
Linear temporal logi for regular ost funtionsDenis KuperbergLiafa/CNRS/Université Paris 7, Denis Diderot, FraneAbstrat. Regular ost funtions have been introdued reently as anextension to the notion of regular languages with ounting apabilities,whih retains strong losure, equivalene, and deidability properties.The spei�ity of ost funtions is that exat values are not onsidered,but only estimated.In this paper, we de�ne an extension of Linear Temporal Logi (LTL)over �nite words to desribe ost funtions. We give an expliit transla-tion from this new logi to automata. We then algebraially haraterizethe expressive power of this logi, using a new syntati ongruene forost funtions introdued in this paper.1 IntrodutionSine the seminal works of Kleene and Rabin and Sott, the theory of regularlanguages is one of the ornerstones in omputer siene. Regular languageshave many good properties, of losure, of equivalent haraterizations, and ofdeidability, whih makes them entral in many situations.Reently, the notion of regular ost funtion for words has been presentedas a andidate for being a quantitative extension to the notion of regular lan-guages, while retaining most of the fundamental properties of the original theorysuh as the losure properties, the various equivalent haraterizations, and thedeidability [Col09℄. A ost funtion is an equivalene lass of the funtions fromthe domain (words in our ase) to N ∪ {∞}, modulo an equivalene relation ≈whih allows some distortion, but preserves the boundedness property over eahsubset of the domain. The model is an extension to the notion of languages inthe following sense: one an identify a language with the funtion mapping eahword inside the language to 0, and eah word outside the language to ∞. It isa strit extension sine regular ost funtions have ounting apabilities, e.g.,ounting the number of ourrenes of letters, measuring the length of intervals,et...Linear Temporal Logi (LTL), whih is a natural way to desribe logialonstraints over a linear struture, have also been a fertile subjet of study,partiularly in the ontext of regular languages and automata [VW86℄. Moreoverquantitative extensions of LTL have reently been suessfully introdued. Forinstane the model Prompt-LTL introdued in [KPV09℄ is interested in boundingthe waiting time of all requests of a formula, and in this sense is quite lose tothe aim of ost funtions.



In this paper, we extend LTL (over �nite words) into a new logi with quan-titative features (LTL≤), in order to desribe ost funtions over �nite wordswith logial formulae. We do this by adding a new operator U≤N : a formula
φU≤Nψ means that ψ holds somewhere in the future, and φ has to hold untilthat point, exept at most N times (we allow at most N "mistakes" of the untilformula).Related works and motivating examplesRegular ost funtions are the ontinuation of a sequene of works that intendto solve di�ult questions in language theory. Among several other deisionproblems, the most prominent example is the star-height problem: given a regularlanguage L and an integer k, deide whether L an be expressed using a regularexpression using at most k-nesting of Kleene stars. The problem was resolvedby Hashigushi [Has88℄ using a very intriate proof, and later by Kirsten [Kir05℄using an automaton that has ounting features.Finally, also using ideas inspired from [BC06℄, the theory of those automataover words has been uni�ed in [Col09℄, in whih ost funtions are introdued,and suitable models of automata, algebra, and logi for de�ning them are pre-sented and shown equivalent. Corresponding deidability results are provided.The resulting theory is a neat extension of the standard theory of regular lan-guages to a quantitative setting.On the logi side, Prompt-LTL, introdued in [KPV09℄, is an interestingway to extend LTL in order to look at boundedness issues, and already gaveinteresting deidability and omplexity results. Prompt-LTL would orrespondin the framework of regular ost funtions to a sublass of temporal ost funtionsintrodued in [CKL10℄; in partiular it is weaker than LTL≤ introdued here.ContributionsIt is known from [Col09℄ that regular ost funtions are the ones reognizableby stabilization semigroups (or in an equivalent way, stabilization monoids),and from [CKL10℄ than there is an e�etive quotient-wise minimal stabilizationsemigroup for eah regular ost funtion. This model of semigroups extends thestandard approah for languages.We introdue a quantitative version of LTL in order to desribe ost funtionsby means of logial formulas. The idea of this new logi is to bound the num-ber of "mistakes" of Until operators, by adding a new operator U≤N . The �rstontribution of this paper is to give a diret translation from LTL≤-formulas to
B-automata, whih is an extension of the lassi translation from LTL to Bühiautomaton for languages. This translation preserves exat values (i.e. not onlyost funtions equivalene), whih ould be interesting in terms of future appli-ations. We then show that regular ost funtions desribed by LTL formulaeare the same as the ones omputed by aperiodi stabilization semigroups, andthis haraterization is e�etive. The proof uses a syntati ongruene for ostfuntions, introdued in this paper.



This work validates the algebrai approah for studying ost funtions, sinethe analogy extends to syntati ongruene. It also allows a more user-friendlyway to desribe ost funtions, sine LTL an be more intuitive than automataor stabilization semigroups to desribe a given ost funtion.As it was done in [CKL10℄ for temporal ost funtions, the harateriza-tion result obtained here for LTL≤-de�nable ost funtions follows the spirit ofShützenberger's theorem whih links star-free languages with aperiodi monoids[Sh65℄.Organisation of the paperAfter some notations, and reminder on ost funtions, we introdue in Setion 3LTL≤ as a quantitative extension of LTL, and give an expliit translation fromLTL≤-formulae to B-automata. We then present in Setion 4 a syntati ongru-ene for ost funtions, and show that it indeed omputes the minimal stabiliza-tion semigroup of any regular ost funtion. We �nally use this new tool to showthat LTL≤ has the same expressive power as aperiodi stabilization semigroups.NotationsWe will note N the set of non-negative integers and N∞ the set N∪{∞}, orderedby 0 < 1 < · · · <∞. If E is a set, EN is the set of in�nite sequenes of elementsof E (we will not use here the notion of in�nite words). Suh sequenes willbe denoted by bold letters (a, b,...). We will work with a �xed �nite alphabet
A. The set of words over A is A∗ and the empty word will be noted ǫ. Theonatenation of words u and v is uv. The length of u is |u|. The number ofourrenes of letter a in u is |u|a. Funtions N → N will be denoted by letters
α, β, . . . , and will be extended to N ∪ {∞} by α(∞) =∞.2 Regular Cost funtions2.1 Cost funtions and equivaleneIf L ⊆ A∗, we will note χL the funtion de�ned by χL(u) = 0 if u ∈ L, ∞ if
u /∈ L. Let F be the set of funtions : A∗ → N∞. For f, g ∈ F and α a funtion(see Notations), we say that f ≤α g if f ≤ α ◦ g, and f ≈α g if f ≤α g and
g ≤α f . Finally f ≈ g if f ≈α g for some α. This equivalene relation doesn'tpay attention to exat values, but preserves the existene of bounds.A ost funtion is an equivalene lass of F/≈. Cost funtions are noted
f, g, . . . , and in pratie they will be always be represented by one of theirelements in F .



2.2 B-automataA B-automaton is a tuple 〈Q,A, In,Fin, Γ,∆〉 where Q is the set of states, A thealphabet, In and Fin the sets of initial and �nal states, Γ the set of ounters,and ∆ ⊆ Q× A× ({i, r, c}∗)Γ ×Q is the set of transitions.Counters have integers values starting at 0, and an ation σ ∈ ({i, r, c}∗)Γperforms a sequene of atomi ations on eah ounter, where atomi ationsare either i (inrement by 1), r (reset to 0) or c (hek the value). In partiularwe will note ε the ation orresponding to the empty word : doing nothing onevery ounter. If e is a run, let C(e) be the set of values heked during e on allounters of Γ .A B-automaton A omputes a regular ost funtion [[A]] via the followingsemanti : [[A]](u) = inf {supC(e), e run of A over u}.With the usual onventions that sup ∅ = 0 and inf ∅ = ∞. There exists alsoa dual model of B-automata, namely S-automata, that has the same expressivepower, but we won't develop this further in this paper. See [Col09℄ for moredetails.Example 1 Let A = {a, b}. The ost funtion | · |a is the same as 2| · |a +
5, it is omputed by the following one-ounter B-automaton on the left-handside. The ost funtion u 7→ min {n ∈ N, an fator of u} is omputed by thenondeterministi one-ounter B-automaton on the right-hand side.
a : ic

b : ε

a, b : ε a : ic a, b : ε

b : ε b : rMoreover, as in the ase of languages, ost funtions an be reognized byan algebrai struture that extends the lassi notion of semigroups, alled sta-bilization semigroups. A stabilization semigroup S = 〈S, ·,≤, ♯〉 is a partiallyordered set S together with an internal binary operation · and an internal unaryoperation a 7→ a♯ de�ned only on idempotent elements (elements a suh that
a · a = a). The formalism is quite heavy, see appendix for all details on axiomsof stabilization semigroups and reognition of regular ost funtions.3 Quantitative LTLWe will now use an extension of LTL to desribe some regular ost funtions.This has been done suessfully with regular languages, so we aim to obtainthe same kind of results. Can we still go e�iently from an LTL-formula to anautomaton?



3.1 De�nitionThe �rst thing to do is to extend LTL so that it an deribe ost funtionsinstead of languages. We must add quantitative features, and this will be doneby a new operator U≤N . Unlike in most uses of LTL, we work here over �nitewords.Formulas of LTL≤ (on �nite words on an alphabet A) are de�ned by thefollowing grammar :
φ := a | φ ∧ φ | φ ∨ φ | Xφ | φUφ| φU≤Nφ | ΩNote the absene of negation in the de�nition of LTL≤. The negations havebeen pushed to the leaves.� a means that the urrent letter is a, ∧ and ∨ are the lassi onjuntion anddisjuntion;� Xφ means that φ is true at the next letter;� φUψ means that ψ is true somewhere in the future, and φ holds until thatpoint;� φU≤Nψ means that ψ is true somewhere in the future, and φ an be falseat most N times before ψ. The variable N is unique, and is shared by allourrenes of U≤N operator;� Ω means that we are at the end of the word.We an de�ne ⊤ = (

∨
a∈A

a) ∨ Ω and ⊥ = ¬⊤, meaning respetively trueand false, and ¬a = (
∨
b6=a b) ∨Ω to signify that the urrent letter is not a.We also de�ne onnetors "eventually" : Fϕ = ⊤Uϕ and "globally" : Gϕ =

ϕUΩ.3.2 SemantisWe want to assoiate a ost funtion [[φ]] on words to any LTL≤-formula φ.We will say that u, n |= φ (u, n is a model of φ) if φ is true on u with n asvaluation for N , i.e. as number of errors for all the U≤N 's in the formula φ. We�nally de�ne
[[φ]](u) = inf {n ∈ N/u, n |= φ}We an remark that if u, n |= φ, then for all k ≥ n, u, k |= φ, sine the U≤Noperators appear always positively in the formula (that is why we don't allowthe negation of an LTL≤-formula in general). In partiular, [[φ]](u) = 0 meansthat ∀n ∈ N, u, n |= φ, and [[φ]](u) = ∞ means that ∀n ∈ N, u, n 6|= φ (sine

inf ∅ =∞).Proposition 2� [[a]](u) = 0 if u ∈ aA∗, and ∞ otherwise� [[Ω]](u) = 0 if u = ε, and ∞ otherwise� [[φ ∧ ψ]] = max([[φ]], [[ψ]]), and [[φ ∨ ψ]] = min([[φ]], [[ψ]])



� [[Xφ]](au) = [[φ]](u), [[Xφ]](ε) =∞� [[⊤]] = 0, and [[⊥]] =∞Example 3 Let φ = (¬a)U≤NΩ, then [[φ]] = | · |aWe use LTL≤-formulae in order to desribe ost funtions, so we will alwayswork modulo ost funtion equivalene ≈.Remark 4 If φ does not ontain any operator U≤N , φ is a lassi LTL-formulaomputing a language L, and [[φ]] = χL.3.3 From LTL≤ to B-AutomataWe will now give a diret translation from LTL≤-formula to B-automata, i.e.given an LTL≤-formula φ on a �nite alphabet A, we want to build a B-automatonreognizing [[φ]]. This onstrution is adapted from the lassi translation fromLTL-formula to Bühi automata [DG10℄.Let φ be an LTL≤-formula. We de�ne sub(φ) to be the set of subformulae of
φ, and Q = 2sub(φ) to be the set of subsets of sub(φ).We want to de�ne a B-automaton Aφ = 〈Q,A, In,Fin , Γ,∆〉 suh that
[[A]]B ≈ [[φ]].We set the initial states to be In = {{φ}} and the �nal ones to be Fin =
{∅, {Ω}} We hoose as set of ounters Γ = {γ1, . . . , γk} where k is the numberof ourenes of the U≤N operators in φ, labeled from U≤N

1 to U≤N
k .A state is basially the set of onstraints we have to verify before the endof the word, so the only two aepting states are the one with no onstraint, orwith only onstraint to be at the end of the word.The following de�nitions are the same as for the lassial ase (LTL to Bühiautomata) :De�nition 5 � An atomi formula is either a letter a ∈ A or Ω� A set Z of formulae is onsistent if there is at most one atomi formula init.� A redued formula is either an atomi formula or a Next formula (of theform Xϕ).� A set Z is redued if all its elements are redued formulae.� If Z is onsistent and redued, we de�ne next(Z) = {ϕ/Xϕ ∈ Z}.Lemma 6 (Next Step) If Z is onsistent and redued, for all u ∈ A∗, a ∈ Aand n ∈ N,

au, n |=
∧
Z i� u, n |=

∧
next(Z) and Z ∪ {a} onsistent



We would like to de�ne Aφ with Z −→ next(Z) as transitions.The problem is that next(Z) is not onsistent and redued in general. If
next(Z) is inonsistent we remove it from the automaton. If it is onsistent, weneed to apply some redution rules to get a redued set of formulae. This on-sists in adding ε-transitions (but with possible ations on the ounter) towardsintermediate sets whih are not atual states of the automaton (we will all them"pseudo-states"), until we reah a redued set.Let ψ be maximal (in size) not redued in Y , we add the following transitions� If ψ = ϕ1 ∧ ϕ2 : Y ε:ε

−→ Y \ {ψ} ∪ {ϕ1, ϕ2}� If ψ = ϕ1 ∨ ϕ2 : {
Y

ε:ε
−→ Y \ {ψ} ∪ {ϕ1}

Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ2}� If ψ = ϕ1Uϕ2 : {

Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ1, Xψ}

Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ2}� If ψ = ϕ1U

≤N
j ϕ2 : 




Y
ε:ε
−→ Y \ {ψ} ∪ {ϕ1, Xψ}

Y
ε:icj
−→ Y \ {ψ} ∪ {Xψ} (we ount one mistake)

Y
ε:rj
−→ Y \ {ψ} ∪ {ϕ2}where ation rj (resp. icj) perform r (resp. ic) on ounter γj and ε on theother ounters.The pseudo-states don't (a priori) belong toQ = 2sub(φ) beause we add formulae

Xψ for ψ ∈ sub(φ), so if Z is a redued pseudo-state, next(Z) will be in Q againsine we remove the new next operators.The transitions of automaton Aφ will be de�ned as follows:
∆ =

{
Y

a:σ
−→ next(Z) | Y ∈ Q,Z ∪ {a} onsistent and redued, Y ε:σ

−→∗ Z
}where Y ε:σ

−→∗ Z means that there is a sequene of ε-transitions from Y to Zwith σ as ombined ation on ounters.De�nition 7 If σ is a sequene of ations on ounters, we will all val(σ) themaximal value heked on a ounter during σ with 0 as starting value of theounters, and val(σ) = 0 if there is no hek in σ. It orresponds to the value ofa run of a B-automaton with σ as ombined ation of the ounter.Lemma 8 Let u = a1 . . . am be a word on A and Y0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Yman aepting run of Aφ.Then for all ψ ∈ sub(φ), for all n ∈ {0, . . . ,m}, for all Yn ε:σ

→∗ Y
ε:σ′

→ ∗ Z with
Z ∪ {an+1} onsistent and redued, and Yn+1 = next(Z)

ψ ∈ Y =⇒ an+1an+2 . . . am, N |= ψwhere N = val(σ′σn+1 . . . σm).



Lemma 8 implies the orretness of the automaton Aφ :Let Y0
a1:σ1→ Y1

a2:σ2→ . . .
am:σm→ Ym be a valid run of Aφ on u of value N = [[Aφ]]B ,applying Lemma 8 with n = 0 and Y = Y0 = {φ} gives us u,N |= φ. Hene

[[φ]] ≤ [[Aφ]]B .Conversely, let N = [[φ]](u), then u,N |= φ so by de�nition of Aφ, it isstraightforward to verify that there exists an aepting run of Aφ over u of value
≤ N (eah ounter γi doing at most N mistakes relative to operator U≤N

i ).Hene [[Aφ]]B ≤ [[φ]].We �nally get [[Aφ]]B = [[φ]], the automaton Aφ omputes indeed the exatvalue of funtion [[φ]] (and so we have obviously [[Aφ]]B ≈ [[φ]]).4 Algebrai haraterizationWe remind that as in the ase of languages, stabilization semigroups reognizeexatly regular ost funtions, and there exists a quotient-wise minimal stabi-lization semigroup for eah regular ost funtion [CKL10℄.In standard theory, it is equivalent for a regular language to be desribed byan LTL-formula, or to be reognized by an aperiodi semigroup. Is it still thease in the framework of regular ost funtions? To answer this question we �rstneed to develop a little further the algebrai theory of regular ost funtions.4.1 Syntati ongrueneIn standard theory of languages, we an go from a desription of a regular lan-guage L to a desription of its syntati monoid via the syntati ongruene.Moreover, when the language is not regular, we get an in�nite monoid, so thisequivalene an be used to �test� regularity of a language.The main idea behind this equivalene is to identify words u and v if they�behave the same� relatively to the language L, i.e. L annot separate u from vin any ontext : ∀(x, y), xuy ∈ L⇔ xvy ∈ L.The aim here is to de�ne an analog to the syntati ongruene, but forregular ost funtions instead of regular languages. Sine ost funtions look atquantitative aspets of words, the notions of "element" and "ontext" have toontain quantitative information : we want to be able to say things like �wordswith a lot of a's behave the same as words with a few a's�.That is why we won't de�ne our equivalene over words, but over ♯-expressions,whih are a way to desribe words with quantitative information.4.2 ♯-expressionsWe �rst de�ne general ♯-expressions as in [Has90℄ and [CKL10℄ by just addingan operator ♯ to words in order to repeat a subexpression �a lot of times�. Thisdi�ers from the stabilization monoid de�nition, in whih the ♯-operator an onlybe applied to spei� elements (idempotents).



The set Expr of ♯-expressions on an alphabet A is de�ned as follows:
e := a ∈ A | ee | e♯If we hoose a stabilization semigroup S = 〈S, ·,≤, ♯〉 together with a funtion

h : A→ S, the eval funtion (from Expr to S) is de�ned indutively by eval(a) =
h(a), eval(ee′) = eval(e) · eval(e′), and eval(e♯) = eval(e)♯ (eval(e) has to beidempotent). We say that e is well-formed for S if eval(e) exists. Intuitively,it means that ♯ was applied to subexpressions that orresponds to idempotentelements in S.If f is a regular ost funtion, e is well-formed for f i� e is well-formed forthe minimal stabilization semigroup of f .Example 9 Let f be the ost funtion de�ned over {a}∗ by

f(an) =

{
n if n even
∞ otherwiseThe minimal stabilization semigroup of f is : {

a, aa, (aa)♯, (aa)♯a
}, with aa ·

a = a and (aa)♯a · a = (aa)♯. Hene the ♯-expression aaa(aa)♯ is well-formedfor f but the ♯-expression a♯ is not.The ♯-expressions that are not well-formed have to be removed from the setwe want to quotient, in order to get only real elements of the syntati semigroup.4.3 ω♯-expressionsWe have de�ned the set of ♯-expressions that we want to quotient to get thesyntati equivalene of ost funtions. However, we saw that some of these ♯-expressions may not be well-typed for the ost funtion f we want to study,and therefore does not orrespond to an element in the syntati stabilizationsemigroup of f .Thus we need to be areful about the stabilization operator, and apply it onlyto �idempotent ♯-expressions�. To reah this goal, we will add an �idempotentoperator� ω on ♯-expressions, whih will always assoiate an idempotent element(relative to f) to a ♯-expression, so that we an later apply ♯ and be sure ofreating well-formed expressions for f .We de�ne the set Oexpr of ω♯-expressions on an alphabet A :
E := a ∈ A | EE | Eω | Eω♯The intuition behind operator ω is that xω is the idempotent obtained byiterating x (whih always exists in �nite semigroups).A ontext C[x] is a ω♯-expression with possible ourrenes of a free variable

x. Let E be a ω♯-expression, C[E] is the ω♯-expression obtained by replaing allourrenes of x by E in C[x], i.e. C[E] = C[x][x ← E]. Let COE be the set ofontexts on ω♯-expressions.We will now formally de�ne the semanti of operator ω, and use ω♯-expressionsto get a syntati equivalene on ost funtions, without mistyped ♯-expressions.



De�nition 10 If E ∈ Oexpr and k, n ∈ N, we de�ne E(k, n) to be the word
E[ω ← k, ♯← n], where the exponential is relative to onatenation of words.Lemma 11 Let f be a regular ost funtion, there exists Kf ∈ N suh that forany E ∈ Oexpr, the ♯-expression E[ω ← Kf !] is well-formed for f , and we arein one of these two ases1. ∀k ≥ Kf , {f(E(k!, n)), n ∈ N} is bounded : we say that E ∈ fB.2. ∀k ≥ Kf , limn→∞ f(E(k!, n)) =∞ : we say that E ∈ f∞.Proof. The proof is a little tehnial, sine we have to reuse the de�nition ofreognization by stabilization semigroup. Kf an simply be taken to be the sizeof the minimal stabilization semigroup of f .Here, fB and f∞ are the analogs for regular ost funtions of �being in L�and �not being in L� in language theory. But this notion is now asymptoti,sine we look at boundedness properties of quantitative information on words.Moreover, f∞ and fB are only de�ned here for regular ost funtions, sine Kfmight not exist if f is not regular.De�nition 12 Let f be a regular ost funtion, we write E ⇋f E′ if (E ∈
fB ⇔ E′ ∈ fB). Finally we de�ne

E ≡f E
′ i� ∀C[x] ∈ COE, C[E] ⇋f C[E′]Remark 13 If u, v ∈ A∗, and L is a regular language, then u ∼L v i� u ≡χL

v( ∼L being the syntati ongruene of L). In this sense, ≡ is an extension ofthe lassi syntati ongruene on languages.Now that we have properly de�ned the equivalene ≡f over Oexpr, it remainsto verify that it is indeed a good syntati ongruene, i.e. Oexpr/≡f is thesyntati stabilization semigroup of f .Indeed if f is a regular ost funtion, let Sf = Oexpr/≡f . We an provide
Sf with a struture of stabilization semigroup 〈Sf , ·,≤, ♯〉.Theorem 14. Sf is the minimal stabilization semigroup reognizing f .The proof onsists basially in a bijetion between lasses of Oexpr for ≡f ,and elements of the minimal stabilization semigroup as de�ned in appendix A.7of [CKL10℄.4.4 Expressive power of LTL≤If f is a regular ost funtion, we will all Sf the syntati stabilization semigroupof f .A �nite semigroup S = 〈S, ·〉 is alled aperiodi if ∃k ∈ N, ∀s ∈ S, sk+1 = sk.The de�nition is the same if S is a �nite stabilization semigroup.



Remark 15 For a regular ost funtion f , the statements �f is reognized byan aperiodi stabilization semigroup� and �Sf is aperiodi� are equivalent, sine
Sf is a quotient of all stabilization semigroups reognizing f .Theorem 16. Let f be a ost funtion desribed by a LTL≤-formula, then f isregular and the syntati stabilization semigroup of f is aperiodi.The proof of this theorem will be the �rst framework to use the syntati on-gruene on ost funtions.If φ is a LTL≤-formula, we will say that φ veri�es property AP if there exists
k ∈ N suh that for any ω♯-expression E, Ek ≡[[φ]] E

k+1, whih is equivalent to� [[φ]] has an aperiodi syntati stabilization semigroup�.With this in mind, we an do an indution on LTL≤-formulaes : we �rst showthat SΩ and all Sa for a ∈ A are aperiodi.We then proeed to the indution on φ : assuming that ϕ and ψ verifyproperty AP , we show that Xψ, ϕ∨ψ, ϕ∧ψ, ϕUψ and ϕU≤Nψ verify property
AP .Theorem 17. Let f be a ost funtion reognized by an aperiodi stabilizationsemigroup, then f an be desribed by an LTL≤-formula.The proof of this theorem is a generalization of the proof of Wilke for aperi-odi languages in [Wil99℄. However di�ulties inherent to quantitative notionsappear here.The main issue omes from the fat that in the lassial setting, omputingthe value of a word in a monoid returns a single element. This fat is used todo an indution on the size of the monoid, by onsidering the set of possibleresults as a smaller monoid. The problem is that with ost funtions, there issome additional quantitative information, and we need to assoiate a sequeneof elements of a stabilization monoid to a single word. Therefore, it requiressome tehnial work to ome bak to a smaller stabilization monoid from thesesequenes.Corollary 18 The lass of LTL≤-de�nable ost funtions is deidable.Proof. Theorems 16 and 17 imply that it is equivalent for a regular ost funtionto be LTL≤-de�nable or to have an aperiodi syntati stabilization semigroup.If f is given by an automaton or a stabilization semigroup, we an omputeits syntati stabilization semigroup Sf (see [CKL10℄) and deide if f is LTL≤-de�nable by testing aperiodiity of Sf . This an be done simply by iterating atmost |Sf | times all elements of Sf and see if eah element a reahes an element
ak suh that ak+1 = ak.5 ConlusionWe �rst de�ned LTL≤ as a quantitative extension of LTL. We started the studyof LTL≤ by giving an expliit translation from LTL≤-formulae to B-automata,



whih preserves exat values (and not only boundedness properties as it is usuallythe ase in the framework of ost funtions). We then showed that the expressivepower of LTL≤ in terms of ost funtions is the same as aperiodi stabilizationsemigroups. The proof uses a new syntati ongruene, whih has a generalinterest in the study of regular ost funtions. This result implies the deidabilityof the LTL≤-de�nable lass of ost funtions.As a further work, we an try to put ω♯-expressions in a larger framework,by doing an axiomatization of ω♯-semigroups. We an also extend this work toin�nite words, and de�ne an analog to Bühi automata for ost funtions. Toontinue the analogy with lassi languages results, we an de�ne a quantita-tive extension of FO desribing the same lass as LTL≤, and searh for analogde�nitions of ounter-free B-automata and star-free B-regular expressions. Thetranslation from LTL≤-formulae to B-automata an be further studied in termsof optimality of number of ounters of the resulting B-automaton.AknowledgmentsI am very grateful to my advisor Thomas Colombet for our helpful disussions,and for the guidelines he gave me on this work, and to Mihael Vanden Boomfor helping me with language and presentation issues.Referenes[BC06℄ Mikolaj Boja«zyk and Thomas Colombet. Bounds in ω-regularity. In LICS06, pages 285�296, August 2006.[CKL10℄ Thomas Colombet, Denis Kuperberg, and Sylvain Lombardy. Regular tem-poral ost funtions. In ICALP (2), pages 563�574, 2010.[Col09℄ Thomas Colombet. The theory of stabilization monoids and regular ostfuntions. ICALP, Leture Notes in Computer Siene, 2009.[DG10℄ Stéphane Demri and Paul Gastin. Spei�ation and veri�ation using tem-poral logis. In Modern appliations of automata theory, volume 2 of IISResearh Monographs. World Sienti�, 2010. To appear.[Has88℄ Kosaburo Hashiguhi. Relative star height, star height and �nite automatawith distane funtions. In Formal Properties of Finite Automata and Appli-ations, pages 74�88, 1988.[Has90℄ Kosaburo Hashiguhi. Improved limitedness theorems on �nite automata withdistane funtions. Theor. Comput. Si., 72(1):27�38, 1990.[Kir05℄ Daniel Kirsten. Distane desert automata and the star height problem.RAIRO, 3(39):455�509, 2005.[KPV09℄ Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness topromptness. Formal Methods in System Design, 34(2):83�103, 2009.[Sh65℄ M.-P. Shützenberger. On �nite monoids having only trivial subgroups. In-formation and Control 8, pages 190�194, 1965.[VW86℄ Moshe Y. Vardi and Pierre Wolper. Automata-theoreti tehniques for modallogis of programs. J. Comput. Syst. Si., 32(2):183�221, 1986.[Wil99℄ Thomas Wilke. Classifying disrete temporal properties. In Christoph Meineland Sophie Tison, editors, STACS, volume 1563 of Leture Notes in ComputerSiene, pages 32�46. Springer, 1999.



6 AppendixWe will start by reviewing all notions needed to work with stabilization semi-groups.6.1 Cost sequenesThe aim is to give a semanti to stabilization semigroups. Some mathematialpreliminaries are required.Let (E,≤) be an ordered set, α a funtion from N to N, and a, b ∈ EN twoin�nite sequenes. We de�ne the relation �α by a�αb if :
∀n.∀m. α(n) ≤ m→ a(n) ≤ b(m) .A sequene a is said to be α-non-dereasing if a �α a. We de�ne∼α as�α ∩ �α,and a�b (resp. a∼b) if a �α b (resp. a ∼α b) for some α.Remarks:� if α ≤ α′ then a �α b implies a �α′ b,� if a is α-non-dereasing, then it is α-equivalent to a non-dereasing sequene,� a is id -non-dereasing i� it is non-dereasing,� let a, b ∈ EN be two non-dereasing sequenes, then a �α b i� a ◦ α ≤ b.The α-non-dereasing sequenes ordered by �α an be seen as a weakening ofthe α = id ase. We will identify the elements a ∈ E with the onstant sequeneof value a.The relations �α and ∼α are not transitive, but the following property guar-antees a ertain kind of transitivity.Fat 19 a �α b �α c implies a �α◦α c and a ∼α b ∼α c implies a ∼α◦α c.The funtion α is used as a �preision� parameter for ∼ and �. Fat ?? showsthat a transitivity step osts some preision. For any α, the relation �α oinidesover onstant sequenes with order ≤ (up to identi�ation of onstant sequeneswith their onstant value). Consequently, the in�nite sequenes in EN orderedby �α form an extension of (E,≤).In the following, while using relations�α and∼α, we may forget the subsript

α and verify instead that the proof has a bounded number of transitivity steps.For (E,≤) and (F,≤) two ordered sets, a funtion f:E → FN is α-monotoneif
∀a, b ∈ E. a ≤ b→ f(a) �α f(b) .In partiular, if f is α-monotone, for eah a ∈ E, we have a ≤ a, so f(a) �α f(a),hene f(a) is α-non-dereasing. To eah α-monotone funtion f : E → FN weassoiate f̃ : EN → FN de�ned in the following way:for all a ∈ EN and all n ∈ N, f̃(a)(n) = f(a(n))(n) .



Proposition 20 Let f : E → FN be a α-monotone funtion and a, b ∈ EN,then:
a �α b implies f̃(a) �α f̃(b) .In partiular, if f : E → FN and g : F → GN are α-monotone, then g̃ ◦ fis α-monotone. Moreover, (̃g̃ ◦ f) = g̃ ◦ f̃ .De�nition 21 If f and g are funtions E → FN, we will say that f ∼α g if forall u ∈ E, f(u) ∼α g(u). As usual, f ∼ g if there exists α suh that f ∼α g.We will also use this notion with the produt order : if (E,≤) is an orderedset, the set of words in u ∈ E∗ is anonially ordered by a1 . . . an ≤ b1 . . . bm i�

m = n and ai ≤ bi for i = 1 . . . n. We identify the elements of (EN)∗ (words ofsequenes) with some elements of (E∗)N (sequenes of words of the same length).Notie that for any sequenes a1, . . . ,an, b1, . . . , bn ∈ EN, a1 . . .an �α b1 . . .bni� ai �α bi for i = 1 . . . n.6.2 Ideals of an ordered setThis notion will be essential to de�ne the ost funtion reognized by a stabi-lization semigroup.Let (E,≤) be an ordered set, an ideal is a≤ −closed subset I ⊆ E, i.e. if a ∈ Iand b ≤ a, then b ∈ I. Let a ∈ E, the ideal generated by a is Ia= {b ∈ E : b ≤ a}.Let a ∈ EN and I be an ideal, we de�ne I[a]= sup{n+ 1 : a(n) ∈ I}.1Proposition 22 Let f and g be funtions E → SN suh that f ∼α g and forany u ∈ E, f(u) and g(u) are non-dereasing. Then for any ideal I of S, theost funtions u 7→ I[f(u)] and u 7→ I[g(u)] are ≈α equivalent.Indeed, let u ∈ E, and n = I[f(u)]. Then g(u)(α(n)) ≥ f(u)(n) /∈ I. I is anideal so we get g(u)(α(n)) /∈ I. g(u) is non-dereasing so I[g(u)] ≤ α(n). Bysymmetry of f and g we �nally get u 7→ I[f(u)] ≈α u 7→ I[g(u)].De�nition 23 Let a, b ∈ E and n ∈ N, we de�ne the sequene a|nb by:for all k ∈ N, (a|nb)(k) =

{
a if k < n,
b otherwise.6.3 Compatible funtionsWe now de�ne the semanti of a stabilization semigroup with the notion of om-patible funtion. The idea is to generalize the notion of produt, by assoiatingto eah word of S+, no longer an element of S, but a ost sequene in SN. thiswill allow us to express stabilization in a quantitative way. Intuitively, when n is�xed in the ost sequene, we an interpret the semanti as an automaton with1 The +1 makes the alulus smoother in the following.



limited resoures. To avoid ambiguities, we will write uv the onatenation of uand v as words in S+ and a · b the produt of a and b as elements of S.
〈S+, ,≤〉 forms a semigroup, partially ordered by the produt ordered be-tween words of same length desribed above.De�nition 24 Let S = 〈S, ·,≤, ♯〉 be stabilization semigroup. A funtion ρ from S+to SN is ompatible with S if there exists α suh that :Monotoniity. ρ is α-monotone,Letter. for all a ∈ S, ρ(a) ∼α a,Produt. for all a, b ∈ S, ρ(ab) ∼α a · b,Stabilization. for all e ∈ E(S), m ∈ N, ρ(em) ∼α (e♯|me),Substitution. for all u1, . . . , un ∈ S+, n ∈ N, ρ(u1 . . . un) ∼α ρ̃(ρ(u1) . . . ρ(un))(we identify sequene of words and word of sequenes)Example 1. Let S be the stabilization semigroup with 3 elements ⊥ ≤ a ≤ b,with produt de�ned by : x·y = min≤(x, y) (b neutral element), and stabilizationby b♯ = b and a♯ = ⊥♯ = ⊥. Lett u ∈ {⊥, a, b}+, we de�ne ρ by:

ρ(u) =





b if u ∈ b+
⊥||u|aa if u ∈ b∗(ab∗)+
⊥ otherwise.Then ρ is ompatible with S.Remark 25 When ♯ is the identity funtion, S beomes a standard orderedsemigroup, and the lassial extended produt π is ompatible with S.Theorem 26 ([Col09℄). For any stabilization semigroup S, there exists a fun-tion ρ ompatible with S. Moreover, ρ is unique up to ∼.This theorem is fundamental, sine it assoiates a unique (up to ∼) semanti toany stabilization semigroup.Lemma 1. Let ρ ompatible with a semigroup S. There exists γ suh that forany n ∈ N and u ∈ S+, if |u| ≤ n then for all k ≥ γ(n), ρ(u)(k) = π(u)Proof. We show this result by indution on n. It is true for n = 1 by taking

γ(1) = 1. We assume γ(k) onstruted for k < n, and we want to show theresult for n. Let u ∈ S+ of length n, u = va with |v| = n − 1 and a ∈ S.Letα a witness of ρ ompatible with S. The substitution property tells us that
ρ(u) ∼α ρ̃(ρ(v)a). but by indution hypothesis, for all k ≥ γ(n−1), ρ̃(ρ(v)a)(k) =
ρ(ρ(v)(k)a)(k) = ρ(π(v)a)(k). Moreover, ρ(π(v)a) ∼α π(v) · a = π(u). Henewe have for all k ≥ α(γ(α(n − 1))), ρ(u)(k) = π(u).We get the result with
γ(n) = α(γ(α(n− 1))). �



6.4 Reognized ost funtionsWe now have all the mathematial tools to de�ne how stabilization semigroupsan reognize ost funtions.Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. Let h : A → S be a mor-phism, anonially extended to h : A+ → S+, and I ⊆ S an ideal. Then thetriplet S, h, I reognizes the funtion f : A+ → N∞ de�ned by f(u) = I[ρ(h(u))]where ρ is ompatible with S. A ost funtion from A+ to N∞ is reognizable ifit is ≈-equivalent to a funtion reognized by some S, h, I. By Proposition ??,the reognized ost funtion does not depend on the hoie of ρ.Example 2. Let A = {a, b}, the ost funtion | · |a is reognizable. We take thestabilization semigroup from Example ??, h de�ned by h(a) = a, h(b) = b,and I = {⊥}. We have then |u|a = I[ρ(h(u))] for all u ∈ A+.6.5 Proof of Lemma 8Proof. We do a reverse indution on n. If n = m, Yn is a �nal state so Yn = ∅or Yn = {Ω}. If Yn ε:σ
→∗ Y , then Y = Yn (no outgoing ε-transitions de�ned from

∅ or {Ω}). Then if ψ ∈ Y , the only possibility is ψ = Ω, but an+1 . . . am = ε,and ε, 0 |= Ω, hene the result is true for n = m.Let n < m, we assume the result is true for n+1, and we take same notationsas in the lemma, with ψ ∈ Y . By de�nition of ∆, there exists a transition
Yn

an+1:σσ
′

−→ ∗ next(Z) = Yn+1 in Aφ.We do an indution on the length k of the path Y ε:σ′

→ ∗ Z.If k = 0, then Y = Z onsistent and redued, so ψ is either atomi or a Nextformula.If ψ is atomi, the only way Z ∪ {an+1} an be onsistent is if ψ = an+1. Inwhih ase an+1 . . . am, N |= ψ without di�ulty.If ψ = Xϕ, ϕ ∈ next(Z) = Yn+1, then by indution hypothesis (on n),
an+2 . . . am, N |= ϕ (N does not hange beause σ′ is empty). Hene an+1an+2 . . . am, N |=
Xϕ whih shows the result.If k > 0, we assume the result is true for k−1, and we show it for k. We have
Y

ε:σ′
1→ Y ′ ε:σ

′
2→ ∗ Z with σ′

1σ
′
2 = σ′, and for all ψ′ ∈ Y ′, an+1an+2 . . . am, N

′ |= ψ′with N ′ = val(σ′
2σn+1 . . . σm).We now look at the di�erent possibility for the ε-transition Y ε:σ′

1→ Y ′. Let us�rst notie that either N = N ′ or N = N ′ + 1, sine σ′
1 ∈ {ε, ic, r}.Let un+1 = an+1an+2 . . . am. If ψ ∈ Y ′, then un+1, N

′ |= ψ, but N ≥ N ′ so
un+1, N

′ |= ψ.We just need to examine the ases where ψ /∈ Y ′ :� If ψ = ϕ1 ∧ ϕ2, σ′
1 = ε, and Y ′ = Y \ {ψ} ∪ {ϕ1, ϕ2},then un+1, N |= ϕ1 and un+1 . . . am, N |= ϕ2, hene un+1, N |= ψ.� Other lassi ases where σ′

1 = ε are similar and ome diretly from de�nitionof LTL operators.



� If ψ = ϕ1U
≤N
j ϕ2, σ′

1 = ε and Y ′ = Y \ {ψ} ∪ {ϕ1, Xψ},then un+1, N |= ϕ1 and un+1, N |= Xψ, hene un+1, N |= ψ� If ψ = ϕ1U
≤N
j ϕ2, σ′

1 = icj and Y ′ = Y \ {ψ} ∪ {Xψ},then un+1, N
′ |= Xψ.If γj reahes N ′ before its �rst reset in σ′

2σn+1 . . . σm, then N = N ′ +1, andwe an onlude un+1, N |= ψ.On the ontrary, if N = N ′ and there are stritly less than N ′ mistakes on ϕ1before the next ourene of ϕ2, we an allow one more and keep respetingthe onstraint on N ′, so un+1, N |= ψ.� If ψ = ϕ1U
≤N
j ϕ2, σ′

1 = rj and Y ′ = Y \ {ψ} ∪ {ϕ2} then N = N ′, and
un+1, N

′ |= Xϕ2, hene un+1, N |= ψ.Hene we an onlude that for all k, an+1an+2 . . . am, N |= ψ, whih on-ludes the proof of the lemma.
�6.6 Details on ω♯-expressionsProof of Lemma 11Proof. Let f be a regular ost funtion reognized by Sf , h, I. Let N = |Sf |. Itsu�es to takeKf ≥ N to verify that for anyE ∈ Oexpr, the ♯-expressionE[ω ←

Kf !] is well-formed for f . Moreover, if s ∈ Sf , sk! = sKf ! for all k ≥ Kf . Let usshow that f∞ ⊎ fB = Oexpr. Let E ∈ Oexpr, and k ≥ Kf . Let e = E[ω ← k!],
e is well-formed for Sf . For all n ∈ N, let un = e(n) = E(k!, n). From [CKL10℄,we know that there exists α suh that ρ(h(un)) ∼α eval(e)|neval(un).Therefore,

eval(e) ∈ I ⇒ ∀n, I[ρ(h(un))] ≥α n⇒ ∀n, f(un) ≥α n⇒ lim f(un) =∞and eval(e) /∈ I ⇒ ∀n, I[ρ(h(un))] ≤ α(1) ⇒ ∀n, f(un) ≤ α(1) ⇒ E ∈ fB. Weget that f∞ = {E ∈ Oexpr, eval(E) ∈ I} and fB = {E ∈ Oexpr, eval(E) /∈ I}whih shows the result.Lemma 27 If E ≡f E′, then for any ontext C1[x] ∈ COE, C1[E] ≡f C1[E
′].Proof. Let E,E′ and C1[x] de�ned by the Lemma. Let C[x] be a ontext. Wede�ne C′[x] = C[C1[x]]. The de�nition of the ≡f relation implies C′[E] ⇋f

C′[e′]. Hene C[C1[e]] ⇋f C[C1[E
′]].This is true for any ontext C[x] so C1[E] ≡f C1[E

′]. �Proposition 28 The relation ≡f does not hange if we restrit ontexts to hav-ing only one ourene of x, as it was done for Expr in [CKL10℄.Proof. Let ≡′
f be the equivalene relation de�ned with single-variable ontexts.we just need to show that E ≡′

f E′ =⇒ E ≡f E′ (the onverse is trivial).Let us assume E ≡′
f E

′, and let C[x1, x2] be a ontext with two ourenes of
x, labelled x1 and x2. Then C[E] = C[x1 ← E, x2 ← E] ⇋f C[x1 ← E, x2 ←
E′] ⇋f C[x1 ← E′, x2 ← E′] = C[e′]. The generalization to an arbitrary numberof ourenes of x is obvious, and we get E ≡f E′. �



Struture of Oexpr/≡f If f is a regular ost funtion, let Sf = Oexpr/≡f .We show that we an provide Sf with a struture of stabilization semigroup
〈Sf , ·,≤, ♯〉.If E ∈ Oexpr, let E be its equivalene lass for the ≡f relationship. We �rstnaturally de�ne the stabilization semigroup operators : E · E′ = EE′ and if Eidempotent we have E = Eω and (E)♯ = Eω♯. ≤ is the minimal partial orderindued by the inequalities s♯ ≤ s where s is idempotent, and ompatible withthe stabilization semigroup struture.Let us show that these operations are well-de�ned :Produt If E1 ≡f E′

1 and E2 ≡f E′
2. By Lemma ?? with ontext xE2 and E′

1x,
E1E2 ≡f E′

1E2 ≡f E′
1E

′
2, so E1E2 = E′

1E
′
2.Stabilization If E ≡f E′, by Lemma ?? with ontext xω♯, Eω♯ ≡f E′ω♯, hene Eω♯ = E′ω♯.Moreover, it is easy to hek that all axioms of stabilization semigroups areveri�ed, for example (s♯)♯ = s♯ beause for any sequene un whih is eitherbounded or tends towards ∞, un2 has same nature as un.Proof of Theorem 14 Let If =

{
E,E ∈ f∞

}, and hf : A∗ → S∗
f the length-preserving morphism de�ned by hf (a) = a for all a ∈ A (a letter is a partiular

ω♯-expression).Proof. Let Smin, h, I be the minimal stabilization semigroup reognizing f , asde�ned in appendix A.7 of [CKL10℄. Let ρ be its ompatible mapping, and
eval : Oexpr → Smin the orresponding evaluation funtion. We will show that
E ≡f E′ i� eval(E) = eval(E′).We know by the proof of Lemma 11 that E ∈ f∞ ⇔ eval(E) ∈ I. We remindthat the de�nition of Smin is based on the fat that if two elements behave thesame relatively to I in any ontext, they are the same. These fats give us thefollowing sequene of equivalenes :

E ≡f E′ ⇔ ∀C[x] ∈ COE, C[E] ⇋f C[E′]
⇔ ∀C[x] ∈ COE, (C[E] ∈ f∞ ⇔ C[E′] ∈ f∞)
⇔ ∀C[x] ∈ COE, (eval(C[E]) ∈ I ⇔ (eval(C[E′]) ∈ I)
⇔ eval(E) = eval(E′)This gives a bijetion between Sf and Smin (eval funtion is surjetive on

Smin, by minimality of Smin). Moreover, this bijetion is an isomorphism, sine inboth semigroups, operations are indued by onatenation and ♯ on ♯-expressions.
h is determined by its image on letters, so we have to de�ne hf (a) = a toremain oherent. Finally, we have eval(E) ∈ I ⇔ E ∈ f∞, therefore the set Iforresponding to I in the bijetion is If =

{
E,E ∈ f∞

}. �Growing speeds lemma The following lemma will be used for tehnial pur-poses in future proofs, but it is an interesting intuitive statement whih ouldgive a better understanding of the behaviour of regular ost funtions.



Lemma 29 Let f be a regular ost funtion, and e ∈ Expr ontaining N ♯-operators ♯1, . . . , ♯N . For all i ∈ {1, . . . , N}, let σi be a funtion N → N with
σi(n) → ∞. Then f(e[♯i ← σi(n) for all i]) → ∞ ⇔ f(e(n)) → ∞. In otherwords, we an replae some of the n exponents by any funtion σ(n)→∞ whenapproximating a ♯-expression by a sequene of words. It does not hange thenature of the sequene relatively to f .Proof. This result is intuitive : sine we always work up to ost equivalene,growing at di�erent speeds has an e�et on orretion funtions, but not onqualitative behaviour.We will use notation ⊲⊳

n→∞
: g1(n) ⊲⊳

n→∞
g2(n) means �g1(n) is bounded i�

g2(n) is bounded�, but remark that here all funtions will either be bounded ortend towards ∞ (this notation will be reused in the next setion).For onveniene we will note en = e[♯i ← σi(n) for all i]. We want to showthat f(en) ⊲⊳
n→∞

f(e(n)). Let Sf be the minimal stabilization semigroup of f ,with ompatible funtion ρ. We will in fat show that there exists α suh thatfor all n, ρ(en) ∼α ρ(e(n)), whih implies the result. We proeed by indutionon N . If N = 0, then en = e(n) so the result is trivial. We assume the result istrue for all k < N (with funtion α<), and we hoose ♯N to be outermost (notunder another ♯). We an write e = rs♯N t, with r, s, t ∈ Expr.Let β be a witness of ρ ompatible with Sf , and γ suh that n ∼γ σN (n).We have
ρ(en) = ρ(rn(sn)σN (n)tn)

∼β ρ̃(ρ(rn)ρ((sn)σN (n))ρ(tn))

∼γ ρ̃(ρ(rn)ρ((sn)n)ρ(tn))

∼α<
ρ̃(ρ(r(n))ρ(s(n)n)ρ(t(n)))

∼β ρ(e(n)).This give us a funtion α whih ompletes the indution. �6.7 Proof of Theorem 16We remind the theorem we want to prove :Let f be a ost funtion desribed by a LTL≤-formula, then f is regular andthe syntati stabilization semigroup of f is aperiodi.Proof. We want to show that for all LTL≤-formula φ, S[[φ]] is aperiodi.We proeed by an indution on φ and use the haraterization of S[[φ]] pro-vided by Theorem 14.If φ = a ,then S[[φ]] = {a, b} with a · b = a · a = a, and b · a = b · b = b, it is aperiodi(also trivial if φ = ¬a).



If φ = Ω ,then S[[φ]] = {1, a} with 1 neutral element and a · a = a, it is aperiodi.If φ = ϕ1 ∧ ϕ2 or φ = ϕ1 ∨ ϕ2 ,
φ is reognized by the produt semigroup of S[[ϕ1]] and S[[ϕ2]], whih is aperi-odi by indution hypothesis.If φ = Xψ ,we know by indution hypothesis that S[[ψ]] is aperiodi, so there exists k ∈ Nsuh that for any ω♯-expression E, Ek ≡[[ψ]] E

k+1. We want to show that it isalso true for [[φ]]. Let E be a ω♯-expression, and e = E[ω ← max(K[[φ]]!,K[[ψ]]!)](from Lemma 11).We want to show thatEk+2 ≡[[φ]] E
k+1 i.e. for any ontext C[x], [[φ]](C[ek+2 ](n)) ⊲⊳

n→∞

[[φ]](C[ek+1](n)).Let C[x] be a ontext. If C[x] = aC′[x], then [[φ]](C[ek+2](n)) = [[ψ]](C′[ek+2](n)) ⊲⊳
n→∞

[[ψ]](C′[ek+1](n)) = [[φ]](C[ek+1](n)) (by proposition ?? with ontext xe).If the beginning of C[x] is a letter a under (at least) a ♯, we have a on-text C′[x] suh that for any ♯-expression e′, C[e′](n + 1) = aC′[e′](n). For in-stane if C[x] = ((ax)♯b)♯ then C′[x] = x(ax)♯b((ax)♯b)♯. Then we an write
[[φ]](C[ek+2](n+1)) = [[ψ]](C′[ek+2](n)) ⊲⊳

n→∞
[[ψ]](C′[ek+1](n)) = [[φ]](C[ek+1](n+

1)).Finally, if C[x] starts with x (possibly under ♯), we expand x in ex in C[x],so that it does not start with x anymore. As before we an get C′[x] suh that
C[ek+1](n+ 1) = aC′[ek](n) and C[ek+2](n+ 1) = aC′[ek+1](n) for all n, hene

[[φ]](C[ek+2](n+ 1)) = [[φ]](aC′[ek+1](n))
= [[ψ]](C′[ek+1](n))
⊲⊳

n→∞
[[ψ]](C′[ek](n))

= [[φ]](aC′[ek](n))
= [[φ]](C[ek+1 ](n+ 1))If φ = ϕUψ ,we know by indution hypothesis that S[[ϕ]] and S[[ψ]] are aperiodi, so thereexists k ∈ N suh that for any ω♯-expression E, Ek ≡[[ϕ]] E

k+1 and Ek ≡[[ψ]]

Ek+1. Let E be a ω♯-expression. We will show that Ek+1 ≡[[φ]] E
k+2Let C[x] be a ontext in COE, K = max(K[[ϕ]],K[[ψ]]), un = C[Ek+1](K!, n)and vn = C[Ek+2](K!, n). We want to show that C[Ek+1] ⇋[[φ]] C[Ek+2], i.e.

[[φ]](un) ⊲⊳
n→∞

[[φ]](vn). Assume for example that [[φ]](un) is bounded by m Wehave un,m |= φ for all n. We an write un = ynzn with zn,m |= ψ and for anystrit su�x yin of yn, yinzn,m |= ϕ. Let pn be the starting position of zn (position
0 being the beginning of the word). We de�ne yin to be the su�x of yn startingat position i for all i ∈ [[0, p− 1]]. In this way y0

n = yn.



Let us fous on the position pn of the beginning on zn. The ♯-expression e =
C[Ek+1](K!) is �nite so we an extrat a sequene uδ(n) from un suh that thebeginning position pδ(n) of zδ(n) orresponds to the same position p in e. Let
{ej, j ∈ J} be the �nite set of ♯-expression suh that e♯j ontains position p in e.We hoose J = {1, r} with 1 ≤ j < j′ ≤ r implies e♯j is a subexpression of ej′ .For onveniene, we label the ♯-operator of e♯j with j. Note that J an be empty,if p does not our under a ♯ in e.We denote by ←−fj (δ(n)) the number of ourenes of ej(δ(n)) (oming fromthe orresponding e♯j) in yδ(n) and we de�ne −→fj (δ(n)) in the same way relativelyto zδ(n). We have for all n ∈ N, δ(n) − 1 ≤

←−
fj (δ(n)) +

−→
fj (δ(n)) ≤ δ(n). The

δ(n) − 1 lower bound is due to the fat than p an be in the middle of oneourene of ej , therefore this ourene does not appear in yδ(n) nor in zδ(n).This implies that for eah j ∈ J , we are in one of these three ases :� j ∈ J1 : ←−fj (δ(n)) is unbounded and −→fj (δ(n)) is bounded.� j ∈ J2 : ←−fj (δ(n)) is bounded and −→fj (δ(n)) is unbounded.� j ∈ J3 : ←−fj (δ(n)) and −→fj (δ(n)) are both unbounded .But J is �nite, hene we an extrat σ(n) from δ(n) suh that for eah j ∈ J :� If j ∈ J1, ←−fj (σ(n))→∞ and −→fj (σ(n)) is onstant.� If j ∈ J2, ←−fj (σ(n)) is onstant and −→fj (σ(n))→∞.� If j ∈ J3, ←−fj (σ(n))→∞ and −→fj (σ(n))→∞.Remark that if j < j′ and −→fj ◦ σ 6= 0, then j /∈ J1. Symmetrially, if j < j′ and
←−
fj ◦ σ 6= 0, then j /∈ J2.We an distinguish three ases for the position of p in e = C[Ek+1](K!) :First ase : p is before the �rst ourene of E in e.We then onsider C′[x] ∈ COE obtained from C[x] by replaing ♯j by theonstant value of −→fj (σ(n)) for all j ∈ J1. We have [[ψ]](zσ(n)) ≤ m for all n, butby Lemma ??, [[ψ]](zn) is bounded i� C′[Ek+1] ∈ [[ψ]]B . By indution hypothesis,
C′[Ek+1] ∈ [[ψ]]B ⇔ C′[Ek+2]] ∈ [[ψ]]B. Let z′n be the su�x of C[Ek+2](K!, n)starting at position pn. By reusing Lemma ??, we get that [[ψ]](z′σ(n)) ≤ m′ forsome m′.We still have to show that there exists a onstantM suh that [[ϕ]](yiσ(n)z

′
σ(n)) ≤

M for all n and all i ∈ [[1, pσ(n)]] (the yiσ(n) are not a�eted by the hange from
Ek+1 to Ek+2). Let us all giσ(n) = [[ϕ]](yiσ(n)z

′
σ(n)) for more lisibility. Let usassume that no suhM exists, then {

giσ(n), n ∈ N, 1 ≤ i ≤ pσ(n)

} is unbounded.For all n, we de�ne in suh that giσ(n)

σ(n) = max
{
giσ(n), 1 ≤ i ≤ pσ(n)

}. By on-strution, the sequene giσ(n)

σ(n) = [[ϕ]](y
iσ(n)

σ(n) z
′
σ(n)) is unbounded. We �rst extrat

σ′(n) from σ(n) suh that giσ′(n)

σ′(n) →∞.



We an now repeat the same proess as before to extrat a sequene γ(n) from
σ′(n), suh that the starting positions of yiγ(n)

γ(n) for all n orrespond to the sameposition in e, and suh that there exists a ontext C′′[x] with [[ϕ]](y
iγ(n)

γ(n) zγ(n)) ⊲⊳
n→∞

[[ϕ]](C′′[Ek+1](K!, γ(n))) (by Lemma ?? again). By adding an extraE (from k+1to k+ 2) and hanging z by z′ (the y fators are not onerned by ourenes of
E), we get giγ(n)

γ(n) ⊲⊳
n→∞

[[ϕ]](C′′[Ek+2](K!, γ(n))). By hypothesis, [[ϕ]](y
iγ(n)

γ(n) zγ(n))bounded by m, and C′′[Ek+1] ⇋[[ϕ]] C
′′[Ek+2], so g

iγ(n)

γ(n) is bounded, but wealready know that giγ(n)

γ(n) →∞. We have a ontradition, so M must exist.We �nally obtain the existene ofM suh that for all n and valid i, [[ϕ]](yiσ(n)z
′
σ(n)) ≤

M . This together with the previous result on ψ gives us that [[ϕUψ]](C[Ek+2](K!, n)) ≤
max(m′,M). We got C[Ek+1] ∈ [[φ]]B =⇒ C[Ek+2] ∈ [[φ]]B . The other dire-tion works exatly the same, by removing one E instead of adding one. Henewe have C[Ek+1] ⇋[[φ]] C[Ek+2].Seond ase : p is after the last ourene of E in e.This time zn is not a�eted by hanging from Ek+1 to Ek+2, however it a�etssome of the yin. Let y′inzn be the su�xes of vn = C[Ek+2](K!, n), and p′n the posi-tion of the beginning of zn in vn. As before, we assume that {

[[ϕ]](y′iσ(n)zσ(n)), n ∈ N1 ≤ i ≤ pσ(n)

}is unbounded, and we build a sequene y′iγ(n)

γ(n) with the same start position in e,suh that [[ϕ]](y
′iγ(n)

γ(n) zγ(n))→∞.We an again extrat ontext C′′[x], but we may need to use again Lemma??, in order to map the ♯'s of C′′[x] with the remaining repetitions of idempotentelements, (whih ould be any funtions g(n) < n). The main idea is to mappositions in vγ(n) with positions in uγ(n) in order to be able to bound the values
[[ϕ]](y

′iγ(n)

γ(n) zγ(n)) with what we know about the behaviour on uγ(n), and so get aontradition. Three ases are to be distinguished :� If a fator orresponding to Ek+2 ours in the y′iγ(n)

γ(n) , the preedent proofstays valid, and we an map y′iγ(n)

γ(n) with some yjγ(n)

γ(n) (jγ(n) may be di�erentfrom iγ(n)) in order to get the ontradition. The mapping just need to takein aount the shift due to the new ourenes of E, but the positions in thewords are essentially the sames.� If the remaining fators ontain at most k ourenes of E, then the positionan be mathed with positions in un without any hanges, and we get theontradition.� If the remaining fators ontain k + 1 ourenes of E, then we an use theequivalene Ek+1 ≡[[ϕ]] E
k to math positions in vn with positions in unand get the ontradition. This time we map positions in the �rst E of eahsequene Ek with the orresponding position in the seond one. Informally,we �dupliate� the �rst E of eah sequene.Third ase : In all other situations, a ombination of the tehniques used abovegives us the wanted result. We just need to do with ψ what we did with ϕ in



the seond ase : for instane we may use Ek+1 ≡[[ψ]] E
k if z′σ(n) ontains k + 1ourenes of E.As before, the other way is similar, and we �nally get Ek+1 ≡[[φ]] E

k+2. Inonlusion, S[[φ]] is aperiodi.If φ = ϕU≤Nψ We just need to adapt the preedent proof to take in aountsome exeptions in the validities of ϕ formulae. Indeed removing an ourene of
E does not hange the number of possible mistakes, but adding one an doubleit (at worse), sine at most two positions in vn are mapped to the same positionin un. Hene , under the hypotheses Ek ≡[[ψ]] E

k+1 and Ek ≡[[ϕ]] E
k+1, we get

Ek+1 ≡[[ϕU≤Nψ]] E
k+2, with a orretion funtion that doubles the one in thepreedent proof. We an onlude that S[[φ]] is also aperiodi in this ase.6.8 Proof of Theorem 17We remind the theorem we want to prove :Let f be a ost funtion reognized by an aperiodi stabilization semigroup,then f an be desribed by a LTL≤-formula.Proof. This proof is a generalization of the proof from Wilke for aperiodi lan-guages in [Wil99℄.Let us �rst notie that �Sf is aperiodi� is equivalent to �f is omputed byan aperiodi stabilization monoid�, sine aperiodiity is preserved by quotientand by addition of a neutral element.We take an alphabet A ⊆M to avoid using a morphism h and simplify theproof. The LTL≤-formulae are about elements of M, and are monotoni in thesense that [[a]](bu) = 0 i� b ≥ a, ∞ otherwise. It is easy to get from this tothe general ase by substituting in the formula an element m by ∨h(a)≥ma. Wealso will be sloppy with the empty word ε. It is not more di�ult to take it inaount, but the addition of a lot of speial ases for ε in the proof would makeit harder to understand.We assume that f on alphabet A ⊆M is omputed byM, I withM aperiodi.Let ρ be ompatible with M.If m ∈ M, we note fm the ost funtion fm(u) = inf {n/ρ(u)(n) ≥ m}. Itis su�ient to show that the fm funtions are LTL≤-omputable, sine f ≈

minm/∈I fm.We proeed by indution on both the size of the stabilization monoid andon the size of the alphabet, the indution parameter being (|M|, |A|) for order
<lex.We add in the indution hypothesis that M has a neutral element 1 formultipliation.If |M| = 1 then f is the onstant funtion 0 or∞, whih is LTL≤-omputable.If A = {a}, we an onsider that M =

{
ai/0 ≤ i ≤ p

}
∪

{
(ap)♯

} (by aperi-odiity of M) and (ap)♯ ≤ ap is the only pair in ≤. We an show that for all
b ∈M, fb is LTL≤-omputable :



� If i < p, fai ≈ [[
∧

0≤j<iX
ja ∧X iΩ]],� fap ≈ [[⊥U≤NΩ]],� f(ap)♯ ≈ [[

∧
0≤j<pX

ja]]Let us assume that |M| > 1, |A| > 1, and the theorem is true for all
(|M′|, |A′|) <lex (|M|, |A|). We hoose a letter b 6= 1 ∈ A, let B = A \ {b}.Let L0 = B∗, L1 = B∗bB∗, and L2 = B∗b(B∗b)+B∗. We haveA∗ = L0∪L1∪L2.We de�ne restritions of fm : f0, f1, f2 on L0, L1, L2 respetively (giving value
∞ outside of the domain). We have fm = min(f0, f1, f2). Hene it su�es to showthat the fi's are LTL≤-omputable to get that fm is also LTL≤-omputable.

f0 is omputed by M on alphabet B, so by indution hypothesis there is aformula ϕ0 on B omputing f0. The formula ϕ′
0 = ϕ0 ∧ G¬b is a formula on Aomputing f0.For all x ∈M, let ϕx be the LTL≤-formula on B omputing fx (restrited to

B∗), these formulae exist by indution hypothesis, sine |B| < |A|.If ϕ is a LTL≤-formula on B, we de�ne its �relativisation� ϕ′ on A whih hasthe e�et of ϕ on the part before b in a word. We de�ne ϕ′ by indution in thefollowing way :
a′ = a ∧XFb
Ω′ = b
(ϕ ∧ ψ)′ = ϕ′ ∧ ψ′

(Xϕ)′ = Xϕ′ ∧ ¬b
(ϕUψ)′ = (ϕ′ ∧ ¬b)Uψ′

(ϕU≤Nψ)′ = (ϕ′ ∧ ¬b)U≤Nψ′With this de�nition, [[ϕ′]](u1bu2) = [[ϕ]](u1) for any u1 ∈ B∗ and u2 ∈ A∗.We de�ne the following formula on A:
ϕ1 = (

∨

xby=m

(ϕ′
x ∧ F (b ∧Xϕy)) ∧ (¬bU(b ∧XG¬b))The seond part ontrols that the word is in L1. We show [[ϕ1]] ≈ f1.Let u ∈ L1, we an write u = u1bu2 with u1, u2 ∈ B∗.By de�nition of ϕ1,

[[ϕ1]](u) = minxby=m max([[ϕ′
x]](u), [[ϕy ]](u2))

= minxby=m max([[ϕx]](u1), [[ϕy ]](u2))
= minxby=m max(fx(u1), fy(u2)).We have for any z ∈ M and v ∈ B∗, ρ(v) � ⊥|fz(v)z where ⊥ is an extrasmallest element (by de�nition of fz).But for any x, y suh that xby = m,

ρ(u) ∼ ρ̃(ρ(u1)bρ(u2))
� ρ̃(⊥|fx(u1)x · b · ⊥|fy(u2)y)
� ⊥|max(fx(u1),fy(u2)m.It implies that for some β (not depending on u), ∀x, y suh that xby = m,

fm(u) ≤β max(fx(u1), fy(u2)).In partiular, f1(u) = fm(u) ≤β minxby∈I max(fx(u1), fy(u2)) = [[ϕ1]](u).We an onlude f1 4 [[ϕ1]].



Conversely, let us assume that f1(u) ≤ n, it means that ρ(u)(n) ≥ m. but
ρ(u) ∼α ρ(u1) · b · ρ(u2), so ρ(u1)(α(n)) · b · ρ(u2)(α(n)) ≥ m.Let x = ρ(u1)(α(n)) and y = ρ(u2)(α(n)), we have fx(u1) ≤ α(n) and
fy(u2) ≤ α(n), so max(fx(u1), fy(u2)) ≤ α(n). We get [[ϕ1]](u) ≤ α(n), and inonlusion [[ϕ1]] 4 f1. This onludes the proof of [[ϕ1]] ≈ f1.Last but not least, we have to show that f2 is LTL≤-omputable. For that wewill �nally use the indution hypothesis on the size of the monoid (until now weonly have dereased the size of the alphabet and kept the monoid unhanged).We de�ne the stabilization monoid M′ = 〈Mb∩ bM, ◦, ♮,≤′〉 in the followingway : xb ◦ by = xby, and for xb idempotent (xb)♮ = (xω)♯b where xω = x|M|is idempotent, sine M is aperiodi. M′ is a stabilization monoid, let ρ′ beompatible with M′. We an �rst notie that this de�nition implies (xb)k = xkb,so M′ is also aperiodi. Moreover, if 1 ∈ M′, let n = |M|, 1 = xb = (xb)k =
xkbk = xkbk+1 = (xb)kb = 1b = b, but b 6= 1 so 1 /∈M′, b is the neutral elementfor ◦ in M′, and |M′| < |M|, whih allows us to use indution hypothesis on M′with alphabet M′.Let ∆ = b(B∗b)+, then L2 = B∗∆B∗.Let d ∈M, we �rst want to show that fd over language∆ is LTL≤-omputable.Let σ : ∆→ (M′N)∗

bu1b . . . ukb 7→ (bρ(u1)b) . . . (bρ(uk)b)By indution hypothesis, for any x ∈M′, there exists a LTL≤-formula ψx onalphabet M′ and a orretion funtion α suh that for any v ∈M′∗,
[[ψx]](v) ≈α inf {n/ρ′(v)(n) ≥ x}.De�nition 30 Let S be a stabilization monoid. Let f be a ost funtion S∗ →
N∞, and S↑ be the set of α-inreasing sequenes of elements of S (for some α).we de�ne f̃ : S↑ → N∞ by f̃(u) = inf {n/f(un) ≤ n}.Remark that this notation is oherent with the˜operator previously de�ned forfuntions E → FN in the sense that if f is reognized by S, h, I with ompatiblefuntion ρ, then f̃ ≈ u 7→ I[ρ̃(h(u))].Lemma 31 We laim that there exists α and φd a LTL≤-formula on alphabet
A suh that for all u ∈ ∆ and v ∈ B∗:

[[φd]](uv) ≈α [̃[ψd]](σ(u)) ≈α fd(u)With this result we an build a formula ϕ2 omputing f2 :
ϕ2 = (

∨

xdy=m

(ϕ′
x ∧ F (b ∧Xφd)) ∧ F (b ∧X(G¬b ∧ ϕy))) ∧ ϕL2where ϕL2 = F (b ∧XFb) ontrols that the word is in L2.By onstrution, lemmas and indution hypothesis, there exists α suh thatfor all v1, v2 ∈ B∗ and u ∈ ∆,

[[ϕ2]](v1uv2) ≈α minxdy=mmax([[ϕ′
x]](v1uv2), [[φd]](uv2), [[ϕy]](v2))

≈α minxdy=mmax(fx(v1), fd(u), fy(v2)).



The proof that minxdy=mmax(fx(v1), fd(u), fy(v2)) ≈ fm(v1uv2) is similarto the proof of [[ϕ1]] ≈ f1.All this together gives us [[ϕ2]] ≈ f2, whih onludes the proof. �Proof of Lemma ??Proof. First let us show that [̃[ψd]](σ(u)) ≈α fd(u) for some α and all u ∈ ∆. Let
u = bu1bu2 . . . ukb with ui ∈ B∗. For eah i ∈ [[1, k]] and t ∈ N, ρ(ui)(t) = ai,t ∈
M. For all t ∈ N, let vt = (ba1,tb) . . . (bak,tb), vt is a word on M′ of length k,and σ(u) = (vt)t∈N. Finally, let wt = ba1,tba2,t . . . bak,tb of length 2k + 1 on M.We have :

[̃[ψd]](σ(u))) = inf {t/[[ψd]](vt) ≤ t}
≈ inf {t/ inf {n/ρ′(vt)(n) ≥ d} ≤ t}We an verify that ρ′(vt) ∼ ρ(wt) for any t : we hek that ρ′ veri�esthe same axioms on words (ba1b) . . . (bakb) than ρ does for ba1ba2 . . . akb. Theonly interesting ase is the stabilization rule : let bab be an idempotent of M′,

ρ′((bab)p) ∼ (bab)♮|p(bab) ∼ (ba)ω♯b|p(bab). But if p = |M|p′+p′′ with p′′ < |M|,
ρ((ba)pb) ∼ ρ((ba)|M|)p

′

) · (ba)p
′′

b

∼(1) ρ(((ba)ω)
p′

) · (ba)p
′′

b

∼ (ba)ω♯(ba)p
′′

b|p′(ba)ω(ba)p
′′

b

∼(2) (ba)ω♯b|p(bab).We get the equivalene (1) by aperiodiity of M ((ba)ω is now a letter andno longer a word of length |M|), and (2) by the fat that bab is idempotent in
M′ so (ba)ω(ba)p

′′

b = bab, and (ba)ω(ba)p
′′

= (ba)ω by aperiodiity of M (andalso p ≈×(|M|+1) p
′).We an then apply the uniity theorem from [Col09℄ : ρ is unique up to ∼,hene we have ρ′(vt) ∼ ρ(wt) for any t.Moreover, let w = (wt)t∈N, we show that

inf {n′/ρ̃(w)(n′) ≥ d} ≈ inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t} : (EQ).Let N ′ = inf {n′/ρ̃(w)(n′) ≥ d} , ρ(wN ′)(N ′) ≥ d and N ′ ≤ N ′so N ′ ≥ inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t}.Conversely, let T = inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t} and N the orrespond-ing value of inf {n/ρ(wt)(n) ≥ d}, we have N ≤ T and ρ(wt) is α-inreasing, so
ρ(wT )(T ) ≥α ρ(wT )(N) ≥ d, i.e. T ≥α inf {n′/ρ̃(w)(n′) ≥ d}.Hene we have the equivalene (EQ).Finally,
[̃[ψd]](σ(u))) ≈ inf {t/ inf {n/ρ(wt)(n) ≥ d} ≤ t}

≈ inf {n/ρ̃(w)(n) ≥ d} by (EQ)
= inf {n/ρ̃(bρ(u1)bρ(u2) . . . ρ(uk)b)(n) ≥ d}
≈ inf {n/ρ(bu1bu2 . . . ukb)(n) ≥ d} Substitution axiom
≈ fd(u).whih onludes the proof of [̃[ψd]](σ(u))) ≈ fd(u).



It remains to show that there exists a formula φd and a α suh that for all
u, v ∈ ∆× B∗, [[φd]](uv) ≈α [̃[ψd]](σ(u)).If ψ is a LTL≤-formula on M′, we de�ne ψ⋆ on alphabet A by indution on
ψ:

x⋆ = (b ∧XFb) ∧ (Xϕ′
x)

(ψ1 ∧ ψ2)
⋆ = ψ⋆

1 ∧ ψ
⋆

2

(ψ1 ∨ ψ2)
⋆ = ψ⋆

1 ∨ ψ
⋆

2

(Xψ)⋆ = ¬bU(b ∧ ψ⋆)

(ψ1Uψ2)
⋆ = (b =⇒ ψ⋆

1 )U(b ∧ ψ⋆

2 )

(ψ1U
≤Nψ2)

⋆ = (b =⇒ ψ⋆

1 )U≤N (b ∧ ψ⋆

2 ).Where ϕ′
x is de�ned as before for any ϕx on alphabet B.Let us show by indution on ψ that that [[ψ⋆]](uv) ≈ [̃[ψ]](σ(u)) for u =

bu1bu2 . . . ukb ∈ ∆ and v ∈ B∗ :� If x ∈M′,
[[x⋆]](uv) = [[ϕ′

x]](u1bu2 . . . ukbv) = [[ϕx]](u1), and
[̃[x]](σ(u)) = inf {n/[[x]](ρ(u1)(n)) ≤ n} ≈ inf {n/(ρ(u1)(n)) ≥ x} ≈ [[ϕx]](u1).� ∧ ase :
[[(ψ1 ∧ ψ2)

⋆]](uv) = max([[ψ⋆

1 ]](uv), [[ψ⋆

2 ]](uv))

≈ max([̃[ψ1]](σ(u)), [̃[ψ2]](σ(u)))

≈ ˜[[ψ1 ∧ ψ2]](σ(u))� ∨ ase :
[[(ψ1 ∨ ψ2)

⋆]](uv) = min([[ψ⋆

1 ]](uv), [[ψ⋆

2 ]](uv))

≈ min([̃[ψ1]](σ(u)), [̃[ψ2]](σ(u)))

≈ ˜[[ψ1 ∨ ψ2]](σ(u))� X ase :
[[(Xψ)⋆]](uv) = [[ψ⋆]](bu2b . . . ukbv)

≈ [̃[ψ]](σ(bu2b . . . ukb))

≈ [̃[Xψ]](σ(bu1bu2b . . . ukb))� U ase :
[[(ψ1Uψ2)

⋆]](uv) = min1≤j≤k(max([[ψ⋆

2 ]](bujb . . . ukbv),max1≤i≤j [[ψ
⋆

1 ]](buib . . . ukbv)))

≈ min1≤j≤k(max([̃[ψ2]](σ(bujb . . . ukb)),max1≤i≤j [̃[ψ1]](σ(buib . . . ukb))))

≈ ˜[[ψ1Uψ2]](σ(u))� The U≤N ase is the same than above, allowing at most N mistakes for ψ1.We now just have to take φd = ψ⋆

d to omplete the proof of Lemma ??.
�6.9 Case of unregular ost funtionsThe syntati ongruene still an de�ned on unregular language, and the num-ber of equivalene lasses beomes in�nite, whereas we need ost funtions to beregular a priori to de�ne their syntati ongruene.Here, if f is not regular, ≡f may not be properly de�ned, sine we use theexistene of a minimal stabilization semigroup of f to give a semanti to the



operator ω. But we an go bak to ♯-expressions and de�ne ∼f on Expr forall f in the following way : e ∼f e′ if for any C[x] ontext on ♯-expressions,
{f(C[e])(n), n ∈ N} is bounded i� {f(C[e′])(n), n ∈ N} is bounded.In this way if f is regular, then for all e, e′ ∈ Expr, e ∼f e′ i� e[♯← ω♯] ≡f
e′[♯ ← ω♯]. In partiular Expr/∼f is bigger than Oexpr/≡f when f is regular :there might be equivalene lasses orresponding to ♯-expressions that are notwell-formed for f .However, if f is not regular, Expr/∼f is not in�nite in general (this di�ersfrom the results in language theory).Example 32 Let f(u) = mine∈Expr {|e|, ∃n ∈ N, u = e(n)}, there is only oneequivalene lass for ∼f (f(C[e](n)) is always bounded by |C[e]|) so Expr/∼fhas only one element, and therefore annot ontain a stabilization semigroupomputing f . This gives us a proof that f is not regular.


