Good-for-Games Automata: State of the art and perspectives

Denis Kuperberg

CNRS, LIP, ENS Lyon

Dagstuhl Seminar Unambiguity in Automata Theory

Two Players:

Arena: finite graph G = (V, E), with $V = V_{\bigcirc} \uplus V_{\square}$.

Arena: finite graph G = (V, E), with $V = V_{\bigcirc} \uplus V_{\square}$.

Initial vertex: $v_0 \in V$.

Arena: finite graph G = (V, E), with $V = V_{\bigcirc} \uplus V_{\square}$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0v_1v_2\cdots \in V^{\omega}$

Arena: finite graph G = (V, E), with $V = V_{\bigcirc} \uplus V_{\square}$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0v_1v_2\cdots \in V^{\omega}$

Winning Condition: $W \subseteq V^{\omega}$.

Arena: finite graph G = (V, E), with $V = V_{\bigcirc} \uplus V_{\square}$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0v_1v_2\cdots \in V^{\omega}$

Winning Condition: $W \subseteq V^{\omega}$.

Eve wins a play π if $\pi \in W$

ω -regular games

Winning condition W: an ω -regular language.

ω -regular games

Winning condition W: an ω -regular language.

Particular case: Parity games

W is a parity condition: each vertex has a color in \mathbb{N} , the maximal color appearing infinitely often must be even.

Büchi=Parity [1,2] CoBüchi=Parity [0,1].

ω -regular games

Winning condition W: an ω -regular language.

Particular case: Parity games

W is a parity condition: each vertex has a color in \mathbb{N} , the maximal color appearing infinitely often must be even.

```
Büchi=Parity [1,2] CoBüchi=Parity [0,1].
```

Theorem (Positional Determinacy [Emerson, Jutla '91]) In a parity game, Eve or Adam has a **positional** winning strategy.

Input: *G* game with ω -regular winning condition $W \subseteq V^{\omega}$. **Question:** Who wins *G* ? How ?

Input: *G* game with ω -regular winning condition $W \subseteq V^{\omega}$. **Question:** Who wins *G* ? How ?

Solution:

- 1. Build Det Parity automaton $\mathcal{A}_{\mathrm{Det}}$ for W,
- 2. Solve the parity game $G' = \mathcal{A}_{\mathrm{Det}} \circ G$.

Theorem

- G' has same winner as G.
- $\sigma_{\rm pos}$ in G' gives σ in G with memory $\mathcal{A}_{\rm Det}$.
- $\rightarrow \omega\text{-regular}$ games are finite-memory determined.

Input: G game with ω -regular winning condition $W \subseteq V^{\omega}$. **Question:** Who wins G ? How ?

Solution:

- 1. Build Det Parity automaton $\mathcal{A}_{\mathrm{Det}}$ for W,
- 2. Solve the parity game $G' = \mathcal{A}_{\mathrm{Det}} \circ G$.

Theorem

- G' has same winner as G.
- $\sigma_{\rm pos}$ in G' gives σ in G with memory ${\cal A}_{\rm Det}.$
- $\rightarrow \omega\text{-regular}$ games are finite-memory determined.

Application: Church Synthesis

Automatically build a program from a specification L \Leftrightarrow Solving a game with winning condition L.

Input: *G* game with ω -regular winning condition $W \subseteq V^{\omega}$. **Question:** Who wins *G* ? How ?

Solution:

- 1. Build Det Parity automaton $\mathcal{A}_{\mathrm{Det}}$ for W,
- 2. Solve the parity game $G' = \mathcal{A}_{\mathrm{Det}} \circ G$.

Theorem

- G' has same winner as G.
- $\sigma_{\rm pos}$ in G' gives σ in G with memory ${\cal A}_{\rm Det}.$
- $\rightarrow \omega\text{-regular}$ games are finite-memory determined.

Application: Church Synthesis

Automatically build a program from a specification L \Leftrightarrow Solving a game with winning condition L.

Problem: Determinization is expensive. Maybe too strong ?

Good-for-Games Automata

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters:

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of A:
```

Adam plays letters: a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a a

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: *a a b*

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: *a a b*

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c$

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c$

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: *a a b c c*

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: *a a b c c*

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} : Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} : Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.

 $\mathcal{A} \operatorname{GFG} \Leftrightarrow$ Eve wins the Letter game on \mathcal{A} \Leftrightarrow there is a strategy $\sigma_{\operatorname{GFG}} : \mathcal{A}^* \to Q$ accepting all words of $\mathcal{L}(\mathcal{A})$.

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.

 $\mathcal{A} \ \mathbf{GFG} \Leftrightarrow \mathsf{Eve} \ \mathsf{wins} \ \mathsf{the} \ \mathsf{Letter} \ \mathsf{game} \ \mathsf{on} \ \mathcal{A}$

 \Leftrightarrow there is a strategy $\sigma_{
m GFG}: A^* \to Q$ accepting all words of $L(\mathcal{A})$.

Not a parity game! Only ω -regular.

Theorem (Henzinger, Piterman '06)

Let A a parity GFG automaton, and G game with winning condition L(A).

Then $\mathcal{A} \circ G$ (where Eve controls \mathcal{A}) is a parity game with same winner as G.

Proof: Eve can drive \mathcal{A} according to σ_{GFG} .

Theorem (Henzinger, Piterman '06)

Let A a parity GFG automaton, and G game with winning condition L(A).

Then $A \circ G$ (where Eve controls A) is a parity game with same winner as G.

Proof: Eve can drive A according to σ_{GFG} .

 \rightarrow We can use GFG instead of determinism to solve games.

Theorem (Henzinger, Piterman '06)

Let A a parity GFG automaton, and G game with winning condition L(A).

Then $A \circ G$ (where Eve controls A) is a parity game with same winner as G.

Proof: Eve can drive A according to σ_{GFG} .

 \rightarrow We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Theorem (Henzinger, Piterman '06)

Let \mathcal{A} a parity GFG automaton, and G game with winning condition $L(\mathcal{A})$. Then $\mathcal{A} \circ G$ (where Eve controls \mathcal{A}) is a parity game with same winner as G.

Proof: Eve can drive A according to σ_{GFG} .

 \rightarrow We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary

Church synthesis is in PTIME if the input is a GFG automaton.

Theorem (Henzinger, Piterman '06)

Let \mathcal{A} a parity GFG automaton, and G game with winning condition $L(\mathcal{A})$. Then $\mathcal{A} \circ G$ (where Eve controls \mathcal{A}) is a parity game with same winner as G.

Proof: Eve can drive A according to σ_{GFG} .

 \rightarrow We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary

Church synthesis is in PTIME if the input is a GFG automaton.

Remark: Synthesis is **EXPTIME-complete** for nondet specification, and **2EXPTIME-complete** for LTL specification.

Good-for-Trees

 $\mathcal A$ automaton on infinite words $\mapsto \mathcal A_{\mathcal T}$ automaton on infinite trees

Good-for-Trees

 $\mathcal A$ automaton on infinite words $\mapsto \mathcal A_{\mathcal T}$ automaton on infinite trees

Definition

 ${\cal A}$ is Good-for-Trees (GFT) if

 $L(A_T) = \{t \mid \text{all branches of } t \text{ are in } L(A)\}$
Good-for-Trees

 $\mathcal A$ automaton on infinite words $\mapsto \mathcal A_{\mathcal T}$ automaton on infinite trees

Definition

 ${\cal A}$ is Good-for-Trees (GFT) if

$$L(A_T) = \{t \mid \text{all branches of } t \text{ are in } L(A)\}$$

Theorem (Boker, K., Kupferman, Skrzypczak '13) If rank of the trees \geq size of the alphabet, then

GFG = GFT

Good-for-Trees

 $\mathcal A$ automaton on infinite words $\mapsto \mathcal A_{\mathcal T}$ automaton on infinite trees

Definition

 ${\cal A}$ is Good-for-Trees (GFT) if

$$L(A_T) = \{t \mid \text{all branches of } t \text{ are in } L(A)\}$$

Theorem (Boker, K., Kupferman, Skrzypczak '13) If rank of the trees \geq size of the alphabet, then

GFG = GFT

Hypothesis is necessary !

Fact

Every deterministic automaton is GFG.

Fact

Every deterministic automaton is GFG.

Some (unamb.) non-GFG automaton:

$$L = (a+b)(a+b)$$

Fact

Every deterministic automaton is GFG.

Some (unamb.) non-GFG automaton:

L = (a+b)(a+b)

Definition

Determinizable by Pruning (DBP):

Determinizable by removing some transitions.

Fact

Every deterministic automaton is GFG.

Some (unamb.) non-GFG automaton:

L = (a+b)(a+b)

Definition

Determinizable by Pruning (DBP):

Determinizable by removing some transitions.

Fact DBP = "GFG with a positional strategy". \rightarrow Every DBP automaton is GFG.

Some GFG automata

Theorem

On finite words, DBP = GFG.

Proof: $\sigma_{\rm GFG}$: always go to state accepting the maximal language.

Some GFG automata

Theorem

On finite words, DBP = GFG.

Proof: $\sigma_{\rm GFG}$: always go to state accepting the maximal language.

Theorem ([Boker, K., Kupferman, Skrzypczak '13]) On infinite words, $DBP \subsetneq GFG$.

A GFG coBüchi automaton for $(xa + xb)^*[(xa)^{\omega} + (xb)^{\omega}]$.

Theorem (Easy inclusion checking) If \mathcal{A} is nondet and \mathcal{B} is GFG, we can decide whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$ in PTIME.

Proof: Simulation game.

Theorem (Easy inclusion checking)

If \mathcal{A} is nondet and \mathcal{B} is GFG, we can decide whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$ in PTIME.

Proof: Simulation game.

Theorem (Easy Union, Intersection)

If \mathcal{A} and \mathcal{B} are GFG, then their union and intersection using cartesian product are GFG.

Theorem (Easy inclusion checking)

If \mathcal{A} is nondet and \mathcal{B} is GFG, we can decide whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$ in PTIME.

Proof: Simulation game.

Theorem (Easy Union, Intersection)

If \mathcal{A} and \mathcal{B} are GFG, then their union and intersection using cartesian product are GFG.

Theorem (Hard complementation)

If \mathcal{A} is GFG for L and \mathcal{B} is GFG for \overline{L} , then we can build in PTIME a deterministic automaton for L based on $\mathcal{A} \times \mathcal{B}$.

Theorem (Easy inclusion checking)

If \mathcal{A} is nondet and \mathcal{B} is GFG, we can decide whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$ in PTIME.

Proof: Simulation game.

Theorem (Easy Union, Intersection)

If \mathcal{A} and \mathcal{B} are GFG, then their union and intersection using cartesian product are GFG.

Theorem (Hard complementation)

If \mathcal{A} is GFG for L and \mathcal{B} is GFG for \overline{L} , then we can build in PTIME a deterministic automaton for L based on $\mathcal{A} \times \mathcal{B}$.

Proof: Pos. Strategy in Letter game of $U = A \times B$ accepting all words.

Lemma

If \mathcal{A} is GFG and \mathcal{D} is a det. automaton for $L(\mathcal{A})$, then there is a strategy σ_{GFG} with memory \mathcal{D} .

Proof: Solve the letter game the classical way.

Lemma

If \mathcal{A} is GFG and \mathcal{D} is a det. automaton for L(\mathcal{A}), then there is a strategy σ_{GFG} with memory \mathcal{D} .

Proof: Solve the letter game the classical way.

Fact

If \mathcal{A} is GFG with σ_{GFG} of memory M, then $\mathcal{D} = \mathcal{A} \times M$ is a det. automaton for $L(\mathcal{A})$.

Lemma

If \mathcal{A} is GFG and \mathcal{D} is a det. automaton for L(\mathcal{A}), then there is a strategy σ_{GFG} with memory \mathcal{D} .

Proof: Solve the letter game the classical way.

Fact

If \mathcal{A} is GFG with σ_{GFG} of memory M, then $\mathcal{D} = \mathcal{A} \times M$ is a det. automaton for $L(\mathcal{A})$.

Conclusion:

Size of memory in $\sigma_{\rm GFG} \approx$ size of equivalent det. automaton

Lemma

If \mathcal{A} is GFG and \mathcal{D} is a det. automaton for L(\mathcal{A}), then there is a strategy σ_{GFG} with memory \mathcal{D} .

Proof: Solve the letter game the classical way.

Fact

If \mathcal{A} is GFG with σ_{GFG} of memory M, then $\mathcal{D} = \mathcal{A} \times M$ is a det. automaton for $L(\mathcal{A})$.

Conclusion:

Size of memory in $\sigma_{\rm GFG} \approx$ size of equivalent det. automaton

Corollary

Det and GFG are equi-expressive for any acceptance condition.

Lemma

If \mathcal{A} is GFG and \mathcal{D} is a det. automaton for L(\mathcal{A}), then there is a strategy σ_{GFG} with memory \mathcal{D} .

Proof: Solve the letter game the classical way.

Fact

If \mathcal{A} is GFG with σ_{GFG} of memory M, then $\mathcal{D} = \mathcal{A} \times M$ is a det. automaton for $L(\mathcal{A})$.

Conclusion:

Size of memory in $\sigma_{\rm GFG} \approx$ size of equivalent det. automaton

Corollary

Det and GFG are equi-expressive for any acceptance condition.

Important Remark:

GFG automata can be used in algorithms without knowing σ_{GFG} . The strategy σ_{GFG} "hides" the determinism.

State-blow-up for determinization

Finite words:

 $GFG{=}DBP,$ Determinization in $PT{\rm IME}$ [Löding].

State-blow-up for determinization

Finite words:

GFG=DBP, Determinization in PTIME [Löding].

Büchi (Parity [1, 2]):

- Simple exponential determinization: powerset not Safra.
- Determinization: $O(n^2)$ states and NP [K., Skrzypczak '15].
- Conjecture O(n) states and in PTIME.

State-blow-up for determinization

Finite words:

GFG=DBP, Determinization in PTIME [Löding].

Büchi (Parity [1,2]):

Simple exponential determinization: powerset not Safra.

- Determinization: $O(n^2)$ states and NP [K., Skrzypczak '15].
- Conjecture O(n) states and in PTIME.

CoBüchi (Parity [0, 1]):

GFG automata can be exponentially more succinct than deterministic ones [K., Skrzypczak '15]

Exponential succinctness

To define L_n , letters $\{a, b, \sharp\}$ act on $\{0, 1, \ldots, n-1\}$:

 $a: +1 \mod n$ $b: 0 \leftrightarrow 1$ $\sharp:$ "cuts" 0

Exponential succinctness

To define L_n , letters $\{a, b, \sharp\}$ act on $\{0, 1, \ldots, n-1\}$:

 $a: +1 \mod n$ $b: 0 \leftrightarrow 1$ $\sharp:$ "cuts" 0

Exponential succinctness

To define L_n , letters $\{a, b, \sharp\}$ act on $\{0, 1, \ldots, n-1\}$:

 $a: +1 \mod n$ $b: 0 \leftrightarrow 1$ $\sharp:$ "cuts" 0

Lemma: Any Det Parity automaton for L_n needs $\frac{2^{\frac{n}{2}}}{n+1}$ states.

Small CoBüchi GFG for L_n

Co-invention: History-deterministic for cost functions [Colcombet '09]

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \blacktriangleright $\sigma_{\rm Eve}$ and $\sigma_{\rm Adam}$
- \blacktriangleright exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \blacktriangleright $\sigma_{\rm Eve}$ and $\sigma_{\rm Adam}$
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(ω -)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \blacktriangleright $\sigma_{\rm Eve}$ and $\sigma_{\rm Adam}$
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(ω -)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding '08, Skrzypczak '21]

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \blacktriangleright $\sigma_{\rm Eve}$ and $\sigma_{\rm Adam}$
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(ω -)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding '08, Skrzypczak '21] I/O-Aware GFG [Faran, Kupferman '20]

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \blacktriangleright $\sigma_{\rm Eve}$ and $\sigma_{\rm Adam}$
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(ω -)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding '08, Skrzypczak '21]
I/O-Aware GFG [Faran, Kupferman '20]
(max, +) automata [Filiot, Jecker, Lhote, Pérez, Raskin '17]

Co-invention: History-deterministic for **cost functions** [Colcombet '09] HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \blacktriangleright $\sigma_{\rm Eve}$ and $\sigma_{\rm Adam}$
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(ω -)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding '08, Skrzypczak '21] I/O-Aware GFG [Faran, Kupferman '20] (max, +) automata [Filiot, Jecker, Lhote, Pérez, Raskin '17] Discounted Sum, LimInf, LimSup [Boker, Lehtinen]

Building GFG automata

Some efforts:

- Incremental powerset construction [K', Majumdar '18]
- Fragment of CoBüchi languages [losti, K. '19]
- Minimization of GFG CoBüchi automata in PTIME [Abu Radi, Kupferman '20]

 $\mathsf{Det}\ \mathsf{CoB} \ddot{\mathsf{u}}\mathsf{chi} \longmapsto \mathsf{Minimal}\ \mathbf{GFG}\ \mathsf{coB} \ddot{\mathsf{u}}\mathsf{chi}$

Building GFG automata

Some efforts:

- Incremental powerset construction [K', Majumdar '18]
- Fragment of CoBüchi languages [losti, K. '19]
- Minimization of GFG CoBüchi automata in PTIME [Abu Radi, Kupferman '20]

 $\mathsf{Det}\ \mathsf{CoB}\ddot{\mathsf{u}}\mathsf{chi}\longmapsto\mathsf{Minimal}\ \mathbf{GFG}\ \mathsf{coB}\ddot{\mathsf{u}}\mathsf{chi}$

Less ambitious goal: recognizing GFG automata.

Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman '06])

We can solve the Letter game in EXPTIME.
Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman '06])

We can solve the Letter game in ExpTIME.

Proof:

- Compute a deterministic parity automaton for L(A),
- ► Use it to transform the Letter game into a parity game G' of exponential size,
- ► Solve G'.

Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman '06])

We can solve the Letter game in ExpTIME.

Proof:

- Compute a deterministic parity automaton for L(A),
- Use it to transform the Letter game into a parity game G' of exponential size,
- ► Solve G'.

So GFGness is decidable, but can we do better than $\mathrm{Exp}\mathrm{TIME}?$

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters:

Eve: moves one token [●], Adam: moves one token **■**

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

- The game G_1 :
- Adam plays letters: a

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a b

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a b

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a b

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a b c

Eve: moves one token [●], Adam: moves one token [■]

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a b c

Eve: moves one token [●], Adam: moves one token [■]

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: a a b c

Eve: moves one token [●], Adam: moves one token [■]

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token [●], Adam: moves one token [■]

Eve wins if at all times: \blacksquare accepting $\Rightarrow \bigcirc$ accepting.

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token [●], Adam: moves one token [■]

Eve wins if at all times: \blacksquare accepting $\Rightarrow \bigcirc$ accepting.

Theorem: Eve wins $G_1 \Leftrightarrow \mathcal{A}$ is GFG.

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token [●], Adam: moves one token [■]

Eve wins if at all times: \blacksquare accepting $\Rightarrow \bigcirc$ accepting.

Theorem: Eve wins $G_1 \Leftrightarrow \mathcal{A}$ is GFG.

 G_1 is a *safety* game, solvable in polynomial time.

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token [●], Adam: moves one token [■]

Eve wins if at all times: \blacksquare accepting $\Rightarrow \bigcirc$ accepting.

Theorem: Eve wins $G_1 \Leftrightarrow \mathcal{A}$ is GFG.

 G_1 is a *safety* game, solvable in polynomial time. Pos. Strategy \mapsto Det. Automaton.

On infinite words

Fact

G₁ does not characterize GFG Büchi (resp. CoBüchi) automata.

not GFG:
$$\longrightarrow 1^{a, b} = 2^{a, b} (a+b)^* a^{\omega}$$

On infinite words

Fact

G₁ does not characterize GFG Büchi (resp. CoBüchi) automata.

not GFG:
$$\rightarrow 1 \xrightarrow{a} 2$$
 $(a+b)^* a^{\omega}$

But Eve wins G_1 : follow Adam's token one step behind.

On infinite words

Fact

G₁ does not characterize GFG Büchi (resp. CoBüchi) automata.

not GFG:
$$\rightarrow 1 \xrightarrow{a} 2$$
 $(a+b)^* a^{\omega}$

But Eve wins G_1 : follow Adam's token one step behind.

We need a better abstraction of the Letter game.

The game G_2 :

Adam plays letters:

The game G_2 :

Adam plays letters: a

Eve: moves one token \bigcirc , Adam: moves two tokens \blacksquare , 2 a, b, c a a, b, c a, b, c b bb, c c

The game G_2 :

Adam plays letters: a

Eve: moves one token \bigcirc , Adam: moves two tokens \blacksquare , 2 a, b, c a a, b, c a, b, c b bb, c c

The game G_2 :

Adam plays letters: a

Eve: moves one token \bigcirc , Adam: moves two tokens \blacksquare , 2 a, b, c a a, b, c a, b, c b bb, c c

The game G_2 :

Adam plays letters: a a

Eve: moves one token \bigcirc , Adam: moves two tokens $\boxed{1}$, $\boxed{2}$

The game G_2 :

Adam plays letters: a a

The game G_2 :

Adam plays letters: a a Eve: moves one token \bigcirc , Adam: moves two tokens \blacksquare , 2a, b, c a a, b, ca, b, c a b bb, c c

The game G_2 :

Adam plays letters: a a b

The game G_2 :

Adam plays letters: a a b

Eve: moves one token \bigcirc , Adam: moves two tokens $\boxed{1}$, $\boxed{2}$

The game G_2 :

Adam plays letters: a a b

The game G_2 :

Adam plays letters: a a b c

The game G_2 :

Adam plays letters: a a b c

The game G_2 :

Adam plays letters: a a b c

Eve: moves one token \bigcirc , Adam: moves two tokens $\boxed{1}$, $\boxed{2}$

Abstracting the Letter game: infinite words

The game G_2 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token O, Adam: moves two tokens 1, 2

Abstracting the Letter game: infinite words

The game G_2 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token O, Adam: moves two tokens 1, 2

Eve wins if in the long run: **1** or **2** accepts \Rightarrow **0** accepts.

The G_2 Conjecture

For all automata \mathcal{A} : Eve wins $G_2 \Leftrightarrow \mathcal{A}$ is GFG.

Abstracting the Letter game: infinite words

The game G_2 :

Adam plays letters: $a a b c \ldots = w$

Eve: moves one token O, Adam: moves two tokens 1, 2

Eve wins if in the long run: **1** or **2** accepts \Rightarrow **0** accepts.

The G_2 Conjecture

For all automata \mathcal{A} : Eve wins $G_2 \Leftrightarrow \mathcal{A}$ is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.

Why G_2 is powerful: The game G_k

Game G_k : *k* tokens . Some accepts \Rightarrow must accept.

Why G_2 is powerful: The game G_k

Game G_k : *k* tokens \blacksquare . Some \blacksquare accepts $\Rightarrow \bigcirc$ must accept.

Lemma

Eve wins $G_2 \Leftrightarrow$ Eve wins G_k for all $k \ge 2$.

Why G_2 is powerful: The game G_k

Game G_k : *k* tokens \blacksquare . Some \blacksquare accepts $\Rightarrow \bigcirc$ must accept.

Lemma

Eve wins $G_2 \Leftrightarrow$ Eve wins G_k for all $k \ge 2$.

Proof sketch: $G_2 \Rightarrow G_3$

▶ play G₂ strategy against ● and 3.

Explorable automata

Definition (*k***-Letter game)**

k-letter game: Letter game where Eve moves k tokens instead of one. She wins if

 $w \in L \Rightarrow$ at least one token follows an accepting run.

Definition

 \mathcal{A} is k-GFG if Eve wins the k-Letter game.

 \mathcal{A} is **Explorable** if it is k-GFG for some k.

Explorable automata

Definition (*k***-Letter game)**

k-letter game: Letter game where Eve moves k tokens instead of one. She wins if

 $w \in L \Rightarrow$ at least one token follows an accepting run.

Definition

 \mathcal{A} is k-GFG if Eve wins the k-Letter game.

 \mathcal{A} is **Explorable** if it is k-GFG for some k.

Theorem (Unpublished)

If \mathcal{A} is explorable: Eve wins $G_2 \Leftrightarrow \mathcal{A}$ is GFG.

What is known about the G₂ conjecture

- G_2 characterizes GFGness on
 - Explorable parity automata [Unpublished]
 - LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
 - Büchi automata [Bagnol, K. '18]
 - CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]
- \rightarrow GFGness is in PTIME for these automata.

What is known about the G₂ conjecture

- G_2 characterizes GFGness on
 - Explorable parity automata [Unpublished]
 - LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
 - Büchi automata [Bagnol, K. '18]
 - CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]
- \rightarrow GFGness is in PTIME for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only known to be in $\underline{\text{ExpTIME}}.$

What is known about the G₂ conjecture

 G_2 characterizes GFGness on

- Explorable parity automata [Unpublished]
- LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
- Büchi automata [Bagnol, K. '18]
- CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]
- \rightarrow GFGness is in PTIME for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only known to be in $\underline{\text{ExpTIME}}.$

Theorem ([Boker, K., Lehtinen, Skrzypcak, on Arxiv]) If the G_2 conjecture is true on non-deterministic automata, it is true on alternating automata.

Main proof sketch for $G_2 \Rightarrow GFG$ on Büchi

Assume for contradiction:

- Eve wins G_2 , so Eve wins G_k with strategy σ_k , for a big k.
- Adam wins the Letter game with finite-memory strategy τ_{GFG} .

Main proof sketch for $G_2 \Rightarrow GFG$ on Büchi

Assume for contradiction:

- Eve wins G_2 , so Eve wins G_k with strategy σ_k , for a big k.
- Adam wins the Letter game with finite-memory strategy τ_{GFG} .

Idea for a strategy against au_{GFG} in the Letter game:

- move k virtual tokens uniformly
- play σ_k against these k tokens

Trick: Word from $\tau_{\text{GFG}} \Rightarrow$ one Büchi for some \bullet every *M* steps. $\rightsquigarrow \bullet$ wins agains τ_{GFG} , contradiction.

G₂ for CoBüchi

Current and future work

- Studying GFG models in many frameworks.
 - Expressivity
 - Succinctness
 - Complexity

. . .

- Practical applications, experimental evaluations.
- ▶ Understanding *k*-GFG and Explorable automata.
- Prove or disprove the G_2 conjecture for parity automata.

Current and future work

- Studying GFG models in many frameworks.
 - Expressivity
 - Succinctness
 - Complexity

. . .

- Practical applications, experimental evaluations.
- ▶ Understanding *k*-GFG and Explorable automata.
- Prove or disprove the G_2 conjecture for parity automata.

