputable :



� If i < p, fai ≈ [[
∧

0≤j<iX
ja ∧X iΩ]],� fap ≈ [[⊥U≤NΩ]],� f(ap)♯ ≈ [[

∧
0≤j<pX

ja]]Let us assume that |M| > 1, |A| > 1, and the theorem is true for all
(|M′|, |A′|) <lex (|M|, |A|). We 
hoose a letter b 6= 1 ∈ A, let B = A \ {b}.Let L0 = B∗, L1 = B∗bB∗, and L2 = B∗b(B∗b)+B∗. We haveA∗ = L0∪L1∪L2.We de�ne restri
tions of fm : f0, f1, f2 on L0, L1, L2 respe
tively (giving value
∞ outside of the domain). We have fm = min(f0, f1, f2). Hen
e it su�
es to showthat the fi's are LTL≤-
omputable to get that fm is also LTL≤-
omputable.

f0 is 
omputed by M on alphabet B, so by indu
tion hypothesis there is aformula ϕ0 on B 
omputing f0. The formula ϕ′
0 = ϕ0 ∧ G¬b is a formula on A
omputing f0.For all x ∈M, let ϕx be the LTL≤-formula on B 
omputing fx (restri
ted to

B∗), these formulae exist by indu
tion hypothesis, sin
e |B| < |A|.If ϕ is a LTL≤-formula on B, we de�ne its �relativisation� ϕ′ on A whi
h hasthe e�e
t of ϕ on the part before b in a word. We de�ne ϕ′ by indu
tion in thefollowing way :
a′ = a ∧XFb
Ω′ = b
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(Xϕ)′ = Xϕ′ ∧ ¬b
(ϕUψ)′ = (ϕ′ ∧ ¬b)Uψ′

(ϕU≤Nψ)′ = (ϕ′ ∧ ¬b)U≤Nψ′With this de�nition, [[ϕ′]](u1bu2) = [[ϕ]](u1) for any u1 ∈ B∗ and u2 ∈ A∗.We de�ne the following formula on A:
ϕ1 = (

∨

xby=m

(ϕ′
x ∧ F (b ∧Xϕy)) ∧ (¬bU(b ∧XG¬b))The se
ond part 
ontrols that the word is in L1. We show [[ϕ1]] ≈ f1.Let u ∈ L1, we 
an write u = u1bu2 with u1, u2 ∈ B∗.By de�nition of ϕ1,

[[ϕ1]](u) = minxby=m max([[ϕ′
x]](u), [[ϕy ]](u2))

= minxby=m max([[ϕx]](u1), [[ϕy ]](u2))
= minxby=m max(fx(u1), fy(u2)).We have for any z ∈ M and v ∈ B∗, ρ(v) � ⊥|fz(v)z where ⊥ is an extrasmallest element (by de�nition of fz).But for any x, y su
h that xby = m,

ρ(u) ∼ ρ̃(ρ(u1)bρ(u2))
� ρ̃(⊥|fx(u1)x · b · ⊥|fy(u2)y)
� ⊥|max(fx(u1),fy(u2)m.It implies that for some β (not depending on u), ∀x, y su
h that xby = m,

fm(u) ≤β max(fx(u1), fy(u2)).In parti
ular, f1(u) = fm(u) ≤β minxby∈I max(fx(u1), fy(u2)) = [[ϕ1]](u).We 
an 
on
lude f1 4 [[ϕ1]].



Conversely, let us assume that f1(u) ≤ n, it means that ρ(u)(n) ≥ m. but
ρ(u) ∼α ρ(u1) · b · ρ(u2), so ρ(u1)(α(n)) · b · ρ(u2)(α(n)) ≥ m.Let x = ρ(u1)(α(n)) and y = ρ(u2)(α(n)), we have fx(u1) ≤ α(n) and
fy(u2) ≤ α(n), so max(fx(u1), fy(u2)) ≤ α(n). We get [[ϕ1]](u) ≤ α(n), and in
on
lusion [[ϕ1]] 4 f1. This 
on
ludes the proof of [[ϕ1]] ≈ f1.Last but not least, we have to show that f2 is LTL≤-
omputable. For that wewill �nally use the indu
tion hypothesis on the size of the monoid (until now weonly have de
reased the size of the alphabet and kept the monoid un
hanged).We de�ne the stabilization monoid M′ = 〈Mb∩ bM, ◦, ♮,≤′〉 in the followingway : xb ◦ by = xby, and for xb idempotent (xb)♮ = (xω)♯b where xω = x|M|is idempotent, sin
e M is aperiodi
. M′ is a stabilization monoid, let ρ′ be
ompatible with M′. We 
an �rst noti
e that this de�nition implies (xb)k = xkb,so M′ is also aperiodi
. Moreover, if 1 ∈ M′, let n = |M|, 1 = xb = (xb)k =
xkbk = xkbk+1 = (xb)kb = 1b = b, but b 6= 1 so 1 /∈M′, b is the neutral elementfor ◦ in M′, and |M′| < |M|, whi
h allows us to use indu
tion hypothesis on M′with alphabet M′.Let ∆ = b(B∗b)+, then L2 = B∗∆B∗.Let d ∈M, we �rst want to show that fd over language∆ is LTL≤-
omputable.Let σ : ∆→ (M′N)∗

bu1b . . . ukb 7→ (bρ(u1)b) . . . (bρ(uk)b)By indu
tion hypothesis, for any x ∈M′, there exists a LTL≤-formula ψx onalphabet M′ and a 
orre
tion fun
tion α su
h that for any v ∈M′∗,
[[ψx]](v) ≈α inf {n/ρ′(v)(n) ≥ x}.De�nition 30 Let S be a stabilization monoid. Let f be a 
ost fun
tion S∗ →
N∞, and S↑ be the set of α-in
reasing sequen
es of elements of S (for some α).we de�ne f̃ : S↑ → N∞ by f̃(u) = inf {n/f(un) ≤ n}.Remark that this notation is 
oherent with the˜operator previously de�ned forfun
tions E → FN in the sense that if f is re
ognized by S, h, I with 
ompatiblefun
tion ρ, then f̃ ≈ u 7→ I[ρ̃(h(u))].Lemma 31 We 
laim that there exists α and φd a LTL≤-formula on alphabet
A su
h that for all u ∈ ∆ and v ∈ B∗:

[[φd]](uv) ≈α [̃[ψd]](σ(u)) ≈α fd(u)With this result we 
an build a formula ϕ2 
omputing f2 :
ϕ2 = (

∨

xdy=m

(ϕ′
x ∧ F (b ∧Xφd)) ∧ F (b ∧X(G¬b ∧ ϕy))) ∧ ϕL2where ϕL2 = F (b ∧XFb) 
ontrols that the word is in L2.By 
onstru
tion, lemmas and indu
tion hypothesis, there exists α su
h thatfor all v1, v2 ∈ B∗ and u ∈ ∆,

[[ϕ2]](v1uv2) ≈α minxdy=mmax([[ϕ′
x]](v1uv2), [[φd]](uv2), [[ϕy]](v2))

≈α minxdy=mmax(fx(v1), fd(u), fy(v2)).



The proof that minxdy=mmax(fx(v1), fd(u), fy(v2)) ≈ fm(v1uv2) is similarto the proof of [[ϕ1]] ≈ f1.All this together gives us [[ϕ2]] ≈ f2, whi
h 
on
ludes the proof. �Proof of Lemma ??Proof. First let us show that [̃[ψd]](σ(u)) ≈α fd(u) for some α and all u ∈ ∆. Let
u = bu1bu2 . . . ukb with ui ∈ B∗. For ea
h i ∈ [[1, k]] and t ∈ N, ρ(ui)(t) = ai,t ∈
M. For all t ∈ N, let vt = (ba1,tb) . . . (bak,tb), vt is a word on M′ of length k,and σ(u) = (vt)t∈N. Finally, let wt = ba1,tba2,t . . . bak,tb of length 2k + 1 on M.We have :

[̃[ψd]](σ(u))) = inf {t/[[ψd]](vt) ≤ t}
≈ inf {t/ inf {n/ρ′(vt)(n) ≥ d} ≤ t}We 
an verify that ρ′(vt) ∼ ρ(wt) for any t : we 
he
k that ρ′ veri�esthe same axioms on words (ba1b) . . . (bakb) than ρ does for ba1ba2 . . . akb. Theonly interesting 
ase is the stabilization rule : let bab be an idempotent of M′,

ρ′((bab)p) ∼ (bab)♮|p(bab) ∼ (ba)ω♯b|p(bab). But if p = |M|p′+p′′ with p′′ < |M|,
ρ((ba)pb) ∼ ρ((ba)|M|)p

′

) · (ba)p
′′

b

∼(1) ρ(((ba)ω)
p′

) · (ba)p
′′

b

∼ (ba)ω♯(ba)p
′′

b|p′(ba)ω(ba)p
′′

b

∼(2) (ba)ω♯b|p(bab).We get the equivalen
e (1) by aperiodi
ity of M ((ba)ω is now a letter andno longer a word of length |M|), and (2) by the fa
t that bab is idempotent in
M′ so (ba)ω(ba)p

′′

b = bab, and (ba)ω(ba)p
′′

= (ba)ω by aperiodi
ity of M (andalso p ≈×(|M|+1) p
′).We 
an then apply the uni
ity theorem from [Col09℄ : ρ is unique up to ∼,hen
e we have ρ′(vt) ∼ ρ(wt) for any t.Moreover, let w = (wt)t∈N, we show that

inf {n′/ρ̃(w)(n′) ≥ d} ≈ inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t} : (EQ).Let N ′ = inf {n′/ρ̃(w)(n′) ≥ d} , ρ(wN ′)(N ′) ≥ d and N ′ ≤ N ′so N ′ ≥ inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t}.Conversely, let T = inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t} and N the 
orrespond-ing value of inf {n/ρ(wt)(n) ≥ d}, we have N ≤ T and ρ(wt) is α-in
reasing, so
ρ(wT )(T ) ≥α ρ(wT )(N) ≥ d, i.e. T ≥α inf {n′/ρ̃(w)(n′) ≥ d}.Hen
e we have the equivalen
e (EQ).Finally,
[̃[ψd]](σ(u))) ≈ inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t}

≈ inf {n/ρ̃(w)(n) ≥ d} by (EQ)
= inf {n/ρ̃(bρ(u1)bρ(u2) . . . ρ(uk)b)(n) ≥ d}
≈ inf {n/ρ(bu1bu2 . . . ukb)(n) ≥ d} Substitution axiom
≈ fd(u).whi
h 
on
ludes the proof of [̃[ψd]](σ(u))) ≈ fd(u).



It remains to show that there exists a formula φd and a α su
h that for all
u, v ∈ ∆× B∗, [[φd]](uv) ≈α [̃[ψd]](σ(u)).If ψ is a LTL≤-formula on M′, we de�ne ψ⋆ on alphabet A by indu
tion on
ψ:

x⋆ = (b ∧XFb) ∧ (Xϕ′
x)

(ψ1 ∧ ψ2)
⋆ = ψ⋆

1 ∧ ψ
⋆

2

(ψ1 ∨ ψ2)
⋆ = ψ⋆

1 ∨ ψ
⋆

2

(Xψ)⋆ = ¬bU(b ∧ ψ⋆)

(ψ1Uψ2)
⋆ = (b =⇒ ψ⋆

1 )U(b ∧ ψ⋆

2 )

(ψ1U
≤Nψ2)

⋆ = (b =⇒ ψ⋆

1 )U≤N (b ∧ ψ⋆

2 ).Where ϕ′
x is de�ned as before for any ϕx on alphabet B.Let us show by indu
tion on ψ that that [[ψ⋆]](uv) ≈ [̃[ψ]](σ(u)) for u =

bu1bu2 . . . ukb ∈ ∆ and v ∈ B∗ :� If x ∈M′,
[[x⋆]](uv) = [[ϕ′

x]](u1bu2 . . . ukbv) = [[ϕx]](u1), and
[̃[x]](σ(u)) = inf {n/[[x]](ρ(u1)(n)) ≤ n} ≈ inf {n/(ρ(u1)(n)) ≥ x} ≈ [[ϕx]](u1).� ∧ 
ase :
[[(ψ1 ∧ ψ2)

⋆]](uv) = max([[ψ⋆

1 ]](uv), [[ψ⋆

2 ]](uv))

≈ max([̃[ψ1]](σ(u)), [̃[ψ2]](σ(u)))

≈ ˜[[ψ1 ∧ ψ2]](σ(u))� ∨ 
ase :
[[(ψ1 ∨ ψ2)

⋆]](uv) = min([[ψ⋆

1 ]](uv), [[ψ⋆

2 ]](uv))

≈ min([̃[ψ1]](σ(u)), [̃[ψ2]](σ(u)))

≈ ˜[[ψ1 ∨ ψ2]](σ(u))� X 
ase :
[[(Xψ)⋆]](uv) = [[ψ⋆]](bu2b . . . ukbv)

≈ [̃[ψ]](σ(bu2b . . . ukb))

≈ [̃[Xψ]](σ(bu1bu2b . . . ukb))� U 
ase :
[[(ψ1Uψ2)

⋆]](uv) = min1≤j≤k(max([[ψ⋆

2 ]](bujb . . . ukbv),max1≤i≤j [[ψ
⋆

1 ]](buib . . . ukbv)))

≈ min1≤j≤k(max([̃[ψ2]](σ(bujb . . . ukb)),max1≤i≤j [̃[ψ1]](σ(buib . . . ukb))))

≈ ˜[[ψ1Uψ2]](σ(u))� The U≤N 
ase is the same than above, allowing at most N mistakes for ψ1.We now just have to take φd = ψ⋆

d to 
omplete the proof of Lemma ??.
�6.9 Case of unregular 
ost fun
tionsThe synta
ti
 
ongruen
e still 
an de�ned on unregular language, and the num-ber of equivalen
e 
lasses be
omes in�nite, whereas we need 
ost fun
tions to beregular a priori to de�ne their synta
ti
 
ongruen
e.Here, if f is not regular, ≡f may not be properly de�ned, sin
e we use theexisten
e of a minimal stabilization semigroup of f to give a semanti
 to the



operator ω. But we 
an go ba
k to ♯-expressions and de�ne ∼f on Expr forall f in the following way : e ∼f e′ if for any C[x] 
ontext on ♯-expressions,
{f(C[e])(n), n ∈ N} is bounded i� {f(C[e′])(n), n ∈ N} is bounded.In this way if f is regular, then for all e, e′ ∈ Expr, e ∼f e′ i� e[♯← ω♯] ≡f
e′[♯ ← ω♯]. In parti
ular Expr/∼f is bigger than Oexpr/≡f when f is regular :there might be equivalen
e 
lasses 
orresponding to ♯-expressions that are notwell-formed for f .However, if f is not regular, Expr/∼f is not in�nite in general (this di�ersfrom the results in language theory).Example 32 Let f(u) = mine∈Expr {|e|, ∃n ∈ N, u = e(n)}, there is only oneequivalen
e 
lass for ∼f (f(C[e](n)) is always bounded by |C[e]|) so Expr/∼fhas only one element, and therefore 
annot 
ontain a stabilization semigroup
omputing f . This gives us a proof that f is not regular.


