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History-Deterministic Automata

History-Deterministic
(a.k.a. Good-for-Games)
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Definition of HD via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters:
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b, c

a
b

a, b, c

c

Eve wins if: w ∈ L(A) ⇒ Run accepting.

A HD ⇔ Eve wins the Letter game on A
⇔ there is a strategy σHD : A∗ → Q accepting all words of L(A).

Not a parity game! Only ω-regular, hard to solve.
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An active research area
HD Introduced in [Henzinger, Piterman ’06] for synthesis

Reintroduced by [Colcombet ’09] for cost functions
Exponential succinctness [K.+Skrzypczak ’15]
Deciding whether A is HD in PTime?
Co-Büchi [K.+Skrzypczak ’15], Büchi [K.+Bagnol ’18]
General Parity [Lehtinen+Prakash ’25].
Minimizing HD automata
In PTime For transition-based coBüchi [Abu Radi+Kupferman ’21], and
for Generalized coBüchi [Casares+Idir+K.+Mascle+Prakash ’25]
NP-complete for Büchi, state-based.
Many other questions
▶ Pushdown, data, stochastic
▶ Canonical models
▶ Memory requirements characterizations
▶ . . .
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Allowing more runs
Idea: Allow to build several runs, at least one accepting.

HD

[K. + Majumdar '18 '19] [Hazard+K.+Idir '23 '25]
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Width of an automaton
k-width game on A:

Eve wins if w ∈ L(A) ⇒ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

q0

q1

q2

a
a

a

b

A safety NFA of width

6/15



Width of an automaton
k-width game on A:

Eve wins if w ∈ L(A) ⇒ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

q0

q1

q2

a
a

a

b

A safety NFA of width

6/15



Width of an automaton
k-width game on A:

Eve wins if w ∈ L(A) ⇒ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

q0

q1

q2

a
a

a

b

A safety NFA of width ?

6/15



Width of an automaton
k-width game on A:

Eve wins if w ∈ L(A) ⇒ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

q0

q1

q2

a
a

a

b

A safety NFA of width 2

6/15



k-Determinization

+ generalization to Breakpoint, Safra: |Ak | ≈ |A|k

Facts: [K.,Majumdar]
▶ width(A) ≤ k ⇐⇒ Ak is HD.
▶ B ⊆ A can be tested in ≈ O(nwidth(A)) via a simulation game.

Application: Building a HD aut. from A

Start from B = A and k = 1;
while B is not HD do

k := k + 1;
B := Ak ;

end
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Computing the width
Can we compute k = width(A) to build Ak directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is ExpTime-complete.
Even deciding whether it is ≤ |Q|/2.

Reduction via a SAT game, introduced by [Robson]
to show ExpTime-completeness of popular games:

(Japanese rules)
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Explorable Automata
k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if w ∈ L(A) ⇒ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.
A is explorable if it is k-explorable for some k.

q0

q1

q2

a
a

a

b

A non-explorable safety NFA
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First results

The width result can be lifted:
Theorem [K., Majumdar ’18]:
Deciding |Q|/2-explorability is ExpTime-complete.

Can we decide explorability ? If yes, how efficiently ?
Original motivation: progress on the HDness problem

How many tokens might be needed in explorable automata ?
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A related paper
Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA,
Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): ∃k s.t. Eve wins ?

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:
▶ The PCP is ExpTime-complete
▶ Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but
▶ Game harder to solve: the input word has to be in L(A)
▶ Must deal with acceptance conditions on infinite words.
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Results
Theorems [Hazard, K. 2023]

Explorability is ExpTime-complete for NFA, Büchi.
Doubly exponentially many tokens might be needed.

q0

p1

r1

q1

p2

r2

q2 . . . qk−1

pk

rk

qk

Σ

Σ

a

b

Σ

Σ

a

b

Σ

Σ

a

b

NFA needing exponentially many tokens.

Theorems [Idir, K.]

Explorability is ExpTime for coBüchi, [0, 2]-Parity.
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ω-explorability
What happens if we allow a countable infinity of tokens ?

q0 q1 q2

a

a b

a, b

not explorable but
ω-explorable

q0

q1

q2

a
a

a

b

not ω-explorable

Intuition:
Non-ω-explorable: Adam can always kill any run

Theorem [Hazard, K. 2023]

ω-explorability is ExpTime-complete for safety, coBüchi.

Decidability open for Büchi.
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Expressivity of explorable automata

Safety

coBüchi [0,1]

[0,2]

[0,3]

Reachability

ω-regular ω-regular

Büchi [1,2]

[1,3]

[1,4]

Deterministic

Safety

coBüchi [0,1]

Reachability

Büchi [1,2]

Non-deterministic

Theorem (Idir, K.)
[1, 3]-explorability decidable ⇔ Parity explorability decidable
Büchi ω-explorability decidable ⇔ Parity ω-explorability decidable
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Future work

▶ Open decidability: [1, 3]-expl., Büchi ω-expl.
▶ Complexity of k-expl. with k in binary?
▶ Studying HD and expl. models in other frameworks.
▶ Practical applications, experimental evaluations.
▶ . . .
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