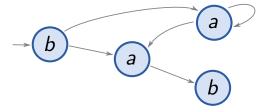
# Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs

Thomas Colcombet, Amina Doumane, Denis Kuperberg

CNRS, LIP, ENS Lyon

GdT Plume, 23/06/25

# Transition systems



### Specifying properties

#### MSO formulas:

$$\varphi, \psi := \mathbf{a}(\mathbf{x}) \mid \mathbf{E}(\mathbf{x}, \mathbf{y}) \mid \exists \mathbf{x}. \varphi \mid \exists \mathbf{X}. \varphi \mid \mathbf{x} \in \mathbf{X} \mid \varphi \lor \psi \mid \neg \varphi$$

**Example:**  $\varphi(r)$  for " $\exists \infty$  path from r":

 $\exists X$ .

 $r \in X \land$ 

 $\forall x.x \in X \Rightarrow \exists y. E(x,y) \land y \in X$ 

### Specifying properties

#### MSO formulas:

$$\varphi, \psi := \mathsf{a}(\mathsf{x}) \mid \mathsf{E}(\mathsf{x}, \mathsf{y}) \mid \exists \mathsf{x}. \varphi \mid \exists \mathsf{X}. \varphi \mid \mathsf{x} \in \mathsf{X} \mid \varphi \lor \psi \mid \neg \varphi$$

**Example:**  $\varphi(r)$  for " $\exists \infty$  path from r":

∃*X*.

 $r \in X \land$ 

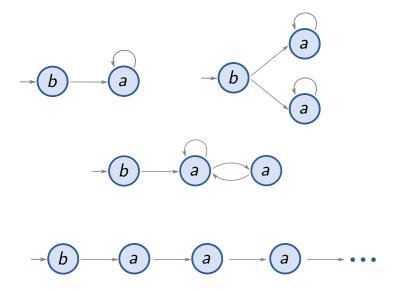
 $\forall x.x \in X \Rightarrow \exists y. E(x,y) \land y \in X$ 

#### $\mu$ -calculus formulas:

$$\varphi, \psi := \mathbf{a} \mid \diamond \varphi \mid \Box \varphi \mid \mu \mathbf{X}. \varphi \mid \nu \mathbf{X}. \varphi \mid \varphi \vee \psi \mid \neg \varphi$$

**Example:**  $\psi$  for " $\exists \infty$  path from the current vertex":  $\nu X. \diamond X$  Fact:  $\mu$ -calculus is bisimulation-invariant.

### **Bisimulation**



### Starting point

### Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

- 1. Being MSO-definable and bisimulation-invariant.
- 2. Being  $\mu$ -calculus-definable.

### Starting point

### Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

- 1. Being MSO-definable and bisimulation-invariant.
- 2. Being  $\mu$ -calculus-definable.

 $\mu\text{-calculus} o ext{bisim-inv MSO}$  : Easy

Bisim-inv MSO  $\rightarrow \mu$ -calculus : Hard

Let  $\varphi \in \mathsf{bisim}\text{-inv MSO}$ :

 $ightharpoonup \varphi$  is in particular a formula on **infinite trees**.

Let  $\varphi \in \mathsf{bisim}\text{-inv MSO}$ :

- $ightharpoonup \varphi$  is in particular a formula on **infinite trees**.
- $ightharpoonup \varphi \leadsto$  automaton  $\mathcal{A}$  on **infinite trees**. [Rabin 1968]

#### Let $\varphi \in \mathsf{bisim}\text{-inv MSO}$ :

- $ightharpoonup \varphi$  is in particular a formula on **infinite trees**.
- $\varphi \leadsto$  automaton  $\mathcal{A}$  on **infinite trees**. [Rabin 1968]
- $ightharpoonup \mathcal{A} \leadsto \mu$ -calculus formula  $\psi$ . [Janin-Walukiewicz 1996]

#### Let $\varphi \in \mathsf{bisim}\text{-inv MSO}$ :

- $ightharpoonup \varphi$  is in particular a formula on **infinite trees**.
- $\triangleright \varphi \leadsto \text{automaton } \mathcal{A} \text{ on infinite trees. } [\text{Rabin 1968}]$
- $ightharpoonup \mathcal{A} \leadsto \mu$ -calculus formula  $\psi$ . [Janin-Walukiewicz 1996]

#### Correctness:

Infinite trees suffice to define bisim-inv properties of systems.

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

#### Finite model property for $\mu$ -calculus:

If  $\psi$  has a model then it has a finite one.

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

#### Finite model property for $\mu$ -calculus:

If  $\psi$  has a model then it has a finite one.

Can we restrict the theorem to finite systems?

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

#### Finite model property for $\mu$ -calculus:

If  $\psi$  has a model then it has a finite one.

Can we restrict the theorem to finite systems?

#### Main Contribution

For properties of **finite** systems, the following are equivalent:

- 1. Being MSO-definable and bisimulation-invariant.
- 2. Being  $\mu$ -calculus-definable.

### Example of the difference

#### MSO formula $\varphi$ for " $\exists$ cycle":

 $\triangleright \varphi$  is not bisim-invariant on all systems.

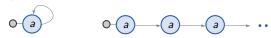


- $ightharpoonup \varphi$  is bisim-invariant on **finite** systems.
- ▶ Equivalent to  $\psi = \nu X. \diamond X$  on finite systems.

### Example of the difference

#### MSO formula $\varphi$ for " $\exists$ cycle":

 $\triangleright \varphi$  is not bisim-invariant on all systems.



- $ightharpoonup \varphi$  is bisim-invariant on **finite** systems.
- ▶ Equivalent to  $\psi = \nu X. \diamond X$  on finite systems.

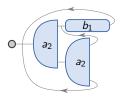
⇒ using Janin-Walukiewicz does not work for finite systems.

# Ranked systems

"Bisimulation = unfold + children duplication"

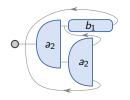
### Ranked systems

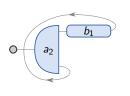
"Bisimulation = unfold + children duplication"

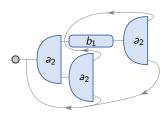


# Ranked systems

"Bisimulation = unfold + children duplication"

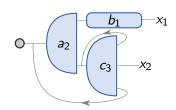






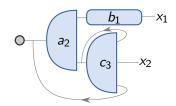
# The free algebra of systems

Systems have open ports and arities:

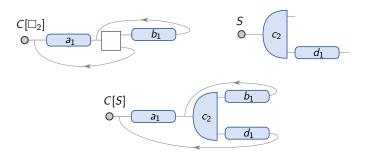


# The free algebra of systems

Systems have open ports and arities:



Operation: Plug into context.



Idea: Remember only relevant information about a system.

**Idea**: Remember only relevant information about a system.

Arity stratification  $\rightsquigarrow$  Algebra  $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ .

**Idea**: Remember only relevant information about a system.

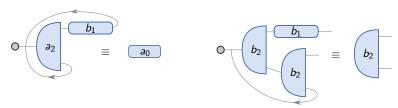
Arity stratification  $\rightsquigarrow$  Algebra  $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ .

**Example:**  $L = \{ \text{Systems with an } a \}. \ A_n = \{ a_n, b_n \}$ 

Idea: Remember only relevant information about a system.

Arity stratification  $\rightsquigarrow$  Algebra  $\mathcal{A} = (A_n)_{n \in \mathbb{N}}$ .

**Example:**  $L = \{ \text{Systems with an } a \}.$   $A_n = \{ a_n, b_n \}$ 

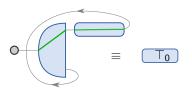


Then  $L = \{ \text{Systems evaluating to } a_0 \}$ , via  $h : \text{Systems} \rightarrow \mathcal{A}$ .

# Another example of algebra

Language  $L = \{\exists \text{ cycle containing } a\}.$ 

Then  $A_n = \{\top_n\} \cup \mathcal{P}(\{1,\ldots,n\})$ 

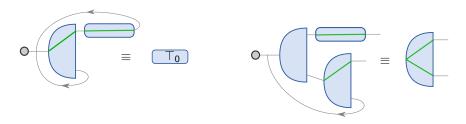


$$L=h^{-1}(\top_0)$$

# Another example of algebra

Language  $L = \{\exists \text{ cycle containing } a\}.$ 

Then 
$$A_n = \{\top_n\} \cup \mathcal{P}(\{1,\ldots,n\})$$



$$L=h^{-1}(\top_0)$$

 $\mathcal{A}$  is rankwise-finite and unfold-invariant.

Intuition: Enough for regularity.

# Recognizability

#### Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

### Recognizability

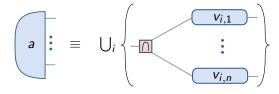
#### Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

Add operators such as intersection  $\overline{\mbox{\em }}$  to the algebra.

#### **Key Lemma**

 $\forall a \in A_n$ ,  $\exists (v_{i,j})$  from  $A_1$  such that:



# Recognizability

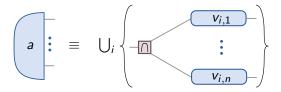
#### Main Contribution 2

If L is recognized by a rankwise-finite unfold-invariant algebra, then L is recognized by some automaton model.

Add operators such as intersection  $\square$  to the algebra.

#### **Key Lemma**

 $\forall a \in A_n$ ,  $\exists (v_{i,j})$  from  $A_1$  such that:



#### Consequences

- $\triangleright$   $A_1$  actually contains all the information about  $A_n$ .
- Algebras can be turned into automata.

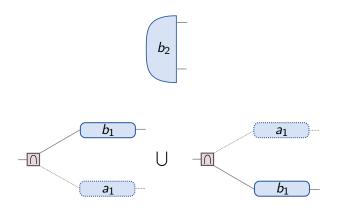
# Key Lemma Example

**Algebra:**  $A_n = \{a_n, b_n\}$ , for " $\exists a$ ".



# Key Lemma Example

**Algebra:**  $A_n = \{a_n, b_n\}$ , for " $\exists a$ ".



 $\mu$ -calculus  $\rightarrow$  bisim-inv MSO is easy, same as before.

 $\mu$ -calculus  $\rightarrow$  bisim-inv MSO is easy, same as before.

#### Bisim-inv MSO $\rightarrow \mu$ -calculus:

ightharpoonup MSO 
ightharpoonup algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].

 $\mu$ -calculus  $\rightarrow$  bisim-inv MSO is easy, same as before.

#### Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ightharpoonup MSO 
  ightharpoonup algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- ightharpoonup Algebra ightharpoonup unfold-invariant automata by the key lemma.

 $\mu$ -calculus  $\rightarrow$  bisim-inv MSO is easy, same as before.

#### Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ▶ MSO  $\rightarrow$  algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- lacktriangle Algebra ightarrow unfold-invariant automata by the key lemma.
- ▶ Unfold-invariant  $\rightarrow$  bisimulation-invariant automata by adding duplication as in [Janin-Walukiewicz 1996].

 $\mu$ -calculus  $\rightarrow$  bisim-inv MSO is easy, same as before.

#### Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ▶ MSO  $\rightarrow$  algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- lacktriangle Algebra ightarrow unfold-invariant automata by the key lemma.
- ► Unfold-invariant → bisimulation-invariant automata by adding duplication as in [Janin-Walukiewicz 1996].
- ▶ Bisim-invariant automata  $\rightarrow \mu$ -calculus as in [Janin-Walukiewicz 1996].

 $\mu$ -calculus  $\rightarrow$  bisim-inv MSO is easy, same as before.

#### Bisim-inv MSO $\rightarrow \mu$ -calculus:

- ightharpoonup MSO 
  ightharpoonup algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- lacktriangle Algebra ightarrow unfold-invariant automata by the key lemma.
- ► Unfold-invariant → bisimulation-invariant automata by adding duplication as in [Janin-Walukiewicz 1996].
- ▶ Bisim-invariant automata  $\rightarrow \mu$ -calculus as in [Janin-Walukiewicz 1996].

#### Thanks for your attention!