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Autocatalysis is seen as a potential key player in the origin of life, and perhaps more generally in the

emergence of Darwinian dynamics. Building on recent formalizations of this phenomenon, we tackle the
computational challenge of exhaustively detecting autocatalytic cycles in reactions networks, and further

evaluate the impact of thermodynamic constraints on their realization under mass action kinetics. We

first characterize the complexity of the detection problem by proving its NP-completeness. This justifies
the use of constraint solvers to list all autocatalytic cycles in a given reaction network, and also to group

them into compatible sets, composed of cycles whose stoichiometric requirements are not contradictory.

Crucially, we show that the introduction of thermodynamic realism does constrain the composition of these
sets. Compatibility relationships among cycles can indeed be disrupted when the reaction kinetics obey

thermodynamic consistency throughout the network. On the contrary, these constraints have no impact on

the realizability of isolated cycles, unless upper or lower bounds are imposed on the concentrations of the
reactants. Overall, by better characterizing the conditions of autocatalysis in complex reaction systems, this

work brings us a step closer to assessing the contribution of this collective chemical behavior to the emergence

of natural selection in the primordial soup.

Significance Statement: Describing the processes be-
hind the origin of life requires us to better understand self-
amplifying dynamics in complex chemical systems. Detecting
autocatalytic cycles is a critical but difficult step in this en-
deavor. After characterizing the computational complexity
of this problem, we investigate the impact of thermodynamic
realism on autocatalysis. We demonstrate that individual cy-
cles, regardless of thermodynamic parameters, can be acti-
vated as long as entities may occur at any required concen-
tration. In contrast, two cycles can become mutually incom-
patible due to thermodynamic constraints, and will thus never
run simultaneously. These results clarify the implications of
physical realism on the realization of autocatalysis.

I. INTRODUCTION

It is increasingly recognized that producing a consistent
explanation for the origination of life will require us to ex-
plain how Darwinian evolution may have gradually emerged
from a non-biological, purely physical world [1–9]. Gradually
rather than suddenly, that is, without assuming that natural
selection only came into play once chance alone had produced
the first obvious “replicators”, displaying the same heritable
variance as current organisms. Under this perspective of a
smooth transition from physics to biology, natural selection
is hypothesized to have been active already in the “prebiotic”
soup as a driver to complexity; yet in a rudimentary and cur-
rently unrecognizable fashion.

To explore this path, autocatalysis is often taken as a plau-
sible starting point (Box 1) [6, 10–14]. Here, more specifically,
we envision autocatalytic cycles as the putative elementary
components of higher level systems that may engage in “in-
creasingly Darwinian” dynamics. In doing so, we aim at keep-
ing the best of the two traditionally opposed approaches to the
origin of life: physico-chemical realism of the metabolism-first
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view, and evolvability of the gene-first perspective. Beyond
the specifics of terrestrial life, progressing toward an articu-
lation of Darwinian principles with physics appears as a pre-
requisite to assess their putative relevance to other physical
systems [2, 3].

We build on recent theoretical and computational develop-
ments [10, 15, 16] to systematically search for autocatalytic
cycles in reaction networks and then assess their thermody-
namic consistency, i.e. the impact of thermodynamic con-
straints on their realization. We first prove that finding au-
tocatalytic cycles in the network is an NP-complete problem
– a question that was left open by earlier work [17, 18] – and
converge with other authors in using constraint solvers as a
technical solution [10, 16]. We then question whether such
autocatalytic cycles, defined on the sole basis of the reaction
network topology, can also be realized once thermodynamic
constraints are introduced. To do so, we take into account
the reaction kinetics that themselves depend on the Gibbs
free energies and concentrations of the reactants, and the ac-
tivation barriers of the reactions. We show that regardless
of these physical quantities, any potential autocatalytic cy-
cle may be instantiated in some region of the concentration
space as long as one assumes this space is unbounded. In
contrast, thermodynamic constraints do restrain compatibil-
ity relationships between autocatalytic cycles and will thereby
impact the dynamics of complex chemical networks.

Box 1: Related work on autocatalysis

The present study takes place within a flourishing body of

literature taking autocatalysis as a plausible primary compo-
nent of proto-biotic or proto-Darwinian systems. Our model

contrasts from those based on the RAF framework [19, 20] in

that it follows a bottom-up approach to autocatalysis: rather
than setting catalytic relationships between components of

the system and randomly picked reactions, we let the reac-

tion network generate (or not) these relationships, as formal-
ized by Blokhuis et al [15]. Catalysis and autocatalysis then

simply emerge as pathways in the reaction network involving
elements that act both as reactants and products. For exam-

ple, in the reactions A+C→AC, AC+B→ABC, ABC→AB +
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C, the C element can be simply described as a catalyst of the

A+B→AB reaction.

In taking such a bottom-up angle, our framework is much
related to that of several recent studies [10–12, 16, 21, 22].

Some of these have considered the implications of thermody-

namic constraints and mass action kinetics on specific auto-
catalytic motifs [11, 12, 21]. Others have implemented tools

for the exhaustive detection of autocatalysis [10, 16, 22]. Here

we jointly consider these two components of the problem, i.e.
exhaustive detection and thermodynamic realism.

On a more conceptual ground, we share with Baum et al [6]
the view that collections of autocatalytic cycles, rather than

cycles alone, might constitute the scale at which incipient

heritable variations may occur.

II. FRAMEWORK AND DEFINITIONS

We analyze networks of bidirectional reactions governed by
mass action kinetics. This is typically the case in reactions
that simply consist in the association of two entities and the
reciprocal dissociation (e.g. A+B −−⇀↽−− AB). The entities are
fully defined by there composition (e.g. A2B2 is not distinct
from B2A2). Given a list of entities, this rule sets the list of
all possible reactions, only some of which are assumed to exist
to generate a particular reaction network – this is equivalent
to assuming that some reactions have an infinite activation
barrier and thus do not take place.

We can then apply the formalism of Blokhuis et al [15] to
identify autocatalytic motifs in such reaction networks. Here,
these motifs are more specifically referred to as potential auto-
catalytic cycles (PAC), to emphasize that they are defined on
the sole basis of the reaction network topology, so that their
realizability under thermodynamic constraints remains to be
assessed. Intuitively, a PAC can be conceived as a cyclic sub-
network admitting a regime where each entity has a positive
net production rate.

Definition 1. A PAC is defined as a set of entities EC and
reactions RC such that:

• For each reaction R ∈ RC , at least one entity on each
side is in EC .

• There exists a vector v⃗ of flows for reactions from RC

defining a regime where the total contribution of reac-
tions from RC is positive for each entity of EC .

Consider for instance a reaction A + B −−⇀↽−− AB, with
reactants A,B and product AB. Then the stoichiometry σR

A

of A in R is −1 (or −2 if A = B), and σR
AB is 1. If an entity

e does not appear in a reaction R, we define σR
e = 0.

We will note vR the flow of the reaction at a given instant,
that will be positive if the association rate is larger than the
dissociation rate.

Given a PAC candidate C formed of entities EC and reac-
tions RC , and an entity e in EC , we define the variation of
e’s concentration due to C as:

∆C(e) =
∑

R ∈ RC

σR
e · vR (1)

(3)

(3)

(4)

(5)

Figure 1. Schematic view of a formose-like potential autocatalytic
cycle. Entities A2, A3 and A4 are part of the PAC while entity

A1 serves as food. The arrows indicate the net direction of each

reaction, while the line width indicates their respective flows, that
must be decreasing from reactions R1 to R3 for the cycle to run. As

an example, the flows values (indicated in brackets) would produce

a net increase of 1 of each entity. The right panel shows the cor-
responding stoichiometric matrix M . Given the represented flow

vector v⃗ = (5, 4, 3), we obtain M · v⃗ = (1, 1, 1), showing that v⃗ is

indeed a PAC witness.

We define a PAC witness as a choice of vR for each R ∈ RC ,
such that for each e ∈ EC we have ∆C(e) > 0. This can be
formalized using linear algebra, following Blokhuis et al [15].
Indeed, if M is the stoichiometric matrix restricted to EC and
RC , then the candidate C is a PAC if and only if there exists
a witness vector v⃗ such that all coordinates of Mv⃗ are strictly
positive.

Example 1. We illustrate the PAC definition in Figure 1
with a simple formose-like cycle comprising three entities A2,
A3 and A4 and using entity A1 as food, with detailed expla-
nations provided in the caption.

Entities appearing in RC that are not part of EC will be
called either “food” if they are consumed or “waste” if they
are produced by a reaction of RC , taking into account the sign
of the witness vector that indicates the direction of reactions.
Notice that an entity may simultaneously appear as food and
waste in a PAC.

A PAC is said to contain another one if it includes all its en-
tities and reactions. A PAC is minimal if it does not contain
any other, in which case it corresponds to the “autocatalytic
core” from Blokhuis et al [15] and to the stoichiometric au-
tocatalysis of Gagrani et al [16]. In the following, we will
focus on such minimal PACs, often omitting the “minimal”
adjective for simplicity.

Notably, it is shown in Blokhuis et al [15] that in a minimal
PAC, each entity is reactant of a unique reaction, and each
reaction has a unique entity of the PAC as reactant (other
reactants being food). This implies that the direction of reac-
tions is consistent across all witnesses of a given PAC: flipping
the direction of one reaction would force to flip all the others.
Therefore, each reaction of the PAC has a unique possible net
direction, that will be compatible with all its witnesses flow
vectors.
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III. DETECTING POTENTIAL AUTOCATALYTIC

CYCLES

Our goal is to enumerate all PACs in a reaction network.
To this end, we first assess the complexity of this problem,
in order to determine which computational tools are required
for its resolution.

A. NP-completeness proof

Enumerating all PACs in a reaction network involves se-
quentially solving problems of the type: “is there a PAC in
the system besides those previously found?”. We will show
that a particular case of this question is already NP-complete,
which justifies the use of an SMT solver. Namely, we will
prove the NP-completeness of deciding whether a PAC exists
that contains an entity A and takes food from a given subset
F .

In this section, for simplicity, we will relax any composition-
ality constraint on reactions so that letters like A,B,E . . . will
be shorthand for any kind of entity. Yet it would be straight-
forward (but less readable) to extend the construction to a
strictly compositional framework.

Notably, the complexity of the autocatalysis detection
problem has previously been considered by Andersen et al
[17] but from a different angle. These authors have specifically
shown that the following problem is NP-complete: consider-
ing a reaction network that contains a known autocatalytic
cycle, can its resources be produced by the network? The dif-
ficulty of finding all autocatalytic cycles in a reaction network,
that we tackle here, has thus not yet been addressed.

In the framework of Blokhuis et al [15], it is easy to check
whether a proposed set of entities and reactions constitutes
an autocatalytic cycle. Indeed, thanks to the linear algebra
formulation summarized in Section II this problem is solved in
polynomial time by Linear Programming. As will be shown,
the difficulty rather lies in finding an autocatalytic cycle in a
reaction network, among exponentially many possible candi-
dates.

Formally, let PAC-DETECTION be the following algorith-
mic problem:

Definition 2 (PAC-DETECTION problem).

INPUT: A reaction system defined by entities (E) and re-
actions (R), a target A ∈ E, and a set of allowed foods F ⊂ E.

OUTPUT: Is there a PAC containing A and using only
foods from F?

Theorem 1. PAC-DETECTION is NP-complete.

The detailed proof can be found in Appendix 1. We give
here a brief description of the framework of the proof. Be-
cause a PAC candidate can be tested in polynomial time,
PAC-DETECTION is in NP. It remains to be shown that it
is NP-hard. To this end, we reduce from the well-known NP-
complete problem SAT [23]. An instance of SAT asks whether
an input formula on n boolean variables x1, . . . , xn is satis-
fiable, via a suitable assignation of variables with true/false
values.

To perform the reduction, we associate to each such for-
mula φ a reaction system Sφ, of size polynomial in φ, with
a specified target entity A and a food set F . Reactions in
Sφ are designed to mirror the structure of φ, ensuring that a
PAC of the wanted form exists if and only if the formula is
satisfiable. The only possible such PACs will actually directly
encode satisfying assignments for φ.

This shows that PAC-DETECTION is NP-hard: a
polynomial-time algorithm for PAC-DETECTION would
yield a polynomial-time algorithm for SAT, via this reduction.
We can conclude that PAC-DETECTION is NP-complete,
since it is also in NP.

It would be interesting to investigate whether an uncon-
strained version of the PAC detection problem, i.e. without
restricting the allowed foods, is also NP-complete. We leave
this problem open. Since we will be interested in PAC enu-
meration, we must in any case be able to solve the constrained
version.

B. Implementation

The above NP-completeness result justifies the use of an
SMT Solver such as Z3 to enumerate all minimal PACs. We
thus implemented this approach in C++ in the EmergeNS
software [24] (more generally designed to simulate the dynam-
ics of complex physicochemical systems and down the line to
trace the physical emergence of natural selection). In prac-
tice, in a reaction system defined in EmergeNS, we ask the
Z3 solver to find PAC candidates and to assess, for each can-
didate, the existence of a PAC witness, i.e. a reaction flow
vector v⃗ yielding only positive rates for entities of the candi-
date. Following our definition of PACs as minimal, i.e. equiv-
alent to cores from [15], PAC candidates must use all of their
entities exactly once as reactants. We then exclude the list
of already found PACs from the search space, and repeat the
process until no new PAC is found.

As remarked in Section IIIA, verifying whether a given can-
didate is indeed a PAC (by assessing the existence of a PAC
witness) is a linear programming problem, and can thus be
achieved efficiently, i.e. in polynomial time. The need for Z3
comes from the search for PAC candidates in an exponential
space of possible subsets of entities and reactions.

IV. PAC CONSISTENCY UNDER
THERMODYNAMIC CONSTRAINTS

The kinetics of a reaction network must obey the second
law of thermodynamics, a constraint that is not considered in
the PAC definition. Indeed, this definition solely relies on the
existence of a witness v⃗ of reaction flows, that may or may
not be compatible with thermodynamic constraints.

More precisely, once association and dissociation constants
are derived from free energies and activation barriers, they
cannot be freely chosen. Let us give more details on this link
between energies and reaction rates. First, recall that each
entity e is associated with a chemical potential µ, which is
the sum of their molar Gibbs free energy (or standard po-
tential) G, and their activity (that we identify here to their
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concentration [e], hence placing ourselves in the ideal solution
regime)1:

µ = G+ ln [e] (2)

In addition, the flow of a reaction R, denoted vR, depends on
the concentrations (i.e. activities) of its entities, under mass
action kinetics:

vR = k
(+)
R ·

∏
ei reactant

[ei]
−σR

ei − k
(−)
R ·

∏
ej product

[ej ]
σR
ej , (3)

where k
(+)
R and k

(−)
R ) are respectively the forward and back-

ward kinetic rate constants and σR
ei is the ei stoichiometry in

reaction R. The key point, to enforce the second law, is to
relate the kinetic rate constants to Gibbs free energies using
the local detailed balance condition (also known as Eyring’s
formula):

k
(+)
R = exp(−G†

R +
∑

ei reactant

(−σR
ei) ·Gi)

k
(−)
R = exp(−G†

R +
∑

ej product

σR
ej ·Gj)

(4)

Notice that we have also introduced here an intermediate state
energy G†

R resulting in an activation barrier.
Injecting Equation (4) in Equation (3) leads to the follow-

ing formulation that will be further used below:

vR = e−G
†
R ·

 ∏
ei reactant

e
−σR

ei
·µi −

∏
ej product

e
σR
ej

·µj

 (5)

The question of addressing the thermodynamic consistency
of PACs can thus be reformulated as follows: can a PAC
flow witness v⃗ be realized through a concentration vector c⃗
of all entities of the system ? If such a vector c⃗ exists, the
PAC will be considered as a thermodynamically Consistent
Autocatalytic Cycle (CAC). The concentration vector c⃗ will
then be called a CAC witness. Here we reach the second
key result of the present study, namely, that one can always
find such a CAC witness – i.e. that a single PAC is always
thermodynamically consistent – as long as the concentration
space is unbounded.

Theorem 2. Let v⃗ be a PAC witness (or any flow vector
compatible the directions of the PAC reactions). Then there
exists λ > 0 and a concentration vector c⃗ such that λv⃗ is the
flow vector induced by c⃗.

The general proof of this theorem is given in Appendix 2,
with an example provided in Appendix 2 a. It should be
noted that Theorem 2 actually has a broader scope than the
problem specifically addressed in this section, since it demon-
strates that any flow vector v⃗ matching directions of the PAC

1 In this formulation, we set RT = 1, which can be done without loss

of generality, as this is simply equivalent to expressing Gibbs free

energies in RT units. In the following, the notation R will stand for

a reaction, and the gas constant will not be referred to again

reactions can be realized in the concentration space up to
some proportionality factor λ > 0. Notably, this holds for
any values of activation barriers and Gibbs free energies, and
even when food and waste concentrations are fixed to any
arbitrary values.

This allows us to deduce the following corollary:

Corollary 1. Any PAC is a CAC.

Proof of Corollary 1. Consider a PAC formed of entities
(e1, . . . , en) and reactions (R1, . . . , Rn) (recall that accord-
ing to Blokhuis et al [15], a minimal PAC contains as many
entities as reactions). Let v⃗ = (v1, . . . vn) be a PAC witness.
Since the inequalities to be satisfied by a PAC witness are all
linear with respect to the coordinates of v⃗ (see Equation (1)),
for all λ > 0, λv⃗ is a PAC witness as well. Applying Theorem
2 gives us the existence of some λ > 0 and a concentration
vector c⃗ yielding flows λv⃗, which is a PAC witness. Thus c⃗
is a CAC witness, and the arbitrary minimal PAC we started
with is indeed a CAC.

V. COMPATIBILITY AMONG AUTOCATALYTIC
CYCLES

In this section, we investigate whether thermodynamic con-
straints affect compatibility relationships among cycles. To
do so, we first analyze compatibility among PACs, that is,
we identify sets of cycles that are found compatible on the
basis of the reaction network topology alone, hereafter called
“multiPACs”. A set of PACs is a multiPAC if there exists a
common witness v⃗ of reaction flows allowing all the PACs of
the set to run simultaneously. In the framework of Gagrani
et al [16], this corresponds to a nonempty intersection of the
flow-productive cones for the different autocatalytic cores con-
sidered. Here, instead of computing explicit intersections, we
will use the Z3 solver to identify nonempty intersections, and
directly ask for a single vector v⃗ witnessing the different PACs
simultaneously. To do so, we simply concatenate the require-
ments already defined for each individual PAC.

Interestingly, we note that incompatibility between PACs
may occur for various reasons. The simplest case, illustrated
in Figure 2, is when a reaction is shared between two PACs,
but in opposite directions. This obviously prevents the ex-
istence of a common flow vector witness v⃗. Yet more subtle
cases were also obtained from our software using randomly
generated reaction networks. One example is described in
Figure 3. Generally speaking, incompatibilities among PACs
occur because of contradictory requirements in terms of flows,
that is, when one PAC requires a reaction R1 to run faster
than a reaction R2, while a second PAC requires the opposite.

To investigate the impact of thermodynamic constraints
on compatibility relationships among cycles, we now assess
whether pairs of compatible PACs, witnessed by a common
flow vector v⃗, also constitute pairs of compatible CACs, wit-
nessed by a common concentration vector c⃗. As before, ad-
dressing this question using the SMT solver is straightforward:
it suffices to concatenate the lists of constraints required for
each of the CACs under study, and to ask if a c⃗ vector exists
that simultaneously satisfies them all.

This analysis reveals that compatibility among cycles in-
ferred solely from the reaction network topology may overlook
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(3)

(4)
(5)

(3)

(6)

(5)
(4)

(3)

(4)

R*

A

B

Figure 2. A simple example of two incompatible PACs. The PAC

with full arrows is AB → AB2 → A2B2 → AB+AB and the gray
dotted arrows PAC is AB2 → AB → A2B → A2B3 → AB +AB2.

Numbers in brackets indicate the flows of PAC reactions allowing

for a (local) net production of 1 of all their entities. The two PACs
share the reaction labeled R⋆, but require it to run in opposite

directions.

v1
v2

v3

v4

v5

(3)

(3)

(5)

(4)

(3)

(6)

(5)

(4)

(4)

Figure 3. A more subtle example of two incompatible PACs, shar-

ing two reactions indexed with flows v1 and v2. Flows allow-
ing for unitary production of PAC entities are shown in brack-
ets for both PACs. The inner PAC depicted with solid black

arrows (A2 → A3 → A4 → A2 + A2) imposes the flow in-
equalities v1 > v2 > v3 > v1/2, while the gray dotted outer

PAC (A2 → A3 → A4 → A5 → A2 + A3) imposes inequalities

v1 + v5 > v2 > v4 > v5 > v1. This yields contradictory require-
ments: v1 > v2 for the first PAC and v1 < v2 for the second.

thermodynamic inconsistencies. Indeed, we find several in-
stances of two compatible PACs making incompatibles CACs.
We give an example of such a behavior in Figure 4 and provide
a formal proof of the CAC incompatibility in Box 2.

(6)

(5)

(4) (4)

(7)

(4)(4)

(5)

(7)

(6)

e2 e′2

eA

eB

e4

eA

e1

e3

e′1

eB

R1

R4
R′

2

R′
1

R3

R2

Figure 4. Schematic view of two autocatalytic cycles ({R1, R2,
R3, R4} and {R′

1, R2, R3, R′
4}) sharing two reactions. One can

check that both cycles run simultaneously with flows v1 = v′1 = 6,

v2 = 5, v3 = 4 and v4 = v′4 = 7 which allows for a unity production
of all entities belonging to a PAC. However, it can be shown that

these cycles can not be instantiated in the concentration space, i.e.

they form a multiPAC but not a multiCAC.

Box 2: Thermodynamic incompatibility between

CACs

On the example shown in Figure 4 , we can first show that
the two PACs are compatible, since we can choose a set of

reaction flows that witnesses both of them simultaneously.

For instance setting v1 = v′1 = 6, v2 = 5, v3 = 4, v4 = v′4 = 7
leads to a positive production rate of each entity. For the two

PACs to run simultaneously, the following inequalities must

be satisfied: v3 < v2 < v1 < v4 < 2v3 and v3 < v2 < v′1 <
v′4 < 2v3.

We will show that these inequalities are not thermody-

namically achievable, i.e. that they lead to contradictory
requirements in the concentration space.

Notice that the inequalities imply that all vi are strictly

positive, because v3 < 2v3 entails v3 > 0, and all other vi are
larger than v3. As proven below, this sign constraint alone

is not satisfiable: not all reactions can flow in the wanted

direction.
We denote xi = eµi the exponential of the chemical po-

tential of entity ei (indexed as in Fig. 4), and bi = eG
†
i where

G†
i is with respect to reaction Ri (similarly for R′

i). Reaction
flows can thus be written as follows:

v1 = b1(x1 − xBx2) b4 = b4(xAx4 − x1)

v′1 = b′1(x
′
1 − xAx′

2) v′4 = b′4(xBx4 − x′
1)

v3 = b3(x3 − (x4)2) v2 = b2(x2x′
2 − x3)

From the positivity of all flows, we get:
xBx2 < x1 < xAx4

xAx′
2 < x′

1 < xBx4

(x4)2 < x3 < x2x′
2

From the first line we deduce xBx2/x4 < xA, and re-

injecting in the second line we obtain xBx2x′
2/x4 < xAx′

2 <
xBx4. This simplifies to x2x′

2 < (x4)2, which contradicts

the condition of the third line. It should be noted that this
proof is valid regardless of the activation barriers values, since
the contradiction stems from the signs of the flows, while
activation barriers only affect their amplitudes.
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VI. DISCUSSION

Working toward the long-term goal of an explicit grounding
of Darwinian dynamics into physical processes, we addressed
in this study the implications of thermodynamic constraints
on the existence and detection of autocatalytic cycles given
a reaction network. Our analysis builds on recent theoretical
progresses made on the formalization of autocatalysis on the
sole basis of the reaction network topology [15]. Under this
definition, the exhaustive detection of autocatalysis proved
here to be an NP-complete problem. This finding fully justi-
fies the use of constraint solvers (e.g. SMT, Integer Program-
ming) toward which we converge with others [10, 16].

We found that constrains imposed by free energies and acti-
vation barriers can always be compensated by adjusting con-
centrations, thereby allowing any minimal autocatalytic cycle
to also be thermodynamically consistent. In other words, the
list of autocatalytic cycles in a reaction network remains unaf-
fected by these physical constraints, as long as concentrations
are not limited by upper or lower bounds. However, as shown
in Appendix 3, it should be noted that heterogeneity in free
energies and activation barriers do restrict the volume of the
concentration space where a cycle runs.

These conclusions on isolated cycles do not readily apply
on combinations of cycles. Indeed, thermodynamic realism
does restrict the list of mutually compatible cycles, even in an
unlimited concentration space, such that topologically com-
patible cycles can turn out incompatible. Incompatibilities
between two autocatalytic cycles can therefore stem from two

distinct sources, namely the topology of the reaction network
(PAC-incompatibility) and irreconcilable demands on concen-
trations (CAC-incompatibility).

A stimulating next step will be to investigate the impli-
cations of autocatalysis on the system’s dynamics through
time and space. Among the many autocatalytic cycles that
are thermodynamically achievable in a given system, which
ones are actually encountered from a given starting point in
the concentration space? Which ones are running in the long
term, that is, once the system has reached a steady state?
Which ones are running in the vicinity of this steady state,
and perhaps contribute to drive the system in its direction?
And finally, could autocatalysis contribute to generate more
than one steady state in the concentration space? We antici-
pate that such multistability could enable a primordial form
of heritable variation, paving the way to nascent Darwinian
dynamics.
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APPENDIX

1. Proof of Theorem 1: NP-completeness

This section is devoted to the proof of Theorem 1.
First, by the above remark, if a candidate PAC is given

then it can be checked in polynomial time; thus PAC-
DETECTION is in NP. To achieve the proof, it remains to
be shown that it is NP-hard. We do so by reducing from the
classical NP-complete problem SAT, that is, by translating
the SAT problem into PAC-DETECTION.

An instance of SAT is a boolean formula φ on n variables
x1, x2, . . . , xn. We will call literal a variable xi or its negation
xi. The formula φ is a conjunction of k clauses, i.e. of the
form φ =

∧
1≤j≤k cj , where each clause cj is a disjunction of

literals. The formula φ is satisfiable if there is a valuation
setting a boolean value for each xi (and the opposite for xi),
that allows φ to evaluate to true. The SAT problem, that is,
asking whether an input formula φ is satisfiable, is known to
be NP-complete [23].

Let us now encode SAT into PAC-DETECTION. Given
an instance of SAT, i.e. a formula φ as above, we want to
design a reaction system Sφ = (E,R), together with a tar-
get entity A ∈ E and a food set F ⊂ E, such that there is
a PAC satisfying this instance of PAC-DETECTION if and
only if φ is satisfiable. This would mean that a (hypotheti-
cal) polynomial-time algorithm for PAC-DETECTION would
yield a polynomial-time algorithm for SAT, provided the re-
duction can be done in polynomial time, and produces a re-
action system of polynomial size, which will be ensured here.

We choose as entities the set:

E = {A,A2, N} ∪ {Ei, Ei | 1 ≤ i ≤ n} ∪ {Cj | 1 ≤ j ≤ k}.

This means we have 3+2n+k entities in the system. Note
that we use capital letters to distinguish entities from the
variables and clauses from φ to which they refer.

For reactions, we choose the following set, where Li always
stands for either Ei or Ei, e.g. the first line means that both
reactions A −−⇀↽−− E1 +N and A −−⇀↽−− E1 +N are present:

R :



A −−⇀↽−− L1 +N

Ei + Ei −−⇀↽−− Li+1 for 1 ≤ i < n

En + En −−⇀↽−− C1

Cj + L −−⇀↽−− Cj+1
for 1 ≤ j < k
and L literal of cj

Ck + L −−⇀↽−− A2 for L literal of cn
A2 −−⇀↽−− A+A

Finally, the target is A and the allowed foods will be F =
{Ei, Ei | 1 ≤ i ≤ n}.

The idea is that a valuation witnessing satisfiability of φ
will correspond to a PAC of the form:

A→ L1 → · · · → Ln → C1 → · · · → Ck → A2 → A+A.

The crux of the construction is that reactions using Cj as
reactant need as food one of the literals of cj , that will be
interpreted as the literal validating the clause cj . In conse-
quence, this literal must be a food, and cannot appear as one
of the entities of the PAC. So the segment L1 → · · · → Ln

appearing in the PAC has to be formed exactly of the literals
that are put to false in the valuation.

The entity N is used to force the direction of the reaction
A → L1 in the PAC: since it can only be used as waste and
not as food, the reaction cannot go in the opposite direction.
From there, any PAC containing A and using only foods from
F must be of the above form, and witnesses a valuation sat-
isfying φ.

Example 2. 2 Consider φ given by c1 = x1∨x2, c2 = x1∨x2,
and c3 = x1 ∨ x2. Then the only correct valuation is the one
setting x1 to true and x2 to false. This is witnessed in the
system Sφ by the PAC A → E1 → E2 → C1 → C2 → C3 →
A2 → A+A, using E1 and E2 as foods (and N as waste).

If we add a clause c4 = x1 ∨ x2 to φ, the formula be-
comes unsatisfiable and accordingly, the corresponding system
Sφ does not contain a PAC satisfying the constraints.

This achieves the proof that PAC-DETECTION is NP-
complete.

2. Proof that all PACs are CACs

In the following, to simplify notations, reactions will be
oriented in accordance to the PAC, i.e. all coordinates of the
PAC witness will be positive. A “positive flow vector” is a
vector where all coordinates are positive.

a. An example

Example 3. Let us first instantiate the proof with the PAC
mentioned earlier, given by the following reactions (ignoring
foods) 2e1 → e2 → e3 → e1+e2, depicted in Figure 5 ignoring
food entities.

e1

e2e3

(2)

(6)

(5)

Figure 5. A PAC example of size 3 to give a first intuition of the

proof.

A PAC witness is v⃗ = (2, 6, 5), ensuring a production flow
of 1 for each entity. Using Equation (5), we now look for a
concentration vector to realize this PAC witness:

2 This is actually an instance of 2SAT which is a simpler problem, but

it is just used here to illustrate the construction
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• v1 = e−G
†
1
(
e2µ1 − eµ2

)
,

• v2 = e−G
†
2 (eµ2 − eµ3) ,

• v3 = e−G
†
3
(
eµ3 − eµ1+µ2

)
.

We will instead aim at realizing the flow vector λv⃗ for some

λ > 0. Letting xi = eµi and wi = vie
G

†
i (so wi > 0), the

equation system can be written conveniently:

• x1 =
√
λw1 + x2

• x2 = λw2 + x3

• x3 = λw3 + x1x2

Substituting x2 we obtain x1 =
√
λw1 + λw2 + x3, and fi-

nally substituting x1 as well we obtain:

x3 = λw3 + (
√
λw1 + λw2 + x3)(λw2 + x3).

Let us note g(λ, x3) the above right-hand side expression,
so that the equation becomes x3 = g(λ, x3). Let us define
h(λ, x3) = g(λ, x3)− x3, so that we aim at h(λ, x3) = 0. We
will show that such a solution exists using the intermediate
value theorem.
For x3 = 0 and any λ > 0, we have h(λ, 0) = λw3 +
(
√
λw1 + λw2)λw2 > 0. Let us choose any a ∈ (0, 1). For

x3 = a and λ = 0, we have h(0, a) = a3/2 − a < 0. Because
h is continuous there exists ε > 0 such that for all λ ∈ (0, ε),
h(λ, a) < 0. Let us choose λ ∈ (0, ε), we know thanks to the
intermediate value theorem (on x3 with this fixed value of λ)
that there exists x3 ∈ (0, a) such that h(λ, x3) = 0. From this
x3 we can compute x2 = λw2 + x3, and x1 =

√
λw1 + x2.

We have obtained a solution to our system by an appropriate
choice of λ, x1, x2, x3, thereby witnessing that the PAC is a
CAC via Corollary 1.

b. General proof

We aim to prove Theorem 2 from Section IV by generalizing
the proof exposed in the previous example to any PAC.

Notations.
Let v⃗ be a positive flow vector, we want to show that there

exists λ > 0 and a concentration vector c⃗ such that λv⃗ is the
flow vector induced by c⃗.

We will even show that this can be attained for any fixed
concentration values of food and waste entities.

Let v⃗ = (v1, . . . , vn) be the target flow vector, where all
coordinates are strictly positive. Here n is the size of the
PAC, i.e. both the number of entities e1, . . . , en, and reactions
R1, . . . , Rn, where for each i, ei is the sole reactant of Ri

among entities of the PAC, see discussion in[15].
For an entity ei (1 ≤ i ≤ n) with Gibbs free energy Gi,

recall that its chemical potential is given by µi = Gi+ln ([ei]).
We will be interested here in the exponential of this potential,
a variable that we denote xi = eµi .

Notice that xi can be freely adjusted to any strictly positive
value by choosing the appropriate concentration [ei], so we
can turn the problem into that of finding a solution vector

x⃗ = (x1, . . . , xn). Analogs of components of x⃗ associated to
food and waste entities are fixed to 1 for simplicity. The proof
can easily be adapted to any given values, but this will save
us some notations, as food and waste entities can now be
ignored in the computation of the reaction flows. One can
refer to Appendix 3 for an analysis of the impact of food and
waste potentials on the feasibility of PACs.

Let us recall Equation (5) giving the flow of a reaction in
terms of chemical potentials:

vR = e−G
†
R ·

 ∏
ei reactant

e
−σR

ei
·µi −

∏
ej product

e
σR
ej

·µj


In our case, given that ei is the sole reactant of Ri (apart

from possible foods), this can be rewritten for any i ∈ [1, n]:

vRi = e
−G

†
Ri (x

σi,i

i −
∏
j

x
σi,j

j )

Where σi,i is the stoichiometry of the reactant ei in Ri, and
σi,j is the stoichiometry of product ej in Ri. It should be
noted here that for simplicity we change the convention re-
garding the stoichiometry of reactants, so that all parameters
are positive, including σi,i.

Let us note wi = vie
G

†
Ri . The fact that we aim for λv⃗ to

be the flow vector induced by x⃗ means that for all i ∈ [1, n],
we aim for vRi = λvi, so we must have λwi = x

σi,i

i −
∏

j x
σi,j

j ,
i.e.

xi =

(
λwi +

∏
j

x
σi,j

j

)1/σi,i

Equation (i)

Notice that σi,i corresponds to “inverted forks”, where several
ei must be used as reactants. This can indeed occur in a PAC,
as witnessed by Example 3.

Variable elimination.
Our goal is to find λ > 0 such that this system has a

solution (x1, . . . , xn) with each xi > 0.
We will do so by iteratively reducing the number of vari-

ables and equations. Firstly, we perform the following opera-
tion: as long as there exists an equation of the form xi = Ai,
where Ai is an expression not depending on xi, we replace xi

by Ai in all other equations, and remove equation (i).
We will end up with a list of equations of the form xi =

gi(λ, x1, . . . , xn) where i ranges over some subset of [1, n], and
where gi is an expression depending on some of its variables
including xi, and generated by the following grammar:

g := xj | gg | (λwj + g)1/k

where j ranges over [1, n], and k is a strictly positive inte-
ger. There are as many remaining equations as remaining
variables. Without loss of generality, we assume that the re-
maining variables are x1, . . . , xp, where p ≤ n is the number
of remaining equations.

System rewriting as graph transformations.
Before tackling the resolution of the system per se, we relate

some properties of the remaining equations to the topology of
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the PAC we started with. We associate to the PAC a graph
G, whose vertices are entities e1, . . . en, and there is an edge
ei → ej if ej is among the products of the reaction using ei
as reactant.

Substituting variable xi in the system according to Equa-
tion (i) amounts to removing vertex ei and contracting all
edges originating in this vertex, as shown in Figure 6 with
i = 5:

e5

e1

e2

e3

e4

⇝

e1

e2

e3

e4

Figure 6. The effect of substituting the equation x5 = λw5 + x3x4

on the graph G.

This operation can only be performed if there is no self-
loop on ei in the current graph. Therefore, the case where we
can end up with only one equation on an entity xi (i.e. the
case p = 1) corresponds to the fact that the graph G \ {x1} is
acyclic.

We give in Figure 7 an example where this does not happen,
no matter in which order the substitutions are done. This
example corresponds to the Type V pattern from [15].

e1

e2 e3 •

•

• ⇝ • •

Figure 7. A 3-entity PAC, and its graph G. After performing one

substitution step, all nodes have self-loops and the substitution
sequence must end, with equations of the form e.g. x1 = λw1 +

(λw3 + x1x2)x2.

Shape of the reduced system. Let us now turn to the fol-
lowing lemma, which gives some properties of the expressions
gi reached by this process.

Lemma 1. For all 1 ≤ i ≤ p,

• gi is always of the form (λwi + g)1/ki ,

• for λ = 0, gi =
∏

j x
mi,j

j with mi,j ≥ 0 for all j, and

– if only one equation remains (p = 1), m1,1 > 1,

– otherwise if p > 1, then for all i ∈ [1, p], we have
mi,i = 1 and mi,j > 0 for some j ̸= i.

Proof. The first item is a direct consequence of the operation
we performed, starting from Equation (i).
The general shape of the second item is guaranteed by con-
struction.
We now show item 2.1. Let us first give an interpretation for
exponents mi,j . Consider Equation (i) when λ = 0:

xi =
∏
j

x
σi,j/σi,i

j .

Recall that we have defined σi,i > 0 even though entity ei is a
reactant. Exponents in the equation system for λ = 0 simply

express the fact that in reaction Ri and starting from one unit
of entity ei, for all j one can produce σi,j/σi,i units of entity
ej . The substitution algorithm is equivalent to consuming all
available ej via reaction Rj , with exponents of the products
keeping track of their quantity. By iteration, if one started
with entity ei and could remove all reactions from the system
(in our notation that would mean p = 1), one should recover
that ei can self-amplify through the reactions of the cycle since
it allows for autocatalysis of ei. This intuitively explains why
we expect m1,1 > 1. For illustration in Example 3, the cycle
allows to produce 3/2 units of entity e3 starting from one unit
of it.

Let us now give a formal proof of the fact that m1,1 > 1
when p = 1, and let us note m = m1,1 for concision. The se-
quence of substitutions leading to the expression g1 amounts
to describing a positive flow vector τ⃗ = (t1, . . . , tn) in the fol-
lowing way: the flow of reaction R1 is set to t1 = 1, and then
all available entities ej other than x1 are entirely consumed
and substituted with the products of reaction Rj , until only
m units of e1 remain. This means that the net production
of each entity is given by Mτ⃗ = (m − 1, 0, 0, . . . , 0), where
M is the reaction matrix associated to the PAC. Let us now
consider a PAC witness v⃗′ = (v′1, . . . , v

′
n), with v′i > 0 for

each i, and scaled such that v′1 = 1 (this is always possible
since scaling preserves the PAC witness inequalities). We will
show that the existence of v⃗′ implies m > 1. Notice that
M · τ⃗ = (m − 1, 0, . . . , 0). Our goal is to show that for all
i ∈ [2, n], v′i < ti.

We use the graph G defined in the previous paragraph, and
more precisely the fact that the case p = 1 corresponds to
acyclicity of G′ = G \ {e1}. Without loss of generality, we can
assume that a topological order of G′ is given by e2, e3, . . . , en,
that is to say there is no edge ei → ej with j < i. In partic-
ular, e2 has no incoming edge in G′. We compare the inflow
and outflow of e2 according to flow vectors τ⃗ and v⃗′.

• the inflow is the same in both cases, as t1 = v′1 = 1 and
no other incoming edge exists,

• the outflows are t2 and v′2 respectively,

• the net production rate with respect to τ⃗ is 0, by con-
struction, while it is strictly positive for v⃗′ as v⃗′ is a
PAC witness.

These three items together imply that v′2 < t2. We can con-
tinue by induction with e3, e4, . . . : at step i for entity ei, the
inflow is smaller or equal with flows from v⃗′ than from τ⃗ (using
induction hypothesis v′j < tj for j < i), but the net produc-
tion is positive for v⃗′ while it is 0 for τ⃗ . We can conclude the
inequalities on outflows: v′i < ti. This allows us to conclude
that for all i ∈ [2, n], v′i < ti. Let us call m′ the inflow of e1
according to v⃗′, and recall that the corresponding inflow with
respect to τ⃗ is m. Since every reaction producing e1 is strictly
smaller in v⃗′ than in τ⃗ , we have m′ < m. However, to ensure
net production of e1 according to v⃗′, and since the outflow is
v1 = 1, we must have 1 < m′. We can conclude m > 1 as
desired.

Now if more than one equations remain, i.e. p > 1 (item
2.2 of the Lemma) and mi,i ̸= 1, it means that one found a
subset of reactions of the cycle allowing for the net produc-
tion (or consumption) of entity ei, in contradiction with the
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assumption that the cycle is minimal. An illustration of this
phenomenon is given in Example 4. The existence of some
j ̸= i such that mi,j > 0 follows from the condition that at
least one other equation than the ith remains after the substi-
tution algorithm ends. Indeed, if we could reach an equation
where xi is the only remaining variable, without having sub-
stituting all the other ones, it would mean that the PAC is
not strongly connected, contradicting its minimality.

Example 4. We illustrate a case with mi,i ̸= 1 while two
equations remain in Figure 8.A. The cycle is not minimal,
even though all entities appear only once as reactant, because
it contains the cycle e2 → e3 → e1 → e1 + e2 (depicted in
black arrows). Notice that the forked reaction e2 → e3 + e4
is not entirely in full line, because for this embedded minimal
PAC, e4 corresponds to a waste. The equations corresponding
to the full system are:


x1 = λw1 + x2x3

x2 = λw2 + x3x4

x3 = λw3 + x1

x4 = λw4 + x5

x5 = λw5 + x3x4.

One can substitute x3, then x4 and x2 to arrive to a system
of two equations on x1 and x5:x1 = λw1 + [λw2 + (λw3 + x1)(λw4 + x5)] (λw3 + x1)

x5 = λw5 + (λw3 + x1)(λw4 + x5).

Taking λ = 0, one obtains x1 = x2
1x5 and x5 = x1x5, thus

we have m1,1 = 2 and m5,5 = 1. The appearance of x2
1 in the

first equation betrays the existence of a smaller PAC where
entity e5 is ignored. A visual interpretation is given in Fig-
ure 8.B, which shows the reduced cycle with the two entities
e1 and e5 obtained at the end of the sequence of substitutions.
Notice that entity e5, in order to self-amplify, must produce
e1. However there exists a reaction path not involving en-
tity e5 allowing for the production of 2 units of e1 starting
with 1 unit of it (full black arrows in panel B), which is why
m1,1 = 2. This indeed corresponds to the minimal PAC shown
in full black arrows in panel A.

Solving the reduced system. Turning back to the general
proof of Theorem 2, it suffices to solve the remaining system
of equations, which is of the form xi = gi(λ, x1, . . . , xp) for
all i ∈ [1, p]. We can then recover the missing xj (for j ∈
[p+ 1, n]) using the previous substitutions xj = Aj .

Case p = 1. Let us first treat the easier case where p = 1,
i.e. we have a single variable x1 and a single equation x1 =
g1(λ, x1).

Lemma 2. There exists ε > 0 such that for all λ ∈ (0, ε),
there exists x1 ∈ (0, 1) verifying x1 = g1(λ, x1).

Proof. Let h1(λ, x1) = g1(λ, x1)−x1. We will use the fact that
h1 is continuous, and look at the values of h1 for a suitable
λ, x1 = 0 and x1 = a for some a ∈ (0, 1) to conclude via the
intermediate value theorem.

First of all for any λ > 0 and x1 = 0, we have h1(λ, 0) > 0,
since by construction g1 is built from positive terms using

e1

e2

e4

e3

e5

A B

e5

e1

Figure 8. Non-minimal autocatalytic cycle.

functions preserving positivity, and furthermore contains a
term of the form λw1 not depending on x1.

Now, let us consider the case x1 = a for any a < 1. We
have h1(λ, a) = g1(λ, a)− a. By Lemma 1, for λ = 0 we have
g1(0, a) = am with m > 1. Since a < 1 and m > 1, we have
am < a. Thus, h1(0, a) < 0. Since the function λ 7→ h1(λ, a)
is continuous, there exists ε > 0 such that for all λ ∈ (0, ε),
we have h1(λ, a) < 0. We can conclude (intermediate value
theorem with respect to x1) that for all λ ∈ (0, ε), there exists
x1 ∈ (0, a) such that h1(λ, x1) = 0.

Therefore, choosing any λ < ε and applying this lemma
gives a solution to the system.

Case p > 1. If p > 1, we will solve the system by constructing
a sequence of partial continuous functions fi : Ri → R (1 ≤
i ≤ p) and ε > 0 such that:

• if x1, . . . , xi−1 ∈ (0, 1) (resp. [0, 1)) and λ ∈ (0, ε) (resp.
[0, ε)), then fi(λ, x1, . . . , xi−1) is defined and its image
lies in (0, 1) (resp. [0, 1)),

• if there exists λ, x1, . . . xp such that for all i, xi =
fi(λ, x1, . . . , xi−1), then we have a solution of the
wanted equations.

We define fi by induction, starting with fp.
Let us consider the equation xp = gp(λ, x1, . . . , xp). Let

hp(λ, x1, . . . , xp) = gp(λ, x1, . . . , xp)− xp.
Our goal is to define fp as a value of xp yielding hp = 0.

Thus we have to show that such a root of hp exists.

Lemma 3. For any x1, . . . , xp−1 ∈ (0, 1), there exists εp
such that for all λ ∈ (0, εp), there exists xp ∈ (0, 1) verify-
ing hp(λ, x1, . . . , xp−1, xp) = 0.

Proof. As before, we will use the fact that hp is continuous
(by construction of gp), and look at the values of hp for xp = 0
and xp = a < 1.

First of all for xp = 0, for any λ, x1, . . . , xp−1 > 0, we have
hp(λ, x1, . . . , xp−1, 0) > 0, by construction of gp.
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Now, let us consider the case xp = a for some arbitrary a <
1. We have hp(λ, x1, . . . , xp−1, a) = gp(λ, x1, . . . , xp−1, a)− a.
For λ = 0, we have gp(0, x1, . . . , xp−1, a) = a

∏
j ̸=p x

mp,j

j by
Lemma 1.

By Lemma 1, we have in addition mp,j > 0 for some j ̸= p.
Thus, for x1, . . . , xp−1 < 1, we have hp(0, x1, . . . , xp−1, 1) =
a(
∏

j ̸=p x
mp,j

j −1) < 0. Since hp is continuous, there exists εp
such that for all λ ∈ (0, εp), we have hp(λ, x1, . . . , xp−1, a) <
0. By the intermediate value theorem, for all λ ∈ (0, εp), there
exists xp ∈ (0, a) such that hp(λ, x1, . . . , xp−1, xp) = 0. Here
we could actually have taken a = 1, but we give the scheme
that will be used throughout the rest of the induction.

We can thus define fp(λ, x1, . . . , xp−1), as the least value
of xp such that hp(λ, x1, . . . , xp−1, xp) = 0, as soon as the
conditions of the lemma are met. Moreover, fp is continuous
as well, since it is defined as the first root of a continuous
function with non-zero boundary conditions.

We now get rid of equation xp = gp by replacing xp by
fp(λ, x1, . . . , xp−1) in all other equations. We then have a sys-
tem of the form xi = gi(λ, x1, . . . , xp−1, fp(λ, x1, . . . , xp−1))
for all i ∈ [1, p− 1].

Notice that replacing xp by fp allows to carry out the pre-
vious construction for fp−1, as the only property asked of the
various xj other than the current xp−1 under consideration
is to be in (0, 1), and that is the case for fp. Notice that xp

is now a function of λ, x1, . . . , xp1 , but this is not a problem,
as long as it remains in (0, 1) (allowing for extremal cases if
some arguments are extremal as well), the construction can
be carried on.

We can thus iterate this construction, and obtain a se-
quence of functions fi as wanted. At each step, the εi can
be chosen to be the minimum of the εi+1 obtained at the
previous step and the ε needed at the current step. This
guarantees that all fj for j ≥ i are defined for all λ < εi.

Continuing this construction, we will end up with a se-
quence of functions fi such that for all λ < ε, there exists
x1, . . . , xp such that xi = fi(λ, x1, . . . , xi−1) for all i ∈ [1, p].
This will give us a solution to the system of equations, and
thus a solution to the original problem. Indeed, it suffices
to choose some λ < ε1, x1 = f1(λ), x2 = f2(λ, x1), etc. to
obtain a solution to the system.

As described earlier, we can infer from x1, . . . xp the values
of xp+1, . . . , xn by using the previous substitutions xj = Aj .
From this, we can finally compute the concentration vector c⃗
such that λv⃗ is the flow vector induced by c⃗.

As explained in Corollary 1, this is sufficient to show that
any PAC is CAC, as it suffices to start with a PAC witness v⃗
and apply this construction to find a CAC witness c⃗.

3. On the degree of feasibility of PACs

In this section we propose to explore how thermodynamic
constraints affect the degree to which a PAC can be a CAC,
in the sense of exploring quantitatively and analytically how
such constraints, though not being able to prevent the feasi-
bility of (minimal) PACs (see Corollary 1), nonetheless affect
the limitations toward instantiating a PAC in the concentra-
tion space. We will focus on the specific topology of type
I PACs, following the terminology of [15]. Such a PAC of

size n has the following form (where only the forked reaction
en → e1 + e1 is left without food and waste):

e1

e2

F1

W1

W2

F2

…

en

e3Fn-1

Wn-1

F3W3

Figure 9. Illustration of a PAC of size n of type I, using the typology

of [15].

Following the notations of the proof explained in Ap-
pendix 2, one would end up considering the following system
of equations:



F1x1 = λw1 +W1x2

F2x2 = λwx +W2x3

...
Fn−1xn−1 = λwn−1 +Wn−1xn

xn = λwn + x2
1.

Fi (respectivelyWi) is the exponential of chemical potential
of food (respectively waste) i. The substitution algorithm
from Section 2 allows us to inject the (i + 1)th line into the
ith until one finally obtains a single equation on x1:

x1 = λ

(
1

F1
w1 +

W1

F1F2
w2 + · · ·+

W1 . . .Wn−1

F1 . . . Fn−1
wn

)
+

W1 . . .Wn−1

F1 . . . Fn−1
x2
1

rewritten as: x1 = g(λ, x1).

For this particular PAC topology, the dependence of λ with
respect to other parameters can be made explicit:

λ =

(
1− 1

β
x1

)
x1(

1
F1

w1 + · · ·+ W1...Wn−2

F1...Fn−1
wn−1 +

W1...Wn−1

F1...Fn−1
wn

) . (6)

It should be noted that the condition λ > 0 imposes x1 ∈
(0, β) with β =

F1...Fn−1

W1...Wn−1
. Notice that if all food and waste

variables are set to 1, one recovers the interval of the general
proof of Appendix 2 which was (0, 1). Regardless, the PAC
can be realized for any value of food and waste potentials.

Equation (6) shows that the solution λ has non-trivial de-
pendencies on food, waste and PAC species chemical poten-
tials, activation barriers of reactions and the witness v⃗. To
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facilitate the discussion, let us assume that the witness v⃗ is
the one allowing for a unitary production of all PAC species
(such a witness always exist because the stoichiometry ma-
trix of a minimal PAC is square and invertible, see discussion
in [15]). Hence, because the witness λv⃗ can be instantiated
in the concentration space, λ can be interpreted as the ampli-
tude of the PAC, i.e. the level up to which it can effectively
produce its entities, or its degree of feasibility, relatively to
the case of a unitary production of PAC entities.

Notice that both the numerator and denominator of Equa-
tion (6) depends on terms of the form

∏
i Wi/

∏
j Fj . The de-

nominator becomes smaller as the food variables grow larger
relative to the waste variables. As far as the numerator
is concerned, we plot in Figure 10 the function θβ(x1) =
(1 − x1/β)x1 for two values of β (namely β = 1 and β = 2).
θβ is an inverted parabola which is positive for x1 ∈ [0, β]
and maximizes at x1 = β/2, the maximum being β/4. Hence
the numerator of Equation (6) (taken as a function of x1) can
get larger as β gets larger, i.e. as food variables get large
in comparison to waste variables. We thus conclude that λ
can reach higher values when the food variables are in overall
large in comparison to waste variables, which from now on is
referred to as a favorable environment.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x1

0.0

0.1

0.2

0.3

0.4

0.5

(x
1)

= 1
= 2

Figure 10. The numerator of Equation (6), θβ(x1) = (1− x1/β)x1

as a function of x1 for β = 1 and β = 2.

A favorable environment can always be reached by choosing

appropriate food and waste concentrations. However it should
be recalled that the variables appearing in Equation (6) are re-
lated to the free energy and concentration of entities through
the relation Fj = e

Gfj [fj ] (illustrated for the jth food species).

We have seen that the PAC realization is easier when Fj ’s
are large relative to the Wi’s. Recall that Wj = [wj ]e

Gwj .
If one waste free energy is increased by δG, then this corre-
sponds to a multiplication of the corresponding Wj by eδG,
which will have to be compensated by similar variations in
concentrations of food and/or waste entities. Thus, slight
changes in the free energies values are exponentially passed
on the concentration space. This highlights how PACs whose
food and waste free energies are unfavorably distributed can
be in practice hard to instantiate in the concentration space
to the point that in given dynamics this rarely occurs.

Similar conclusions can be reached regarding the PAC en-
tities concentrations. Notice that in Equation (6) λ only de-
pends on x1 at the numerator that we illustrated in Figure 10.
It shows that x1 is upper bounded, and as a consequence the
concentration space of entity e1 associated to λ > 0 (i.e. the
PAC running) increases as its free energy is decreases. Notice
once again that a favorable environment (i.e. large values of
β) is associated to a wider interval of x1 allowing λ > 0.

We conclude that regions of the concentration space where
the PAC efficiently runs (i.e. runs with large values of λ)
always exist if all concentrations can be chosen freely, but
that free energies unfavorably distributed among food, waste
and PAC entities will significantly restrict their volume.

On a similar ground, one can study the impact of activation
barriers on the feasibility of PACs. Suppose that all reactions
of the PAC get penalized by increasing their activation bar-
riers, such that G†

k ← G†
k + ∆ with ∆ > 0 for all k ∈ [1, n].

This will in turn multiply the denominator of Equation (6)
by a global factor e∆, and as a consequence multiply λ by
e−∆ < 1. This can be compensated by choosing a more fa-
vorable environment, i.e. by increasing food concentrations
and diminishing waste concentrations such that β increases.
Thus, the regions of the concentration space associated to
large values of λ are tightened.
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