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Good-for-Games Automata

Motivations
▶ Solve Church Synthesis more efficiently
▶ Intermediate model between Det. and Nondet.
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Definition of GFG via a game
A ND automaton on finite or infinite words.

Letter game of A:
Adam plays letters:
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L ⇒ Run accepting.

A GFG ⇔ Eve wins the Letter game on A
⇔ there is a strategy σGFG : A∗ → Q accepting all words of L(A).
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First facts

Fact
Every deterministic automaton is GFG.

p

qa

qb

rSome non-GFG automaton:
L = (a + b)(a + b)

a, b

a, b

a

b

Definition
Nondet automaton A is Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact
DBP =“GFG with a positional strategy”.
→ Every DBP automaton is GFG.
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Some GFG automata

Theorem
On finite words, DBP = GFG.

Theorem ([Boker, K., Kupferman, Skrzypczak ’13])
On infinite words, DBP ⊊ GFG.

x

x

b

a

a
b

x

x

b

a

a

b
A GFG coBüchi automaton for (xa + xb)∗[(xa)ω + (xb)ω].

State-blowup to determinize can be Exponential [K., Skrzypczak ’15].
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Application: Inclusion testing

Simulation game B ≤s A: Each round:
▶ Adam chooses q a→ q′ in B
▶ Eve has to replicate p a→ p′ in A

Eve wins if B accepts =⇒ A accepts

Example: p0

p1

p′
1 p′

2

A : q0

q1 q2

q′
1 q′

2

B :

a

b
c

a
a

b c

B ≤s A but A ̸≤s B

Lemma: If A GFG, then B ≤s A is equivalent to L(B) ⊆ L(A)
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Recognizing GFG automata

Complexity of the GFGness problem:
Input: A nondeterministic automaton A
Output: Is A GFG ?

▶ On finite words: PTime [Löding]
▶ On infinite words: Open problem !

▶ Upper bound: ExpTime [Henzinger, Piterman ’06]
▶ PTime algorithm conjectured to be correct [Bagnol, K. ’18]

Proved correct for Büchi and CoBüchi conditions.

What about building GFG automata ?

To tackle these questions, we generalize the notion of GFG. . .
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Allowing more runs
Idea: Allow to build several runs, at least one accepting.

8/18



Width of an automaton
k-width game on A:

Eve wins if w ∈ L(A) ⇒ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

q0

q1

q2

a
a

a

b

A safety NFA of width
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k-Determinization

+ generalization to Breakpoint, Safra: |Ak | ≈ |A|k

Facts: [K.,Majumdar]
▶ width(A) ≤ k ⇐⇒ Ak is GFG.
▶ B ⊆ A can be tested in ≈ O(nwidth(A)) via a simulation game.

Application: Building a GFG aut. from A
Start from B = A and k = 1;
while B is not GFG do

k := k + 1;
B := Ak ;

end

We need to test GFGness !

10/18



k-Determinization

+ generalization to Breakpoint, Safra: |Ak | ≈ |A|k

Facts: [K.,Majumdar]
▶ width(A) ≤ k ⇐⇒ Ak is GFG.
▶ B ⊆ A can be tested in ≈ O(nwidth(A)) via a simulation game.

Application: Building a GFG aut. from A
Start from B = A and k = 1;
while B is not GFG do

k := k + 1;
B := Ak ;

end

We need to test GFGness !

10/18



k-Determinization

+ generalization to Breakpoint, Safra: |Ak | ≈ |A|k

Facts: [K.,Majumdar]
▶ width(A) ≤ k ⇐⇒ Ak is GFG.
▶ B ⊆ A can be tested in ≈ O(nwidth(A)) via a simulation game.

Application: Building a GFG aut. from A
Start from B = A and k = 1;
while B is not GFG do

k := k + 1;
B := Ak ;

end

We need to test GFGness !

10/18



k-Determinization

+ generalization to Breakpoint, Safra: |Ak | ≈ |A|k

Facts: [K.,Majumdar]
▶ width(A) ≤ k ⇐⇒ Ak is GFG.
▶ B ⊆ A can be tested in ≈ O(nwidth(A)) via a simulation game.

Application: Building a GFG aut. from A
Start from B = A and k = 1;
while B is not GFG do

k := k + 1;
B := Ak ;

end

We need to test GFGness !

10/18



k-Determinization

+ generalization to Breakpoint, Safra: |Ak | ≈ |A|k

Facts: [K.,Majumdar]
▶ width(A) ≤ k ⇐⇒ Ak is GFG.
▶ B ⊆ A can be tested in ≈ O(nwidth(A)) via a simulation game.

Application: Building a GFG aut. from A
Start from B = A and k = 1;
while B is not GFG do

k := k + 1;
B := Ak ;

end

We need to test GFGness !
10/18



Computing the width
Can we compute k = width(A) to build Ak directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is ExpTime-complete.
Even deciding whether it is ≤ |Q|/2.

Reduction via a SAT game, introduced by [Robson]
to show ExpTime-completeness of popular games:

(Japanese rules)
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Explorable Automata
We now bound the number of runs.
k-explorability game:

Eve wins if w ∈ L(A) ⇒ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.
A is explorable if it is k-explorable for some k.

q0

q1

q2

a
a

a

b

A -explorable safety NFA
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First results

Theorem: Deciding |Q|/2-explorability is still ExpTime-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

If better than ExpTime: improve on general GFGness !

How many tokens might be needed in explorable automata ?
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A related paper
Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA,
Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): ∃k s.t. Eve wins ?

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:
▶ The PCP is ExpTime-complete
▶ Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but
▶ Game harder to solve: the input word has to be in L(A)
▶ Must deal with acceptance conditions on infinite words.
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Results

Theorems [Hazard, K.]

Explorability Problem is ExpTime-complete for NFA, Büchi.
Doubly exponentially many tokens might be needed.

Only up to Büchi condition for now...

q0

p1

r1

q1

p2

r2

q2 . . . qk−1

pk

rk

qk

Σ

Σ

a

b

Σ

Σ

a

b

Σ

Σ

a

b

NFA needing exponentially many tokens.
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ω-explorability
What happens if we allow a countable infinity of tokens ?

q0 q1 q2

a

a b

a, b

not explorable but
ω-explorable

q0

q1

q2

a
a

a

b

not ω-explorable

Intuition:
Non-explorable: Environment can kill a run chosen by System
Non-ω-explorable: Environment can kill a run of its choice
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Results on ω-explorability

Facts:
▶ any NFA is ω-explorable,
▶ any automaton A with L(A) countable is ω-explorable.
▶ any Reachability automaton is ω-explorable,

Theorem [Hazard, K.]

ω-explorability is ExpTime-complete for safety, coBüchi.

Only up to coBüchi for now... Duality with explorability problem.
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Current and future work

▶ Complexity of (ω)-explorability for parity conditions ?
▶ Complexity of k-explorability with k in binary?
▶ Studying GFG and explorable models in other frameworks.
▶ Practical applications, experimental evaluations.
▶ PTime GFGness for parity automata.
▶ . . .

Thanks for your attention!
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