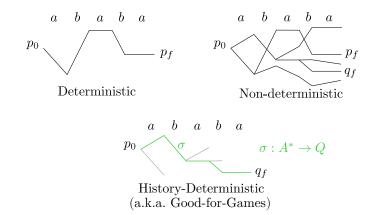
Explorable Automata

Emile Hazard, Olivier Idir, Denis Kuperberg

P-ACTS seminar, Marne-la-Vallée, May 14th 2025

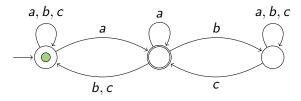
History-Deterministic Automata



 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

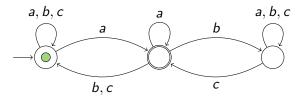
Adam plays letters:



 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of $\mathcal{A}:$

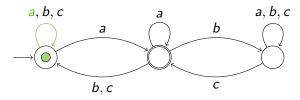
Adam plays letters: a



 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of $\mathcal{A}:$

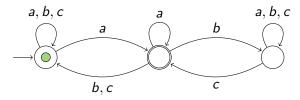
Adam plays letters: a



 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

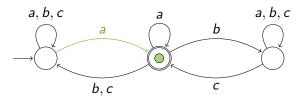
Adam plays letters: a a



 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

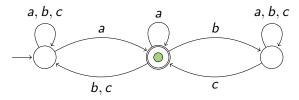
Adam plays letters: a a



 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A:

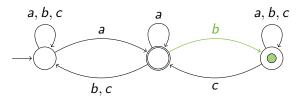
Adam plays letters: a a b



 ${\cal A}$ ND automaton on finite or infinite words.

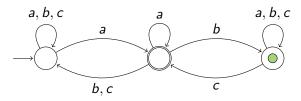
Letter game of A:

Adam plays letters: a a b



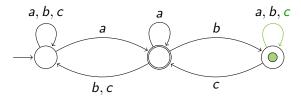
 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: *a a b c*



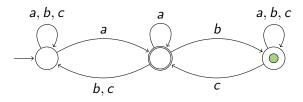
 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: *a a b c*



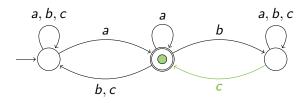
 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c$



 ${\cal A}$ ND automaton on finite or infinite words.

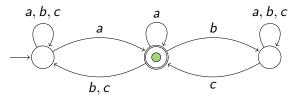
Letter game of A: Adam plays letters: $a \ a \ b \ c \ c$



 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$

Eve: resolves non-deterministic choices for transitions

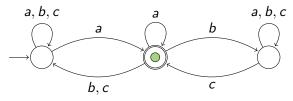


Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$

Eve: resolves non-deterministic choices for transitions



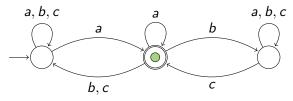
Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.

 $\mathcal{A} \text{ HD} \Leftrightarrow \text{Eve wins the Letter game on } \mathcal{A}$ $\Leftrightarrow \text{ there is a strategy } \sigma_{\text{HD}} : \mathcal{A}^* \to Q \text{ accepting all words of } \mathcal{L}(\mathcal{A}).$

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$

Eve: resolves non-deterministic choices for transitions



Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.

 $\mathcal{A} \text{ HD} \Leftrightarrow \text{Eve wins the Letter game on } \mathcal{A}$ $\Leftrightarrow \text{ there is a strategy } \sigma_{\text{HD}} : \mathcal{A}^* \to Q \text{ accepting all words of } \mathcal{L}(\mathcal{A}).$

Not a parity game! Only ω -regular, hard to solve.

HD Introduced in [Henzinger, Piterman '06] for synthesis

HD Introduced in [Henzinger, Piterman '06] for synthesis Reintroduced by [Colcombet '09] for cost functions

 HD Introduced in [Henzinger, Piterman '06] for synthesis Reintroduced by [Colcombet '09] for cost functions

Exponential succinctness [K.+Skrzypczak '15]

 HD Introduced in [Henzinger, Piterman '06] for synthesis Reintroduced by [Colcombet '09] for cost functions

Exponential succinctness [K.+Skrzypczak '15]

Deciding whether A is HD in **PTime?**

Co-Büchi [K.+Skrzypczak '15], Büchi [K.+Bagnol '18]

 HD Introduced in [Henzinger, Piterman '06] for synthesis Reintroduced by [Colcombet '09] for cost functions

Exponential succinctness [K.+Skrzypczak '15]

Deciding whether A is HD in **PTime?** Co-Büchi [K.+Skrzypczak '15], Büchi [K.+Bagnol '18] **General Parity** [Lehtinen+Prakash '25]. **Minimizing** HD **automata**

 $\rm HD$ Introduced in [Henzinger, Piterman '06] for synthesis Reintroduced by [Colcombet '09] for cost functions

Exponential succinctness [K.+Skrzypczak '15]

Deciding whether A is HD in **PTime?** Co-Büchi [K.+Skrzypczak '15], Büchi [K.+Bagnol '18]

General Parity [Lehtinen+Prakash '25].

Minimizing HD automata

In PTIME For transition-based coBüchi [Abu Radi+Kupferman '21], and for Generalized coBüchi [Casares+Idir+K.+Mascle+Prakash '25] NP-COMPLETE for Büchi, state-based.

 $\rm HD$ Introduced in [Henzinger, Piterman '06] for synthesis Reintroduced by [Colcombet '09] for cost functions

Exponential succinctness [K.+Skrzypczak '15]

Deciding whether \mathcal{A} is HD in PTime?

Co-Büchi [K.+Skrzypczak '15], Büchi [K.+Bagnol '18]

General Parity [Lehtinen+Prakash '25].

Minimizing HD automata

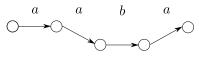
In PTIME For transition-based coBüchi [Abu Radi+Kupferman '21], and for Generalized coBüchi [Casares+Idir+K.+Mascle+Prakash '25] NP-COMPLETE for Büchi, state-based.

Many other questions

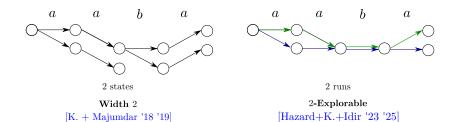
- Pushdown, data, stochastic
- Canonical models
- Memory requirements characterizations

Allowing more runs

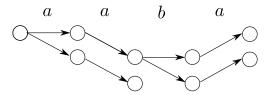
Idea: Allow to build several runs, at least one accepting.



HD

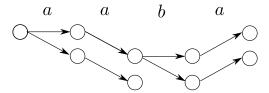


k-width game on \mathcal{A} :



Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

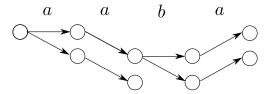
k-width game on \mathcal{A} :



Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

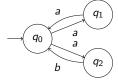
Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

k-width game on \mathcal{A} :



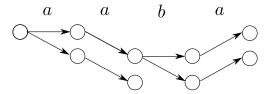
Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).



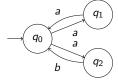
A safety NFA of width ?

k-width game on \mathcal{A} :

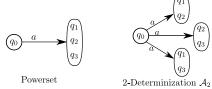


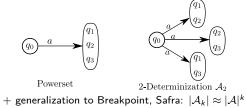
Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

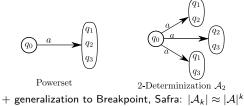
Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).



A safety NFA of width 2



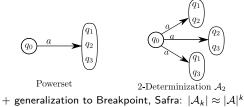




Facts: [K.,Majumdar]

▶ width(
$$\mathcal{A}$$
) ≤ k \iff \mathcal{A}_k is HD.

▶ $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O(n^{\text{width}(\mathcal{A})})$ via a simulation game.



Facts: [K.,Majumdar]

• width
$$(\mathcal{A}) \leq k \iff \mathcal{A}_k$$
 is HD.

▶ $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O(n^{\text{width}(\mathcal{A})})$ via a simulation game.

Application: Building a HD aut. from ${\cal A}$

```
Start from \mathcal{B} = \mathcal{A} and k = 1;
while \mathcal{B} is not HD do
k := k + 1;
\mathcal{B} := \mathcal{A}_k;
end
```

Computing the width

Can we compute k = width(A) to build A_k directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is $\mathrm{ExpTIME}\text{-complete}.$ Even deciding whether it is $\leq |Q|/2.$

Computing the width

Can we compute k = width(A) to build A_k directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is $\mathrm{ExpTIME}\text{-complete}.$ Even deciding whether it is $\leq |Q|/2.$

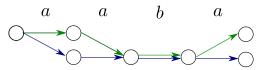
Reduction via a SAT game, introduced by [Robson] to show ExpTIME-completeness of popular games:

(Japanese rules)

Explorable Automata

k-explorability game:

Adam plays letters, Eve moves k tokens

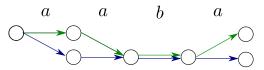


Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

Explorable Automata

k-explorability game:

Adam plays letters, Eve moves k tokens



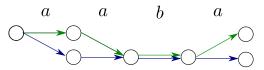
Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game.

Explorable Automata

k-explorability game:

Adam plays letters, Eve moves k tokens



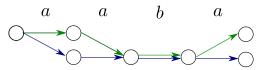
Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

Explorable Automata

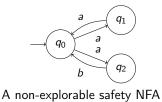
k-explorability game:

Adam plays letters, Eve moves k tokens



Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.



The width result can be lifted: **Theorem** [K., Majumdar '18]: Deciding |Q|/2-explorability is EXPTIME-complete.

```
The width result can be lifted:

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.
```

Can we decide explorability ? If yes, how efficiently ?

```
The width result can be lifted:

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.
```

Can we decide explorability ? If yes, how efficiently ? **Original motivation**: progress on the HDness problem

```
The width result can be lifted:

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.
```

Can we decide explorability ? If yes, how efficiently ? **Original motivation**: progress on the HDness problem

How many tokens might be needed in explorable automata ?

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is ExpTIME-complete
- Doubly exponentially many tokens might be needed.

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is ExpTIME-complete
- Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but

- Game harder to solve: the input word has to be in L(A)
- Must deal with acceptance conditions on infinite words.

Results

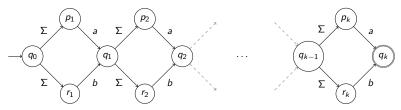
Theorems [Hazard, K. 2023]

 $\label{eq:Explorability is $ExpTime-complete for NFA, Büchi.$ Doubly exponentially many tokens might be needed.$$

Results

Theorems [Hazard, K. 2023]

 $\label{eq:Explorability} \mbox{is $\mathrm{ExpTime}$-complete for NFA, Buchi.} \\ \mbox{Doubly exponentially many tokens might be needed.} \\$

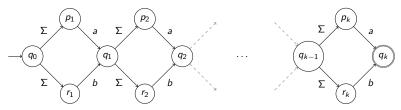


NFA needing exponentially many tokens.

Results

Theorems [Hazard, K. 2023]

 $\label{eq:Explorability} \mbox{is $\mathrm{ExpTime}$-complete for NFA, Buchi.} \\ \mbox{Doubly exponentially many tokens might be needed.} \\$



NFA needing exponentially many tokens.

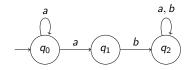
Theorems [Idir, K.]

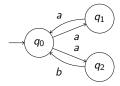
Explorability is EXPTIME for coBüchi, [0,2]-Parity.

$\omega\text{-explorability}$

What happens if we allow a countable infinity of tokens ?

What happens if we allow a countable infinity of tokens ?

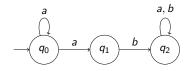


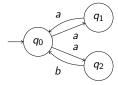


not explorable but ω -explorable

not ω -explorable

What happens if we allow a countable infinity of tokens ?





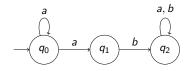
not explorable but ω -explorable

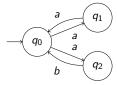
not ω -explorable

Intuition:

Non-*w*-explorable: Adam can always kill any run

What happens if we allow a countable infinity of tokens ?





not explorable but ω -explorable

not ω -explorable

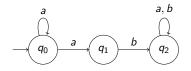
Intuition:

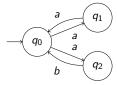
Non-*w*-explorable: Adam can always kill any run

Theorem [Hazard, K. 2023]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

What happens if we allow a countable infinity of tokens ?





not explorable but ω -explorable

not ω -explorable

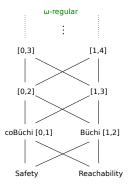
Intuition:

Non-*w*-explorable: Adam can always kill any run

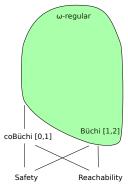
Theorem [Hazard, K. 2023]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

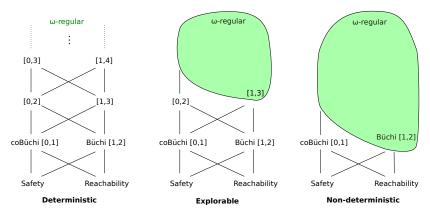
Decidability open for Büchi.

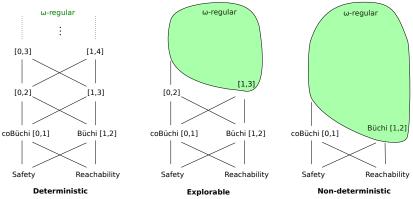


Deterministic

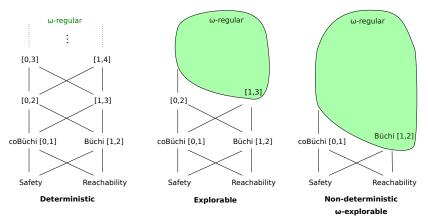


Non-deterministic





ω-explorable



Theorem (Idir, K.)

[1,3]-explorability decidable \Leftrightarrow Parity explorability decidable Büchi ω -explorability decidable \Leftrightarrow Parity ω -explorability decidable

Future work

...

- Open decidability: [1,3]-expl., Büchi ω-expl.
- Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.

Future work

...

- Open decidability: [1,3]-expl., Büchi ω-expl.
- Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.

Thanks for your attention!