
Good-for-Games Automata:
State of the art and perspectives

Denis Kuperberg

CNRS, LIP, ENS Lyon

Dagstuhl Seminar
Unambiguity in Automata Theory

Games

Two Players: Eve Adam

Arena: finite graph G = (V ,E), with V = V] V .

a b c

Initial vertex: v0 ∈ V .

Play: Infinite path: v0v1v2 · · · ∈ V ω

Winning Condition: W ⊆ V ω.

Eve wins a play π if π ∈W

Games

Two Players: Eve Adam

Arena: finite graph G = (V ,E), with V = V] V .

a b c

Initial vertex: v0 ∈ V .

Play: Infinite path: v0v1v2 · · · ∈ V ω

Winning Condition: W ⊆ V ω.

Eve wins a play π if π ∈W

Games

Two Players: Eve Adam

Arena: finite graph G = (V ,E), with V = V] V .

a b c

Initial vertex: v0 ∈ V .

Play: Infinite path: v0v1v2 · · · ∈ V ω

Winning Condition: W ⊆ V ω.

Eve wins a play π if π ∈W

Games

Two Players: Eve Adam

Arena: finite graph G = (V ,E), with V = V] V .

a b c

Initial vertex: v0 ∈ V .

Play: Infinite path: v0v1v2 · · · ∈ V ω

Winning Condition: W ⊆ V ω.

Eve wins a play π if π ∈W

Games

Two Players: Eve Adam

Arena: finite graph G = (V ,E), with V = V] V .

a b c

Initial vertex: v0 ∈ V .

Play: Infinite path: v0v1v2 · · · ∈ V ω

Winning Condition: W ⊆ V ω.

Eve wins a play π if π ∈W

Games

Two Players: Eve Adam

Arena: finite graph G = (V ,E), with V = V] V .

a b c

Initial vertex: v0 ∈ V .

Play: Infinite path: v0v1v2 · · · ∈ V ω

Winning Condition: W ⊆ V ω.

Eve wins a play π if π ∈W

ω-regular games
Winning condition W : an ω-regular language.

a

b

c

W = (a∗ba∗c)ω

Particular case: Parity games
W is a parity condition: each vertex has a color in N, the maximal
color appearing infinitely often must be even.

Büchi=Parity [1, 2] CoBüchi=Parity [0, 1].

Theorem (Positional Determinacy [Emerson, Jutla ’91])
In a parity game, Eve or Adam has a positional winning strategy.

ω-regular games
Winning condition W : an ω-regular language.

a

b

c

W = (a∗ba∗c)ω

Particular case: Parity games
W is a parity condition: each vertex has a color in N, the maximal
color appearing infinitely often must be even.

Büchi=Parity [1, 2] CoBüchi=Parity [0, 1].

Theorem (Positional Determinacy [Emerson, Jutla ’91])
In a parity game, Eve or Adam has a positional winning strategy.

ω-regular games
Winning condition W : an ω-regular language.

a

b

c

W = (a∗ba∗c)ω

Particular case: Parity games
W is a parity condition: each vertex has a color in N, the maximal
color appearing infinitely often must be even.

Büchi=Parity [1, 2] CoBüchi=Parity [0, 1].

Theorem (Positional Determinacy [Emerson, Jutla ’91])
In a parity game, Eve or Adam has a positional winning strategy.

Solving an ω-regular game
Input: G game with ω-regular winning condition W ⊆ V ω.
Question: Who wins G ? How ?

Solution:
1. Build Det Parity automaton ADet for W ,
2. Solve the parity game G ′ = ADet ◦ G .

Theorem
G ′ has same winner as G.
σpos in G ′ gives σ in G with memory ADet.
→ ω-regular games are finite-memory determined.

Application: Church Synthesis
Automatically build a program from a specification L
⇔ Solving a game with winning condition L.

Problem: Determinization is expensive. Maybe too strong ?

Solving an ω-regular game
Input: G game with ω-regular winning condition W ⊆ V ω.
Question: Who wins G ? How ?

Solution:
1. Build Det Parity automaton ADet for W ,
2. Solve the parity game G ′ = ADet ◦ G .

Theorem
G ′ has same winner as G.
σpos in G ′ gives σ in G with memory ADet.
→ ω-regular games are finite-memory determined.

Application: Church Synthesis
Automatically build a program from a specification L
⇔ Solving a game with winning condition L.

Problem: Determinization is expensive. Maybe too strong ?

Solving an ω-regular game
Input: G game with ω-regular winning condition W ⊆ V ω.
Question: Who wins G ? How ?

Solution:
1. Build Det Parity automaton ADet for W ,
2. Solve the parity game G ′ = ADet ◦ G .

Theorem
G ′ has same winner as G.
σpos in G ′ gives σ in G with memory ADet.
→ ω-regular games are finite-memory determined.

Application: Church Synthesis
Automatically build a program from a specification L
⇔ Solving a game with winning condition L.

Problem: Determinization is expensive. Maybe too strong ?

Solving an ω-regular game
Input: G game with ω-regular winning condition W ⊆ V ω.
Question: Who wins G ? How ?

Solution:
1. Build Det Parity automaton ADet for W ,
2. Solve the parity game G ′ = ADet ◦ G .

Theorem
G ′ has same winner as G.
σpos in G ′ gives σ in G with memory ADet.
→ ω-regular games are finite-memory determined.

Application: Church Synthesis
Automatically build a program from a specification L
⇔ Solving a game with winning condition L.

Problem: Determinization is expensive. Maybe too strong ?

Good-for-Games Automata

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters:
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c c
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c c
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c c . . . = w
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c c . . . = w
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Definition of GFG via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters: a a b c c . . . = w
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular.

Why “Good-for-games” ?

Theorem (Henzinger, Piterman ’06)
Let A a parity GFG automaton, and G game with winning
condition L(A).
Then A ◦ G (where Eve controls A) is a parity game with same
winner as G.
Proof: Eve can drive A according to σGFG.

→ We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary
Church synthesis is in PTime if the input is a GFG automaton.

Remark: Synthesis is ExpTime-complete for nondet specification,
and 2ExpTime-complete for LTL specification.

Why “Good-for-games” ?

Theorem (Henzinger, Piterman ’06)
Let A a parity GFG automaton, and G game with winning
condition L(A).
Then A ◦ G (where Eve controls A) is a parity game with same
winner as G.
Proof: Eve can drive A according to σGFG.

→ We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary
Church synthesis is in PTime if the input is a GFG automaton.

Remark: Synthesis is ExpTime-complete for nondet specification,
and 2ExpTime-complete for LTL specification.

Why “Good-for-games” ?

Theorem (Henzinger, Piterman ’06)
Let A a parity GFG automaton, and G game with winning
condition L(A).
Then A ◦ G (where Eve controls A) is a parity game with same
winner as G.
Proof: Eve can drive A according to σGFG.

→ We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary
Church synthesis is in PTime if the input is a GFG automaton.

Remark: Synthesis is ExpTime-complete for nondet specification,
and 2ExpTime-complete for LTL specification.

Why “Good-for-games” ?

Theorem (Henzinger, Piterman ’06)
Let A a parity GFG automaton, and G game with winning
condition L(A).
Then A ◦ G (where Eve controls A) is a parity game with same
winner as G.
Proof: Eve can drive A according to σGFG.

→ We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary
Church synthesis is in PTime if the input is a GFG automaton.

Remark: Synthesis is ExpTime-complete for nondet specification,
and 2ExpTime-complete for LTL specification.

Why “Good-for-games” ?

Theorem (Henzinger, Piterman ’06)
Let A a parity GFG automaton, and G game with winning
condition L(A).
Then A ◦ G (where Eve controls A) is a parity game with same
winner as G.
Proof: Eve can drive A according to σGFG.

→ We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary
Church synthesis is in PTime if the input is a GFG automaton.

Remark: Synthesis is ExpTime-complete for nondet specification,
and 2ExpTime-complete for LTL specification.

Good-for-Trees
A automaton on infinite words 7→ AT automaton on infinite trees

p

q1 q2

a

If p a→ q1 and p a→ q2 in A, then put in AT :

Definition
A is Good-for-Trees (GFT) if

L(AT) = {t | all branches of t are in L(A)}

Theorem (Boker, K., Kupferman, Skrzypczak ’13)
If rank of the trees ≥ size of the alphabet, then

GFG = GFT

Hypothesis is necessary !

Good-for-Trees
A automaton on infinite words 7→ AT automaton on infinite trees

p

q1 q2

a

If p a→ q1 and p a→ q2 in A, then put in AT :

Definition
A is Good-for-Trees (GFT) if

L(AT) = {t | all branches of t are in L(A)}

Theorem (Boker, K., Kupferman, Skrzypczak ’13)
If rank of the trees ≥ size of the alphabet, then

GFG = GFT

Hypothesis is necessary !

Good-for-Trees
A automaton on infinite words 7→ AT automaton on infinite trees

p

q1 q2

a

If p a→ q1 and p a→ q2 in A, then put in AT :

Definition
A is Good-for-Trees (GFT) if

L(AT) = {t | all branches of t are in L(A)}

Theorem (Boker, K., Kupferman, Skrzypczak ’13)
If rank of the trees ≥ size of the alphabet, then

GFG = GFT

Hypothesis is necessary !

Good-for-Trees
A automaton on infinite words 7→ AT automaton on infinite trees

p

q1 q2

a

If p a→ q1 and p a→ q2 in A, then put in AT :

Definition
A is Good-for-Trees (GFT) if

L(AT) = {t | all branches of t are in L(A)}

Theorem (Boker, K., Kupferman, Skrzypczak ’13)
If rank of the trees ≥ size of the alphabet, then

GFG = GFT

Hypothesis is necessary !

Link with determinism

Fact
Every deterministic automaton is GFG.

p

qa

qb

rSome (unamb.) non-GFG automaton:

L = (a + b)(a + b)

a, b

a, b

a

b

Definition
Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact
DBP =“GFG with a positional strategy”.
→ Every DBP automaton is GFG.

Link with determinism

Fact
Every deterministic automaton is GFG.

p

qa

qb

rSome (unamb.) non-GFG automaton:

L = (a + b)(a + b)

a, b

a, b

a

b

Definition
Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact
DBP =“GFG with a positional strategy”.
→ Every DBP automaton is GFG.

Link with determinism

Fact
Every deterministic automaton is GFG.

p

qa

qb

rSome (unamb.) non-GFG automaton:

L = (a + b)(a + b)

a, b

a, b

a

b

Definition
Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact
DBP =“GFG with a positional strategy”.
→ Every DBP automaton is GFG.

Link with determinism

Fact
Every deterministic automaton is GFG.

p

qa

qb

rSome (unamb.) non-GFG automaton:

L = (a + b)(a + b)

a, b

a, b

a

b

Definition
Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact
DBP =“GFG with a positional strategy”.
→ Every DBP automaton is GFG.

Some GFG automata

Theorem
On finite words, DBP = GFG.
Proof: σGFG: always go to state accepting the maximal language.

Theorem ([Boker, K., Kupferman, Skrzypczak ’13])
On infinite words, DBP (GFG.

x

x

b

a

a
b

x

x

b

a

a

b
A GFG coBüchi automaton for (xa + xb)∗[(xa)ω + (xb)ω].

Some GFG automata

Theorem
On finite words, DBP = GFG.
Proof: σGFG: always go to state accepting the maximal language.

Theorem ([Boker, K., Kupferman, Skrzypczak ’13])
On infinite words, DBP (GFG.

x

x

b

a

a
b

x

x

b

a

a

b
A GFG coBüchi automaton for (xa + xb)∗[(xa)ω + (xb)ω].

Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)
If A is nondet and B is GFG, we can decide whether L(A) ⊆ L(B)
in PTime.
Proof: Simulation game.

Theorem (Easy Union, Intersection)
If A and B are GFG, then their union and intersection using
cartesian product are GFG.

Theorem (Hard complementation)
If A is GFG for L and B is GFG for L, then we can build in
PTime a deterministic automaton for L based on A× B.
Proof: Pos. Strategy in Letter game of U = A× B accepting all
words.

Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)
If A is nondet and B is GFG, we can decide whether L(A) ⊆ L(B)
in PTime.
Proof: Simulation game.

Theorem (Easy Union, Intersection)
If A and B are GFG, then their union and intersection using
cartesian product are GFG.

Theorem (Hard complementation)
If A is GFG for L and B is GFG for L, then we can build in
PTime a deterministic automaton for L based on A× B.
Proof: Pos. Strategy in Letter game of U = A× B accepting all
words.

Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)
If A is nondet and B is GFG, we can decide whether L(A) ⊆ L(B)
in PTime.
Proof: Simulation game.

Theorem (Easy Union, Intersection)
If A and B are GFG, then their union and intersection using
cartesian product are GFG.

Theorem (Hard complementation)
If A is GFG for L and B is GFG for L, then we can build in
PTime a deterministic automaton for L based on A× B.

Proof: Pos. Strategy in Letter game of U = A× B accepting all
words.

Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)
If A is nondet and B is GFG, we can decide whether L(A) ⊆ L(B)
in PTime.
Proof: Simulation game.

Theorem (Easy Union, Intersection)
If A and B are GFG, then their union and intersection using
cartesian product are GFG.

Theorem (Hard complementation)
If A is GFG for L and B is GFG for L, then we can build in
PTime a deterministic automaton for L based on A× B.
Proof: Pos. Strategy in Letter game of U = A× B accepting all
words.

How much memory is needed in the GFG strategy ?

Lemma
If A is GFG and D is a det. automaton for L(A), then
there is a strategy σGFG with memory D.
Proof: Solve the letter game the classical way.

Fact
If A is GFG with σGFG of memory M, then D = A×M is a det.
automaton for L(A).
Conclusion:
Size of memory in σGFG ≈ size of equivalent det. automaton

Corollary
Det and GFG are equi-expressive for any acceptance condition.
Important Remark:
GFG automata can be used in algorithms without knowing σGFG.
The strategy σGFG “hides” the determinism.

How much memory is needed in the GFG strategy ?

Lemma
If A is GFG and D is a det. automaton for L(A), then
there is a strategy σGFG with memory D.
Proof: Solve the letter game the classical way.

Fact
If A is GFG with σGFG of memory M, then D = A×M is a det.
automaton for L(A).

Conclusion:
Size of memory in σGFG ≈ size of equivalent det. automaton

Corollary
Det and GFG are equi-expressive for any acceptance condition.
Important Remark:
GFG automata can be used in algorithms without knowing σGFG.
The strategy σGFG “hides” the determinism.

How much memory is needed in the GFG strategy ?

Lemma
If A is GFG and D is a det. automaton for L(A), then
there is a strategy σGFG with memory D.
Proof: Solve the letter game the classical way.

Fact
If A is GFG with σGFG of memory M, then D = A×M is a det.
automaton for L(A).
Conclusion:
Size of memory in σGFG ≈ size of equivalent det. automaton

Corollary
Det and GFG are equi-expressive for any acceptance condition.
Important Remark:
GFG automata can be used in algorithms without knowing σGFG.
The strategy σGFG “hides” the determinism.

How much memory is needed in the GFG strategy ?

Lemma
If A is GFG and D is a det. automaton for L(A), then
there is a strategy σGFG with memory D.
Proof: Solve the letter game the classical way.

Fact
If A is GFG with σGFG of memory M, then D = A×M is a det.
automaton for L(A).
Conclusion:
Size of memory in σGFG ≈ size of equivalent det. automaton

Corollary
Det and GFG are equi-expressive for any acceptance condition.

Important Remark:
GFG automata can be used in algorithms without knowing σGFG.
The strategy σGFG “hides” the determinism.

How much memory is needed in the GFG strategy ?

Lemma
If A is GFG and D is a det. automaton for L(A), then
there is a strategy σGFG with memory D.
Proof: Solve the letter game the classical way.

Fact
If A is GFG with σGFG of memory M, then D = A×M is a det.
automaton for L(A).
Conclusion:
Size of memory in σGFG ≈ size of equivalent det. automaton

Corollary
Det and GFG are equi-expressive for any acceptance condition.
Important Remark:
GFG automata can be used in algorithms without knowing σGFG.
The strategy σGFG “hides” the determinism.

State-blow-up for determinization
Finite words:
GFG=DBP, Determinization in PTime [Löding].

Büchi (Parity [1, 2]):
I Simple exponential determinization: powerset not Safra.
I Determinization: O(n2) states and NP [K., Skrzypczak ’15].
I Conjecture O(n) states and in PTime.

CoBüchi (Parity [0, 1]):
GFG automata can be exponentially more succinct than
deterministic ones [K., Skrzypczak ’15]

State-blow-up for determinization
Finite words:
GFG=DBP, Determinization in PTime [Löding].

Büchi (Parity [1, 2]):
I Simple exponential determinization: powerset not Safra.
I Determinization: O(n2) states and NP [K., Skrzypczak ’15].
I Conjecture O(n) states and in PTime.

CoBüchi (Parity [0, 1]):
GFG automata can be exponentially more succinct than
deterministic ones [K., Skrzypczak ’15]

State-blow-up for determinization
Finite words:
GFG=DBP, Determinization in PTime [Löding].

Büchi (Parity [1, 2]):
I Simple exponential determinization: powerset not Safra.
I Determinization: O(n2) states and NP [K., Skrzypczak ’15].
I Conjecture O(n) states and in PTime.

CoBüchi (Parity [0, 1]):
GFG automata can be exponentially more succinct than
deterministic ones [K., Skrzypczak ’15]

Exponential succinctness
To define Ln, letters {a, b,]} act on {0, 1, . . . , n − 1}:

a : + 1 mod n b : 0↔ 1] : “cuts” 0

w :

Graph(w):
0
1
2
3

a b] a] a b] . . .
. . .
. . .
. . .
. . .

Ln = {w | Graph(w) contains an ∞ path}.

Lemma: Any Det Parity automaton for Ln needs 2 n
2

n + 1 states.

Exponential succinctness
To define Ln, letters {a, b,]} act on {0, 1, . . . , n − 1}:

a : + 1 mod n b : 0↔ 1] : “cuts” 0

w :

Graph(w):
0
1
2
3

a b] a] a b] . . .
. . .
. . .
. . .
. . .

Ln = {w | Graph(w) contains an ∞ path}.

Lemma: Any Det Parity automaton for Ln needs 2 n
2

n + 1 states.

Exponential succinctness
To define Ln, letters {a, b,]} act on {0, 1, . . . , n − 1}:

a : + 1 mod n b : 0↔ 1] : “cuts” 0

w :

Graph(w):
0
1
2
3

a b] a] a b] . . .
. . .
. . .
. . .
. . .

Ln = {w | Graph(w) contains an ∞ path}.

Lemma: Any Det Parity automaton for Ln needs 2 n
2

n + 1 states.

Small CoBüchi GFG for Ln

p0

p1

p2
. . .

⊥ pn

a, b
b

a
]

b,]

a

a

a

b,]

]

w :

Graph(w):
0
1
2
3

a b] a] a b] . . .
. . .
. . .
. . .
. . .

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]

HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]

I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]

(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]

Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

More general frameworks
Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
I σEve and σAdam

I exponential succinctness versus GFG and versus Det
I notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
I Strictly between DPDA and PDA
I Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]
I/O-Aware GFG [Faran, Kupferman ’20]
(max,+) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

Building GFG automata
Some efforts:
I Incremental powerset construction [K’, Majumdar ’18]
I Fragment of CoBüchi languages [Iosti, K. ’19]
I Minimization of GFG CoBüchi automata in PTime

[Abu Radi, Kupferman ’20]
Det CoBüchi 7−→ Minimal GFG coBüchi

Less ambitious goal: recognizing GFG automata.

Building GFG automata
Some efforts:
I Incremental powerset construction [K’, Majumdar ’18]
I Fragment of CoBüchi languages [Iosti, K. ’19]
I Minimization of GFG CoBüchi automata in PTime

[Abu Radi, Kupferman ’20]
Det CoBüchi 7−→ Minimal GFG coBüchi

Less ambitious goal: recognizing GFG automata.

Recognizing GFG automata
GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])
We can solve the Letter game in ExpTime.

Proof:
I Compute a deterministic parity automaton for L(A),
I Use it to transform the Letter game into a parity game G ′ of

exponential size,
I Solve G ′.

So GFGness is decidable, but can we do better than ExpTime?

Recognizing GFG automata
GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])
We can solve the Letter game in ExpTime.

Proof:
I Compute a deterministic parity automaton for L(A),
I Use it to transform the Letter game into a parity game G ′ of

exponential size,
I Solve G ′.

So GFGness is decidable, but can we do better than ExpTime?

Recognizing GFG automata
GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])
We can solve the Letter game in ExpTime.

Proof:
I Compute a deterministic parity automaton for L(A),
I Use it to transform the Letter game into a parity game G ′ of

exponential size,
I Solve G ′.

So GFGness is decidable, but can we do better than ExpTime?

Recognizing GFG automata
GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])
We can solve the Letter game in ExpTime.

Proof:
I Compute a deterministic parity automaton for L(A),
I Use it to transform the Letter game into a parity game G ′ of

exponential size,
I Solve G ′.

So GFGness is decidable, but can we do better than ExpTime?

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.

The game G1:
Adam plays letters:
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters:
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.

Pos. Strategy 7→ Det. Automaton.

Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.
The game G1:
Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves one token

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if at all times: accepting ⇒ accepting.

Theorem: Eve wins G1 ⇔ A is GFG.

G1 is a safety game, solvable in polynomial time.
Pos. Strategy 7→ Det. Automaton.

On infinite words

Fact
G1 does not characterize GFG Büchi (resp. CoBüchi) automata.

1 2

a, b

a

a

(a + b)∗aωnot GFG:

But Eve wins G1: follow Adam’s token one step behind.

We need a better abstraction of the Letter game.

On infinite words

Fact
G1 does not characterize GFG Büchi (resp. CoBüchi) automata.

1 2

a, b

a

a

(a + b)∗aωnot GFG:

But Eve wins G1: follow Adam’s token one step behind.

We need a better abstraction of the Letter game.

On infinite words

Fact
G1 does not characterize GFG Büchi (resp. CoBüchi) automata.

1 2

a, b

a

a

(a + b)∗aωnot GFG:

But Eve wins G1: follow Adam’s token one step behind.

We need a better abstraction of the Letter game.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters:
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a
Eve: moves one token , Adam: moves two tokens 1 , 2

21

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b
Eve: moves one token , Adam: moves two tokens 1 , 2

21

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b
Eve: moves one token , Adam: moves two tokens 1 , 2

21

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b c
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b c
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b c
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b,c

c

Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Abstracting the Letter game: infinite words
The game G2:

Adam plays letters: a a b c . . . = w
Eve: moves one token , Adam: moves two tokens 1 , 2

1 2

a, b, c
a

b, c

a
b

a, b, c

c
Eve wins if in the long run: 1 or 2 accepts ⇒ accepts.

The G2 Conjecture

For all automata A: Eve wins G2 ⇔ A is GFG.

Solving G2 is polynomial ⇒ Efficient algorithm for GFGness.

Why G2 is powerful: The game Gk

Game Gk : k tokens . Some i accepts ⇒ must accept.

Lemma
Eve wins G2 ⇔ Eve wins Gk for all k ≥ 2.

Proof sketch: G2 ⇒ G3
I play a virtual token against 1 and 2 .
I play G2 strategy against and 3 .

1

2

3

σ2

σ2

Why G2 is powerful: The game Gk

Game Gk : k tokens . Some i accepts ⇒ must accept.

Lemma
Eve wins G2 ⇔ Eve wins Gk for all k ≥ 2.

Proof sketch: G2 ⇒ G3
I play a virtual token against 1 and 2 .
I play G2 strategy against and 3 .

1

2

3

σ2

σ2

Why G2 is powerful: The game Gk

Game Gk : k tokens . Some i accepts ⇒ must accept.

Lemma
Eve wins G2 ⇔ Eve wins Gk for all k ≥ 2.

Proof sketch: G2 ⇒ G3
I play a virtual token against 1 and 2 .
I play G2 strategy against and 3 .

1

2

3

σ2

σ2

Explorable automata

Definition (k-Letter game)
k-letter game: Letter game where Eve moves k tokens instead of
one. She wins if
w ∈ L⇒ at least one token follows an accepting run.

Definition
A is k-GFG if Eve wins the k-Letter game.
A is Explorable if it is k-GFG for some k.

Theorem (Unpublished)
If A is explorable: Eve wins G2 ⇔ A is GFG.

Explorable automata

Definition (k-Letter game)
k-letter game: Letter game where Eve moves k tokens instead of
one. She wins if
w ∈ L⇒ at least one token follows an accepting run.

Definition
A is k-GFG if Eve wins the k-Letter game.
A is Explorable if it is k-GFG for some k.

Theorem (Unpublished)
If A is explorable: Eve wins G2 ⇔ A is GFG.

What is known about the G2 conjecture
G2 characterizes GFGness on
I Explorable parity automata [Unpublished]
I LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
I Büchi automata [Bagnol, K. ’18]
I CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]
→ GFGness is in PTime for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only
known to be in ExpTime.

Theorem ([Boker, K., Lehtinen, Skrzypcak, on Arxiv])
If the G2 conjecture is true on non-deterministic automata, it is
true on alternating automata.

What is known about the G2 conjecture
G2 characterizes GFGness on
I Explorable parity automata [Unpublished]
I LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
I Büchi automata [Bagnol, K. ’18]
I CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]
→ GFGness is in PTime for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only
known to be in ExpTime.

Theorem ([Boker, K., Lehtinen, Skrzypcak, on Arxiv])
If the G2 conjecture is true on non-deterministic automata, it is
true on alternating automata.

What is known about the G2 conjecture
G2 characterizes GFGness on
I Explorable parity automata [Unpublished]
I LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
I Büchi automata [Bagnol, K. ’18]
I CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]
→ GFGness is in PTime for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only
known to be in ExpTime.

Theorem ([Boker, K., Lehtinen, Skrzypcak, on Arxiv])
If the G2 conjecture is true on non-deterministic automata, it is
true on alternating automata.

Main proof sketch for G2 ⇒ GFG on Büchi
Assume for contradiction:
I Eve wins G2, so Eve wins Gk with strategy σk , for a big k.
I Adam wins the Letter game with finite-memory strategy τGFG.

Idea for a strategy against τGFG in the Letter game:
I move k virtual tokens uniformly
I play σk against these k tokens

Trick: Word from τGFG ⇒ one Büchi for some every M steps.
 wins agains τGFG, contradiction.

Main proof sketch for G2 ⇒ GFG on Büchi
Assume for contradiction:
I Eve wins G2, so Eve wins Gk with strategy σk , for a big k.
I Adam wins the Letter game with finite-memory strategy τGFG.

Idea for a strategy against τGFG in the Letter game:
I move k virtual tokens uniformly
I play σk against these k tokens

Trick: Word from τGFG ⇒ one Büchi for some every M steps.
 wins agains τGFG, contradiction.

G2 for CoBüchi

Current and future work
I Studying GFG models in many frameworks.

I Expressivity
I Succinctness
I Complexity

I Practical applications, experimental evaluations.
I Understanding k-GFG and Explorable automata.
I Prove or disprove the G2 conjecture for parity automata.
I . . .

anks for
 your aention

Current and future work
I Studying GFG models in many frameworks.

I Expressivity
I Succinctness
I Complexity

I Practical applications, experimental evaluations.
I Understanding k-GFG and Explorable automata.
I Prove or disprove the G2 conjecture for parity automata.
I . . .

anks for
 your aention

	Definition

